
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
School of Mathematics, Statistics and Computer

Science
Te Kura Tatau

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

SGJ: Sega Genesis Java

Vipul Delwadia

Supervisors: Stuart Marshall, Ian Welch

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

Video games are an important part of New Zealand’s cultural heritage. A
common approach to preservation of legacy software is to migrate it to a mod-
ern architecture. This project explores the issues with automated conversion be-
tween architectures. SGJ is a prototype conversion tool and framework which
implements solutions to some of the conversion issues.

Acknowledgments

I’d like to thank my supervisors Stuart Marshall and Ian Welch for their wonderful support
throughout the year, even into the wee hours of the night. I’d also like to thank Stephen
Nelson for helping me in creating a parser, and Chris Male for helping me with control flow
graphs. I’d also like to thank them both for proof reading my report. Finally I’d like to
thank the Memphisonians for being there, all two of the honours students and the rest of the
undergrads and grads. Without them I would have no-one to beat in Quake.

i

ii

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Motivation . 1
1.3 Structure of the Report . 2

2 Background 3
2.1 Digital Archiving . 3
2.2 Related Work . 4
2.3 Hardware . 4
2.4 Assembly . 4
2.5 Language Differences . 6

3 Converting to Java 9
3.1 Memory . 9

3.1.1 Self-Modifying Code . 9
3.1.2 Variably Sized Operands . 10
3.1.3 Memory Manipulation . 10
3.1.4 Untyped Data . 11

3.2 Control Flow . 11
3.2.1 Goto Elimination . 11
3.2.2 Interrupts . 12
3.2.3 High Level Constructs . 12

3.3 Input/Output . 13
3.3.1 Graphics . 13
3.3.2 Sound . 13
3.3.3 Input . 13

4 Prototype 15
4.1 Methodology . 15
4.2 Design . 15
4.3 Solutions to Memory Issues . 16

4.3.1 Self-Modifying Code . 16
4.3.2 Variably sized operands . 16
4.3.3 Memory Manipulation . 18
4.3.4 Untyped Data . 18

4.4 Solutions to Control Flow Issues . 18
4.4.1 Goto Elimination . 18
4.4.2 Interrupts . 19
4.4.3 High Level Constructs . 20

4.5 Solutions to Input/Output Issues . 20

iii

4.5.1 Graphics . 20
4.5.2 Sound . 20
4.5.3 Input . 20

4.6 Implementation . 20
4.6.1 Parsing . 21
4.6.2 Translation . 22
4.6.3 Execution . 23

5 Demonstration 27
5.1 Instruction Set . 27

5.1.1 Parser . 27
5.1.2 Translator . 27
5.1.3 Execution Environment . 27

5.2 Implementation of Proposed Solutions . 27
5.2.1 Goto . 28
5.2.2 Memory . 28
5.2.3 Graphics . 28
5.2.4 Input . 28

5.3 System Tests . 28
5.3.1 Hello, world! . 28
5.3.2 Cursor Movement . 29
5.3.3 Input detection . 30

6 Summary 31
6.1 Major Findings . 31
6.2 Future Work . 31
6.3 Contributions . 32

A 68000 Grammar 33

B Hello World Program (Assembly) 41

C Hello World Program (Java) 43

iv

Figures

2.1 Comparison between emulation and translation of legacy programs 3
2.2 Specifications of the Sega Genesis . 5
2.3 Examples of operand addressing modes using the move instruction 6

3.1 An example of self-modifying code in 68000 assembly 9
3.2 Overview of the major flow control instructions. 11
3.3 goto in assembly and C . 12

4.1 Overview of the translation process . 16
4.2 SGJ interfaces for the pointer and memory interfaces 17
4.3 C code showing an example of a goto . 19
4.4 Java code which approximates goto in conjunction with the code in Figure 4.5 19
4.5 Java code for the switch to approximate the goto statement 19
4.6 Abstract Syntax Tree for a move instruction . 21
4.7 Abstract Syntax Tree for labelled data . 21
4.8 Source code excerpt of an assembly program which prints hello world. 24
4.9 Translated Java code of the assembly program given in Figure 4.8 (excerpt). . 25
4.10 GUI for execution of translated programs . 26
4.11 Execution environment implementation of a move instruction 26

v

vi

Chapter 1

Introduction

Video games are an important part of New Zealand’s cultural heritage. A common ap-
proach to preservation of legacy software is to migrate it to a modern architecture. This
project explores the issues with automated conversion between architectures. SGJ is a proto-
type conversion tool and framework which implements solutions to some of the conversion
issues.

This chapter looks at the contributions of the project, as well as the motivations for the
project.

1.1 Contributions

This project will contribute two artefacts. One is a methodology for translating from lower-
level code such as assembly, to higher-level code. The other is a prototype tool, SGJ, to parse
the Motorola 68000 assembly source code and translate it into Java source code.

1.2 Motivation

The preservation of games is good for cultural heritage. Existing approaches include encap-
sulation (preserving the software and data for future inspection), migration of the code to
a new platform (which is usually done manually) and emulation of the original hardware
and software environment [13].

Migration of the code has the advantage that it runs natively and can make direct use of
local hardware and software resources. It may also be the case that migrated code requires
fewer resources than writing a general purpose emulator and this is very important in the
context of mobile devices that always have fewer resources than PCs or standalone games
machines. Making preserved games playable makes the experience accessible to the public,
and mobile phones are a ubiquitous platform capable of playing these types of games.

Manual migration between architectures is a common but long and expensive process.
This project will explore some of the approaches to automatic translation, and the problems
involved, and finally a prototype solution to some of those problems.

1

1.3 Structure of the Report

The following chapters of this report are as follows.
Chapter two provides the background to the project, describing previous work in the

field, and introduces the hardware the project tackled.
Chapter three discusses the problems encountered performing such a conversion from a

low level program to Java, and describes the potential solutions to those problems.
Chapter four illustrates the prototype tool SGJ, including the methodology, design and

implementation.
Chapter five gives the results of the translation, and the issues encountered.
Chapter six finishes off the report, summarising the contributions and findings of the

project, and suggests future work.

2

Chapter 2

Background

This chapter discusses some of the reasons for digital archiving, as well as the two major
approaches to preservation. The source hardware is introduced, and the assembly code is
described in detail.

2.1 Digital Archiving

The rate at which technology advances is ever increasing. Hardware which was state-of-the-
art a few years ago is used as a doorstop today. Because of this, the need for digital archiving
is also growing. Programs that were designed for previous generations of hardware are now
obsolete.

The preservation of these programs is important to both society and businesses. Legacy
programs in large businesses is commonplace, and there are a couple of approaches to run
these programs on modern hardware. One approach is to emulate the original hardware and
software on modern hardware. Virtualisation fits under this category, basically by executing
the software on the intended operating system, which in turn executes on virtualisation
software. VMWare [18] is an example of such software, which emulates a set of hardware
components. If the program is used as the operating system, then other emulators, such as
Genesis Plus [2], can emulate the hardware allowing the software to run on it directly.

Another approach is to translate the software such that it executes on modern hardware
directly. There are dynamic, as well as static translation approaches, and while a manual
translation can be performed [6], automated translation is more common [4, 5, 8, 10, 11, 17].

Figure 2.1 briefly compares the emulation approach with the translation approach.

Category Notes
Speed Tradtionally native code is fast than emulated code, but there is overhead

in translation
Size Emulation requires the emulator and original program, whereas translation

only requires the translated program
Look/Feel Emulation will give a closer look and feel to the original program than

translation
Audience Emulation requires substantially more knowledge to use than a translated,

native application
Legality It is not clear whether emulation is legal, nor is it clear if translation is legal

Figure 2.1: Comparison between emulation and translation of legacy programs

3

2.2 Related Work

There has been a large amount of research into automated program translation already. Out
of that research, there are three pieces of work which are highly relevant to this project.

The first is Cibyl, which is an environment for language diversity on mobile devices [8].
The program itself, Cibyl, takes compiled MIPS binaries and translates them into Java byte-
code. The translation is statically performed, and then the Java bytecode is executed with
Cibyl’s runtime library. Cibyl fully supports C for the MIPS binaries.

Ephedra is a C to Java migration environment [11]. It translates C source code into
Java source code, while performing pointer mappings, type conversions, class conversions
and various other C-only to Java conversions. Further, Ephedra has the ability to perform
optimisation of the Java source produced.

Finally there are two related works by Cristina Cifuentes. asm2c [5] translates SPARC
assembly into C source code. It employs various analyses, including data flow, control flow
and type analyses to recover control flow structure, high-level language expressions, and
high-level type information respectively. dcc [4] is a decompiler for the Intel i80286, pro-
ducing C source code. It performs similar analyses as asm2c, as well and dead-register and
dead-code elimination, and data type propagation across procedure calls.

2.3 Hardware

A video game console (console for short) is a computer which connects to a display (typically
a television) to play video games. For the purposes of the project a console needs to be
selected to translate from. The console that we have selected is the Sega Genesis (Mega
Drive). It was a popular gaming machine in the 1990s, and has a lot of similarities to other
consoles produced by Sega throughout the years. This is important in thinking about the
future and the ability to apply the techniques of this project to other hardware platforms.
Further, there is a freely available compiler which produces directly executable code for the
Sega Genesis. The important specifications1 of the Sega Genesis are described in Figure 2.2.

