Chapter 5

Considerations for
Secure Coding and
Testing o

5.1 Introduction ‘ G@O

This chapter provides an overview of key security practices that
project managers should include during software coding and testing.
Anumber of excellent books and Web sites also provide detailed guid-
ance on software security coding and software security testing. Thus
the intent here is to summarize considerations for project managers
and provide references for further reading, :

Software security is first and foremost about identifying and managing
risks. Assuming that appropriate requirements engineering, design, and
architecture practices have been implemented, the next most. effective
way to identify and manage risks for a software application is to itera-
tively analyze and review its code throughout the course of the SDLC.
In fact, many project managers start here because code analysis and
review is better defined, more mature, and, therefore, more commonly
used than some of the earlier life-cycle practices. This chapter identifies
some of the more common software code vulnerabilities and effective

151

152

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

practices for conducting source code review. It also briefly introduces
the topic of practices for secure coding, and provides supporting refer-
ences for further investigation.

The description of software security testing compares and contrasts
software testing with testing software with security in mind. It
describes two accepted approaches for software security testing: func-
tional testing and risk-based testing. The chapter closes by describing
practices and approaches to be considered when addressing security
during unit test (including white-box testing), the testing of libraries
and executable files, integration testing, and system testing (including
black-box and penetration testing).

5.2 Code Analysis? o Qoom

Developing robust software applications that are predictable in their
execution and as vulnerability free as possible is a difficult task; mak-
ing them completely secure is impossible. Too often software develop-
ment organizations place functionality, schedules, and costs at the
forefront of their concerns and make security and quality an after-
thought. Nearly all attacks on software applications have one funda-
mental cause: The software is not secure owing to defects in its design,
coding, testing, and operations. SN

A vulnerability is a software defect that.an attacker can exploit.
Defects typically fall into one of two categories: bugs and flaws.

Abug is a problem introduced during software implementation. Most
bugs can be easily discovered and corrected. Examples include buffer
overflows, race conditions, unsafe system calls, and incorrect input
validation. : : '

A flaw is a problem at a much deeper level. Flaws are more subtle, typ-
ically originating in the design and being instantiated in the code.
Examples of flaws include compartmentalization problems in design,
error-handling problems, and broken or illogical access control.

In practice, we find that software security problems are divided 50/
50 between bugs and flaws [McGraw 2006). Thus discovering and

1. This material is extracted and adapted from a more extensive article by Steven Lavenhar of
Cigital, Inc. [BSI 19}. That article should be consulted for additional details and examples.

S R e

5.2 CobE ANALYSIS

eliminating bugs during code analysis takes care of roughly half of
the problem when tackling software security. Attack patterns, as dis-
cussed in Chapter 2, can also be used effectively during coding to
help enumerate specific weaknesses targeted by relevant attacks,
allowing developers to ensure that these weaknesses do not occur in
their code.

This section focuses on implementation-level security bugs that can be
addressed during source code analysis. Design-level flaws are dis-
cussed in Chapter 4, Secure Software Architecture and Design.

5.2.1 Coﬁuno_n Software Code Vulnerabilities

The use of sound coding practices can help to substantially reduce
software defects commonly introduced during implementation. The
following types of security bugs are common. More details are available
in [McGraw 2006] and {Tsipenyuk 2005] as well as the Common Vulner-
abilities and Exposures Web site [CVE 2007], the Common Weakness
Enumeration Web site [CWE 2007], and the National Vulnerability
Database [NIST 2007].

Input Validation

Trusting user and parameter input is a frequent source of security
problems. Attacks that take advantage of little to no input validation
include cross-site. scripting, illegal pointer values, integer overflows,
and DNS cache poisoning (refer to the glossary for definitions of these

153

154 CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

types of attacks). In addition, inadequate input validation can lead to
buffer overflows and SQL defects as described below. All of these
types of attacks can pose risks to confidentiality and integrity. One of
the more effective approaches for input validation is to use a whitelist,
which lists-all known good inputs that a system is permitted to accept
and excludes everything else (including characters used to perform
each type of attack). -

Exceptions

Exceptions are events that disrupt the normal flow of code. Program-
ming languages may use a mechanism called an exception handler to
deal with unexpected events such a divide-by-zero attempt, violation
of memory protection, or a floating-point arithmetic error. Such excep-
tions could be handled by the code by checking for conditions that can
lead to such violations. When such checks are not made, however,
exception handling passes control from the function with that error to
a higher execution context in an attempt to recover from that condi-
tion. Such exception handling disrupts the normal flow of the code.
The security concerns that arise from exceptlon handling are discussed
in [McGraw 2006].

i1 Buffer Overflows

I

! Buffer overflows are a leading method used to exploit software by
remotely injecting malicious code into a target application
3 [Hoglund 2004; Viega 2001]. The root cause of buffer overflow prob-
3 lems is that commonly used programming languages such as C and
- C++ are inherently unsafe. No bounds checks on array and pointer
i references are carried out, meaning that a developer must check the
! bounds (an activity that is often overlooked) or risk encountering

: problems.

|

e When writing to buffers, C/C++ programmers must take care not to
} it . store more data in the buffer than it can hold. When a program writes
1 past the bounds of a buffer, a buffer overflow occurs and the next con-
i tiguous chunk of memory is overwritten. C and C++ allow programs
to overflow buffers at will. No runtime checks are performed that
i might prevent writing past the end of a buffer, so developers have to
] perform the checks in their own code.

gils. * Reading or writing past the end of a buffer can cause-a number of
: diverse (and often unanticipated) behaviors: (1) Programs can act in

5.2 CopE ANALYSIS

strange ways, (2} programs can fail completely, and (2) programs can
proceed without any noticeable difference in execution. The side
effects of overrunning a buffer depend on the following issues:

* ' How much data is written past the buffer bounds

* What data (if any) is overwritten when the buffer gets full and
spills over

* Whether the program attempts to read data that is overwritten
during the overflow

* Which data ends up replacing the memory that gets overwritten

The indeterminate behavior of programs that have overrun a buffer
makes them particularly tricky to debug. In the worst cases, a program
may overflow a buffer and not show any adverse side effects at all. As
a result, buffer overflow problems often remain invisible during stan-
dard testing. The important thing to realize about buffer overflows is
that any data that happens to be allocated near the buffer can poten-
tially be modified when the overflow occurs.

Memory usage vulnerabilities will continue to be a fruitful résource
for exploiting software until languages that incorporate memory man-
agement schemes enter into wider use.

SQL Injection

SQL injection is currently the principal technique used by attackers to
take advantage of nonvalidated input defects to pass SQL commands
through an application for execution by a database. The security
model used by many applications assumes that a SQL query is a
trusted command. In this case, the defect lies in the software’s con-
struction of a dynamic SQL statement based on user input.

