VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

T8

Computer Science

PO Box 600 Tel: +64 4 463 5341
Wellington Fax: +64 4 463 5045
New Zealand Internet: office@mcs.vuw.ac.nz

Archiving New Zealand Digital Games
From 80’s and 90’s

Cao Yue (Daniel)

Supervisors: Dr. Ian Welch

Submitted in Partial fulfilment of the requirements for
Bachelor of Information Technology.

Abstract

Increasingly people are moving from producing physical atsfdo digital. Digital
objects are being produced and updated faster than ever before; hosu@rg time
when they are replaced, the valuable knowledge behind them is l@stla®ne possible
solution is trying to archive digital objects and conserve thenstudy and research
purposes. During the last ten years, many studies have been conducted on the problems of
digital archiving and many countries have started experimentitigdigital archiving,
yet, there is still a gap in archiving software and games eldrey; this project is devoted
to find possible ways of archiving digital games and trying tédkausolid foundation for
future research on this subject. The potential scope is lardassproject focuses upon
developing a tool to archive games developed for the Sega SC3000 plttédrwas a
popular computer in New Zealand during the 1980s.

able of Contents

T INErOAUCHION c.cceieniinieininsnerinsanesssnssssssesasessssssssessssassssssssssssssesssessssssssssssssassssossssssossasassssssassnss 1
1.1 IMIOtIVATION ...ttt ettt et e bt e s bt e st st e st e e bt e bt e beeeaees 1
1.2 RESEATCI ATEAS ...ttt ettt ettt et s et et e b e eat et e sae et e b e eneeeeees 2
1.3 RepOort SUMMATYcooviiiiiiiiiicc e 2
1.4 Report OULHNEcooviiiiiiiiiici s 3
2 BACKGIOUNd....ucuiiririiiititiiinceinctciincisessessessssssesssssssssasssssesssssssssasasssssssssnsssssassnens 5
2.1 Digital ATCRIVING ...oovoviiiiiiiiiiiciiicc e 5
2.1.1 Digital Archiving in Generalooeiiiiiiiiiii s 5
2.1.2 General Requirements for Digital ArChiVING.........cccuvuiiiiiiiiiiiiiieee e 6
2.1.3 Digital Archiving in New Zealand.............ccoooiiiiiiiiiiiiee e 6
2.2 EMULATION .ttt ettt ettt b ettt ens 7
2.2.1 Needs for an EMUIALOTcoouiiiiiiiiice e 7
2.2.2 Game Emulators for SC3000........ccuiuuriieiiiiiiieeiiiiiee et e e 7
2.2.3 Emulators in Digital ArChIVING........uuuuuiiiiiiiiiiirer e 8
G B\Y, 1< -V -1 - FO OSSOSO PR SRURRRRR 8
2.3.1 Why Need Metadata?cccuiiiiiiiiieeeiieiiiii et e e e e e e e e e e aaan 8
2.3.2 Metadata StanardS..........cccuuuiiiiiiieiee e a e 9
3 SOUNA PrOCESSING ...ucvvrrririiriiniritiiniisiiiesisiiissiseisssesssasssssass 11
3.1 The WAV FOIMALoouiiiiiieieeeee ettt ettt ettt et 11
3.2 Input Format for an Emulator...........cccccoiiiiiiiiiiicce, 13
3.3 The Tape FOrmatccccoviuiiiiiiiiiiiiiiiiicic e 14
B DESIGMN..ucuererrreinreieneiiteisteineseetssessesssseese s e s s b s b a bbb s bbb bR bR bR bR bR e bR 15
4.1 MethOdoOlOZYcoovimiiiiiiiiiiiiiic e 15
4.2 TUSET STOTIES ..nveeurenteruteienteetesteeit ettt ettt et e s b et et e bt et e s bt e st et e s bt et e sbe s st enbesbe et enbesneensenne 16
4.2.1 Archiving Directly from @ Tape......cccoooiiiiiiiiieeeeeeeeeeeee e 17
4.2.2 Archiving a WAV File........ e 17
4.2.3 Updating an Archived Game with Metadataccceiiiiiiiiiiieiiieeeeeee e, 18
4.2.4 Updating the Stored Programcooviiiiiiiiiiiiiieiiiieiieeeieerieeeieee s 18
4.2.5 Extracting Information from the Archiveccccoooiiiiiiiiii 18

ii

F G I\ (= 7= T =1 2= WSO RRROPPRRTT 19

4.3.1 ArCRIVE DALA.......eeiiiiiieiiiie e 19
4.3.2 TAPE DaAlaA...... i 22
4.3.3 Original WAV Data......ccceeiiiiiiiiiiiiieie ettt e e e e eeeaaeeeas 23
4.3.4 SOUICE COUE DALAeviiiiiiiiiieiiiiiii et 23
4.3.5 AACHMENT DALccciiiiiiiiiiiiiiii e 24
5 IMPLeMENtationccceviveniiinininininitiiniciniiniessetssestssessscssssssssstsssssssesesssssssssssssssssssssssons 25
5.1 Class SEIUCTUTE.......c..cuevueuiriiirieiiicieetetc ettt 25
5.1.1 SYStEM INtEOIAtOr.....cciiiiiiiiiiiiiee ettt 25
51.1.1 Graph Plotter......cccoiiiiiiiiiiiiiiiiccs 25
51.1.2 Program ANAlYZeT ..o 25
LT A o Co e = 1 @0] 0|7 =T (=T PN 31
5121 Char CONVETLETccceeiriiriiiiieieieteteenteeteeetetee ettt 31
5122 Program Decoder...........ccoeiiiiiiiiiiiii 31
5.1.3 XML GENEIALON ...ccoiiiiiiiiiiiiii e 33
5.1.4 System INPUL INTEITACEcoiiiiiiiieii e 34
51.4.1 Main Input Interface...........ccccoeiiiiiiiininiiiniiiie 34
5.1.42 Subfiles Input Interface..........cccccocoevviiicininiiiiniiiiniiie 36
5.2 File SEIUCHUTE.eoveteiiiciciccee ettt 37
6 Testing and System Evaluation ...ttt snsesenes 39
6.1 The Test Code GENETAtOTcocvvuiririiriirieieieieteereeesereee ettt 39
6.2 System Evaluation ... 41
6.2.1 Archiving Directly from a Tape.....cccooeeiieiiiiii e 41
6.2.2 Archiving @ WAV File........uuiiiiiiiiiii et 42
6.2.3 Updating an Archived Game with Metadatacccvvvieiiieeiiiiiiiiiiieeee s 42
6.2.4 Updating the Stored Program ... 43
6.2.5 Extracting Information from the Archivecccccciiiiiiiii e 43
7 CONCIUSIONS .ucuvirerirerriinsiinsistssissnsissssissiissisississssissssssssstssssssssstsssssssstsssssssessssssssssssssssssssssssesns 45
7.1 CONIIDULIONS ...vevviiiiictecc ettt 46
7.2 FULUTE WOTK ..ottt 46
8 BIibLiOGIaPRY ...coucuiirirciiictitiitctciintnissssssssses s s bbb as 49
O APPENAICES wuuuueriririririririintiinsctnscisetssesssisssstsssstssstssssssssstsssatssestsssssssesssssssssessssssssssssons 51

0.1 SOUNA FOTINAT .ttt ettt ettt et e e e e e e e eeeeeessesssaaaaeeeeesssesssnsaeseeessnns

9.2 XML Schema

iv

List of Tables

Number Page
Table 1 — Internet Archive Metadata Structurecccooovviiiiniiiiiinieeccc 10
Table 2 — An Example of a BASIC Program Stored in the Input Format..........c.c.c..cc......... 32
Table 3 — An Example of a Temporary Vectorcccccoeiiicnnniiiicceccceees 40

List of Figures

Number Page
Figure 1 — Conversions from the Original Program to the Final WAV File........................ 11
Figure 2 = WAV File Structure............coooioiiiiiiiicc 12
Figure 3 — Listing of Archive Data Structure...........cccccooeviiiiiiniiiiccccce 20
Figure 4 — Listing of Tape Data Structurecccoveuriniiiiicnnncccecce e 22
Figure 5 — Listing of Original WAV Data Structureccocoeeviviiiiinniiniiiccne 23
Figure 6 — Listing of Source Code Data Structure............cccccccouviiiiniiiinniiiiiciccne 24
Figure 7 — Listing of Attachment Data Structure.............cccccoviiiniiiinniniicce 24
Figure 8 — Decoding Algorithm.............coooii 28
Figure 9 — DFD for Program ANalyZerccccoooiiiiinininiiccccc s 30
Figure 10 — Main Input Interface...........cccccoovviiiiiiniiiiiicccc 34
Figure 11 — Accessory Input Interface ... 35
Figure 12 — Tape Input Interface.............cccccoovviiiiiiiiiiiiiiicc 36
Figure 13 — File Structure.........coovoviiiii e 37
Figure 14 — The SC3000 Manualccccoiiiiiiiiii e 51
Figure 15 — The Tape FOormatcccoouoiiiiiiiiiiic e 52
Figure 16 — The Input Format for SC3000ccccoeuiiiiniiiiiiiiiiiiiccccees 53
Figure 17 — The Input Format for SC3000 (Continued)...........cccccecvviriiicinniiciniiiiniiccnne, 54
Figure 18 — The Archive Data Structure ... 55
Figure 19 — The Tape Data Structurecccoeiiiiiiii 56
Figure 20 — The Original WAV Data Structurecccooooioiiiiiiiiieeecc 57
Figure 21 — The Source Code Data Structure.............ccccoovviiiiiniiiiniiiiiicnccce 58
Figure 22 — The Attachment Data Structureccccoviiininiiiniiiiicce, 59

Vi

1 Introduction

1.1 Motivation

There was a rapid uptake of digital games in New Zealand ih9B@s because of New
Zealand’'s technology enthusiastic environment. Those games soonebenanof the
main ways in which people were exposed to the then new technologiégh§lpame
industry had rapidly become a fast developing area and many avea®panies had
chosen to manufacture in New Zealand. These factories produced arangke of
products from general game consoles to specialised arcade machines [2].