The Sega Genesis operates in the same manner as most other consoles of the same era.
The programs are distributed in cartridge format, and are inserted into the console before
powering the machine on. Once the machine is powered on, the system boots, loads the
program on the cartridge into memory, and executes it until the machine is powered off.
The programs on the cartridge are in binary format, and are in machine code for the Sega
Genesis specifically.

2.4 Assembly

The assembly code for the machine is typical of low level assembly. There are a number
of basic constructs, such as flow control and data manipulation, as well as a number of
immediate registers and of course memory manipulation.

There are eight general purpose 32-bit registers, d0 to d7, used to store any form of data.
There are also eight 32-bit address registers, a0 to a7, used to store memory addresses. Reg-
ister a7 can be used as the user stack pointer, SP, in order to treat a section of memory as a
stack. Finally, there is a status register, SR, which contains the condition codes that reflect
the results of a previous operation. Condition codes are described later in this section.

Instructions in the assembly can have up to two operands, in the addressing modes
as specified above. Further, there are a number of different instruction types, discussed

1The components not listed are not considered as part of this project.

4

Component Specification Notes
CPU Motorola 68000 16-bit mi-

croprocessor
This is the primary CPU, and is
clocked at either 7.16 MHz (PAL) or
7.67 MHz (NTSC)

Main RAM 64 KB This is the addressable section of
memory

Video RAM 64 KB This memory is only accessible via
the Video Display Processor (VDP)

Cartridge ROM Up to 4MB Addressable as main memory.
Larger cartridges can use bank
switching

VDP Texas Instruments TMS9918 Four resolutions: 256x224 and
320x224 (NTSC), 256x240 and
320x240 (PAL)

Main sound Yamaha YM2612 Clocked at 7.16 MHz, six FM chan-
nels

Secondary sound Texas Instruments SN76489 Four-channel PSG

Figure 2.2: Specifications of the Sega Genesis

in more detail in Section 2.5. Briefly, some of the relevant instruction types include: Data
Movement, Integer Arithmetic, Logical Operations, Shift and Rotate Operations, Bit (Field) Ma-
nipulation, Binary-Coded Decimal Arithmetic, Program/System Control, Cache Maintenance, and
Memory Management.

An instruction’s operand has many addressing modes2. The addressing mode specifies
the manner in which the machine interprets the operand given. The simplest addressing
mode is the Register Direct Mode, where the operand is specified by either a data register
or an address register. The next mode is Address Register Indirect Mode, where the effective
address field specifies the address of the operand in memory. Address Register Indirect with
Postincrement/Predecrement Mode is similar to the previous mode, however the effective ad-
dress is an address register, and it is incremented/decremented by the size of the operand.
Along a similar tract, Address Register Indirect with (8-bit) Displacement Mode is where the
effective address is the sum of the address register and the (8-bit) 16-bit displacement inte-
ger specified, along with the index in the 8-bit version, and the operand is the address in
memory. In Absolute Addressing Mode, the operand is in memory, and the address of it is
the effective address, which is sign extended if it is a short. Finally, in Immediate Data Mode,
the operand is the effective address given. Examples of each addressing mode are given in
Figure 2.3. The first operand demonstrates the addressing mode, and the second is always
d0, in register direct mode.

The hardware has support for conditions, which are use to test various aspects of the
latest result of an operation, in the form of conditions. Conditions can be set or cleared
(since they are a single bit long) depending on the result of an operation, and there are five
different conditions in total:

Carry (C) Set when a carry out of the MSB of an operand occurs for addition, or if a borrow
occurs in subtraction, and is cleared otherwise.

Overflow (V) Set if an arithmetic overflow occurs, otherwise cleared.

2There are a few more very similar displacement based modes, which are not discussed here, but are in the
programmer’s reference manual [12]

5

Addressing Mode Operand Instruction
Register direct mode d1 move.l d1, d0
Address register indirect mode (a0) move.l (a0), d0
Address register indirect mode (postincrement) (a0)+ move.l (a0)+, d0
Address register indirect mode (predecrement) -(a0) move.l -(a0), d0
Address register indirect mode (displacement) 16(a0) move.l 16(a0), d0
Absolute addressing mode $42 move.l $42, d0
Immediate data mode #42 move.l #42, d0

Figure 2.3: Examples of operand addressing modes using the move instruction

Zero (Z) Set if the result is zero, otherwise cleared.

Negative (N) Set if the MSB of the result is set, otherwise cleared.

Extend (X) Set to the value of the carry bit for arithmetic operations, otherwise not affected.

A complete assembly file can be found in Appendix B.

2.5 Language Differences

The Java language is a strongly typed language that does not allow pointer arithmetic or
arbitrary changes to program flow. On the other hand, assembly is untyped, allows arbitrary
pointer arithmetic and arbitrary changes to program flow. In addition, Java does not allow
data to be treated as code whereas there is nothing preventing this in assembly. In converting
from assembly to Java source code3, the most important differences are best described in
terms of the instruction types introduced in Section 2.4:

Data Movement These are the instructions which move data between locations, including
main memory and registers. While Java can assign values to variables (“registers”), it
doesn’t have a way to manipulate “main” memory.

Integer Arithmetic These instructions are the basic operations, such as add, sub, mul and
div. Java supports these four operations, however other instructions such as cmp, the
compare operation, do not have a counterpart in Java.

Logic These are the four basic logic operations, and, or, eor (exclusive or), and not. Java
has these operations natively.

Shift and Rotate These instructions move, rotate or swap bits of the operand. Java has
some, but not all, equivalent operations.

Bit Manipulation These instructions operate on a single bit of the operator. Java can do this
through a combination of operators.

Program Control These are the instructions which control the flow of the program. There
are a number of different types, including: branch if condition, decrement and branch if
condition, set if condition, branch, jump, subroutine call, return from subroutine, and test
condition. The instructions which relocate the program to a new address can be ap-
proximated by the goto construct. However, Java doesn’t have this construct.

3Throughout this document Java is referring to the Java source code language, and not the Java bytecode
language

6

System Control Many of these instructions fall under three broad headings: privileged data/-
control, trap generating, and condition code register. The privileged data instructions have
no counterpart in Java – all Java code operates at the same privilege level. The privi-
leged program control or the trap generating instructions, such as stop or trap, also
do not have Java equivalents, but can be recreated.

In addition to those instructions, some other fundamental language differences exist:

Operand width Instructions on the 68000 can have up to three different operand widths.
For example, the move instruction can operate on long, word or byte sized operands.
In Java, while there is support for similarly sized primitives, int, short and byte,
respectively, there are complications in the handling of overflow and signing, resulting
in a less than perfect parallel.

Memory manipulation On the 68000 main memory is directly accessible via multiple in-
structions, and the effective address is specified as an operand, much like a “pointer”.
In Java, direct memory access is not allowed, and the only “pointer”-type construct is
a reference to an object.

7

8

Chapter 3

Converting to Java

The conversion from a low level language such as assembly, to a high level language, such as
Java, is non-trivial. As discussed briefly in Chapter 2, the differences between the languages
is quite vast. The following sections will describe in detail what major problems and issues
arise when attempting to perform this kind of translation. There are three broad categories
which the issues fall under: Memory, Control Flow and Input/Output.

First, the main requirements for a prototype tool to be created during the project are:

• The prototype must produce code which is executable on the Java Virtual Machine,
version 1.5.

• The code produced is not required to be well designed or human readable

• The Java code produced must be executable and have a similar look and feel as the
original program

3.1 Memory

These are the aspects of the conversion that are memory related in one form or another.
There are four specific issues that need to be explored: self-modifying code, variably sized
operands, memory manipulation and untyped data.

3.1.1 Self-Modifying Code

One major problem with doing any kind of static translation from assembly is the issue
of self-modifying code. Self-modifying code is broadly any program that loads, generates,
or mutates code at runtime [3]. There are some reasonable uses of self-modifying code in
console programs and games, such as runtime code generation, compression to fit in the
required space, or to hide code as prevention against disassembly or debugging.

mycode: move.l #42, d0
...
move.l mycode, a0
add.l #1, a0
add.l #1, (a0)
jmp mycode

Figure 3.1: An example of self-modifying code in 68000 assembly

9

It is unclear whether programs for the Sega Genesis (hereafter “source hardware”) actu-
ally use self-modifying code, however it is technically very feasible to do so. For example,
consider the code in Figure 3.1. The original command was placing the value 42 in the reg-
ister d0. However, the next set of commands place the address of mycode in the register a0,
then increment that register by 1, and then increment the value of the bit of memory pointed
to by a0, which is now the address of the first operand of the move instruction, by 1. Effec-
tively this has modified the command at mycode from move.l #42, d0 to move.l #43, d0.

If there is self-modifying code in the source assembly, then doing a static analysis of the
source code difficult. A simple evaluation of the control flow will not discover the modified
code. This means that quite complex algorithms are required to detect it, let alone handle it
and determine the code paths.

3.1.2 Variably Sized Operands

As discussed in Section 2.5, the assembly and hardware has support for multiple sizes of
operands. For instance, the move instruction can operate on long (32-bit), word (16-bit) or
byte (8-bit) sized operands, denoted by move.l, move.w and move.b respectively.