Attackers take advantage of the fact that developers often chain
together SQL commands with user-provided parameters, meaning
that the attackers can, therefore, embed SQL commands inside these
parameters. As a result, the attacker can execute arbitrary SQL que-
ries and/or commands on the database server through the applica-
tion. This ability .enables attackers to exploit SQL queries to
circumvent access controls, authentication, and authorization checks.
In some instances, SQL queries may allow access to commands at the
level of the host operating system. This can be done using stored pro-
cedures. :

155

156

CHAPTER b CONSIDERATIONS FOR SECURE CODING AND TESTING

Race Conditions

Race conditions take on many forms but can be characterized as
scheduling dependencies between multiple threads that are not prop-
erly synchronized, causing an undesirable timing of events. An exam-
ple of a race condition that could have a negative outcome on security
is when a specific sequence of events is required between Event A and
Event B, but a race occurs and the proper sequence is not ensured by
the software program. Developers can use a number of programming
constructs to control the synchronization of threads, such as sema-
phores, mutexes, and critical sections. Race conditions fall into three
main categories:

* Infinite loops, which cause a program to never terminate or never
return from some flow of logic or control

* Deadlocks, which occur when the program is waiting on a
resource without some mechanism for timeout or expiration and
the resource or lock is never released

-)
* Resource collisions, which represent failures to synchronize access
to shared resources, often resulting in resource corruption or privi-
lege escalations (see [Bishop 1996])

Additional security concerns that arise from these and other typés of
software vulnerabilities are discussed in [McGraw 2006].

5.2.2 Source Code Review

Source code review for security ranks high on the list of sound prac-
tices intended to enhance software security. Structured design and
code inspections, as well as peer review of source code, can produce
substantial improvements in software security. You can easily inte-
grate these reviews into established software development processes.
In this type of review, the reviewers meet one-on-one with develop-
ers and review code visually to determine whether it meets previ-
ously established secure code development criteria. Reviewers
consider coding standards and use code review checklists (refer to
Section 5.3.1) as they inspect code comments, documentation, the
unit test plan, and the code’s compliance with security requirements.
Unit test plans detail how the code will be tested to demonstrate that
it meets security requirements and design/coding standards
intended to reduce design flaws and implementation bugs. The test

5.2 CoDpE ANaLysis 157

plan includes a test procedure, inputs, and expected outputs [Viega
2001]. (See also Section 5.5.1.)

Manual inspection of code for security vulnerabilities can be time-
consuming. To perform a manual analysis effectively, reviewers must
know what security vulnerabilities look like before they can rigorously
examine the code and identify those problems. The use of static analy-
sis tools is preferred over manual analysis for this purpose because the
former tools are faster, can be used to evaluate software programs
much more frequently, and can encapsulate security knowledge in a
way that does not require the tool operator to have the same level of
security expertise as a human reviewer. Nevertheless, these tools can-
not replace a human analyst; they can only speed up tasks that are eas-
ily automated.

Static Code Analysis Tools?

Static source code analysis is the process by which software develop-
ers check their code for problems and inconsistencies before compiling
it. Developers can automate the analysis of souice code by using static
analysis tools. These tools scan the source code and automatically
detect errors that typically pass through compilers and can cause
problems later in the SDLC.

A
3
4

Many modern static analysis tools generafe .reports that graphically
present the analysis results and recommend potential resolutions to
identified problems. ‘

Identifying security vulnerabilities is complicated by the fact that they
often appear in hard-to-produce software states or crop up in unusual
circumstances. Static analysis has the advantage of being performed
before a program reaches a level of completion where dynamic analy-
sis or other types of analysis can be meaningfully used. However,
static code analyzers should not be viewed as a panacea to all potential
problems. These tools can produce false positives and false negatives,
so their results should be taken with the proverbial “grain of salt.”
That is, results indicating that zero security defects were found should
2 not be taken to mean that your codé is completely free of vulnerabili-
ties or 100 percent secure; rather, these results simply mean that your
code has none of the patterns found in the analysis tool’s rulebase for
security defects. '

R

otk
=24

2. See [McGraw 2006, appendix A], {Chess 2004], [Chess 2007), and http:/ /en.wikipedia.org/
wiki/List_of_tools_for_static_code_analysis for further details and several examples,

158

CHAPTER 5 CONSIDERATIONS FOR SECURE COPING AND TESTING

The greatest promise of static analysis tools derives from their abil-
ity to automatically identify many common coding problems.
Unfortunately, implementation bugs created by developer errors are
often only part of the problem. Static analysis tools cannot evaluate
design ‘and architectural flaws. They cannot identify poorly
designed cryptographic libraries or improperly selected algorithms,
and they cannot point out design problems that might cause confu-
sion between authentication and authorization. They also cannot
identify passwords or magic nunibers embedded in code. One fur-
ther drawback to automated code analysis is that the tools are prone
to producmg false positives when a potential vulnerability does not
exist. This is especially true of older freeware tools, most of which
are not actively supported; many analysts do not find these tools to

5.2 CopE ANALYSIS

be useful when analyzing real-world software systems.? Commer-
cial tool vendors are actively addressing the problem of false posi-
tives and have made considerable progress in this realm, but much
remains to be done.

Static code analysis can be used to discover subtle and elusive imple-
mentation errors before the software is tested or placed into operation.
By correcting subtle errors in the code early, project managers can
reduce testing efforts and minimize operations and maintenance costs.
Static code analysis tools can be applied in a variety of ways, all of
which lead to higher-quality software. This said, static analysis tools
can identify only a subset of the vulnerabilities leading to security
problems. These tools must always be used in conjunction with man-
ual analysis and other software assurance methods to reduce vulnera-
bilities that cannot be identified based on patterns and rules.

Metric Analysis |

Metric analysis produces a quantitative measure of the degree to
which the analyzed code possesses a given attribute. An attribute is a
characteristic or a property of the code. For example,

* When considered separately, “lines of code” and “number of
security breaches” are two distinct measures that provide
very little business meaning because there is no context for
their values. A metric made up as “number of breaches/lines
of code” provides a more interesting relative value. A com-
parative metric like this can be used to compare and contrast
a given systern’s “security defect density” against a previous
version or similar systems and thus provide management
with useful data for decision making. [McGraw 2006, p. 247]

The process of using code metrics begins by deriving metrics that are
appropriate for the code under review. Then data is collected, and
metrics are computed and compared to preestablished guidelines and
historical data (such as the number of defects per 1000 lines of code).

The results of these comparisons are used to analyze the code with the

intent of improving the measured qualities.