Study has shown that, although some games initially appear to bes‘cbdregher well-

known games, their code is unique from any other known game. This Sudgeaist
although some locally produced games may have borrowed visual desigaraaglay

elements from other well-known games, they were in factenmribcally from scratch
[2]. Therefore, games that were available on the market duhag geriod were
specifically designed to suit New Zealand players and thus codtalistinct New

Zealand content. This unique digital cultural heritage fostered arkaivle amount of
user communities, which later became the cradle of New Zéalaad/ own software
industry [1].

However, as time goes by, that ‘Golden’ period has been tergby majority of people.
The distinct digital heritage is facing the risk of been.|8sime still existing games are
only kept by a few private collectors. These games are quitdl dat the current
hardware technology and are impossible to be played directly on maoderputers.
Therefore, there is an urgent need of collecting those gametheognd find an efficient
way of archiving them, so they can be conserved and widely distrifartéae benefit of
the community and study and research purpose in the future.

However the scope of archiving digital games for different cess@ potentially very
large, the software used for developing those games various ¢ateegtend. Therefore,
this project only focused on archiving the SC3000 games. The projecsignel® to
investigate the possibility of archiving those early digital ganuefine the requirements
that are needed for archiving digital objects, build a wellgpe=i data structure for
storing all the related information, and construct a solid foundatiorargr further
research by developing a basic digital archiving system.

1.2 Research Areas

For this project, we define three major research areas. Teeyca@nversion of games
from their original format, metadata structure and a tool for the digitaivanghi

Conversion of games from their original format is essential for the success of this
project. Those early games were originally saved on tapestadgas in an analogue
format. When those files are digitized, they are saved as Wavéfodio Format (WAV)
which is a commonly used sound format. There are three steps cotkiisrsion process.
First, binary data should be read from the file, broken into bytes @mekrted into a
series of digital values. This result is the Pulse Code Modul@CM) representation of
the sampled program. Then these values should be converteaetolsitor Os according
to the amplitude each of them is representing. The second std{s 1@ series of 1s and
0s, which will be fed into a data forming process that can helpatimgeany errors that
are introduced by differences in the sampling rate used tcedfeatoriginal analogue
representation and the WAV file. The final well formatted itestill be then converted
into a human-readable format, which would normally be some simple BASIC code.

Metadata structure is another major part in this project. Since the project iecal
‘Archiving New Zealand Games’, there is a need for developingeneric metadata
structure that can be used for storing general information for taldabject. As we

expect to read information about a book in a library before we actletide to borrow

it, the digital archiving system should all users to read alfrd¢ated information about a
digital object, such as its name, released data and a braipties etc., before they
decide to access that digital object. The metadata structalesigned exactly for this
purpose. It is implemented with XML and the details will be ussed later in this

document.

Digital archiving system tool is believed to be the backbone of a reliable archiving
process. Designing and implementing the digital archiving systeinis considered as
one of the major parts of this project. The system that has beeogsyalill be referred

as the SC3000 recording system throughout this report. The detdils gydtem design
and the class structure will be discussed later in the design and impleomechaipter.

1.3 Report Summary

The purpose of the project is to design, develop and implement actoardhiving

BASIC games developed for the SC3000 platform. The tool allowsrigmal game to
be migrated to modern platform for archiving purpose by parsing the origimal that is

stored as a digitized sound file together with the metadathabfgame. The tool is
designed with a focus on its flexibility, so that the futurecah be modified with
minimum effort for archiving games that are developed for other platforms.

Additionally, provenance the origin of the archived digital objectngpartant for
historians who wish to check the authenticity of the digital object.

1.4 Report Outline

This report will start with an introduction of the modern digitaharing in Chapter 2. It
will provide a discussion of general requirements for digitahiaitg, followed by
digital archiving in New Zealand. The chapter also concentrateslismussions of
metadata structures for capturing essential preservation mtiormabout the project.
Chapter 3 introduces the signal processing concepts involved in thectprohe
concepts include the WAV file format, the input format for SC3000 ewmuknd the
tape format. Chapter 4 is one of the major parts in this reftodescribes the
development methodology used in this project, followed by five mager stories that
were used as guidelines for the system development. The metadatare developed in
this project will be described in detail at the end of this cha@eapter 5 concentrates
on the implementation of the SC3000 recording system, its clasdustruand file
structure. Chapter 6 introduces the test code generator that Ilspel/én this project,
and the final system is also evaluated. Conclusions are given at the end of this repor

2 Background

2.1 Digital Archiving

2.1.1 Digital Archiving in General

Digital archiving means using some reliable technologies to nomskgitalized data for
future study and research. In other words, it is a process of ensinaina digital object
or a digitalized object can be accessed over a long period off3im&oday massive
digital objects are being created everyday. People emphasiziy leea the speed and
ease of short-term dissemination of digital objects, but are concernedlitiethe long-
term preservation of that digital information [4].

Digital information, however, is very different from the informatibat is traditionally
recorded on paper or films. Digital information can be veryesysiependent, and easily
corrupted or altered without recognition [3]. Because of the shtrtahdife of machines,
the storage media that can be used for storing digital infamaave a much shorter life
time than the traditional technologies. Digital information alsedseto be reviewed
regularly, and the accessing technology that it relies on nedmsupdated from time to
time, in order to keep that digital information always accessilthe latest technology

[5].

But on the other hand, digital information also brings many advanttgesthe
traditional archiving method could not ever achieve. It allows for gaatching speed
with more accurate results. This is not only for digitalized books, but also picturess audi
and other digital objects. It also allows people to have access to the indbormbenever
and wherever.

Generally, a digital archive file can be classified into one of the follpwipes [5]:

Electronic databases (Access databases, Oracle databasespieanidlseets etc.)
Electronic word processed documents

Digitalized audios and videos (mp3, mpeg etc)

Software and programs

And digital images and photographic records (jpeg, bmp etc)

2.1.2 General Requirements for Digital Archiving

Firstly, intellectual property remains as a key issue intaligarchiving and the
approaches to intellectual property rights differ from countryowntry [4]. Therefore,
before any digital archiving project can be carried out, the grigam has to familiarize
themselves with the local digital legislation, and resolve extallal property issues
related that project. For instance, in this project the workrisedaunder the research and
study provisions of the New Zealand copyright Act.

Secondly, digital archiving needs a special identification schemee @ digital object
has been archived, it is essential to assign it an easdgnzable identification [6], so
that it can be well kept and managed over a long period of time. Inase of the
National Library of New Zealand (NLNZ) which will be introducedthe next section,
their first step was to identify a new metadata schema for electtooisnent.

Thirdly, one should strive to find a storage media that is reliabtecan last as long as
possible. This is the most crucial part of digital archiving, senckgital storage failure

could result losing all the information that is stored in that mediavever, even a good
storage system cannot last for ever, due to its fragile naturastnelolving technology.

It is believed that storage systems should be updated at least once evesgrisvéd)

Finally, digital archiving should also be accessible wherever, anenever. High
accessibility is one of the major reasons for digital archiving [3]. Pecgié tw enjoy the
freedom of accessing useful information without any time or geographitraioss

2.1.3 Digital Archiving in New Zealand

Until recently the importance of digital archiving has notrbeecognized in New
Zealand. It was partly because people were not aware of thetamp®rand advantages
of archiving digital objects and there was no huge demand on digdhiving. Also
there was a lack of knowledge on digital archiving, even if soemplp had thought
about the idea of archiving digital objects, they didn’t know how theydcimplement
the idea [3].

The National Library of New Zealand (NLNZ) has been chargethbyNew Zealand
government with implementing digital archiving of New Zealand cont#&ware of the
advantages and efficiency that digital archiving could bring, predsby the rapid
developing information technologies, the National Library of New afehldecided to
launch its first digital archiving project [7]. In November 2002, Nl_Mleased its first
version of a preservation metadata schema, which explained thdields needed to
support the preservation of digital objects in detail, and formul&tdasic framework
for a database repository and input systems for collecting tmthgs preservation
metadata. It is believed to the foundation for future digital archiving.

The project was finished by 2004, and its implementation turned out to be very aulccessf
It now has 16 metadata records providing access to the allo$alitsital information. In

fact, the project had be awarded by The New Zealand governnitbn$24 million in
funding for capturing the digital output of the nation to archivectorent and future
generations. The next step is implementation of a secure digital archive.

2.2 Emulation

2.2.1 Needs for an Emulator

The project is about archiving New Zealand games from the 80sCandH®wever, as
technology is developing at a very rapid speed, all of the old conbalew/¢re used to
run those games had be eliminated long ago by the market andecefs more
sophisticated and better developed consoles. Thus, even if one stillskeeporiginal
game software from the 80s, one can hardly find the hardwanentd on. This is a
serious problem for the project. However, it can be solved by usiogsole emulator.
An emulator is a piece of software that people can use to pedomtations of the
hardware used by the original system. It is designed to \yrteahulate the original
architecture of an arcade or computer system board, and usespiled cead-only
memory (ROM) or disk images from the original system tosmftware [8]. In this case,
they are those old console games.

Using an emulator also provides other advantages. Most of time, arprograhat is
writing an emulator would design some additional features whelotiginal system did
not have due to the limitation of technology back in the old days. Thosedeaan
enhance the virtual system of the emulator and deliver a bettermpance than the
original system [8].