Java has primitive data types with the same numbers of bits in the form of int (32-bit),
short (16-bit) and byte (8-bit). However, there are many complications stemming from the
behaviour of the hardware making a one-to-one mapping is difficult, and requires many
more additional checks and conversions in the Java code.

Registers in the source hardware are 32-bit native, meaning that size of each register is
fixed at 32 bits long. In an instruction involving a register, if the size of the operand is word
or byte, only that many bits of the register are read/written.

In the hardware, when the result of an operation is too large to fit in the given size, the
value wraps around. For example, the instruction add.b #1, d0 adds 1 to d0 and stores it
back into d0 as a byte. In binary, if d0 contains the value 127, this is what is happening:

01111111 127
+ 1 1
= 10000000 -128

So the result is -128, and this is placed back into d0. In addition to the correct value being
place in d0, the hardware also sets the overflow condition V. In Java, although the correct
behaviour is observed when using the same size data type, there is no indication that the
overlap has occurred, and so this must be checked manually.

With variable width operands, the MSB signifying whether the value is negative or not
has multiple locations. Depending on the representation chosen for the smaller sized data
types, care must be taken to ensure that the value is indeed positive/negative.

Further, there are some instructions which require that the operands, if specified as word
or byte, need to be sign extended to 32 bits long. Again, this requires additional code in
Java to handle this correctly.

3.1.3 Memory Manipulation

Apart from the immediate registers, any data that is stored during the lifetime of an assem-
bly program is in main memory. In order to access and modify that memory, the assembly
provides a number of instructions which are dedicated to such a task. In addition, most of
the standard instruction set is capable of manipulating main memory, by giving a memory
address as an operand.

10

Instruction Description
bra label Unconditionally branches to label
bxx label Branches to label if the condition xx is met
jsr label Calls the subroutine at label

rts Returns from a subroutine call
jmp label Unconditionally jumps to label

Figure 3.2: Overview of the major flow control instructions.
Note: xx is a condition, such as eq

The latter behaviour is typical in a language like C, in the form of a pointer. Pointers
allow memory to be treated as a large array, and as mentioned in Section 2.3, memory can
be used as a stack as well.

While this is easily represented in C, since it has native pointer support as well as di-
rect memory access, this is not the case in Java. Java does have references, but because
they are strongly-typed and the address cannot be manipulated using arithmetic, they are
not sufficient. Further, there is no direct memory access because Java has a cross-platform
architecture.

3.1.4 Untyped Data

Assembly as a language essentially has no type information. Java is a strongly-typed lan-
guage, so any conversion will result in untyped Java unless the type information is in-
ferred/extrapolated.

3.2 Control Flow

There are three control flow issues in the conversion, goto elimination, interrupts, high level
constructs. The first two are essential to a complete conversion of any program. The third is
an interesting issue aiming to improve the quality and efficiency of the translated code.

3.2.1 Goto Elimination

The set of instructions which can alter the flow of control on the 68000 is relatively small,
with four common, user level instructions, as described in Figure 3.2.

In order to faithfully replicate this construct in a higher level language, there is an ob-
vious and sufficient mechanism in the form of the goto keyword. For example, goto in the
C programming language transfers execution of the program from the point goto label is
used to the point in code where label is located. This can be used directly to approximate
bra and jmp, and when coupled with a conditional construct (such as if) can be used to
approximate bxx.

For example, consider Figure 3.3. The left hand code is some example assembly with a
jmp instruction, and the right hand code is some similar C code with the same jump imitated
by a goto.

However, goto is a reserved keyword and is not implemented in the latest release of
Java. Java byte code does have goto, but it is limited to an address which is within the same
method as the goto itself [9]. The problem of reliably and correctly providing the equivalent
of goto is a difficult one.

11

3.2.2 Interrupts

An interrupt is an asynchronous signal from the hardware or a synchronous event in soft-
ware requesting a change in execution. Interrupts in hardware are used to perform a number
of crucial functions, such as exception handling and IO. Hardware interrupts result in the
processor saving execution state (such as the value of registers), and switch control flow to
an interrupt handler.

Software interrupts operate in a similar fashion to hardware interrupts, but are invoked
via instructions in the instruction set. The 68000 has a number of instructions which inter-
rupt, such as the TRAP #vector instruction, which causes a trap exception with the given
vector.

The issues that arise with interrupts are that they can occur at any point in the program.
While they can ignored by masking them, non-maskable interrupts cannot, and are handled
when generated regardless of the value of the interrupt mask.

From the conversion point of view, interrupts are difficult to deal with. It is not know
at which point an interrupt will occur, and so every point in the program must be treated
as interruptible. Further, any converted code will have to be able to generate the interrupts
independent of the main execution of the program.

There are three types of interrupts that typically occurs in the life of a program on the
Sega Genesis: the generic interrupt, a VDP horizontal retrace and a VDP vertical retrace. The
two VDP retrace interrupts are used just to notify the user program of graphics updates. The
generic interrupt is for all other types of interrupts, such as exceptions.

3.2.3 High Level Constructs

Assembly code is very unstructured, and at times hard to follow. Control flow is achieved
purely through the use of what is essentially C-style goto statements. While there are no
explicit high level constructs such as if and while statements, they are most definitely in
the source, created by branching to labels.

As an example, consider the following set of commands:

cmp.w d1,d0
sne d0
tst.b d0
beq IF_JUMP_0

Essentially what is happening is that the two registers d0 and d1 are being compared,
then d0 is being set to 0s if the result was not zero (sne), then d0 is being tested for 0s (tst),
and finally the code branches if the result is zero.

While this set of instructions seems to be complex, it is actually a very simple conditional
statement, which can be represented by the following C code:

add.l #1, d0
jmp destination
...

destination:
sub.l #1, d0

(a) Assembly code

x = x + 1;
goto destination;
...

destination:
x = x - 1;

(b) C code

Figure 3.3: goto in assembly and C

12

if (d0 == d1)
goto IF_JUMP_0;

There are many sets of instructions in assembly which can be replaced with high-level
conditional and looping constructs. Further, there are other sets of instructions which can
be replaced with other high-level constructs, such as method calls (with parameters), and
also code which gets and sets memory representing variables.

3.3 Input/Output

These final three issues are also important to a successful conversion. Of the three, graphics
and input are essential to a correct conversion, and sound is key to the goal of a similar look
and feel between the original programs and their translations.

3.3.1 Graphics

The graphics system in the Sega Genesis consists of a video display processor (VDP). Access
to the VDP memory is permitted, so graphics operations can be performed by writing to
the memory directly. Additionally, operations can be performed by direct memory access
(DMA).

Graphics operations can also be performed using sprite operations. Data is written to a
section of memory designated for sprite operations, and there are mechanisms in place for
collision detection of sprites.

Programs and games for the Sega Genesis have two options to produce graphics on the
screen, either by generating them programmatically, or by loading pre-existing graphics
from the cartridge into memory.

Graphics are an issue in Java because direct access to the hardware is not feasible. In-
stead, because of Java’s cross-platform compatibility, any graphics operations must be done
through APIs. Because of this, much more work has to be done to bridge the source hard-
ware’s graphics with Java’s graphics, rather than a straight-forward alignment with hard-
ware based graphics.

3.3.2 Sound

There are two hardware components available to make sound on the Sega Genesis, the PSG
control and the FM sound control.

Again there is memory available to write to in order to produce sound, as well as regis-
ters in the FM control unit. The FM unit supports 6 channels of FM sound, and producing
sound using the FM unit is a matter of writing memory in the correct fashion.

The PSG on the other hand only has four channels, three of which are tone generators
and the fourth a noise generator. The PSG is controlled through a single physical port on
the CPU (port $7F), by writing a pair of bytes.

Sound is also an issue in Java, again because direct access to the hardware is not feasible
due to the cross-platform compatiblity. This means that sound output in the translation
requires more work in bridging the source hardware sound system with Java’s sound API.

3.3.3 Input

User input on the Sega Genesis is primarily by a joypad. Again, this is achieved by read-
ing main memory at a specific address. Since the controller only has a small number of

13

functions, the state of all the buttons can be read using a single read, since each button is
represented by a single bit in the data read.

The joypad for the Sega Genesis has 4 directional keycodes, up, down, left and right, as
well as three action buttons and a start button.

14

Chapter 4

Prototype

This chapter describes the prototype tool created, called Sega Genesis Java (SGJ), which
parses Motorola 68000 assembly and produces Java source code. The solutions given to the
problems from Chapter 3 are implemented in the prototype.

4.1 Methodology

The project was conducted in a rapid development fashion [19]. The planning game re-
sulted in a number of tasks with various estimates of the time involved for each one. The
project had fortnightly iterations, there and were approximately 9 iterations in total. In ad-
dition, weekly meetings were held to evaluate the status of the project and to set the velocity
accordingly.

Rapid development was chosen because the project was highly changing in terms of
tasks. Issues that arose during the course of the project could not be known prior to starting
the project, and so rapid development allowed for easily modifiable tasks.

In order to translate programs for the Sega Genesis into Java, the programs in either
source or binary format are required. Further, once that choice is made, the program has to
be parsed, analysed and converted into some intermediate representation.