Two classes of quantitative software metrics are distinguished: abso-
lute and relative, Absolute metrics are numerical values that represent

3. See Cigital’s ITS4 software security tool (http:/ /www.cigital.com/its4) and Fortify Software’s
RATS (Rough Auditing Tool for Security) (hitp:/ /www.fortifysoftware.com/security-resources/
rats.jsp).

159

160

CHAPTER b CONSIDERATIONS FOR SECURE CODING AND TRSTING

a characteristic of the code, such as the probability of failure, the num-
ber of references to a particular variable in an application, or the number
of lines of code. Absolute metrics do not involve uncertainty. There can
be one and only one correct numerical representation of a given abso-
lute metric. In contrast, relative metrics provide a numeric representa-
tion of an atiribute that cannot be precisely measured, such as the
degree of difficulty in testing for buffer overflows. There is no objec-
tive, absolute way to measure such an attribute. Multiple variables are
factored into an estimation of the degree of testing difficulty, and any
numeric representation is just an approximation. '

Code Analysis Process Diagrams

The BSI Web site provides a number of code analysis process flow dia-
grams for source code review, static code analysis, and metric analysis, as
well as for dynamic analysis, fault injection, cryptanalysis, and random-
number generator analysis. We encourage you to consult the Web site
[BSI 19] and [McGraw 2006] for further details.

5.3 Coding Practices* QoM

Coding practices typically describe methods, techniques, processes,
tools, and runtime libraries that can prevent or limit exploits against
vulnerabilities. These measures may include the development and
technology environment in which the coding practice is applied, as
well as the risk of not following the practice and the type of attacks
that could result.

Secure coding requires an understanding of programming errors that
commonly lead to software vulnerabilities and the knowledge and use
of alternative approaches that are less prone to error. Secure coding
can benefit from the proper use of software development tools, includ-
ing compilers. Compilers typically have options that allow increased
or specific diagnostics to be performed on code during compilation.
Resolving these warnings (by correcting the problem or determining
that the warning is superfluous) can improve the security of the

4. This material is extracted and adapted from a more ekten$ive article by Robert Seacord and
Daniel Plakosh of Carnegie Mellon University [BSI 20]. That article should be consulted for addi-
tional details and examples.

5.3 CopiNg PRACTICES

deployed software system. In addition, compilers may provide
options that influence runtime settings. Understanding available com-
piler options and making informed decisions about which options to
use and which to omit can help eliminate vulnerabilities and mitigate
against runtime exploitation of undiscovered or unresolved vulnera-
bilities.

As one example, CERT has observed through an analysis of thousands
of vulnerability reports that most vulnerabilities stem from a relatively
small and recurring number of common programming errors that
could be easily avoided if developers learned to recognize them and
understand their potential harm. In particular, the C and C++ pro-
gramming languages have proved highly susceptible to these classes
of errors. Easily avoided software defects are a primary cause of com-
monly exploited software vuinerabilities. By identifying insecure cod-
ing practices and developing secure alternatives, software project
managers and developers can take practical steps to reduce or elimi-
nate vulnerabilities before they are deployed in the field.

5.3.1 Sources of Additional Information on Secure Coding

We encourage readers to review the Coding Practices area of the BSI
Web site for additional coding practices that can be used to mitigate
common problems in C and C++ [BSI 20]. An example of the use of
compiler checks to minimize integer vulnerabilities is described in the
“Compiler Checks” section of the Web site. Examples of using other
static and dynamic analysis tools to discover and mitigate vulnerabili-
ties are described in “Runtime Analysis Tools” and “Heap Integrity
Detection.” | '

The CERT Secure Coding Initiative (http:/ /www.cert.org/secure-
coding) works with software developers and software development
organizations to reduce vulnerabilities resulting from coding errors
before they are deployed in products. The initiative’s work includes
identifying common programming errots that lead to software vul-
nerabilities, establishing standard sécure coding standards, educat-
ing software developers, and advancing the state of the practicé in
secure coding.

Table 5-1 provides a description of a number of recent and excellent
books on the subject.

161

CHAPTER 5

CONSIDERATIONS FOR SECURE CODING AND TESTING

Table 5-1: Books to Consult for Secure Coding Approaches and

Practices

Secuire
Programming with
Static Analysis
[Chess 2007]

Describes how static source code analysis can be
used to uncover errors and the most common
types of security defects that result in security
vulnerabilities. The book describes how this
method works, explains how to integrate it into
your software development process, and explores

how to conduct effective code reviews using the
method.

Software Security:
Building Securily In
[McGraw 2006]

Describes in detail how to put software security
into practice. It presents the topic from the two
sides of software security—attack and defense,
exploiting and designing, breaking and build-
ing—including a description of seven essential
“touchpoints” for software security. Excerpts and
citations from Software Security are included
throughout this chapter and on the BSI Web site.

The Sectire Develop-
ment Lifecycle
[Howard 2006]

Describes Microsoft’s Security Development
Lifecycle (SDL) as one proven way to help
reduce the number of software security defects
during each phase of the development process.
This process has been used effectively in many
Microsoft products.

Secure Coding in C
and C++ [Seacord
2005]

Provides a comprehensive description of common
programming errors (for example, in string
manipulation, integer operations, and dynamic
memory management), the vulnerabilities that
result from them, and mitigation strategies for
minimizing their impact.

Exploiting Software:
How to Break Code
[Hoglund 2004]

Describes how to design software so that it is as

resistant as possible to attack. This book describes

how malicious hackers go about writing exploit
scripts that can be used to cause software to fail;
in this way, it provides software designers'with
an understanding of the types of attacks their
software may be forced to deal with.

5.4 SOFTWARE SECURITY TESTING

Table 5~1: Books to Consult for Secure Coding Approaches and
Practices (Continued)

Secure Coding:
Principles and Prac-
tices [Graff 2003]

Describes good and bad practices to consider dur-
ing architecture, design, code, test, and opera-
tions, along with supporting case studies. Good
practices for secure coding identified in this book
include handling data with caution (perform
bounds checking, set initial values for data), reus-
ing good code whenever practicable, insisting on
a sound review process (peer reviews, indepen-
dent verification and validation), using checklists
and standards, and removing obsolete code.

Writing Secure Code,
second edition
{Howard 2002]

Provides developers with detailed practices for
designing secure applications, writing robust
code that can withstand repeated attacks, and
testing applications for security flaws. The book
provides proven principles, strategies, and coding
techniques.