2.2.2 Game Emulators for SC3000

The most popular use of emulators is to imitate the experientesing arcade games
or console games on personal computers [8]. It pretends to be theatarfdr those

games and allows you to run the copied ROM images from theseabggimes on your
computer. Also it is believed that emulating those old games on armoodputer is

much more convenient than running on the original machines.

There are many emulators on the market for different typesachines. For example,
Virtual GameBoy Advance (VGBA) allows people to play games Wintendo's
GameBoy Advance on a personal computer; whereas Multiple ArcadeifésEmulator
(MAME) can give you the experience you can only get from a ‘coisysgem’ [9]. Most
emulators can emulate a number of games, or even a number of similar consoles.

7

As a very famous console with limited distributions from mid 1980s, SC3000 is a popular
target for all the emulator enthusiasts [10]. The most well-knowalagars for it are
Meka and MasterGear. They are both multi-console emulators ittesmpd to mimic all

the 8bit Sega Game consoles with a single virtual system [ldjp@red with
MasterGear, Meka is open source software which allows ferdoesvnload. It publishes

its code occasionally to allow people to contribute to its developmemteter, Meka is

not as portable as MasterGear, which can be run on many diffgletfdarms [11].
Moreover, MasterGear does not only run games, it also allows pepplebtig Sega
software without using costly and cumbersome systems.

Many emulators are able to load games that were origisi@igd on cartridges; however,
few can load games that were stored on tapes.

2.2.3 Emulators in Digital Archiving

The purpose for archiving earlier video games is to endeavor torcertbe dated but
valuable digital content for further study and research. Howdwegn't have any use if
only the games are archived. People also need a way to accesgdhuss, play with
them and learn those games from interactions with the systemeAsoned before, it is
not feasible to keep a dated cumbersome machine for running thoss, game metal
electronic circuits are very fragile and they eventually & ruined by rust as time goes.
Therefore, an emulator which can emulate the original consoleewdrethere is a
modern computer, is needed to run the games and be archived tog#thitrevgames.
An emulator doesn’t need to worry about the time and whenever the @mput
technology is upgraded only the emulator needs to be updated instemidsigning an
actual game console.

Apart from its reliability, an emulator also has high portagilvhich is another goal of
the digital archiving: ‘making the archiving content easily asitde to the wide public’
[1]. A specially designed emulator, for example, can be loadedaopbcket sized PDA,
or even be accessed and distributed across the Internet, allowmgr&a flexibility and
portability than a real console could ever allow.

2.3 M etadata

2.3.1 Why Need Metadata?

When archiving digital games, we need not only the right format for recordimgsy but
also a metadata structure that can be used for storing usefuhatiimn about game
objects. These contents can be stored in various formats, such HASGc. However,

XML is considered to be the best option for storing metadata, s$inisedesigned
primarily for representing structured documents and data.

Currently, there are many organizations around the world thagxgerimenting with
archiving digital data. Some formal archive procedures have bedligsed specifically
for digital data and the required metadata structure has asodeeeloped. This project,
therefore, takes advantage of this by carefully studyingntb&adata structure that is
available and redesigning that structure to suit its special needs.

2.3.2 Metadata Standards

The Internet Archive is one of those organizations that are cyrexplerimenting with
archiving digital data. It was founded in 1996 in San Francisco. phiemary goal is to
build an ‘Internet library’ that can offer permanent accessdeearchers, historians, and
scholars to historical collections that exist in digital forfie]. Their archive objects
include texts, audio, moving images, software and archived web pajgesmost
attractive feature of the Internet Archive is software aeltiollection. It is designed to
preserve historical software and provide access to all kinbaadground information on
the software. The collection includes a broad range of softwaleded materials
including shareware, freeware, speed runs of actual software pkaypeand even
previews and promos for software games [12]. Each softwareonedsin a zip file
together with its metadata information and files such as imafjelocumentation or
original box covers.

The Internet Archive has developed a fairly mature metadiaietisre for their archive.
Based on their metadata structure, the modified structure foprihjsct is shown in the
following table.

Name Description

| dentifier A file name (a combination of numbers and characters) across the
entire archive that can be used for identifying the file uniquely
and allow fast retrieving of that file.

Title The original title for the archive object. For texts, it canthe
title of the document; for software, it is the name of that software.
Creator The name of the company/ organization/ individual that created
the object.
Media type The type of object. For example, an archived game has the type of
“software” whereas an archived song has the type of “audio”.
Collector This field is specially used for rare, dated software tlsgt i

collected by enthusiasts only for historical reasons. The cdyyrig
for the software probably couldn’t be legally established anymore
and the ownership therefore becomes more important.

Publisher The publisher of the object.

L anguage The language that is used. Some object may contain different
versions for different languages.

Medium The medium that is used for storing the original object. |For
example, for certain software, it could be stored on a 3.3inch
floppy disk or a compact disk.

Extent The number of disks that are used for storing the entire object.

System name The name of the system that the program object is originally
executed on. Please note that, this field is only used for soffware
objects.

System model The model of the system that program object is originally
executed on. For example, SC3000. Please note that, this fleld is
only used for software objects.

Disk availability | Indicates if the original disk is available.

Update date The date that the object is added or updated.

Updater The last person that updated this object.

Table 1 — Internet Archive Metadata Structure

Apart from this required information, some other information may rteetie also
identified and structured by using XML. For example, it is usflist all the additional
objects of the archived game, such as box covers and/or documents in ianaddible.
The table should include the file name and the file type, so that caersee clearly what
other files are included in the object file.

The metadata structure used by the Internet Archive isviedli®o be currently the best
practice. It is the most efficient way of sorting objadbrmation and provides a clear
structure of representing the information when it is needed. This projeefotteeradopts

the general structure of the metadata used by the InteroktvA when constructing the
archive data structure and adds extra fields peculiar to theofygames we wish to

archive.

10

3 Sound Processing

SC3000 encapsulates its programs in a format specifically ddsign8C3000 consoles.
This format will be referred as input format throughout this paftter the program is
encapsulated, the file will be transferred to the tape représengad saved on the tape.
When those files are digitalized, they are saved as WAV fowhath is a commonly
used sound format. The above procedure can be illustrated in the following picture.

Data

10 PRINT “Hello”
20 INPUT I Header @ Encapsulate the

30 PRINTI program in the SC3000
40 END input format, add header.
FROGRAN ‘
IRFUT
l FOREAT
@ Save the resultina
@ Represent the file in 0110100 VIR file, add VWAV
hinary. header.

L Wiy
1010 1100 1010 1010 1100 1010 1100 1100... “‘.J \ Header
o001 > WY Data
n—''_'_._._'_'_*

OF TAFPE

@ Convert the result to AHALOGUE ‘

the tape format. T0 DIGITAL
TAY

FILE

Figure 1 - Conversions from the Original Program to the Final WAV File

In this chapter, the WAV format will be introduced first, follaMey the input format for
the SC3000 emulator. The conversion to the tape format is relasiraight forward,
therefore, it will be discussed at the end of this chapter.

3.1 The WAV Format

WAV (or WAVE), short for Waveform audio format, is a file formdéveloped by
Microsoft and IBM for storing audio on PCs. The format was origindédveloped on
Windows 95 operating system [13], but due to the popularity of Windowsidkly

became a standard audio format [14]. It is probably the simfplesat for storing audio
samples since it doesn’t require any pre-processing othejustaformatting of the raw

11

data. The file always ends with .wav file extension. The followdiagram shows the
general structure of a WAV file.

The Canonical WAVE file formatl

. File offzet Field Size
field name 18
BdEN rhytes) (byles)
0 . . .
big ChunkiD 4 The "RIFF” chunk descriptor
4
lit . ChunkSize % The Format of concern here is
i Eniiat 4 "WANE", which requires two
: 12 sub-chunks:; "fmt " and "data”
big Subchunk1 1D 4 1
16
little Subchunki Size 4
20
little AudioFonmat 2
: 22 The "fmt " sub-chunk
little Hum<Channels 2
24 :
little SampleRate 4 describes the format of
) 28 the sound information in
litie " ByleRate # the data sub-chunk
little BlockAlign Z
) 24
little BitsPerSample 2 J
36
hig Subchunk2ID 4 k!
] 40 The "data” sub-chunk
little Subchunk2 Size 4
& n Indicates the size of the
littla] sound information and
data % contains the raw sound
g data
=) A
[Fa]

Figure 2 - WAV File Structure (M. Boldin, WAV File Format)

The WAV file format is a subset of Microsoft's RIFF speeifion for the storage of
multimedia files, which is a structure of grouping the files eot# into a number of
separate chunks with each containing its own header and date bysestriitture allows
programs that do not use or recognize a particular type of chuné&sikp kip them and
continue processing following the known chunks [13].

A common WAV file is often just a RIFF file with a sing/AVE' chunk which
consists of two sub-chunks: an 'fmt' chunk and a “data” chunk.

The “fmt” chunk is usually used for describing the format of d@dio information in
data chunk. Firstly it contains a sub-chunk ID for identifying itaeld a sub-chunk size
for informing the program how long the sub-chunk will be. It then contaiasytes for
audio format, which specify if there is any compression dlyoriused, followed by 2

12

bytes for indicating number of channels, with 1 for mono and 2 faestdhen there are

4 bytes for specifying sample rate and 4 bytes for spegifihe byte rate. After that,
there are two bytes used for block alignment and another twofbytgsscribing bits per
sample. On the other hand, the “data” chunk is much simpler. It just has the sub-chunk ID
and the sub-chuck size as the 'fmt' chunk does, follow by the rawTdtanly tricky

thing is, if the original sound has two channels, the left sound chann#iearight sound
channel will be sampled alternately.