The Sega Genesis was released over 15 years ago, and so games for the platform in their
original cartridge form are difficult to find, especially ones in good condition. Having found
such games, there is still the matter of making a digital bit-for-bit copy, otherwise known as
a ROM image. ROMs can also be found on the internet, however the legality of making,
distributing, and/or downloading these ROMs is uncertain, due to the copyright issues.

Instead, one can write their own programs in assembler, and then by using a freely avail-
able assembler can compile the programs into ROMs suitable for use on an emulator. Fur-
ther, there is a compiler called BasiEgaXorz (BEX) [14], which compiles programs written
in its custom dialect of BASIC into ROMs which run on both a compiler and the hardware
itself. This is the approach that SGJ takes.

4.2 Design

Parsing of the binary ROM is somewhat difficult, however it must be done in order to create
an intermediate representation. Alternatively, parsing of the assembly is much easier, and
in this case SGJ can take advantage of existing parser generators. The binary can even be
decompiled into assembler, also using freely available tools. BEX also outputs the assembly
corresponding to the binary, and this is what SGJ uses.

15

Figure 4.1: Overview of the translation process

The assembly that BEX produces is somewhat more readable than the output of a de-
compiler, simply because the binaries do not carry any superfluous information, such as
named labels or comments.

SGJ parses the assembly output of BEX using a parser generated by ANTLR [15]. ANTLR
generates a lexer and LL(*) parser1. The full ANTLR grammar can be found in Appendix A.
After parsing is complete, a tree structure of the program is now in memory, where the root
is a collection of labels, and within each label is the set of commands between it and the label
immediately following it.

SGJ then traverses the tree using the Visitor Pattern [7], translating each label, command,
definition and labelled data into Java source code as described below in Section 4.6.

Finally, the execution environment takes the translated and compiled Java, and executes
within a graphical interface. The execution environment provides all the necessary instruc-
tion implementations, as discussed in Section 4.6, as well as the libraries for memory, graph-
ics, input and more.

A simple diagram showing the translation process can be found in Figure 4.1.

4.3 Solutions to Memory Issues

This section discusses potential and actual solutions to the memory issues presented in Sec-
tion 3.1.

4.3.1 Self-Modifying Code

This issue is difficult to solve, as discussed in Section 3.1.1, especially when performing a
static analysis of the source code. Given this, the issue is outside of the scope of the project.

There have been approaches to model and understand self-modifying code, such as the
state-enhanced control flow graph [1].

4.3.2 Variably sized operands

In Java, there are a few ways to represent registers, such as a 32-bit data type (int), or 4
8-bit data types (bytes), or even an array of 32 boolean values. In these cases, there needs
to be some conversion using bitwise operations between the 32-bit register and the 8 or
16-bit operand. SGJ represents registers as 32-bit ints, performing the narrowing of bits
dynamically if required.

Overflow is detected by checking the result after every operation. Since the data type
handles the overflow in Java in the desired manner, only the overflow (V) condition needs
to be set. Further, the MSB is checked, and the negative (N) condition is set accordingly.

16

Listing 4.1: Pointer Interface
public i n t e r f a c e Pointer {

public i n t getValue () ;
}

Listing 4.2: RegisterPointer Interface
public i n t e r f a c e R e g i s t e r P o i n t e r implements Pointer {

private R e g i s t e r reg ;
public f i n a l PointerType type ;
public R e g i s t e r P o i n t e r (R e g i s t e r r) ;
public R e g i s t e r P o i n t e r (R e g i s t e r r , PointerType t) ;
public R e g i s t e r g e t R e g i s t e r () ;
public i n t getValue () ;
public s t a t i c enum PointerType {

POSTINC , PREDEC, NEUTRAL;
}

}

Listing 4.3: LiteralPointer Interface
public i n t e r f a c e L i t e r a l P o i n t e r implements Pointer {

private i n t address ;
public L i t e r a l P o i n t e r (i n t i) ;
public i n t getValue () ;

}

Listing 4.4: Memory Interface
public c l a s s Memory {

public s t a t i c f i n a l i n t MEMORY LIMIT = (64 << 18) − 1 ;
private s t a t i c f i n a l byte [] ram = new byte [MEMORY LIMIT + 1] ;

public s t a t i c void c l e a r (Po inter p , S ize s) ;

public s t a t i c i n t get (S ize s , i n t address) ;

public s t a t i c void s e t (i n t i , S ize s , i n t address) ;
}

Figure 4.2: SGJ interfaces for the pointer and memory interfaces

17

4.3.3 Memory Manipulation

The main problems found for this issue in Chapter 3 were the lack of pointers in Java, and
that direct memory access is not feasible.

SGJ has an array of bytes to represent main memory, and getter and setter methods have
a size argument to allow retrieval/placement of long, word or byte sized values. SGJ will
return an error when attempting to read or write memory outside the addressable range.

Pointers are represented by two separate types, the LiteralPointer and the RegisterPointer.
A LiteralPointer is used when the value of the pointer is either constant, such as a def-
inition, or is a literal value, as the operand. These are actually immutable pointers, which
are sometimes called references. A RegisterPointer is used when the pointer is the value
of a register. Further, these pointers have the additional complication in that they may be
supplied in pre-decrement or post-increment mode (see Section 2.3). The interfaces for the
pointer and memory types in SGJ are given in Figure 4.2

It is not known exactly which parts of memory are allowed to be read or written, how-
ever it is the case that memory access outside the range (less than 0 or greater than the size
of memory) is not allowed. In this case there is a runtime check and an exception is thrown
if the memory address is outside the addressable range.

4.3.4 Untyped Data

The inference of typed data from the assembly is outside the scope of the project. SGJ treats
all data as the same type, which is integer data. Registers are typed as 32-bit ints, and main
memory is an array of 8-bit bytes. All method arguments are of type int, and narrowed
down as required. Condition codes are represented as booleans, and constants are ints as
well.

4.4 Solutions to Control Flow Issues

This section discusses some possible solutions to the control flow issues presented in Sec-
tion 3.2.

4.4.1 Goto Elimination

Section 3.2.1 gave an introduction to the assembly code’s branching instructions, and com-
pared them to C’s goto. However, as mentioned before, Java does not implement the goto
keyword.

SGJ takes a simple yet effective approach, where goto is simulated using a switch state-
ment. Any desired destination label is added to an Enum of labels, and a switch on a variable
(currentLabel for example) is placed inside a while loop. When a goto is required, the
value of currentLabel is set to the destination label. Upon reaching the case statement, the
method representing the section of code at the destination is called. Figure 4.3 gives the C
code from Figure 3.3 showing an example of goto. Figure 4.4 shows similar code setting the
label to goto, and Figure 4.5 shows the supporting code which invokes the method to goto.

The handling of subroutine calls requires minor changes to the goto handling. First the
currentLabel variable becomes a stack, and each “goto” instruction calls the method on
the top of the stack. When a subroutine is called, the label of the subroutine is pushed onto
the stack, and the goto handler employed. When the return subroutine (rts) instruction is

1An LL(k) parser is a top down parser which parses the input from Left to right and constructs a Leftmost
derivation, with k tokens of look-ahead.

18

source:
x = x + 1;
goto destination;

destination:
x = x - 1;

Figure 4.3: C code showing an example of a goto

method_source() {
x = x + 1;
currentLabel = destination;
return;

}
method_destination() {

x = x - 1;
}

Figure 4.4: Java code which approximates goto in conjunction with the code in Figure 4.5

executed, the stack is popped. This ensures that subroutine calls can be returned when there
are goto statements inside the subroutine.

An alternative to SGJ’s approach is to use Java’s labelled break or continue within a
loop, which is how Ephedra [11] handles gotos. However, since all of the flow control in the
assembly programs is by the use of goto, it is simpler and more effective to use a switch.

4.4.2 Interrupts

As discussed in Chapter 3, interrupts are essentially unexpected and unpredictable changes
in control flow. It is similar to the Exception in Java, and at first glance it seems that they
can be simulated using exceptions. However, there are couple of problems that need to be
dealt with in any solution:

• interrupts are generated by threads independent of the program thread, requiring
inter-thread interruption

• interrupts are frequently not caused by errors but by the VDP, so program state needs
to be the same before and after the interrupt.

One approach could be to check the status of some artificially created interrupt flags, and
call the appropriate interrupt handler if an interrupt has occurred. However, this is clearly

while(true) {
switch(currentLabel) {

...
case destination:

method_destination();
break;

...
}

Figure 4.5: Java code for the switch to approximate the goto statement

19

an expensive way, both in terms of speed/efficiency and in terms of size of the compiled
code.

SGJ does not deal with interrupts because it is outside the scope of the project.

4.4.3 High Level Constructs

High level constructs such as conditional and looping statements can be inferred using con-
trol flow analysis techniques [4, 5]. Various control flow analyses, such graph structuring,
are quite effective for loop and conditional inference for the source assembly.

Inference of high level constructs are outside the scope of the project, due to the com-
plexities of the task.

4.5 Solutions to Input/Output Issues

This sections explores some of the solutions to the Input/Output problems in Section 3.3.

4.5.1 Graphics

Sega Genesis graphics are emulated by SGJ using a Java Graphics object inside a Swing
GUI. Graphics are bridged using a bridging interface, which has methods invoked from the
translated program and operates on the Graphics object.