Building Secure
Software: How fo
Avoid Security Prob-
lems the Right Way
[Viega 2001]

“Helps people involved in the software develop-
ment process learn the principles necessary for
building secure software. It is intended for any-
one involved in software development, from
managers to coders, although it contains the low-
level detail that is most applicable to developers.
Specific code examples and technical details are
presented in the second part of the book. The first
part is more general and is intended to set an
appropriate context for building secure software
by introducing security goals, security technolo-
gies, and the concept of software risk manage-
ment” [Viega 2001, p. xxiii].

5.4 Software Securify Testing® oom

Sécurity test activities are primarily performed to demonstrate that a
system meets its security requirements and to identify and minimize

5. This material is'extracted and adapted from a more extensive article by C. C. Michael and Will
Radosevich of Cigital, Inc. [BSI 21]. That article should be consulted for additional details.

163

164

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

the number of security vulnerabilities in the software before the sys-
tem goes into production. Additionally, security test activities can aid
in reducing overall project costs, protecting an organization’s reputa-
tion or brand once a product is deployed, reducing litigation expenses,
and complying with regulatory requirements.

The goal of security testing is to ensure that the software being tested
is robust and continues to function in an acceptable manner even in
the presence of a malicious attack. Security testing is motivated by
probing undocumented assumptions and areas of particular complex-
ity to determine how a software program can be broken. The designers
and the specification might outline a secure design, and the develop-
ers might be diligent and write secure code, but ultimately the testing
process determines whether the software will be adequately secure
once it is fielded.

Testing is laborious, time-consuming, and expensive, so the choice of
testing approaches should be based on the risks to the software and
the system. Risk analysis provides the right context and information to
make tradeoffs between time and effort to achieve test effectiveness
(see Section7.4.2). An effective testing approach balances efficiency
and effectiveness to identify the greatest number of critical defects for
the least cost.

This section is not intended to serve as a primer on software testing.
Anyone responsible for security testing should be familiar with stan-

dard approaches to software testing such as those described in these
books:

* Testing Object-Oriented Systems: Models, Patterns, and Tools [Binder
1999]

¢ Automated Software Testing [Dustin 1999]
¢ Software Test Automation [Fewster 1999]

* The Craft of Software Testing: Subsystems Testing Including Ob]ect-‘
Based and Object-Oriented Testing [Marick 1994]

® Black-Box Testing: Techmques for Punctwnal Testing of Software and
Systems [Beizer 1995]

. Managmg the Testing Process: Practical Tools and Techniques for Man-
aging Hardware and Software Testing, Second Edition [Black 2002]

o Testing Computer Software, Second Edition [Kaner 1999]

"——--—

5.4 SOFTWARE SECURITY TESTING 165

5.4.1 Contrasting Software Testing and Software Security
Testing

At one time, it was widely believed that security bugs in a software
system were just like traditional programming bugs and that tradi-
tional quality assurance and testing techniques could be applied
equally well to secure software development. Over time, however,
developers have learned that security-related bugs can differ from tra-
ditional software bugs in a number of ways. These characteristics, in
turn, influence the practices that you should use for software security
testing [Hoglund 2004]. o ‘

* Users do not normally try to search out software bugs. An enter-
prising user may occasionally derive satisfaction’ from making
software break, but if the user succeeds, it affects only that user.
Conversely, malicious attackers do search for security-related vul-
nerabilities in an intelligent and deliberate manner. One important
difference between security testing and other testing activities is
that the security test engineer needs to emulate an intelligent
attacker. An adversary ‘mighit do things that no ordinary user
would do, such as entering a 1000-character surname or repeatedly
trying to corrupt a temporary file. Test engineers must consider
actions that are far outside the range of normal activity and might '
not even be regarded as legitimate tests under other circumstances.
A security test engineer must thirik like the attacker and find the
weak spots first. e '

* Malicious attackers are known to script successful attacks and dis-
tribute exploit scripts throughout their communities. In other
words, a single, hard-to-find vulnerability can be exploited by a
large number of malicious attackers using publicly available
exploit scripts, This proliferation of attacker knowledge can cause
problems for a large number of users, whereas a hard-to-find soft-
ware bug typically causes problems for only a few users. .

* Although most developers are not currently trained in secure pro-
gramming practices, developers can (and do) learn from experi-
ence to avoid poor programming practices that can lead to
software bugs in their code. However, the list of insecure program- !
ming practices is long and continues to grow, making it difficult

 for developers to keep current on the latest exploits and attack pat- ;
. terns (see also Section 2.3.2). o

166

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

s Security testing differs from traditional software testing in that it
emphasizes what an application should not do rather than what
it should do. While it sometimes tests conformance to positive
requirements such as “User accounts are disabled after three
unsuccéssful login attempts” arid “Network traffic must be
encrypted,” more often it tests negative requirements [Fink 1997]
such as “Outside attackers should not be able to modify the con-
tents of the Web page” and “Unauthorized users should not be
able to access data.” This shift in emphasis from positive to nega-
tive requirements affects the way testing is performed (see
Section 5.4.3). The standard way to test a positive requirement is to
create the conditions in which the requirement is intended to hold
true and verify that the requirement is satisfied by the software. By
contrast, a negative requirement may state that something should
never occur. To apply a standard testing approach to negative
requirements, one would need to create every possible set of con-
ditions, which is not feasible. o B

» Many security requirements, such as “An attacker should never be
able to take control of the application,” would be regarded as
untestable in a traditional software development setting. It is con-
sidered a legitimate practice for testers to ask that such require-
ments be refined or perhaps dropped altogether. Many security
requirements, however, can be neither refined nor dropped even if
they are untestable. For example, one cannot reliably enumerate all
of the ways in which an attacker might gain control of an applica-
tion (which would be one way to make it more testable), and obvi-
ously one cannot drop the requirement either. Thus the challenge
is to find both a way to specify these types of requirements and a
way to adequately test them. ' '

Project managers and security test engineers must ask which kinds of
vulnerabilities can exist for the software being tested and which kinds
of problems are likely to have been overlooked by the developers.
Often the most important types of vulnerabilitiés to consider are the
most common ones (described in Section 5.2.1), which are targeted by
security scanners and reported in public forums. o

Many traditional software bugs can have security implications. Buggy
behavior is almost by definition unforeseen behavior, and as such it pre-
sents an attacker with the opportunity for a potential exploit. Indeed,
many well-known vulnerabilities could cause software to crash if they
were triggered. Crashing software can expose confidential information

5.4 SOFTWARE SECURITY TESTING

in the form of diagnostics or data dumps. Even if the software does not
crash as the result of a bug, its internal state can become corrupted and
lead to unexpected behavior at a later time. For this reason, error-
handling software is a frequent target of malicious attacks. Attackers
probing a new application often start by trying to crash it.