Because the WAV format keeps the data as close as possihidriginal sound signal,
professional users often use it for maximum audio quality. Alsoséme study or
research purposes, WAV audio can be edited or manipulated withveetstse using
special software.

3.2 Input Format for an Emulator

Before a WAV file can be examined, however, it needs to be dmalvarto a file with
respect to the input format for SC3000 emulator.

The input format for SC3000 emulator is relatively complex.

For a header, at the very beginning, it uses 450 bytes of 1s fdwegimation, followed
by one start byte which actually identifies the starthef header. After that, it has 16
bytes in ASCII format that describes the program’s namg fafiowed by two bytes for
describing the program length and another two bytes for idemifyie start address for
the program. After another byte of parity, the header is finished with some durdes c

The data format is quite similar for the actual prograral fieut is a bit simper. Again it
starts with 450 bytes for synchronization and one start bytehbatwhat follow them
are just pure program codes. When the program codes are finisbgdré closed with
one parity byte and some dummy codes.

In order to go further with the input format analysis, we needad frem a WAV file bit
by bit, extract the data from that file and compare it withitipeit format that has been
described above. Unfortunately, there are quite few Java ébrtdrat | can use for audio
processing, particularly for reading and writing from WAV fileawéver, there are Java
libraries available for some codecs, such as Free Logsleis Codes (FLAC) [16]. In
computer terminology, a codec is usually a program that can pedoonding and
decoding on stream of data or signals. It encodes data for tssi@mor storage, and
decodes it for viewing or editing [17]. In this project, some metlicma the existing
FLAC library were used in the system development stage for reading/fidvhfiles.

The more detailed structure of the format will be illustrated in the appendices

13

3.3 The Tape For mat

When the encapsulated program is converted to the binary presentabecpiibes a
string of 1s and Os. If we save this string directly onto a tapepl@em can arise when
we try to read a bunch of Os or 1s. Because a typical tape glageno bit counter
designed for it, when a bunch of continuous 1s or Os is read from aathfies tape

player knows is that there are many 1s, or Os, but it is impes&iblit to determine

exactly how many bits of 1s or Os that has been read.

To solve this problem, binary data is saved onto a tape in the tapatfowhich
represents a 1 as ‘1010’ and a 0 as ‘1100'. In this way, the tape playgy/s reads a
series of continuously changing signals, so that the number of hitarthaead can be
easily determined.

In order to recognize the bit pattern, a program can be designeaidtéour bits at a time
and compare the read bits with the tape format and convert them t0 accordingly.
This technique has a drawback. It can only recognize two bit pattearisf is corrupted,
it is highly likely that the whole data string would not be recoemi For example,
assume there is a binary string ‘1100 1010 1100 1010’ that can be redogsif401’,
however, if the first bit is lost, the string would become ‘1001 0101 1001 Which
doesn’'t make sense at all. Therefore, it is better to findayrezable pattern in the input
string first, and then start reading from the recognized bit.

14

4 Design

This project has gone through a complete software development foyelethe user
requirements gathering to the analysis phase, followed by desigmplainentation of
the system and finally ending with the system testing.

Prior to the user requirements gathering, however, there wasdaohadentifying a
suitable software development methodology as a guideline for the tpregethat the
project could be carried out smoothly. The required methodology wagpport a short
development time and evolving requirements.

This chapter will discuss the chosen software development methodology at tharzegi
Five major user stories identified in this project will then ikeoduced, which give a
very good overview of the system design. Finally, the design &adata structure will
be discussed at the end of this chapter.

4.1 Methodology

Extreme Programming (XP) was selected to be the methodolagythé system
development, as the Extreme Programming targets for snaafist®f developers who
need to develop software quickly in a changing environment [18].rB&tRrogramming
also stresses client satisfaction, which is indeed a majas fémr this project. The
methodology is designed to deliver the software to the client neleds iwvis needed.
Therefore, by implementing this methodology, a simple prototypaeokystem can be
developed easily at the beginning of the project. More user requiteroan be then
added and developed on the original prototype. This feature also ersgmvetopers to
confidently respond to changing client requirements at any stage pfoject, even late
in the life cycle [18].

The core practices of Extreme Programming that have been adoptdasfproject can
be grouped into three areas (9 practices) as follows [18]:

Fine scale feedback
e Test driven development

¢ Planning game

Continuous process
e Continuous Integration
e Design Improvement
e Small Releases

Shared understanding

15

e Simple design

e System metaphor

Some of the aspects of XP have been changed slightly to address the nature of this project
As there is no real client in this project, my supervisor &yiph the on-site customer

role that is continuously monitoring the system development andngefthe system
requirements when it is needed.

For the planning game, one or more story cards were completed) caaain weekly
project meeting. A story card either refines the existirgy uvsquirements or adds new
user requirements. Then the time that is needed for implemehg&ngser requirements
was estimated based on these stories. The planning games, the sameesakljheroject
meetings, were carried out at least once a week during the system dearlop

As Extreme Programming is a test driven development methodddopst case will be
completed each time prior to the further system development. Ipriject, testing was
carried out every time after the implementation of a major gfatthe system to ensure
that the implemented feature works correctly, and also continu@mgsation was carried
out to make sure that the newly implemented unit could performpested when it was
added to the existing system.

The system has at least one small release each week,fasus on implementing just a
small requirement each time. In addition, the project design has beproved
continuously. After every release of the program, the systefarpance was assessed
by the on-site customer according to the earlier story caste®ydesign was modified if
it did not satisfy user's requirements, or when the customer waotechange the
previous system requirement, or when the additional features wqtered by the
customer.

There are five major user stories identified for this projebtclvwill be explained in the
next section.

4.2 User Sories

According to the XP methodology, short user stories that addreskealhajor user
requirements are the key to the success of this project. édteful deliberation, there
are five major user stories with each focusing on a diffdtertionality of the complete
system. The stories are: archiving directly from a tape, cangeftom a WAV file,
updating an archived game with metadata, updating the stored prograexteaading
information from an archive.

16

4.2.1 Archiving Directly from a Tape

A SC3000 game collector wants to copy one of his games from the original tagerand s
it on a modern computer. He first connects the output of a SC3000 tajee ape
input of a computer, which has the SC3000 recording system activatedetiselects
the ‘Record from the tape’ option on the SC3000 recorder togethkrtina desired
sample rate, and starts to play the tape. The signal outhe tde will then be sampled
according to the chosen sample rate, and converted directly into \dfANt for storing

on the computer. It also keeps an archive file, which is usually a text file.

Comments:

There are two types of storage devices for the original SC3000sgaargridges and
tapes. For games stored on a cartridge, the read-only memoiy)(Rnage of that
cartridge can be copied directly onto a computer as a .sc fiiehvis the executable
format for SC3000 emulators. However, for games stored on tapes, as they asvedly s
as an audio representation of the program broken down into binary, they &@nnot
converted into .sc files directly. In order to better preséreeoriginal program, we need
not only a WAV representation of the original audio file, but al$exafile just for the
program and its relevant metadata. One concern for saving thempregra text file is
that as different systems have different binary formats fa-dindings, a binary file
would be distorted if it is transmitted from its original syste® another system which
has a totally different format for line-endings. UUencodingadesidered to be a better
approach because it has no line-endings, thus the binary datansttagsame format no
matter what system it is stored on.

4.2.2 Archiving a WAV File

Some SC3000 games have already been recorded into WAV filesoll&éetor of these
games wants to archive these files. He activates the SC30@@ingc system on his
computer and chooses the ‘Archive from WAV file’ option. The recovwdl prompt the
collector for the name of the input file. The collector entkesfile name and clicks on
‘Start’. The SC3000 recording system then starts to analyzeathe grogram, extracts
information and creates the XML files for storing that data. ide®rder might ask the
user to manually enter some of the information needed for the metadata schema.

Comments:

Ideally, users should be allowed to add any type of data to¢h&@rwbject according to
the metadata structure that is defined. In other words, users should be ailexaniple,
add Joint Photographic Experts Group (JPEG) objects that record theobers, or

Tagged Image File Format (TIFF) objects if they want higlesplution images. They
should also be able to add documentations for the games in various fauchtas PDF

17

Portable Document Format (PDF), or Portable Network Graphic&Rihich might be
a better option as it is not proprietary.

4.2.3 Updating an Archived Game with Metadata

A SC3000 game collector later finds out that some of his infoomatiored for a game is
actually inaccurate. He wants to change the metadata storédthf game. He activates
the SC3000 recording system and selects the ‘Update game intoringpition. The
recorder will prompt the collector for the name of the filevients to modify. The
collector then enters the file name and clicks on ‘Open’. All tetadata of that object is
then presented to the user. The user makes his change and cliaveh After the
confirmation, the new data is saved and overwrites the old data.

Comments:

A user-friendly interface for presenting the metadata is essential.

4.2.4 Updating the Stored Program

A new record of a SC3000 game has just been made, which is sampdetligher
frequency with better quality or has been through signal filterremove noise. The
game collector wants to replace his old record by this new onactiates the SC3000
recording system and selects the ‘Update game record’ optionedtweer will ask the
collector to locate the new record he wants to store. The collectties the new record.
The recorder will then prompt the collector for the name of iteehé wants to modify.
The collector then enters the file name. Before overwritieggame record, the recorder
checks with the collector if he wants to overwrite the axgstiecord. The collector
chooses ‘Yes'. After the confirmation, the old record is overwritten by the reaxdre

Comments:

It might be a good idea to check with the user if he/she wanipdate the metadata of
the object after the game record is updated. Because some imbormetorded in
metadata, such as ‘sampled rate’, ‘date recorded’ etc. maynalsd to be updated.
However, this is only an option and is according to user’s preferences.