Graphics operations at the pixel level can be emulated by standard Java API methods,
or by directly implement pixel based graphics operations on the Graphics object.

Graphics operations at the sprite level do not have a direct counterpart in Java’s standard
API, instead they need to be emulated such that the translated program interfaces with a
sprite API which operates on the Graphics object.

4.5.2 Sound

Sega Genesis sound can be emulated using Java sound APIs. The midi interface provides
enough functionality to emulate both the PSG and the FM sound found in the source hard-
ware.

SGJ does not deal with sound, it is outside the scope of the project.

4.5.3 Input

Input is handled quite differently due to the joypad being polled in the user program rather
than being set. Here SGJ’s GUI has a keyboard listener, and when a preselected key is
pressed, it is translated from it’s Java AWT keycode into the Sega Genesis gamepad keycode.

4.6 Implementation

SGJ is essentially comprised of three parts. The first part is the parsing of the assembly
source, and loading the representation into memory. The second (and main) part is the
actual translation from assembly to Java. The third part is the GUI and execution of the
translated program within the provided framework.

20

Figure 4.6: Abstract Syntax Tree for a move instruction

Figure 4.7: Abstract Syntax Tree for labelled data

4.6.1 Parsing

SGJ’s parser is very straightforward, performing a single pass on the assembly source code
to create the internal representation. As discussed previously, there are four different types
of statements that can be parsed.

The first is the command type, which is an instruction, up to one size, and up to two
operands. An example is move.l d0, (a0), which is then parsed into the abstract syn-
tax tree given in Figure 4.6. These statements are further distinguished by the mode and
number of operands. For each command, a corresponding object is created in the internal
representation, encapsulating the instruction, the size, and the operand(s).

The label type consists of just a string of characters, optionally followed by a colon. The
form of a typical label is __LABEL_drawloop. This is also parsed into a object in the internal
representation, and each label encapsulates all the commands between it and the very next
label.

The third type, definition, is the assembly equivalent of a C #define macro. The form is
the same for all instances of a definition, which is a string, then the keyword EQU, then the
value. For example, __INTEGER_ship EQU $FF0032 defines the value of __INTEGER_ship to
be 0xff0032 in hexadecimal. Each define statement is parsed into a string → value mapping
in the table of constants in the internal representation.

The final type is the labelled data. This is typically used to store ASCII strings in the
assembly, and is structured as a label, followed by the instruction dc.b, followed by the
string, and then a ‘,0’. An example is the statement __DATA_0: dc.b ‘Hello, world!’,0,

21

essentially allowing the string “Hello, world!” to be referenced by the definition __DATA_0
(Figure 4.7). Each labelled data statement is parsed such that the value of the label (such as
__DATA_0) is an index into a data table, which contains the string. It is a string → index →
string mapping.

4.6.2 Translation

Once the parsing is complete and the internal representation is built, SGJ executes the trans-
lation phase. The process is again quite simple, following this sequence of operations:

1. For each label statement in the set of parsed labels, visit the label.

2. Upon visiting a label, the signature for a new method of the name

method_<label name>

is created. Then for each command in the set of commands the label contains:

(a) The method call to the Java version of the instruction for the command is output.

(b) For each operand, the Java code for that operand is inserted as an argument to
the method call.

For example, the command

move.l d0, a0

translates into the Java

DataMovement . move(R e g i s t e r s . d0 , R e g i s t e r s . a0 , S ize . l) ;

If the command being translated is a subroutine call, and the subroutine doesn’t exist
in the source program, because it is a library function (such as a graphics operation like
print_w), then a nominal method is created in the same manner as for a label above.
The implementation of these “missing” methods are then provided by the execution
environment.

3. For each define statement in the set of parsed defines, output Java code to insert the
<String, value> pair into the constants table.

As an example, the define statement

__INTEGER_i EQU $FF002E

translates to the Java

Constants . s e t (” INTEGER i” , I n t e g e r . p a r s e I n t (”FF002E” , 1 6)) ;

4. For each labelled data statement in the set of parsed labelled data, output the Java code
to insert the <String, index> pair into the constants table, and the <index, String>
pair into the data table.

An example labelled data statement is

__DATA_0: dc.b ’Hello, world!’,0

22

which becomes the Java statement

DataTable . s e t (” DATA 0” , ” Hello , world ! ”) ;

where DataTable.set is defined as

public s t a t i c void s e t (S t r i n g name , S t r i n g value) {
Constants . s e t (name , idx) ;
dataTable . add (idx ++ , value) ;

}

Once the assembly code has been translated, there is still some Java code required to be
added to the translation to make a compilable and executable Java program. Apart from the
library and framework required to run the translated program, the following needs to be
added to the translation:

• Items such as the package declaration, and the import statements

• The class definition including extends Thread, since the translated program is exe-
cuted in a multi-threaded environment.

• The declaration of class fields, such as the Display and Input object references.

• The constructor, which initialises fields, and executes the translated definition and
labelled data statements.

• The run method, which calls the gotoLabel method.

• The gotoLabel method, which repeatedly calls the method specified by the current
label using reflection.

• Finally comes the methods which have been translated from the labels as mentioned
above.

Figure 4.8 is an example assembly program which prints 5 strings (see Figure 4.10). The
translation of it using SGJ is shown in Figure 4.9.

4.6.3 Execution

The final part of SGJ is the execution environment (EE). This consists of a Swing based
graphical interface, and the full set of libraries required to execute a translated program.

The graphical interface (Figure 4.10) provides a drop-down list to select the desired trans-
lated program to be run, and a set of control buttons. The run button launches the translated
program (in a concurrent thread), and is disabled once the program has started execution.
The stop button pauses execution of the program, and changes to a start button when the
program is paused, which is used to resume the button. The quit button exits the execution
environment.

23

move . l #0 , d0
move .w d0 , (INTEGER i)

FOR JUMP 0
move . l # DATA 0 , a0
j s r push s t r ing
j s r popdisplay
j s r p r i n t t a b
c l r . l d0
move .w (INTEGER i) , d0
j s r print w
j s r p r i n t c r

FOR JUMP3 0 :
move . l #5 , d0
cmp .w (INTEGER i) , d0
beq FOR JUMP2 0
move . l #1 , d0
add .w d0 , (INTEGER i)
bra FOR JUMP 0

FOR JUMP2 0 :
f o r e v e r :

bra f o r e v e r

Figure 4.8: Source code excerpt of an assembly program which prints hello world.
The full assembly code is listed in Appendix B.

24

public void method START () throws InterruptedExcept ion {
DataMovement . move (0 , R e g i s t e r s . d0 , S ize . l) ;
DataMovement . move(R e g i s t e r s . d0 , new L i t e r a l P o i n t e r (Constants

. get (” INTEGER i”)) , S ize .w) ;
method FOR JUMP 0 () ;

}

public void method FOR JUMP2 0 () throws InterruptedExcept ion {
method forever () ;

}

public void method forever () throws InterruptedExcept ion {
currentLabel . pop () ;
currentLabel . push (” f o r e v e r ”) ; return ;

}

public void method FOR JUMP3 0 () throws InterruptedExcept ion {
DataMovement . move (5 , R e g i s t e r s . d0 , S ize . l) ;
In tegerAr i thmet i c . cmp(new L i t e r a l P o i n t e r (Constants . get (”

INTEGER i”)) ,
R e g i s t e r s . d0 , S ize .w) ;

i f (Conditions . i s S e t (Conditions . Z)) {
currentLabel . pop () ;
currentLabel . push (” FOR JUMP2 0”) ; return ;

}
DataMovement . move (1 , R e g i s t e r s . d0 , S ize . l) ;
In tegerAr i thmet i c . add (R e g i s t e r s . d0 , new L i t e r a l P o i n t e r (

Constants
. get (” INTEGER i”)) , S ize .w) ;

currentLabel . pop () ;
currentLabel . push (” FOR JUMP 0”) ; return ;

}

public void method FOR JUMP 0 () throws InterruptedExcept ion {
DataMovement . move(Constants . get (” DATA 0”) , R e g i s t e r s . a0 , S ize

. l) ;
method push string () ;
method popdisplay () ;
method print tab () ;
In tegerAr i thmet i c . c l r (R e g i s t e r s . d0 , S ize . l) ;
DataMovement . move(new L i t e r a l P o i n t e r (Constants . get (” INTEGER i

”)) ,
R e g i s t e r s . d0 , S ize .w) ;

method print w () ;
method print cr () ;
method FOR JUMP3 0 () ;

}
}

Figure 4.9: Translated Java code of the assembly program given in Figure 4.8 (excerpt).
The full Java source code is listed in Appendix C.

25

Figure 4.10: GUI for execution of translated programs

The execution environment, in addition to providing a graphical interface, provides im-
plementations for all the machine instructions, as well as all the library calls for graphical
functions. The following is a detailed description of the various functions provided.

Instructions The EE implements the instructions that are called from the user program. For
example, if the user program calls

DataMovement . move(R e g i s t e r s . d0 , R e g i s t e r s . a0 , S ize . l) ;

then the EE has an implementation of DataMovement.move(Register, Register, Size);
which is given in Figure 4.11

Memory The EE provides memory read and write functions to user programs.