Security Testing Methods

Two common methods for testing whether software has met its secu-
rity requirements are functional security testing and risk-based security
testing [McGraw 2006]. Functional testing is meant to ensure that soft-
ware behaves as specified and so is largely based on demonstrating
that requirements defined in advance during requirements engineer-
ing (see Chapter 3) are satisfied at an acceptable level. Risk-based test-
ing probes specific risks that have been identified through risk
analysis. The next two sections discuss how functional and risk-based
testing can be used to enhance confidence in the software’s security.

5.4.2 Functional Testing

Functional testing usually means testing the system’s adherence to its
functional requirements. A functional requirement usually has the fol-
lowing form: “When a specific thing happens, then the software
should respond in a certain way.” This way of specifying a require-
ment is convenient for the tester, who can exercise the “if” part of the
requirement and then confirm that the software behaves as it should.

167

168 CHAPTER b CONSIDERATIONS FOR SECURE CODING AND TESTING

" E i Examples of functional security requirements are that a user’s account

is disabled after three unsuccessful login attempts and that only cer-

Rl tain characters are permitted in a URL. These positive functional

I3 requirements can be tested in traditional ways, such as attempting

three unsiiccessful login attempts and verifying that the account is dis-

abled, or by supplying a URL with illegal characters and making sure
that those characters are stripped out before the URL is processed. -

[

|

' When risks are identified early in the SDLC, developers have adequate

| time to include mitigations for those risks (also known as countermea-

; sures). Mitigations are meant to reduce the severity of the identified

E risks, and they lead to positive requirements. For example, the risk of

| password-cracking attacks can be mitigated by disabling an account
: after three unsuccessful login attempts or by enforcing long pass-
j phrases. Passphrases are largely immune to cracking and have the
| added benefit of often being easier to remember than complex pass-
' words. The risk of SQL m]ectlon attacks from a Web interface can be

il mitigated by using an mput validation whitelist (a list of all known

' 1 good inputs that a system is permitied to accept) that excludés all -
E other characters. These mitigations have to be tested not only to con-
i firm that they are implemented correctly, but also to determine how
J well they actually safeguard the system against the risks they were

designed to address. ,

A common software development practice is to ensure that every
requirement can be mapped to a specific software artifact meant to
implement that requirement. As a consequence, the tester who is prob-
ing a specific requirement knows exactly which code artifact to test.
Generally, there is a clear mapping between functional requirements,
code artifacts, and functional tests.

H
! ! , Some Caveats |
l Software engineers may not understand how to implement some secu-
rity requirements. In one example, a Web application was found to be .
vulnerable to a directory traversal attack, where a URL containing the

string “..” was used to access directories that were supposedly forbid-

dillhs; blacklist technique, in which a list is created and used to exclude or fil-
I ter out bad input data and bad characters. URLs that contained this
string were added to the blacklist and thus disallowed. However,

|
J den to remote clients. To counter this possibility, developers used a
i
1 blacklists are not mfalhble

5

5.4 SOFTWARE SECURITY TESTING

[Blacklists] often fail because the enumeration is incomplete,
or because the removal of bad characters from the input can
result in the production of another bad input which is not
caught (and so on recursively). Blacklists fail also because
they are based on previous experience, and only enumerate
known bad input. The recommended practice is the creation
of whitelists that enumerate known good input. Everything
else is rejected. [Meunier 2006] .

Testing cannot demonstrate the absence of software problems; it can
only demonstrate (sometimes) that problems are present [Dijkstra

1970]. The problem is that testers can try out only a limited number of

test cases; the software might work correctly for those cases and fail
for other cases. Therefore, testing a mitigation measure is not enough
to guarantee that the corresponding risk has truly been: eliminated,
and this caveat is especially important to keep in mind when the risk
in question is a severe one. _

Also, when bugs are fixed, the fix is sometimes not subjected to the
same scrutiny as those features that were part of the original software
design. For example, a problem that should normally be detected in
design reviews might slip through the cracks if it shows up as part of a
bug fix. Sometimes software that has been repaired is retested simply
by running the original test suite again—but that approach works
poorly for the caveats described here.

Testing Beyond Requirements

Functional testing is meant to probe whether software behaves as it
should, but so far we have focused only on requirements-based test-
ing. A number of other functional testing techniques (as described in
170 on pages 170-171) do not rely on defined requirements. These tech-
niques are described in more detail in [BST 21].

5.4.3 Risk-Based Testing

Risk-based testing addresses negative requirements, which state what
a software system should not do. Tests for negative requirements can
be developed in a number of ways. They should be derived from a risk
analysis, which should encompass not only the high-level risks identi-
fied during the design process but also low-level risks derived from
the software itself.

169

e

170

CHAPTER 5

CONSIDERATIONS FOR SECURE CODING AND TESTING

Table 5-2: Functional Testing Techniques

Ad hoc testing
{(experience-based
testing} and explor-
atory testing

Tests are based on the tester’s skill, intuition, and
experience with similar programs to identify
tests not captured in more formal techniques.

Specification-based
and model-based
testing

Tests are derived automatically using a specifica-
tion created in a formal language (rare) or
through the use of a model of program interfaces.

Equivalence
partitioning

Tests are derived by dividing the input domain
into a collection of subsets or equivalence classes
(such as output path or program structure) and
then selecting representative tests for each class.

Boundary values
analysis

Tests are selected on or near the boundaries of the
input domain of variables, given that many
defects tend to concentrate near the extreme val-
ues of inputs. B

Robustness and
fault-tolerance
testing

Test cases are gﬁosen outside the domain to test
program robustness in the face of unexpected
and erroneous inputs. '

Decision table {also

Tests are derived by systematically considering

called logic-based) every possible combination of conditions (such
testing as inputs) and actions (such as outputs).
State-based testing Tests are selected that cover states and transitions
from a finite state machine model of the software.
Control-flow * Tests are selected to detect poor and incorrect
testing program structures. Test criteria aim at covering

all statements, classes, or blocks in a program (or
some specified combinations).

Data-flow testing

This form of testing is often used to test interfaces
between subsystems. It is accomplished by anno-
tating a program-control flow graph with infor-

mation about how variables are defined and used
and then tracing paths from where the variableis
defined to where it is used.