4.2.5 Extracting Information from the Archive

A SC3000 collector wants to have a copy of all the information fSega game. He
activates the SC3000 recording system and selects the ‘Eixifi@chation’ option. The
recorder will prompt the collector for the name of the file lamts to open. The collector
enters the file name and clicks on ‘Open’. The recorder then askseha file name for
this information to be stored in. The user types the name and clici3kbrThen the

18

information is extracted and stored in a file with the nametkigatiser has just entered.
This file can be viewed later by the user.

Comments:

There has been discussion over the number of objects allocatédriiog €ach game. Is
it better to store all the information as one object, or storerdift types of information

as individual objects? The advantage of storing different typggasmation as different

objects is that it makes extracting information easier. Howdtvalso makes managing
archives harder, since a game will be represented byat@lgects. If one object is lost,
the file is incomplete. A better approach is saving all the infoomaelated to the same
game in a .tar file as only one object, so that all theeeletformation to the game can
be stored and managed together with the game itself.

4.3 M etadata

It is critical for an archiving system to store all thgpbrtant information about a digital
object, so that the archived object can be accessed and usedrlagsefrch and study
purposes. As mentioned in the last chapter the information should Ilhellgaselected
and normalized, so that relevant information can be managed togethescHdéma
should be designed carefully to address this idea, and make theadteigement as easy
as possible [19]. There is also a need for linking between @hiffeschemas, so that each
schema can be modified individually whereas all the schemasease@tadata structure
still keep the consistencies.

There are five XML schemas identified in this project. They Arehive Data, Tape
Data, Original WAV Data, Source Code Data and Attachment Dd&t@.structure for
each of them will be listed and discussed in the remaining part of this section.

4.3.1 Archive Data

Archive Data is the most important schema for the metadatetiste in this project. It
records all the basic information about an object, in this caseritp@al program of a
SC3000 digital game. It provides unique identification for the objéatifies various
object characteristics, its storage medium and also some laszelinformation for
keeping track of updating history. At the end, the schema cont@indJRL links that
point to four subfiles with each containing more specific infoiomadbout one aspect of
the digital object. The structure of the schema is shown as below.

PROGRAM

e objectldentifier
e objectldvalue
e objectName

19

objectCreator
objectPublisher
objectCollector
e objectReleasedDate
preservationLevel
objectCharacteristics
e compositionLevel
e fileAttribute
e fileSize
e sampleRate
e bitsPerSample
e totalSamples
e format
¢ formatName
e formatVersion
e creatingApplication
e creatingApplicationName
e creatingApplicationVersion
e dateCreatedbyApplication
e environment
e environmentCharacteristics
e environmentNote
e emulationSoftware
e swName
e swVersion
e swOtherinformation
® system
e systemName
e systemModel
® accessory
e accessoryName
e accessoryModel
e accessoryAvaliability

storage

e originalMedium
e extent

e diskAvaliability
miscellanea

e language

e archivedDate
e updateDate
e updater
subfiles

e tape

e originaWAV
e sourceCode
e attachment

Figure 3 — Listing of Archive Data Structure

20

objectldentifier

The objectIdentifier field is used to uniquely identify a digital object in the systEach

object should have a unique identification number and its own program name. Please note
that, information of the creator, publisher and collector will also be stored inefais fi

preservationL evel

This is a value that indicates the set of preservation functiqgreceed to be applied to
the object. It could be seen as the priority level for the presemvd he value should be
entered by the updater as an integer number from 1 to 5 withrdsesmting the highest
priority for preservation. This was designed for the ease hef future archive
management, so that whenever there is a conflict in archiWiegarchivist should deal
with the object that has the highest preservation level first.

objectCharacteristics
This is the biggest part of the schema which records all thmited properties of a
digital object.

The compositionLevel is an indication of whether the object has been subject to one or
more processes of decoding or unbundling. A digital object can be encoted wi
compression or bundled with other objects into larger packages. Therefig)portant

to know the order in which these actions are taken, so that the orgpjeait can be
recovered. Initially all the game objects are assigned with tBeiscompositionLevel,

since by default they have no composition level. However, if an olfesaved as a
compressed file, theompositionLevel should then be changed to 1 or higher depending
on the number of compressions that have been applied.

The fileAttribute field describes some basic technical properties of theviech is
useful when decoding the program. Tioemat indicates the format of the file, in this
case, it is WAV, and thésrmatVersion indicates the version of the format that has been
used.

When signals are transferred from tape to WAV file, a sedpplication will be used.
The information about the application that was used for this transflermshould be
archived, because different applications might use different samatple and quite likely
additional header information will be introduced by the applicatidre hformation

includes name of the application, its version and the date thevddecreated by the
application.

Theenvironment field was designed for describing hardware and software envamism

of an object. The definition of the environment here is the surroundingeich user
renders and interacts with content [19]. Separation of digital objexh its
environmental context can result in the content becoming unusable [19]. The
environmentCharacteristics defines an assessment of the extent to which the described
environment supports its purpose. For example, the value could be ‘minimum’ or

21

‘recommended’. It is important that the environment that is eskaal can meet the
defined characteristics, so that the digital object can besetesrrectly. In other words,
the program can run only if the minimum software and hardware reggmts are met.
The emulationSoftware is the software that is needed to play the digital game on a
modern computer, which in this case is the SC3000 emulatosysten is the one that
can support the software that is defined earlier. In this caseuld be WindowsXP or
MAC. Also for some games, they might have special accessaigeh as handle,
shooting gun etc.

storage

Defines the initial storage medium for the object, for example, floppy disks or@te
often, there are more than one disk needed for storing the completanprddnerefore,
theextent is a value that indicates the number of disk exists. It ssudsful to know the
availability of the original disks.

miscellanea

This field is used for keeping track of the updating histosiyiguage is the language that
is used in the original program, for example BASd€chivedDate indicates the date the
object was archived whereas thedateDate is a series of dates that indicates the
updating history.

subfiles

This field contains URLs which are acting as links to all shefiles. There are four
subfiles defined. They are: Tape Data, Original WAV Data, So@ode Data and
Attachment Data.

4.3.2 Tape Data

Tape Data is designed for storing extra information about tapese the original digital
game was stored on. The structure of the schema is as follows.

TAPE
createdDate
archivedDate
collector
brandName
location
availability
extent

Figure 4 — Listing of Tape Data Structure

Apart from elements that are identical to the Archive Data schema, sacihi@gdData,
collector, there is also a number of new information added. cFestedDate indicates
the date that the tape was created. Ideally, this should be ahe wwith

22

objectReleasedDate; however, if the tape is a copy of the original tape, difference
should be reflected on the tape created date. Apart fromvaalaility, it is also
important to know the location of the original tape. It is mostikkat the tape will be
located in the same place as its archive file; however,ailsts possible that the tape is
categorized and archived with other audio files.

Please note, that every TAPE element has an URL as itsutdtiwvhich points back to
the location of the Archive Data schema.

4.3.3 Original WAV Data

Original WAV Data contains detailed information about the origifdV file, such as
its sample rate, bits per sample etc. The structure of the schema is stollowas

ORIGINALWAV
e createdDate
e creator

e software

e swName
e swVersion
e swOtherInformation
fileSize
sampleRate
bitsPerSample
totalSamples

Figure 5 — Listing of Original WAV Data Structure

The software is the one that was used to convert signals from the origipal to the
WAV format. ThecreatedDate is the date the WAV file was created and ¢heator is
the person who was responsible for that conversion process. Pleas¢habtevery
ORIGINALWAYV element has an URL as its attribute which poimégk to the location
of the Archive Data schema.

4.3.4 Source Code Data

This schema is designed for storing source code of thenakigiogram. The source code
could be either stored in binary code or, more preferably in BASh@iwcan be copied
directly into the emulator. The structure of the schema is shown as follows.

SOURCECODE
e language

e languageName

e languageVersion

e languageOtherinformation
e recorder

e recoderName

23

e recoderVerison
e code

Figure 6 — Listing of Source Code Data Structure

Thelanguage element indicates the type of the language that is used feotinee code,

for example BASIC. Theecorder is the one that was used for converting signals back to
the original program code. Finally, there is a field for stotimg original code itself.
Please note, that the same as the last two schemas, eV¢RCETOODE element has an
URL as its attribute which points back to the location of the Archive Data schema.

4.3.5 Attachment Data

Quite often people want to archive different types of informatidimerathan just plain
description about the program itself. For digital games, peoplealsaywant to archive
game posters, box covers, documentations etc. Therefore, theread fonarchiving

objects of various formats. The attachment Data schema is dis$ayriais purpose. The
structure of the scheme is as follows.

ATTACHMENT

e attachmentType
attachmentName
attachmentSource
attachmentOtherInformation

Figure 7 - Listing of Attachment Data Structure

An attachment should be identified by its name and its type. FEon@e, a picture can
have ‘box_cover_front’ as its name, and .png as its type. A document catBASIE
for Starters’ as its name, and .pdf as its type. Also the tocafithe attachments will be
recoded as URLs undettachmentSource field. Since it is quite likely that a digital
game has more than one attachment, more than one attachmens iastanherefore,
allowed under the same attachment tag. Please note, that thassawsyone else, every
ATTACHMENT element has an URI as its attribute which pobdsk to the location of
the Archive Data schema.

24

5 Implementation

5.1 Class Sructure

There are fifteen classes developed for this project. Thege&mther grouped into four
categories: System Integrator, Program Converter, XML Gtareeand System Input
Interface. Each part is developed and tested independently, biog categrated together
and they will work as one complete system. This design allowspeat of the system to
work individually; therefore, it gives greater flexibility to tlkevelopers who might be
involved in further research into this topic.