Resources The EE provides the Condition, Register, Pointer, Size, DataTable and Constants
implementations, as emulations of the respective constructs in the source hardware.

Graphics The EE provides the implementation of the “missing” methods as discussed above,
so that graphics operations in the user program are performed on the Graphics object
in the GUI.

Input The EE listens for key presses and sets a pre-determined register to the Sega Genesis
gamepad keycode according. The user program reads that pre-determined register to
detect keypresses.

Machine The EE has a multi-threaded architecture to allow the user program to run inde-
pendent of the GUI. This part allows for suspending and resuming the user program.

public s t a t i c void move(R e g i s t e r r1 , R e g i s t e r r2 , S ize s) {
i n t val = r1 . getValue (s) ;
r2 . setValue (val , s) ;
setMoveCondition (val , s) ;

}

Figure 4.11: Execution environment implementation of a move instruction

26

Chapter 5

Demonstration

This chapter discusses the progress made on SGJ, including the number of instructions sup-
ported and the level of support for library functions. The final section walks through some
example programs and their translations.

5.1 Instruction Set

The Motorola 68000 instruction set is supported at varying levels throughout SGJ. The fol-
lowing sections discuss the coverage in stages.

5.1.1 Parser

The parser has support for the core instruction set, which consists of data movement, arith-
metic, system control, logical and shift/rotate operations. All of these core instructions are
parsed fully. In addition, other assembly source code, such as labels, definitions and labelled
data is also fully parsed.

Adding support for the non-core instructions, such as floating point instructions, can be
as simple as adding those instructions to the set of instructions the parser knows about.

5.1.2 Translator

The translator supports the core instruction set as well. Each instruction is replaced by
the appropriate SGJ library method call, meaning that adding translation support for other
(non-core) instructions is straightforward.

5.1.3 Execution Environment

The execution environment has full support for the core instructions. Each instruction has a
corresponding implementation in the SGJ library.

The ability to add support for non-core instructions is varied. New data movement and
other similar simple instructions are straightforward to implement. More complex instruc-
tions requiring library support, such as interrupts, will clearly require a great deal of work
to add support for.

5.2 Implementation of Proposed Solutions

The progress made in the project on SGJ is outlined in the following sections.

27

5.2.1 Goto

The solution for goto that SGJ implements is complete, in that all five of the supported
control flow statements, as per Figure 3.2, are functional.

5.2.2 Memory

The memory emulation in SGJ is fully functional, as are pointers. The only check SGJ does
on memory access is whether the address is inside the addressable range.

Pointers are fully functional as well, including post-increment and pre-decrement oper-
ations, allowing memory to be treated as a stack.

5.2.3 Graphics

The execution environment has text-based graphics operations support, so simple com-
mands such as print_w, which prints a word of data as a number, or print_string, which
prints an ASCII String, are fully supported. Other operations are supported, such as relo-
cating the cursor on the screen, and clearing the screen.

5.2.4 Input

SGJ’s GUI allows for the detection of any keyboard key press (including modifiers), however
this is more than is needed for the execution environment. Instead, an arbitrary mapping of
keys to gamepad buttons is made, with a reasonable mapping for up/down/left/right on
the keyboard to correspond to the same directional codes in SGJ. Translated programs can
discover the key press(s) performed by the user in the same manner as the original program.

5.3 System Tests

This section looks at some of the test programs successfully translated by SGJ, including the
level of support for various libraries.

5.3.1 Hello, world!

The first example program demonstrates the support for looping, as well as memory access,
constants and printing of strings. It writes the string “Hello, world!”, followed by a tab,
followed by an incrementing index from 0 to 5. The index is stored in memory, and the
address of it is a definition.

The first screenshot shows the original program running on the Genesis Plus [2] emula-
tor.

This is the screenshot of the program running on SGJ’s GUI, after being translated by
SGJ.

28

5.3.2 Cursor Movement

This is an example of the ability to move the cursor on the screen. It starts the cursor on
the top-left of the display, progressing diagonally down to the bottom-right. The screen is
cleared before every relocation of the cursor. The example shows the ability to locate the
cursor and to clear the screen.

These first screenshots are of the original program on the emulator:

These screenshots are of the translated program on SGJ’s GUI:

29

5.3.3 Input detection

This final example is a program which reads the user input and displays the direction on
the screen. The example shows the ability to detect the key direction pressed and relay the
information to the user program.

The first screenshot is the original program on the emulator:

Finally this screenshot is the translated program running on SGJ’s GUI:

30

Chapter 6

Summary

This chapter recaps the major findings in the project, makes some recommendations for
future work, and reiterates the contributions.

6.1 Major Findings

There were a number major findings in this project. One finding is the difficulties in con-
verting from a low level assembly language into a high level language, such as Java. There
are many intricacies in the conversion, stemming from the language differences listing in
Section 2.5, including typing of data, control flow and primitive data types.

Another finding is the complications that arise from converting a language written na-
tively for an architecture into a general purpose multi-architecture language. Hardware sup-
ported constructs, such as condition checking and direct memory manipulation, are missing
from Java, and at best can only be emulated.

6.2 Future Work

An obvious improvement to SGJ would implement the remaining instructions to give it
support for the full instruction set. This would give it the ability to support a wider range
of programs.

Full graphics support would also be a great improvement, meaning that SGJ can be
tested properly. It would also bring SGJ closer to the original look of the programs. A
number of options are available for implementation, including the J2ME [16] framework,
which provides a number of common graphics operations, such as sprites, which in turn
would make the graphics emulation in SGJ much easier.

Sound support in SGJ would also bring it closer to the goal of the original look and feel.
Java provides a sound API, and this can be leveraged to provide sound support in SGJ.

Interrupt support is a needed feature missing from SGJ at the moment. It will be required
to support graphics, and will allow for a more complete translation of user programs.

Finally, while SGJ translates assembly for programs compiled from BEX, adding support
for decompilation of binaries would be a great step towards supporting original programs
for SGJ.

31

6.3 Contributions

There are two main contributions of this project, a methodology for program conversion,
and a prototype conversion tool. The methodology outlines the main issues in dealing with a
conversion from a low-level assembly to a high-level language, such as Java. It also suggests
approaches to solving the issues.

The second contribution is SGJ, a prototype tool to convert Motorola 68000 assembly
code into Java source code. SGJ implements some of the solutions proposed by the method-
ology, and the Java source code executes on the standard Java virtual machine, version 1.5.

32

Appendix A

68000 Grammar

The following is the complete EBNF grammar file for the Motorola 68000 developed as part
of the project. It is compatible with ANTLR [15] version 3.

grammar Genesis ;

tokens {
ADD= ’add ’ ;
ADDQ= ’addq ’ ;
AND= ’and ’ ;
BRA= ’ bra ’ ;
BEQ= ’beq ’ ;
BNE= ’bne ’ ;
BSR= ’ bsr ’ ;
BTST= ’ b t s t ’ ;
CLR= ’ c l r ’ ;
CMP= ’cmp ’ ;
DIVU= ’ divu ’ ;
JMP= ’jmp ’ ;
JSR = ’ j s r ’ ;
LEA= ’ lea ’ ;
LSL= ’ l s l ’ ;
LSR= ’ l s r ’ ;
MOVE= ’move ’ ;
MOVEM= ’movem’ ;
MULU= ’mulu ’ ;
NOP= ’nop ’ ;
OR= ’ or ’ ;
ROR= ’ ror ’ ;
RTS= ’ r t s ’ ;
SEQ= ’ seq ’ ;
SCS= ’ scs ’ ;
SHI= ’ shi ’ ;
SNE= ’ sne ’ ;
SUB= ’sub ’ ;
SUBQ= ’subq ’ ;
SWAP= ’swap ’ ;
TST= ’ t s t ’ ;

33

OPT= ’OPT ’ ;
INCLUDE= ’ include ’ ;
EVEN= ’EVEN’ ;
END= ’END’ ;

EQU= ’EQU’ ;
}

@lexer : : header {
package s g j . core ;

}

@header {
package s g j . core ;
import s g j . parser . commands . ∗ ;
import s g j . parser . operands . ∗ ;
import s g j . parser . misc . ∗ ;
import java . u t i l . Vector ;

}

@members {
Stack<Label> l a b e l s = new Stack<Label >() ;
Vector<ParserConstant> cons tants = new Vector<

ParserConstant >() ;
Vector<ParserData> dataTable = new Vector<ParserData >()

;
}

prog : { l a b e l s . push (new Label (”START”)) ; } l i n e ∗ cmd? EOF
;

l i n e : (cmd | l b l | equ | data) ? EOL
;

l b l : l a b e l ’ : ’ ? { l a b e l s . push (new Label ($ l a b e l . t e x t)) ; }
;

equ : l a b e l EQU e f f e c t i v e a d d r e s s { cons tants . add (new
ParserConstant ($ l a b e l . t ex t , new Li tera lAddress (”#” +
$ e f f e c t i v e a d d r e s s . t e x t))) ;}

;

data
: l a b e l ’ : ’ ’ dc ’ . s i z e ’\ ’ ’ da tas t r ing ’ \ ’ , 0 ’ {

dataTable . add (new ParserData ($ l a b e l . t ex t , $ d a t a s t r i n g .
t e x t)) ; }

