Threats: Network Level

Ian Welch NWEN 405 Week 10

Example

- Twitter and Facebook under attack.
- August 9th, 2009.
- http://youtu.be/ IFPoDzXTwSo

Denial of Service Attacks

- Access is not the aim.
- Prevent legitimate users of a service from using the service.
- Financial incentive and extortion.
- Countermeasures aim to dilute the effect of the attack or redirect it.

Classifying Denial of Service Attacks

- Three dimensions:
 - What is the target of the attack?
 - What layer of the networking protocol is being attacked?
 - What is the source of attack?
 - What type of amplification is being used?

Targets

- Bandwidth Attacks
 - Flooding to exhaust network resources (at host or link level)
- Computational Resource Attacks
 - Consuming CPU, disk resources etc.
- Communication Path Attacks
 - Disrupting communication through attacks upon routing of messages etc.

Network Layer

- IP layer
 - ICMP (Smurf attack)
- Network layer
 - TCP/IP (SYN and SYN/ACK attack)
- Application layer
 - DNS, email, web applications etc.

Amplification

Traffic amplification

- Attacker sends a small attack message and this amplified by a third-party into a larger attack message.
- Or, attacker sends a small number of messages that are amplified into a large number of messages.

Impact amplification

 Attacker sends a small message that requires the target to consume large amounts of resources.

Source

Attacker

- Single host/network launching an attack.
- Easy to trace back to attacker, unlikely to be able to generate enough traffic.
- Distributed denial-of-service attack
 - Multiple hosts/networks working together to launch an attack (usually 3rd party compromised hosts in botnet).
- Distributed reflected denial-of-service attack
 - Multiple hosts/networks that can be duped into being source of attack (usually because misconfigured).

IP Layer

Smurf

- Send ICMP EchoRequest with spoofed source address to network broadcast address.
- All hosts on network respond with EchoReply to the victim.
- ·Floods network links (bandwidth attack).
- Traffic amplification (all hosts on network reply).
- Source (distributed reflected denial-of-service).
- ·Fixed since 1999.
- -http://en.wikipedia.org/wiki/Smurf_attack

TCP/IP attack

Normal TCP Connection Set-up

Abnormal TCP Connection Set-up

· Connection Setup Incomplete

SYN Flooding

- Server receives more incomplete connection requests than it can handle (Computational Resource Attack) preventing new connections
- Source code published on Internet
- Prevents completion of 3-way TCP handshake by withholding ACK flag

SYN Flooding

- Server rejects subsequent requests until existing requests time out → 75 secs creating denial of service
- Timeout allows attack to use fewer packets than a brute force attack (impact amplification)
- Attacking host must spoof source IP address to routable but unreachable host to prevent RST packets
- Randomisation of (unreachable) source address assists in hiding attacker's location.

SYN Flooding

- Source of attack can be:
 - Attacker's own host or network.
 - Distributed denial-of-service.
- See http://en.wikipedia.org/wiki/SYN flooding
- Counteracted by:
 - Random dropping of connections.
 - Use of cookies allowing you to cope with very large numbers of connections.

Source: Attacker

- Over time, other requests will not be serviced
- System locks up, does not really die just impaired

Source: Distributed DOS

· Multiple users are difficult to co-ordinate and can be traced

Better to use hijack intermediate sites

SYN/ACK attack

- In normal operation, server receiving SYN packet to establish connection will respond with SYN/ACK packet
- Malicious user may fake source IP address of original SYN packet, causing server to send SYN/ACK packet to victim host
- Single malicious user can send same SYN packet to many servers overwhelms victim with SYN/ACK packets
- Doesn't require infected hosts because behaviour is what TCP/IP is supposed to do.
- Consumes server resources (computational attack).
- Doesn't amplify work done by attackers (no amplification).
- May occur on any port, making many traditional firewall defenses problematic (because they filter by port number).
- Source is spread across the Internet (distributed reflection denial-of-service).

Example of Impact Amplification

- Low rate (Shrew) TCP Denial-of-Service attacks are new and exploit the RTO (minimum Retransmission TimeOut) property of TCP
- Basically a periodic short-burst attack which causes all TCP flows to back off and enter retransmission timeout state
- While TCP's congestion control algorithm is highly robust its implicit assumption of end-system cooperation results in vulnerability to short burst non-responsive flows
- Difficult to detect because of low flows.

Application-level attacks

Application-level Denial of Service

Applications:

- · Network services, for example DNS, email or web servers.
- Hardware infrastructure with a management interface accessible via a network, for example CISCO routers.
- Applications and application-level resources, for example web applications or databases.
- Knowledge of the application or service's implementation allows attacker to multiply effect of a request to a service (amplification attacks).
 - · Send small number of large packets, small volume of requests causes big effect via buffer overflow.
 - · Request large files, small request with big payoff in bandwidth.
 - · Request complex operations, small request leading to expensive computation, use up local resources such as disk space or memory.

Attack on DNS

- Misconfigured DNS servers will honour requests from machines not on their own network (distributed reflection denial-of-service).
- 2001, theregister.com attacked.
- DNS request (25 bytes) resulted in mail server information for aol.com being returned (500 bytes) (traffic amplification)
- Request IP was spoofed address for theregister.com.
- Overloaded links (bandwidth attack).

Web Application

- Imagine a large forum application.
- Contains millions of messages.
- Allows performing searches involving wildcards and multiple fields.
- Attacker creates complicated search that consumes large amounts of CPUs everytime that search takes place.
- Attacker writes a script to launch this request over and over again.
- Amplification effects allows system to be taken down with only a dozen or so hosts.

Mitigating effects and preventing attacks

Sinkholes for Attack Traffic

Sinkholes for Attack Traffic

Some Specific DOS Attack Prevention Measures

- Spread the load.
 - Akamai content distribution network.
 - -84,000 servers across the world.

Some Specific DOS Attack Prevention Measures

- Filter packets entering and leaving your network (ingress and egress filtering).
- Anti-virus on your machine to stop them being used as a botnet.