At the beginning of this section, classes in System Integratbb&iintroduced, since
they are the most important components for the SC3000 recoding sysftemthat,

classes that belong to Program Converter category will bedunted followed by XML
generators. The section will finally end with a brief desmipf all the system input
interface classes.

5.1.1 System Integrator

System integrator contains only two classes: Graph Plotter rrgglafh Analyzer. The
system integrator group, as its name implies, is responsibietégrating all the system
components together and make sure the completed system works as required.

5.1.1.1 Graph Plotter

It is a utility class that can plot out the pulse code modulaf&@iM) representation of
the signal for analyzing purposes. The X axis represeritsea?CMs read from the PCM
value file, whereas the Y axis represents the values of those PCMs.

The graphical representation for the signals is quite impontathis project, since it
gives a virtual representation of the processed data and maleeser to recognize if an
error occurs.

5.1.1.2 Program Analyzer

Program analyzer class contains the main class of the SC3@d@imgcsystem. It got its
name because it analyzes the input data first, then formatataeand passes the results
to the program converter. Program analyzer class is very impartd only because it
contains the main class of the system, but also because it pralgteghm for
formatting the raw data and correcting any corrupted data.

25

There are many methods developed for this class. The mathode() is used as glue
for gathering all the methods together and making suré¢hteabput data is analyzed and
formatted correctly one step after another.

As the sequence of calling methods is crucial in this classl ¢camtinue my discussion
in the rest of this section based on the order these methods are called.

loadHeader ()

Refer back to the WAV format, as it is shown in figure Zhatbeginning of a file, there
are 44 bytes in the headésadHeader() method is designed for reading only the WAV
header. It does this by reading only the first 352 bits in a Viil&Yand recording them
in a text file.

formatData()

Before we can process the header, it is better if we can formatatierHest, and put the

name of the value before the actual value. For example, beforantipdesrate value, we

want to put a string ‘Sample Rate’ and before the total saughle we want to put a

string ‘Total Sample’ in front of it. In this way, if we wartt get the sample rate of the
file later in the program execution, we only need to find thegtiSample Rate’ and

followed by which should be the binary representation of the file sample rate.

readHeader ()

After the header is formatted, we can start to extracrnmhtion that is important for
reading the data chunk, namely the format of the file, samgpée byte rate, bits per
sample and sub-chunk size. These values will be stored as globalesaaad will be

used in various functions. Please note, that the sub-chunk size repgeienaisize of the
data, which can give us a pretty good indication of the end of alfié®we are loading
the raw data from the original WAV file.

loadData()

After the size of data is found, we can start to load the tai@Data() method takes a
file name and the file size (the size of data) as itsiraemts, read the file bit by bit
according to the specified file size, and output the binary resaltext file. This text file

is called the ‘raw data’.

convertLittle()

According to the header, we know that there are two bytes peplesaih is also

understood that WAV files recode their data fields according tdittreeendian format

with the lower bytes before the higher bytes. Thus, number 6tlan émdian would be
represented as ‘00000110 0000000@anvertLittle() is therefore developed for
processing the little endian data and converting the result égers. The final result
should be the pulse code modulation (PCM) representation of the opgogaehm and

will be saved in a text file called ‘PCM values'.

26

findMark()

The PCM values are the numeric representations of the amplitudies ofiginal tape
signals [20]. We have to find a reasonable benchmark so that @va/Blue that is less
than the benchmark, we can interpret it as a 0, whereas Viathe is greater than the
benchmark, we can interpret it as a 1filiMark() method, we believe that taking the
average for the first 5000 PCM values should result a pretty atechenchmark. The
value will be saved as a global variable and usei@dnde2Tape() method.

decode2T ape()

This method reads all the values from the PCM values file, cospah of them with
the benchmark value and interprets a PCM value as 1 or 0 accordihglyesult should
be the same as the data that is recoded on the originaltiapefpte, it is saved in a text
file called ‘tape data’.

In Shannon's sampling theorem it states that ‘Exact recotistrif a continuous-time
baseband signal from its samples is possible if the sigtandlimited and the sampling
frequency is greater than twice the highest frequency’. Hawasgewe found out in this
project, the original signal was sampled at the samplehatest18.125 times the highest
frequency of the original signal. As the sampling rate is molttiple of the highest
frequency, it could result some signal distortions, and also betlanse tapes are quite
old, the tape data we have produced is very likely to be incofifeetefore, we need an
algorithm for detecting the errors and correcting them autoafigticThe algorithm is
illustrated in the following diagram.

27

original [| [T L _TLITLT L _T1LI1

1100110010101 100101100

Corrupted | NI NN [T

i avy=(4+9)/2=6.5
| avy=(6.5+7)2-6.75
| avg=(6.75+4)/2-6.35
| avg=(5.35+4)/2=4.6875
I I

Comparing | HHNnnnnnnmm 11771

9=4.6 7=46 | 4<46 4=46 9-46 | 3«46 B8=4.6

Corrected | | | | | |

Figure 8 — Decoding Algorithm

Firstly, we need to get an average length for all the sigagés. After that we start from
the beginning of the file, compare the length of a completeewath the average length,
if the wave is greater than the average length, we inteitpast ‘1100’, otherwise, we
interpret it as ‘10’. However, at the beginning we need an eglihesaterage value to start
with, which in practice should equal to twice the length of a sibigldn this example,
by looking at the original signal pattern (As shown in figure 8)cau see it I8 X2=4,

whereas in the project, it #s< 2=8.

measur el ength()

This method is used for measuring the average wave length. Agté er a complete
wave can be gained by setting a counter every time when the ipreg@ounters a 1,
continuously increasing the counter every time when a bit is \asatl,stopping the
counter when the program encounters another 1. The value from the chmikt be
the length of that wave.

formatTape()

formatTape() reads from the tape data file, formats the data and savessihles. By
saying ‘format’ | mean that any errors or corruptions in #petdata should be detected
and corrected according to the algorithm described above. The metbog dhe

28

program to read a complete wave from tape data file, comparésntit of that wave
with the average length. If the wave length is greater thaawbege length, the system
interprets it as ‘1100’; otherwise, the system interprets {tL@'. The results should be
the exact binary representation of the program when it exlegton a tape, and thus will
be saved as ‘binary on tape’ file.

ConvertTapeg()

Recall the tape format from the signal processing chapter. Each be represented as
‘1010’ on the tape whereas each O will be represented as ‘1100’ cdrvisrtTape()
method is, therefore, used for converting ‘1100" and ‘1010’ back to Os and 1s
respectively. The result file is saved in a text file and is called ‘cawéxpe’ data.

This should be the final binary version of the original BASIC program. The ditaew
be passed to the program decoder for decoding into a human-readable BASIC program.

The above procedure can be illustrated in the data flow diagram in the following page

29

Calling Massage

/
." -
v
= Raw Headar) ==
Format header & Binary Header—
{ ————Blinary Header—___
S
Raw Binary '-

Raw Birary Haader___

~
—
Binary Header

File Formatted
| Header
)
I| - Formatied Header—
\ ————Formatted Header___
\ =
\ T
I-"‘ Header
hY Infar mation
b, hY
Raw Program Data _IJ
g ok
T Header Information”
“———RBinary Program Data_ﬁ_k
3 3
— %
Raw Data
4""
Covert ’ "
PCM values = -PCM values according to -Binary Program Data
litthe endian
l\\
| g
PCM valbes ————PCM values
x\l.
e PCM Benchmark: Primary Tape Data—— Tape Data
benchmark
#
-
Primary Tape Data Fmary Tape Data
-
a/ 1
/
_J’
J’;J
Farmal lape
___Binary on Tape— data P Averape wave lengt
,/-.--
{
S B
Binary on Tape
|
A,
g e Canvert the
inary on Tapa — st
|
Converted Data
Pass io
Coguarted ————Converted Data Program
e Decoder

Figure 9 — DFD for Program Analyzer

30

5.1.2 Program Converter

Program converter is another major category in the systess deesign. It contains two
classes. They are Char Converter and Program Decoder.

5.1.2.1 Char Converter

In this project, many conversions are needed between binary nunmizersuanan-
readable letters or phrases. The conversion between a charactets aA&CI|
representation is quite straight forward, however, SC3000 alsdshas/m manual for
converting between its commands and the corresponding binary numbers. The
CharConverter class, is therefore, designed to facilitatednigersion. The class has two
major methodsintToCommand() andCommandTolInt().

For IntToCommand(), it takes an integer as input and returns a string represehéng
corresponding SC3000 command. For example, if it has a number 13éasititdirstly

it converts the decimal number to the hexadecimal number, which88. Hxthen looks
up its table for the corresponding string, in this case it iSUGAD’ command. If it
cannot find a string for the input value, it simply returns thendalchumber as a string.
For CommandTolnt(), the underline process is exactly the saméngBCommand(),
but works backwards. It takes a string which represents a S€8@@9and, and returns
corresponding an integer value according to SC3000 manual. If the inpgtcsinnot be
recognized, it simply returns -1.

There are also some utility methods designed for this class, asidsint() for
recognizing an integersChar() for recognizing a character arttunc() for recognizing
any punctuation.

5.1.2.2 Program Decoder

Program decoder is developed for processing a ‘cleaned’ tape fdauaadnd decoding it
into a human-readable BASIC program. The word ‘cleaned’ here nibahsll the
corrupted data should be corrected (by using the algorithm thabevidkescribed later in
this section) and the binary data should follow the tape format closely.