5.4 SOFTWARE SECURITY TESTING

Table 5-2: Functional Testing Techniques (Continued)

Usage-based and Tests are derived by developing an operational
use-case-based scenario or set of use cases that describe how the
testing software will be used in its operational environ-
ment. (See also Section 3.2.)
Code-based testing This approach is a superset of control-flow and
(also called white- data-flow testing. Tests are designed to cover the
box testing; see code by using the control structure, data-flow -
Section 5.5.1) structure, decision control, and modularity.
Fault-based testing Tests are designed to intentionally introduce
faults to probe program robustness and reliabil-
ity [Whittaker 2003].
Protocol Tests are designed to use a program’s communi-
conformance cation protocol as the test basis. In combination
testing with boundary values testing and equivalence-
based testing, this method is useful for Web-based
programs and other Internet-based code.
Load and Tests are designed to verify that the system meets
performance its specified performance requirements (capacity
testing and response time) by exercising the system to :
‘ the maximum design load and beyond it.

i When testing negative requirements, security test engineers typically
] look for common mistakes and test suspected weaknesses in the soft-
ware. The emphasis is on finding vulnerabilities, often by executing
abuse and misuse tests that attempt to exploit software weaknesses
(see Section 3.2). In addition to demonstrating the actual presence of
vulnerabilities, security tests can assist in uncovering symptoms that
suggest potential vulnerabilities.

Requirements can be expected to contain mitigations for many risks.
Mitigations generally result in positive requirements, but the fact
that a risk has a mitigation does not imply that it should be ignored
during risk-based testing. Even if a mitigation measure is correctly
implemented, there is still a need to ask whethér it really does safe-
guard against the risk it serves as a countermeasure for and to what
extent. Each mitigation generates a positive requirement—the correct

172

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

implementation of the mitigation strategy—but it also generates a
negative requirement stating that the mitigation must not be circum-
ventable. To put it another way, the mitigation might not be sufficient
for avoiding the underlying risk, and this possibility constitutes a
risk in and of itself.

Unfortunately, the process of deriving tests from risks is as much an
art as a science, such that it depends a great deal on the skills and secu-
rity knowledge of the test engineer. Many automated tools can be
helpful during risk-based testing (for example, see the description of
black-box testing in Section 5.5.4), but these tools can perform only
simple tasks; the difficult tasks remain the responsibility of the test
engineer. You might also consider the use of commercial tools for iden-
tifying vulnerabilities in Web applications such as those from SPI
Dynamics and Watchfire. '

Defining Tests for Negative Requirements

As a basis for defining test conditions, past experience comes into play
in two ways. First, a mature test organization typically has a set of test
templates that outline the test techniques to be used for testing against
specific risks and requirements in specific types of software modules.
Test templates are usually created during testing projects, and they
accumulate over time to capture the organization’s past experience.
This book does not provide test templates, but attack patterns appro-
priate for this purpose are described in several other sources [Hoglund
2004; Whittaker 2002, 2003].

Another way to derive test scenarios from past experience is to use
incident reports. Incident reports can simply be bug reports, but in
the context of security testing they can also be forensic descriptions
of successful intruder activity. Furthermore, vulnerability reports are
often followed by proofs of concept to demonstrate how the reported
vulnerability can be exploited. Sometimes these proofs of concept are
actual exploits; at other times they simply show that a vulnerability
is likely to be exploitable. For example, if a buffer overflow can be
made to cause a crash, then it can usually be exploited by an attacker
as well. Sometimes it is sufficient to find evidence of vulnerabilities
as opposed to actual exploits, so that the resulting proofs of concept
can be used as the basis for test scenarios. When devising risk-based
tests, it can be useful to consult IT security personnel, as their jobs
involve keeping up-to-date on vulnerabilities, incident reports, and
security threats.

5.5 Securiry TeSTING CONSIDERATIONS THROUGHOUT THE SDLC

Attack patterns (as discussed in Chapter 2) can be used effectively
during software security testing to craft test cases that reflect attacker
behavior and to help identify test cases that validate secure behavior.

Finally, threat modeling can be leveraged to help create risk-based
tests. For example, if inexperienced intruders (e.g., script kiddies) are
expected to pose a major threat, then it might be appropriate to probe
the software under test with automated tools; intruders often use the
same tools (see the description of black-box testing in Section 5.5.4).

Additional thought processes that might be helpful in creating new
tests for negative requirements include (1) understanding a software
component and its environment, (2) understanding the assumptions of
the developers, and (3) building a fault model (hypotheses about what
might go wrong). Consult [BSI 21] for further details.

5.5 Security Testing Considerations - oom
Throughout the SDLC?

Activities related to testing take place throughout the software life
cycle, not just after coding is complete. Preparations for security test-
ing can begin even before the planned software system has definite
requirements and before a risk analysis has been conducted. For exam-
ple, past experience with similar systems can provide a wealth of
information about relevant attacker activity.

As part of a preliminary risk analysis, you might consider which envi-
ronment factors the software will be subjected to, what its security
needs are, and what kinds of effects a breach of security rhight have.
This information provides useful and early inputs for test planning, If
risk analysis starts early in the SDLC, it becomes possible to take a
security-oriented approach when defining requirements.

During the requirements phase, test planning focuses on outlining how
each requirement can and will be tested. Some requirements may ini-
tially appear to be untestable. If test planning is already under way, then
those requirements can be identified and possibly revised to make them
more testable. Testing is driven by both risks and requirements, and

6. This material is extracted and adapted from a more extengive article by C. C. Michael and Will
Radosevich of Cigital, Inc. [BSI 21]. That article should be consulted for additional details.

173

174

CHAPTER 5 COMNSIDERATIONS FOR SECURE CODING AND TESTING

risks are especially important fo consider in security testing. While tra-
ditional non-security-related risks are linked to what can go wrong if a
requirement is not satisfied, security analy51s often uncovers severe
security risks that were not anticipated in the requirements phase. In
fact, asécurity risk analysis (as discussed in Chapters 4 and 7) is an inte-
gral part of secure software development, and it should drive require-
ments derivation and system design as well as security testing.

Risks identified during this phase may inspire additional require-
ments that call for features to mitigate those risks. The software devel-
opment process can be expected to go more smoothly if these security
measures are defined early in the SDLC, when they can be more easily
nrnplemented If the development team faces intense time pressure, it
is often a legitimate strategy to spend less time testing against a risk
that has a known countermeasure, on the assumption that a m_ltlgated
risk is less severe.

Functional security testing generally begins as soon as- software is
available to test. Given this timeline, a test plan should be established
at the beginning of the coding phase and the necessary infrastructure
and personnel should be determined before testing starts.