;

34

d a t a s t r i n g
: (l a b e l | d a t a r e g i s t e r | a d d r r e g i s t e r | l i t e r a l i n t e g e r |

e f f e c t i v e a d d r e s s | ’ , ’ | ’ ! ’ | ’ > ’ | ’ ∗ ’) +
;

cmd
@ i n i t {

S t r i n g sz = n u l l ;
S t r i n g a l = n u l l ;

}
: c=cmd 2 1 (’ . ’ s= s i z e) ? o1=readaddress ’ , ’ o2=

readwriteaddress { i f (s != n u l l) sz=$s . t e x t ; l a b e l s . peek () .
addCommand(new Command 2 1 (c , sz , o1 , o2)) ;}
| c=cmd 1 x ’ . ’ s i z e o1=readaddress ’ , ’ a d d r e s s l i s t {

Operand op = new AddressList ($ a d d r e s s l i s t . t e x t) ; l a b e l s .
peek () . addCommand(new Command 1 x (c , $ s i z e . t ex t , o1 , op)
) ;}

| c=cmd x 1 ’ . ’ s i z e a d d r e s s l i s t ’ , ’ o2=writeaddress
{Operand op = new AddressList ($ a d d r e s s l i s t . t e x t) ; l a b e l s
. peek () . addCommand(new Command x 1 (c , $ s i z e . t ex t , op , o2
)) ;}

| c=cmd n 1 (e f f e c t i v e a d d r e s s | l a b e l) ’ , ’ a d d r r e g i s t e r
{Operand op1 = new Effec t iveAddress ($ e f f e c t i v e a d d r e s s .

t e x t) ; Operand op2 = new AddressRegister ($ a d d r r e g i s t e r .
t e x t) ; l a b e l s . peek () . addCommand(new Command n 1 (c , op1 ,
op2)) ;}

| c=cmd 1 1 o1=readwriteaddress { l a b e l s . peek () .
addCommand(new Command 1 1 (c , o1)) ;}

| c=cmd 1 0 o1=readaddress { l a b e l s . peek () . addCommand(
new Command 1 0 (c , o1)) ;}

| c=cmd 0 1 (’ . ’ s= s i z e) ? o1=writeaddress { i f (s !=
n u l l) sz=$s . t e x t ; l a b e l s . peek () . addCommand(new
Command 0 1 (c , sz , o1)) ;}

| c=cmd 0 0 { l a b e l s . peek () . addCommand(new Command(c))
;}

| c=cmd extra a=arg ? { i f (a != n u l l) sz=$a . t e x t ; l a b e l s
. peek () . addCommand(new Command Extra (c , sz)) ; }

;

cmd 2 1 re turns [i n t i = 0]
: ADD { i = ADD;}

| ADDQ { i = ADDQ;}
| AND { i = AND;}
| BTST { i = BTST ;}
| CMP { i = CMP;}
| DIVU { i = DIVU;}
| LSL { i = LSL ;}
| LSR { i = LSR ;}
| MOVE { i = MOVE;}
| MULU { i = MULU;}

35

| OR { i = OR;}
| ROR { i = ROR;}
| SUB { i = SUB;}
| SUBQ { i = SUBQ;}

;

cmd 1 x re turns [i n t i = 0]
: MOVEM { i = MOVEM;}
;

cmd x 1 re turns [i n t i = 0]
: MOVEM { i = MOVEM;}
;

cmd n 1 re turns [i n t i = 0]
: LEA { i = LEA;}
;

cmd 1 1 re turns [i n t i = 0]
: SWAP { i = SWAP;}
;

cmd 1 0 re turns [i n t i = 0]
: BRA { i = BRA;}

| BEQ { i = BEQ;}
| BNE { i = BNE;}
| BSR { i = BSR ;}
| JMP { i = JMP ;}
| JSR { i = JSR ;}

;

cmd 0 1 re turns [i n t i = 0]
: CLR { i = CLR;}

| SCS { i = SCS ;}
| SEQ { i = SEQ;}
| SHI { i = SHI ;}
| SNE { i = SNE;}
| TST { i = TST ;}

;

cmd 0 0 re turns [i n t i = 0]
: NOP { i = NOP;}

| RTS { i = RTS ;}
;

cmd extra re turns [i n t i = 0]
: OPT { i = OPT;}

| INCLUDE { i = INCLUDE;}
| EVEN { i = EVEN;}
| END { i = END;}

36

;

arg : LABEL ’+ ’ | LABEL ’ . ’ (LABEL | s i z e)
;

s i z e : ’b ’ | ’ B ’ | ’w’ | ’W’ | ’ l ’ | ’ L ’ | ’ s ’ | ’ S ’ | ’ d ’ | ’ D’ | ’ x ’ | ’ X ’ | ’ p ’ | ’ P ’
;

readaddress re turns [Operand o]
: d a t a r e g i s t e r {o = new DataRegis ter ($ d a t a r e g i s t e r .

t e x t) ; }
| a d d r r e g i s t e r {o = new AddressRegister ($ a d d r r e g i s t e r

. t e x t) ; }
| address {o = new Address ($address . t e x t) ; }
| e f f e c t i v e a d d r e s s {o = new Effec t iveAddress (

$ e f f e c t i v e a d d r e s s . t e x t) ;}
| constant {o = new Constant ($constant . t e x t) ; }
| l = l i t e r a l {o = l ; }
| l a b e l {o = new s g j . parser . operands . Label ($ l a b e l .

t e x t) ; }
;

wri teaddress re turns [Operand o]
: d a t a r e g i s t e r {o = new DataRegis ter ($ d a t a r e g i s t e r .

t e x t) ; }
| a d d r r e g i s t e r {o = new AddressRegister ($ a d d r r e g i s t e r

. t e x t) ; }
| address {o = new Address ($address . t e x t) ; }
;

readwriteaddress re turns [Operand o]
: d a t a r e g i s t e r {o = new DataRegis ter ($ d a t a r e g i s t e r .

t e x t) ; }
| a d d r r e g i s t e r {o = new AddressRegister ($ a d d r r e g i s t e r

. t e x t) ; }
| address {o = new Address ($address . t e x t) ; }
| e f f e c t i v e a d d r e s s {o = new Effec t iveAddress (

$ e f f e c t i v e a d d r e s s . t e x t) ;}
| constant {o = new Constant ($constant . t e x t) ; }
;

a d d r e s s l i s t
: readwriteaddress (SLASH(addressrange |

readwriteaddress)) +
| addressrange (SLASH(addressrange | readwriteaddress)) ∗
;

addressrange
: (ADDRREG|DATAREG) ’− ’(ADDRREG|DATAREG)
;

37

d a t a r e g i s t e r
: DATAREG
;

address
: ’ (’ (ADDRREG|ADDRESS | composite) ’) ’
| ’− ’ ’ (’ ADDRREG ’) ’
| ’ (’ ADDRREG ’) ’ ’+ ’
;

composite
: d a t a r e g i s t e r ’ . ’ s i z e ’ , ’ a d d r r e g i s t e r
;

e f f e c t i v e a d d r e s s
: ADDRESS
;

a d d r r e g i s t e r
: ADDRREG
;

ADDRREG
: (’ a ’ | ’ A’) ’ 0 ’ . . ’ 7 ’
;

ADDRESS
: ’ $ ’ HEX+
;

DATAREG
: (’ d ’ | ’ D’) ’ 0 ’ . . ’ 7 ’
;

constant
: ’ (’ l a b e l ’) ’
;

l i t e r a l re turns [L i t e r a l l]
: ’ # ’ (

l i t e r a l l a b e l { l = new L i t e r a l L a b e l (”#” +
$ l i t e r a l l a b e l . t e x t) ; }

| l i t e r a l i n t e g e r { l = new L i t e r a l I n t e g e r (”#” +
$ l i t e r a l i n t e g e r . t e x t) ;}

| e f f e c t i v e a d d r e s s { l = new Li tera lAddress (”#” +
$ e f f e c t i v e a d d r e s s . t e x t) ;}

)
;

38

l i t e r a l l a b e l
: l a b e l
;

l a b e l
: LABEL

;

LABEL
: (’ b ’ . . ’ c ’ | ’ e ’ . . ’ z ’ | ’ B ’ . . ’ C ’ | ’ E ’ . . ’ Z ’ | ’ ’) (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z

’ | ’ ’ | ’ 0 ’ . . ’ 9 ’) ∗
| (’ a ’ | ’ A’ | ’ d ’ | ’ D’) (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’ ’ | ’ 8 ’ | ’ 9 ’) (’ a ’ . . ’ z

’ | ’ A’ . . ’ Z ’ | ’ ’ | ’ 0 ’ . . ’ 9 ’) ∗
| (’ a ’ | ’ A’ | ’ d ’ | ’ D’) (’ 0 ’ . . ’ 7 ’) (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’ | ’

’ | ’ 0 ’ . . ’ 9 ’) +
;

fragment DIGIT
: (’ 0 ’ . . ’ 9 ’) ;

l i t e r a l i n t e g e r
: INT
;

INT : (’ − ’) ? (DIGIT) +
;

fragment HEX
: ’ 0 ’ . . ’ 9 ’ | ’ a ’ . . ’ f ’ | ’ A’ . . ’ F ’