As discussed in the signal processing chapter, the tape fisriapaite different from the
original binary representation of the program. When the programc@ded onto the
tape, some overhead information was added, and each ‘1’ was repdebgntl010’,

whereas each ‘0’ was represented by ‘1100’. The meftadatTape() is designed to
convert each ‘1100’ string back to ‘0’ and each ‘1010’ string back to d'we can

obtain the original binary representation of the program. It doedbyhisading from a
file that contains only the cleaned tape data. The output fronmetisod will be written
into a new file for further decoding.

31

At this stage, it is necessary to refer back to the input fotinad has been discussed in
the signal processing chapter. A BASIC program can be seppanédemany blocks with
each block representing a line of BASIC code. When the programagsrated in the
input format, before saving a block in the program field the SC300Mleoasids a
number indicating the current position within the program field, foltbwe which is a 4
byte binary number representing the line number in the BASIC progFaese can be
considered as the ‘block leading information’. The real prograde then comes after
the leading information. Please note that, each block representing of code and is
ended with a byte representing decimal 13, which in ASCII code is carriage retur

For instance, the following two lines of BASIC code when stored inirthet format
would look like the table below.

10 PRINT “A”
20 END

00000001 |1

00000000

00000000

00000000

00001010 10

00000000

00000000

00000000

00001000 | Blank Space

10010001 PRINT

00001000 | Blank Space
00100010 |*“

01000001 | A

00100010

00001101 | Carriage Return

00010001 | 17

00000000

00000000

00000000

00010100 20

00000000

00000000

00000000

00001000 | Blank Space

10011000 | END

00001101 | Carriage Return

Table 2 — An Example of a BASIC Program Stored in the Input Format

In decodeTape() method, theformatTape() method will be called first, and then the
resulted file will become the input file for this method. The metbmatinuously reads

32

blocks which are separated by the binary representation of 13, m®cdss block
leading information and decodes the program.

The program is represented by a series of numbers and a nuarbeepresent a
command, or an ASCII code or just a real number. Fortunately, thelinmsgesentation
for ASCII code is in the range between 0 and 127, and according toaheal, the
integer representation for SC3000 is in the range between 130 and 280if Amumber
is less than 127, it will be decoded as ASCII code; otherwiseillibe decoded as a
SC3000 command by using the CharConverter class. It is also understb@d réz
number will be represented in decimal-digital format. For etammumber ‘101" will
become ‘00110001 00110000 00110001 following the ASCII code representation.

The decoded program will be saved into a file as well as printédeoscreen after the
program execution.

5.1.3 XML Generator

There are five XML Generator classes, with each one respotalangser input interface.
The basic idea for this design is to allow each metadatanscimave its own input
interface and XML generator, so the system components can be iteStedually and
the XML data files can be generated without interfering wétbheother. The five XML
generators are: MainXMLWriter, tapeXMLWriter, wavXMLWer, sourceXMLWriter
and attachmentXMLWriter.

For the MainXMLWriter, it takes three vectors, namely: infolioratarray, system array
and accessory array, as its arguments and produces a XMicdibeding to the Archive
Data schema. For other XML writers, each one takes a vdwhbris created by its
corresponding user interface class as an argument, and produisLtiiées according
to the XML schema respectively. For example, tapeXMLWritedpces its XML file
according to Tape Data schema, whereas wavXMLWriter produsexML file
according to WAV Data schema.

There is a Java-based, open source framework available for readiitngg, navigating
and editing XML called dom4j [21]. Dom4j is fairly easy to usecdinbines features of
the Document Object Model (DOM) and Simple Application Programrhiteyface for
XML (SAX), and includes support for XML Path Language (XPallya 2 Collections,
Java API for XML Parsing (JAXP), Transformation APl for XM(TRaX) and
Extensible Style Language Transformations (XSLT) [21]. In thegept, dom4j library
has been used heavily for creating and editing XML files. Othehads such as
createPrettyPrint() from OutputFormat class are also used for printing out the dreate
XML files at the end of system execution for debugging purpose.

The implementations for the XML generators are quite straightaial, since input data
has been collected, reformatted and passed by the corresponding user iokestes all

33

that the generators have to do is to read information fromdbtns and create XML
files accordingly.

5.1.4 System Input Interface

System input interface category represents the classesnghi@ament the graphic user
interface (GUI). They are designed to guide users through the pnpegss, display and
record the correct information. There are five classes in thisgory: Main Input
Interface, Tape Input Interface, WAV Input Interface, Source Inputrfade and
Attachment Input Interface.

5.1.4.1 Main Input Interface

It is designed for collecting all the information needed for tmehe Data schema.
Since there are more than thirty elements in that schensyeasonable for the main
input interface to have multiple pages, so that a page of thdamgewould not be
crowded by all the input text fields and the information thatlasety related can be
displayed and edited on the same page. Users can use the oavigatons to move
between different pages. The system does not only provide néunmalons such as
‘save’, ‘clear’ and ‘exit’, but also allows the interface torbhedified by users according
to their particular need. A screen print of the interface is shown as follows.

4 Tape Information Input Window I

File General Information {Page One)

ID [000001 | Name | | Released Date |2000-01-30

Creator ‘ ‘ Publisher | | Collector | |

Preserve Level Composition Level |1

File Size 0 Sample Rate 0 Bits Per Sample 0 Total Samples |0
Format Name Format Version

Application Name Application Version Created Date |2000-01-30

Emvironment Characteristics | |

Environment Notes | |

Figure 10 — Main Input Interface

34

Please note that user have the option of cleaning only the current pagéepalés.

As discussed before, a digital game can have an emulator that can runigulatiatins,
also the game can have many accessories. Therefore, tHacmtbas to change its
appearance to suit this particular need.

In the system, on the second page of the main input interface,hasershe option to
verify the number of systems the emulator can be executed on, amdirtiier of
accessories the original game had. The third page and the fourthwghgieen be
constructed according to these two numbers. For instance, if typedra number ‘5’ in
the ‘Number of accessories’ field, when he clicks on P4, the glageld look like the
one shown in the following picture.

£ Tape Information Input ¥Window IV

File General Information {Page Four)

Accessory Name Cortrol Handle Accessory Model 1.0 Available

Accessory Name Control Handle Accessory Model |21 [[] &vailable

Accessory Name |Shooting Gun Accessory Model Available

Accessory Name Accessory Model [[] &vailable

Accessory Name Accessory Model [] Available

Figure 11 — Accessory Input Interface

All the information is recorded in vectors so that they can beedam®und as a single
variable; however, there are three different vectors. The infmmaector is used for
recording general information about a digital object, such asitse, creator, publisher
and technical statistics etc. The system vector is usedcadirgy all the systems that the
emulator can be executed on, whereas the accessory vector isousescdding
information for various accessories. These vectors are cnhtledthe interface is being
displayed, so that all the information that has been entered can dtayeds on the
interface. Users can modify the information in these vectorstueylclick on the ‘save’
when all the information is passed to the XML creators.

35

Problems exist if users first define the number of accesstiribe 5, but later decide it
should really be 3. In this situation, the length of the accessmtpr will be truncated to

3, which means if the user ever entered information for all ithee dccessories, the
information for the first three accessories will be kept, wheredlseaihformation for last

two accessories will be lost.

5.1.4.2 Subfiles Input Interface

As mentioned before, there are four XML subfiles, which are: Taia file, WAV Data

file, Source Data file and Attachment Data file. Since theowarh of information

collected is quite small, the place needed for displaying a completaggddr a sub-file
is significantly smaller than the main input interface. Thilgpar sub-file interfaces are
linked together for easy management, and users can switch amondpythesmg the

navigation buttons.

A screen shot of the tape input interface is shown as below.

& Tape Information Input Window

Tape Information

Created Date |'"""/-Mhi-DD

Archived Date |- ih-DD

Collector |

Tape Brand Name

Location

Tape Extent [] Awailable
| provous | oo | El EX

Figure 12 — Tape Input Interface

All the information is collected by vectors within the clasgl @assed to its own XML
creator respectively by calling the corresponding XML wrikgat example, in the tape
input interface class, a vector will be used for storinghallinformation collected for the
original tape. This vector will then be passed to the tapeXMlaNdlass for generating
Tape Data file; however, if this was in WAV information intedaclass, the vector
would be passed to the wavXMLWriter class instead.

Please note, that in each of these four classes, there dkigt raethods such as
inputGuard() anddateGuard() to make sure that the collected information is valid. Since
these subfiles use different interface classes and pass tleetembl information to
different creators for creating XML files, we cannot usengle vector for storing all the

36

information for these four subfiles. Every time when users swit@nother interface by
clicking on the navigation button, a new interface opens up and the old olusesl
down. Therefore, the methodsveGuard() are used for making sure that users save their
current data before they switch to the other input interface.

5.2 File Sructure

When storing a digital game, many related files need to be archivedptieergé need a
well designed file structure that groups the closely related informaiimther for easy
management.

The recommended file structure is shown in the diagram below.

Echive Data
Tape Data
Metadata Original WAV Data

Source Code Data

City Lander | ST
Original Game

Objects | Pictures
_J—l Attachment Objects [

Games — Text Files.
| Execution Files

Metadata =

Archive Pasei :
US%"'‘ Cbjects ==

Original WAV schema
Source Code schema

XML schema —

Attachment schema

- Emulator

Figure 13 - File Structure

In the general digital archive directory, there exist three sub-directdreeXML schema
that contains five different schemas used in this project, the emulator and the games

37

All the digital games and their related information should be stored witromits
directory that forms a part of the ‘Games’ directory. Each game adiiyecbntains the
objects, its metadata and execution files. The metadata directory coflitdiesXaL
files that have been generated by the system. The objects directorpsondadigital
game itself together with its attachment objects. Recall that, the I&tad bf these
attachment objects should be stored in the Attachment Data XML file as liriles to t
resources. The execution directory contains all the files generated durarghheng
program execution. This directory can be stored together with the game or detgied
after the execution.