Software is tested at many levels in a typical development process.
This section cannot hope to catalog every possible software test activ-
ity. Instead, it describes several broader activities that are common to
most test processes, some of which are repeated at different times for
software artifacts at different levels of complexity. We discuss the role
of security testing in each of these activities: '

¢ Unit testing, where individual classes, methods, functions, or other
relatively small components are tested

* Testing libraries and executable files

* Functional testing, where software is tested for adherence to
requirements (as described in Section 5.4.2)

‘o Integration testing, where the goal is to test whether software com-

ponents work together as they should
¢ System testing, where the entire system is under test

5.5.1 Unit Testing

Unit testing is usually the first stage of testing that a software artifact
goes through. This type of testing involves exercising individual

%

5.5 SECURITY TESTING CONSIDERATIONS THROUGHOUT THE SDLC

functions, methods, classes, or stubs. As a functional-baged approach
to unit testing, white-box testing is typically very effective in validat-
ing design decisions and assumptions and in finding programming
errors and implementation errors. It focuses on analyzing data flows,
control flows, information flows, coding practices, and exception and
error handling within the system, with the goal of testing both
intended and unintended software behavior. White-box testing can
be performed to validate whether code implementation follows the
intended design, to validate implemented security functionality, and
to uncover exploitable vulnerabilities.

White-box testing requires knowing what makes software secure or
insecure, how to think like an attacker, and how to use different testing
tools and techniques. The first step in such testing is to comprehend
and analyze the source code (see Section 5.2.2), so knowing what
makes software secure is a fundamental requirement. In addition, to
create tests that exploit software, a tester must think like an attacker.
Finally, to perform testing effectively, testers need to know what kinds
of tools and techniques are available for white-box testing. The three
requirements do not work in isolation, but together.

Further details on how to conduct white-box testing and what sorts of
benefits it confers are available at [BSI 22].

5.5.2 Testing Libraries and Executable Files

In many development projects, unit testing s closely followed by a
test effort that focuses on libraries and executable files. ‘Usually test
engineers who are experienced in testing security—rather than soft-
ware developers—perform testing at this level. As part of this testing,
there may be a need for specialized technology that crafts customized
network traffic, simulates fault and stress conditions, allows observa-
tion of anomalous program behavior, and so on.

Coverage analysis (which measures the degree to which the source
code has been fully tested, including all statements, conditions, paths,
and entry/exit conditions) can be especially important in security test-
ing [Hoglund 2004]. Because a determined attacker will probe the soft-
ware system thoroughly, security testers must do so as well. Error-
handling routines are difficult to cover during testing, and they are
also notorious for introducing vulnerabilities. Good coding practices
can help reduce the risks posed by error handlers, but it may still be

175

176

CHAPTER b CONSIDERATIONS FOR SECURE CODING AND TESTING

useful to have test tools that simulate error conditions during testing
s0 as to exercise the error handlers in a dynamic environment.

Libraries need special attention in security testing, because compo-
nents found in a library might eventually be reused in ways that are
not anticipated in the current system design. For example, a buffer
overflow in a particular library function might seem to pose little risk
because attackers cannot conirol any of the data processed by that
function; in the future, however, this function might be reused in a
way that makes it accessible to outside attackers. Furthermore, librar-
ies may be reused in future software development projects even if
such reuse was not planned during the design of the current system.

5.5.3 Integration Testing

Integration testing focuses on a collection of subsystems, which may
contain many executable components. Numerous software bugs are
known to appear only because of the way components interact, and
the same is true for security bugs as well. "

Integration errors often arise when one subsystem makes unjustified
assumptions about other subsystems. For example, an integration
error can occur if the calling function and the called function each
assume that the other is responsible for bounds checking and neither
one actually does the check. The failure to properly check input values
is one of the most common sources of software vulnerabilities. In turn,
integration errors are one of the most common sources of unchecked
input values, because each component might assume that the inputs
are being checked elsewhere. (Components should validate their own
data, but in many systems this ideal is sacrificed for reasons of effi-
ciency.) During security testing, it is especially important to determine
which data flows and controls flows can and cannot be influenced by a
potential attacker. '

5.5.4 System Testing

Certain activities relevant to software security, such as stress testing, are
often carried out at the system level.” Peretration testing is also carried
out at the system level, and when a vulnerability is found in this way, it
provides tangible proof that the vulnerability is real: A vulnerability that

7. See also Chapter 6, Security and Complexity: System Assembly Challenges.

5.5 SecurrTY TesTING CONSIDERATIONS THROUGHOUT THE SDLC

can be exploited during system testing will be exploitable by attackers.
In the face of schedule, budget, and staff constraints, these problems are
the most important vulnerabilities to fix.

Black-Box Testing

One popular approach to system testing is black-box testing. Black-
box testing uses methods that do not require access to source code.
Either the test engineer does not have access or the details of the
source code are irrelevant to the properties being tested. As a conse-
quence, black-box testing focuses on the externally visible behavior of
the software, such as requirements, protocol specifications, APIs, or
even attempted attacks. Within the security test arena, black-box test-
ing is normally associated with activities that occur during the pre-
deployment test phase (system test) or on a periodic basis after the
system has been deployed. o

Black-box test activities' almost universally involve the use of tools,
which typically focus on specific areas such as network security, data-
base security, security subsystems, and Web application security. For
example, network security tools include port scanners to identify all
active devices connected to the network, services operating on systems
connected to the network, and applications running for each identified

177

178

CHAPTER b CONSIDERATIONS FOR SECURE CODING AND TESTING

service. Vulnerability scanning tools identify specific security vulnera-
bilities associated with the scanned system based on information con-
tained within a vulnerability database. Potential vulnerabilities include
those related to open ports that allow access to insecure services, protocol-
based Vulnerabilities, and vulnerabilities resulting from poor imple-
mentation or configuration of an operating system or application.

For more information on black-box testing and test tools; refer to [BSI 23).

Penetration Testing

Another common approach for conducting certain aspects of system
security testing is penetration testing, which allows project managers
to assess how an attacker is likely to try to subvert a system. At a basic
level, the term “penetration testing” refers to testing the security of a
computer system and/or software application by attempting to com-
promise its security—in particular, the security of the underlying oper-
ating system and network component configurations. o

Conventional penetration testing tools come in a variety of forms,
depending on which sort of testing they can perform. A key distin-
guishing factor is the perspective from which each type of tool oper-
ates—that is, whether a testing tool evaluates its target from afar or
from relatively close up (i.e., at least within the same computer sys-
tem). Popular classes of tools used in penetration testing today include
host-based, network-based, and application scanning [Fyodor 2006].

For example, most organizeitions, when doing netwbrk—based penetra-
tion testing, follow a process that looks something like this (Steps 1-3
constitute the vulnerability scanning approach mentioned earlier):

1. Target acquisition. The test engineer identifies legitimate test targets.
This step is most often performed using a combination of manual
and automated approaches in which the person responsible for the
system under test provides a starting list of network addresses and
the test engineer uses software tools to look for additional comput-
ers in the network vicinity. '

2. Inventory. The test engineer uses a set of tools to conduct an inven-
tory of available network services to be tested. .