;

SLASH
: ’/ ’
;

EOL : ((’ \ r ’) ? ’\n ’)
;

WS : (’ ’ | ’ \ t ’ | ’ \ u000C ’) { $channel=HIDDEN; }
;

39

40

Appendix B

Hello World Program (Assembly)

This is the assembly code for the example “Hello world” program used throughout the
document.

move . l #0 , d0
move .w d0 , (INTEGER i)

FOR JUMP 0
move . l # DATA 0 , a0
j s r push st r ing
j s r popdisplay
j s r p r i n t t a b
c l r . l d0
move .w (INTEGER i) , d0
j s r print w
j s r p r i n t c r

FOR JUMP3 0
move . l #5 , d0
cmp .w (INTEGER i) , d0
beq FOR JUMP2 0
move . l #1 , d0
add .w d0 , (INTEGER i)
bra FOR JUMP 0

FOR JUMP2 0
f o r e v e r

bra f o r e v e r

EVEN

INTEGER i EQU $FF002E
HEAPSTART EQU $FF0030

DATA 0 dc . b ’ Hello , world ! ’ , 0
include b a s i c s t r . s
EVEN
include b a s i c d a t . s
EVEN

DATA Pendcode
END

41

42

Appendix C

Hello World Program (Java)

This is the example program “Hello world” used throughout the document. This version is
the Java source code produced by SGJ.

package s g j . machine . t r a n s l a t i o n ;

import j ava . u t i l . Stack ;

import s g j . machine . i n s t r u c t i o n s . DataMovement ;
import s g j . machine . i n s t r u c t i o n s . In tegerAr i thme t i c ;
import s g j . machine . l i b r a r y . Display ;
import s g j . machine . l i b r a r y . Input ;
import s g j . machine . l i b r a r y . Machine ;
import s g j . machine . resources . Conditions ;
import s g j . machine . resources . Constants ;
import s g j . machine . resources . DataTable ;
import s g j . machine . resources . L i t e r a l P o i n t e r ;
import s g j . machine . resources . R e g i s t e r s ;
import s g j . machine . resources . S ize ;

public c l a s s Hello5Translated extends Thread {
private Display display ;
private Input input ;
private Stack<Str ing> currentLabel ;

public Hello5Translated (Display d , Input i , S t r i n g l) {
t h i s . d isplay = d ;
t h i s . input = i ;
t h i s . currentLabel = new Stack<Str ing >() ;
t h i s . currentLabel . push (l) ;
Constants . s e t (” INTEGER i” , I n t e g e r . p a r s e I n t (”FF002E” , 16)) ;
Constants . s e t (”HEAPSTART” , I n t e g e r . p a r s e I n t (”FF0030” , 16)) ;
Constants . s e t (”CURSORX” , I n t e g e r . p a r s e I n t (”FF0000” , 16)) ;
Constants . s e t (”CURSORY” , I n t e g e r . p a r s e I n t (”FF0001” , 16)) ;
DataTable . s e t (” DATA 0” , ” Hello , world ! ”) ;

}

@Override

43

public void run () {
t r y {

gotoLabel () ;
}
catch (InterruptedExcept ion i e) {
}

}

public void gotoLabel () throws InterruptedExcept ion {
while (t rue) {

Machine . machine () . s tep () ;
t r y {

Thread . s leep (1 0 0) ;
t h i s . ge tClass () . getMethod (”method ” + currentLabel . peek ()) .

invoke (t h i s) ;
}
catch (InterruptedExcept ion i e) {

throw i e ;
}
catch (Exception e) {

e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}
}

}

public void method print tab () throws InterruptedExcept ion {
display . p r i n t t a b () ;

}

public void method popdisplay () throws InterruptedExcept ion {
display . popdisplay () ;

}

public void method START () throws InterruptedExcept ion {
DataMovement . move (0 , R e g i s t e r s . d0 , S ize . l) ;
DataMovement . move(R e g i s t e r s . d0 , new L i t e r a l P o i n t e r (Constants

. get (” INTEGER i”)) , S ize .w) ;
method FOR JUMP 0 () ;

}

public void method FOR JUMP2 0 () throws InterruptedExcept ion {
method forever () ;

}

public void method push string () throws InterruptedExcept ion {
display . push s t r ing () ;

}

public void method forever () throws InterruptedExcept ion {

44

currentLabel . pop () ;
currentLabel . push (” f o r e v e r ”) ;
return ;

}

public void method print w () throws InterruptedExcept ion {
display . print w () ;

}

public void method FOR JUMP3 0 () throws InterruptedExcept ion {
DataMovement . move (5 , R e g i s t e r s . d0 , S ize . l) ;
In tegerAr i thmet i c . cmp(new L i t e r a l P o i n t e r (Constants . get (”

INTEGER i”)) ,
R e g i s t e r s . d0 , S ize .w) ;

i f (Conditions . i s S e t (Conditions . Z)) {
currentLabel . pop () ;
currentLabel . push (” FOR JUMP2 0”) ;
return ;

}
DataMovement . move (1 , R e g i s t e r s . d0 , S ize . l) ;
In tegerAr i thmet i c . add (R e g i s t e r s . d0 , new L i t e r a l P o i n t e r (

Constants
. get (” INTEGER i”)) , S ize .w) ;

currentLabel . pop () ;
currentLabel . push (” FOR JUMP 0”) ;
return ;

}

public void method DATA Pendcode () throws InterruptedExcept ion
{

System . e x i t (0) ;
}

public void method screen cls () throws InterruptedExcept ion {
display . s c r e e n c l s () ;

}

public void method joypad () throws InterruptedExcept ion {
input . joypad () ;

}

public void method delay () throws InterruptedExcept ion {
Machine . machine () . delay () ;

}

public void method FOR JUMP 0 () throws InterruptedExcept ion {
DataMovement . move(Constants . get (” DATA 0”) , R e g i s t e r s . a0 , S ize

. l) ;
method push string () ;
method popdisplay () ;

45

method print tab () ;
In tegerAr i thmet i c . c l r (R e g i s t e r s . d0 , S ize . l) ;
DataMovement . move(new L i t e r a l P o i n t e r (Constants . get (” INTEGER i

”)) ,
R e g i s t e r s . d0 , S ize .w) ;

method print w () ;
method print cr () ;
method FOR JUMP3 0 () ;

}

public void method print cr () throws InterruptedExcept ion {
display . p r i n t c r () ;

}
}

46

Bibliography

[1] ANCKAERT, B., MADOU, M., AND BOSSCHERE, K. D. Information Hiding,
vol. 4437/2007 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
ch. A Model for Self-Modifying Code, pp. 232–248.

[2] BANNISTER, R. F. Genesis plus. http://www.bannister.org/software/gplus.htm.
Accessed 12th October 2007.

[3] CAI, H., SHAO, Z., AND VAYNBERG, A. Certified self-modifying code. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2007), ACM Press, pp. 66–77.

[4] CIFUENTES, C. Reverse Compilation Techniques. PhD thesis, Queensland University of
Technology, July 1994.

[5] CIFUENTES, C., SIMON, D., AND FRABOULET, A. Assembly to high-level language
translation. In ICSM ’98: Proceedings of the International Conference on Software Mainte-
nance (Washington, DC, USA, 1998), IEEE Computer Society, p. 228.

[6] DICKENS, T. Migrating legacy engineering applications to java. In OOPSLA ’02: OOP-
SLA 2002 Practitioners Reports (New York, NY, USA, 2002), ACM Press, pp. 1–ff.

[7] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[8] KÅGSTRÖM, S., GRAHN, H., AND LUNDBERG, L. Cibyl: an environment for language
diversity on mobile devices. In VEE ’07: Proceedings of the 3rd international conference on
Virtual execution environments (New York, NY, USA, 2007), ACM Press, pp. 75–82.

[9] LINDHOLM, T., AND YELLIN, F. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[10] LOVEMAN, D. B. Program improvement by source-to-source transformation. J. ACM
24, 1 (1977), 121–145.

[11] MARTIN, J. Ephedra - A C to Java Migration Environment. PhD thesis, Northern Illinois
University, 1996.

[12] MOTOROLA INC. Motorola M68000 Family Programmer’s Reference Manual, 1992.

[13] NATIONAL LIBRARY OF AUSTRALIA. Digital preservation strategies. http://www.nla.
gov.au/padi/topics/18.html. Accessed 12th October 2007.

[14] NORMAN, J. Basiegaxorz. http://devster.monkeeh.com/sega/basiegaxorz/. Ac-
cessed 12th October 2007.

47

[15] PARR, T. Antlr. http://www.antlr.org/about.html. Accessed 12th October 2007.

[16] SUN MICROSYSTEMS. Java ME. http://java.sun.com/javame/index.jsp. Accessed
12th October 2007.

[17] VAN DEN BRAND, M. G. J., KLINT, P., AND VERHOEF, C. Reverse engineering and
system renovation – an annotated bibliography. SIGSOFT Softw. Eng. Notes 22, 1 (1997),
57–68.

[18] VMWARE. VMWare. http://www.vmware.com/. Accessed 12th October 2007.

[19] WELLS, D. Extreme programming. http://extremeprogramming.org/rules.html.
Accessed 12th October 2007.

48