3. Probe. The test engineer probes the available targets to determine

whether they are susceptible to compromise. ' :

4. Penetrate. Bach identified vulnerability (or potential vulnerability)

is exploited in an attempt to penetrate the target systern. The level

5.5 SECURITY TESTING CONSIDERATIONS THROUGHOUT THE SDLC

of invasiveness involved in exploiting a vulnerability can influence
this step dramatically. For example, if a vulnerability can result in
the attacker (in this case, the test engineer) having the ability to
overwrite an arbitrary file on the target system, great care should
be taken in how the vulnerability is exploited.

5. Host-based assessment. This step is typically carried out for any sys-
tem that is successfully penetrated. It enables the test engineer to
identify vulnerabilities that provide additional vectors of attack,
including those that provide the ability to escalate privileges once
the system is compromised.

6. Continue. The test engineer obtains access on any of the systems
where identified vulnerabilities were exploited and continues the
testing process from the network location(s) of each compro-
mised system. '

For more information on penetration testing and pitfalls to avoid, refer
to [BSI 24]. For more information on penetration testing tools, refer to
[BSI 25].

5.5.5 Sources of Additional Information on Software Security
Testing

Articles in the IEEE Security & Privacy “Building Security In” series
provide excellent guidance on software security testing. Articles titled
“Software Penetration Testing,” “Static Analysis for Security,” and
“Software Security Testing” are available on the BSI Web site under
Additional Resources [BS) 26].)

The Art of Software Security Testing [Wysopal 2006] reviews software
design and code vulnerabilities and provides guidelines for how to
avoid them. This book describes ways to clistomize software debug-
ging tools to test the unique aspects of any software program and then
analyze the results to identify exploitable vulnerabilities. Coverage
includes the following topics: '

* Thinking the way attackers think

* Integrating security testing into the SDLC

* Using threat modeling to prioritize testing based on risk

* Building test labs for conducting white-, gray-, and black-box testing
* Choosing and using the right tools

179

180

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

o Executing today’s leading attacks, from fault injection to buffer
overflows

s Determining which flaws are most likely to be exploited

Exploiting Software: How to Break Code [Hoglund 2004} provides exam-
ples of real attacks, attack patterns, tools, and techniques used by
attackers to break software. It discusses reverse engineering, classic
attacks against server software, surprising attacks against client soft-
ware, techniques for crafting malicious input, buffer overflows, and
rootkits.

How to Break Software Security: A Practical Guide to Testing [Whittaker
2003] defines prescriptive techniques (attacks that software test engi-
neers can use on their own software) that are designed o reveal secu-
rity vulnerabilities in software programs. The book’s chapters discuss
fault models for software security testing, the creation of unantici-
pated user input scenarios, and ways to attack software designs and

© code that focus on the most common places where software vulnera-

bilities occur (e.g., user interfaces, software dependencies, software
design, and process and memory).

5.6 Summary o000

It is no secret that common, everyday software defects cause the
majority of software vulnerabilities. The most widely used operating
systems and most application software contain at least one or two
defects per thousand lines of code and, therefore, may include hun-
dreds to thousands of defects. While not every software defect is a
security defect, if only 1 or 2 percent lead to security vulnerabilities,
the risk is still substantial. Understanding the sources of vulnerabili-
ties and learning to program securely are essential for protecting the
Internet, your software, and your systems from attack. Reducing secu-
rity defects, and thereby security vulnerabilities, requires a disciplined
engineering approach based on sound coding practices [FHoward 2006;
McGraw 2006; Seacord 2005].

The key secure coding practices highlighted in this chapter include
these approaches: .

s Using sound and proven secure coding practices to aid in reducing
software defects introduced during implementation

5.6 SUMMARY

* Performing source code review using static code analysis tools,
metric analysis, and manual review to minimize implementation-
level security bugs

Security testing relies on human expertise to an even greater extent
than does ordinary testing, so full automation of the test process is
even less feasible when focusing on security issues than in a tradi-
tional testing environment. Although tools are available that automate
certain types of tests, organizations using these tools should not be
lulled into a false sense of security, because they cover only a small
part of the spectrum of potential vulnerabilities. Instead, test tools
should be viewed as aides for human testers, automating many tasks
that are time-consuming or repetitive.

Creating security tests other than ones that directly map to security
requirements is challenging, especially tests that intend to exercise the
non-normative behavior of the system. When creating such tests, it is
helpful to view the software under test from multiple angles, includ-
ing the data the system will handle, the environment in which the sys-
tem will operate, the users of the software (including software
components), the options available to configure the system, and the
error-handling behavior of the system. There is an obvious interaction
and overlap between the different views; however, treating each one
individually and specifically provides unique perspectives that are
very helpful in developing effective tests.

This chapter has highlighted the following key software security test-
ing practices:

¢ Understanding the differences between software security testing
and traditional software testing, and planning how best to address
these (including thinking like an attacker and emphasizing how to
exercise what the software should not do)

* Constructing meaningful functional test cases (using a range of
techniques) that demonstrate the software’s adherence to its func-
tional requirements, including its security requirements (positive
requirements)

* Developing risk-based test cases (using, for example, misuse/
abuse cases, attack patterns, and threat modeling) that exercise
common mistakes, suspected software weaknesses, and mitiga-
tions intended to reduce or eliminate risks to ensure they cannot be
circumvented (negative requirements)

181

182

CHAPTER 5 CONSIDERATIONS FOR SECURE CODING AND TESTING

o Using a complement of testing strategies, including white-box test-
ing (based on deep knowledge of the source code), black-box testing
(focusing on the software’s exiernally visible behavior), and pene-
tration testing (identifying and targeting specific vulnerabilities at
the system level) '

An organization should not rely exclusively on security test activities
to build security into a system. This said, security testing—when it is
coupled with other security activities performed throughout the
SDLC—can be very effective in validating design assumptions, dis-
covering vulnerabilities associated with the software environment,
and identifying implementation issues that may lead to security vul-
nerabilities. '

Chapter 6

Security and
Complexity:
System Assembly
Challenges '

6.1 Introduction o000

The primary theme of this chapter is how aspects of complexity due to
technical difficulty, size, and conflicting objectives affect security as
systems expand to support multiple processes within and across orga-
nizations.! Mitigation strategies and project management approaches
are suggested for each area, including examples of “planning for fail-
ure” in the context of Web services and identity management.

System development has always encountered new and often complex
problems that were not represented in project plans. Often, the hard-to-
solve problems are not new. Not many years ago, for example, the Com-
mon Object Request Broker Architecture (CORBA) received considerable

1. Robert Ferguson at the SEI has been studying the effects of systems engineering complexity on
project management. The discussion of complexity factors in this chapter reflects discussions
with him and was alse influenced by the Incremental Commitment Model (ICM) [Boehm 2007].

183