In the XML schema directory, there are the five schemas that are usetidating the

XML files generated by the system. There are discussions on whether theckidina

should be stored in a central location or be stored in a distributed manner. In this design,
as it is shown, each general digital archive directory should contain a ctigy/ XML
schemas and the emulator, so that greater flexibility can be guarforteadh archive

center while it still ensures that those archive centers can follow teedagrchiving data
structure.

After all files are in the right place, the whole game directory caarbed up with a
checksum to allow corruption to be detected.

The feasibility of this file structure has already been tested in thjsgbr Methods from

File class in JRE System library (Version 1.5.0) can be used for gettiregpatii and

thus locating a file. Thenkdir() method can be used for making new directories. A move
method can be implement easily by synchronized copying of a file from océtodyréo
another and then deleting the old file by calkiedete() method on a File object. It is

thus believed that implementing this file structure can become a part ofuhe ystem
development.

38

6 Testing and System
Evaluation

6.1 The Test Code Gener ator

The methodology used in this project determined that an excédleintode generator,
which can generate code as close to the original tape data dslgyasstritical for the

success of the system. This test code generator is thus dev&opbis purpose and
used heavily throughout the whole project developing process forgtesd debugging
the system.

This test code generator allows a user to write a BASIC progndreave it in a pure text
file. It reads from the saved file, converts the program to therpirepresentation line by
line, adds the block leading information for each line and then enctgsstitee whole
program in the SC3000 input format and converts the final result toapeeformat.
However, the generator does not attempt to convert the final restRCM and
encapsulate the PCM values in WAV format, since developing sdighcion is time
consuming and error prompting, and it involves deciding a preferabéepbit sample’
value and sample rate, which if it did not choose correctly, would moagenerated code
rather useless.

For demonstrating purposes, the rest of this section will thettekéollowing BASIC
program as an example.

10 PRINT "ENTER A NUMBER"

20 INPUT |

30 IF [>=(100-20)*2 THEN GOTO 40 ELSE GOTO 50
40 PRINT "NO PRINT!

50 PRINT |

60 END

The methodreadCodeFile() is used to read BASIC program line by line. When a new
line is read, the line number will be striped off, converted to biaay passed to the
methodprocessCode() together with program code itself.

The methodbrocessCode() firstly breaks the program code into pieces according to the
blank spaces and then stores all the pieces in a temporary veltttihe Aadditional
information, such as blank spaces and carriage returns, will alzddeel. For example,

39

after breaking down into pieces, the first line of the sample anogrill look like the
following table.

PRINT

BLANKSPACE

“ENTER

BLANKSPACE

A

BLANKSPACE

NUMBER”

NO|ORIWINIFL|IO

CARRIAGERETRUN

Table 3 — An Example of a Temporary Vector

The table will then be processed line by line, and the binary valube added together
as a string and returned to the caller.

Problems exist when processing a print command that prints the thauenight be
recognized as a SC3000 command. Take the 4th line of the sample cedarfpie; it
wants to print a sentence with the command comparable word “PRINT.”"To solve
this problem, every time when the generator encounters a quotatibninséarts to code
each character in its corresponding ASCII format. This proseds when the generator
encounters another quotation mark.

There is also another problem needed to be considered when implentieatgmnerator.
Take the third line of the sample code for instance. In that linis, $specified that
I>=(100-20)*2. The tricky part is, in the SC3000 manual, it treats and >= as three
individual mathematical operators, each with a different value efdrey, ‘*>=" cannot be
converted into two ASCII codes, but rather as one SC3000 command. Totluslve
problem, the generator has to recognize the operators first, wrech-*/<>=" (Note
that, brackets are not recognized as operators), it keeps addiogettagors to a string
until it encounters a non-operator value. Then it will pass tlegsto CharConverter
class for getting its corresponding integer value.

All the converted value will then be added together with the linebeurattached at the
very beginning (As shown in table 2). When #eadFile() method received the result
from the processCode() method, it counts the number of bytes in the result, and
determines the position number for that block. If the first blo&khytes, then the next
block should have the position number 8.

When the lines of a BASIC program are read and converted tdothany representation,
the result will be written in a new file. TRenvertTape() method will read from the file,
encapsulates it in the SC3000 input format and finally convertdhettape format. The
result will be saved in a file and ready for testing purposes.

40

Please note, that the methfdtingBinary() is used for filling up the empty space in a byte.
An ASCII code only has 7 bits, therefofélingBinary() is needed to fill up the one bit
left with 0. Also recall that a line number is represented! lipytes, which are 32 bits,
apart from the number itself, the rest of the space should be filled up with 0s.

6.2 System Evaluation

The system evaluation was carried out after the developmese phas completed.
Because the entire project development was based on the five majostaises, the
system was also evaluated by using those user stories aingsidén the rest of this
section, the system performance for different user requiremaltbe described and
compared with the original user stories.

In the project, the main menu is implemented with the commandtimetige. Because
the project is not concentrated on the user input interface, theamarime structure can
perform actions exactly the same as a normal graphic user integfidte &nd allows me
to spend minimum time on the GUI design while concentrating on theensys
architecture.

6.2.1 Archiving Directly from a Tape

When a user wants to archive directly from a tape, he connectapelayer with a
computer, and activates an audio recording program, such as ‘Gold@/a@eidacity’.
He then starts to play the tape and the selected audio recprdigipm will save the
program signals in a WAV file on the computer. After the entleei$ saved, the user
activates the SC3000 recording program and archives the WAV file.

Evaluation:

This user story is not implemented as a part of the SC3000 recskditggn, since many
programs have already been developed for recording tape sifjoasoid duplication
work, the best approach is therefore for users to manually rédw®rdpe signals into a
WAV file and then use the SC3000 recording system for archivingahed file. The
details of the archiving procedure will be described in ‘ArchivinyVAV file’ user
stories.

Overall, the user requirements in this story are somewhafiestisith the help of
another application.

41

6.2.2 Archiving a WAV File

A user wants to archive a WAV file. He activates the SC3006rdety system on his
computer and types ‘-a wav’ (Archive from WAV file) in the command line. ThedBC
recording system prompts the user for the name of the inpufTfile user enters the file
name and clicks on ‘Start’. The SC3000 recording system thea siahalyze the game
program extracts information and creates the XML files forirsy those data. The
recorder also asks the user to manually enter some of the ationnmeeded for the
metadata schemas.

Evaluation:

It is to the user’s preference if he wants to enter the additivioamation for the game,
however, if the user chooses not to enter the information, the onlynation that will
be stored in the metadata files is primary technical stsistuch as sample rate, bits per
sample and total samples. Therefore, when the user chooses narttheradditional
information, the system generates a warning message and #sksuffer wants to carry
on his decision.

To archive other types of objects, such as pictures or documentasens have to move
those files to the ‘Attachment Object’ folder under ‘Objects’ directa\described in the
File Structure section. However, if the file structure descrilsedmplemented, the
moving of those attachment files can be done automatically b@8900 recording
system.

Generally speaking, apart from the need for users to manuallg the attachment files
to the correct folder and update the links in the Attachment Dlatg &ll the other
requirements in the original user stories can be satisfied by the SC3000 recgsteng s

6.2.3 Updating an Archived Game with Metadata

A SC3000 game collector later finds out that some of his infoomatored for a game is
actually inaccurate. He wants to change the metadata storéuaf game. He activates
the SC3000 recording system and types ‘-u infor’ (Update game irforpan the
command line. The recorder will prompt the collector for the nantieedfile he wants to
modify. The collector then enters the file name and clicks on ‘Opérthe metadata of
that object is then presented to the user. The user makes hie @rahclicks on ‘Save’.
After the confirmation, the new data is saved and overwrites the old data.

Evaluation:

42

The performance of SC3000 recording system is identical to thaarigser story.
Therefore, all the requirements described in this user storyecaurifilled by the SC3000
recording system.

6.2.4 Updating the Stored Program

A game collector wants to replace his old record by a bettsiove He activates the
SC3000 recording system and types ‘-u game’ (Update game yecaditte command
line. The recorder asks the collector to locate the new recomdahés to store. The
collector locates the new record. The recorder will then ptdahe collector for the name
of the file he wants to modify. The collector then enters the rfdene. After the
confirmation, the old data is overwritten by the new data.

Evaluation:

As discussed in the related user story, it might be a good idesktthe user if he/she
wants to update the metadata of the object after the game resaqudated. In practice,
some technical information, such as sampled rate, is extraciadtiie new WAV file
and recorded in the corresponding metadata file automaticaley tbecuser has located
the new WAV file. However, the user has to manually move the \WAV file to the
correct folder, and delete the old file. The automation of this proeexdur be improved,
again, when the file structure is implemented.

The technical information, such as sample rate, bits per sampleecupdated once the
new WAV file is located; however, the user has to manually retze old WAV file by
the new one. This appears to be the only unfulfilled requirement for this user story.

6.2.5 Extracting Information from the Archive

A SC3000 collector wants to save all the information about a Sege ga that he can
view the information later on. He activates the SC3000 recordirtgrsyand types ‘-r

infor’ (Extract information) in the command line. The recordet piibmpt the collector

for the name of the file he wants to open. The collector erterflé name and clicks on
‘Open’. The recorder then asks the user a file name for thismatwn to be stored in.
The user types the name and clicks on ‘Ok’. Then the informatiextiacted and stored
in a file with the name that the user has just entered. Taisdn be viewed later by the
user.

Evaluation:
The system performance is identical to the original usey.sThe extracted information

will be saved in a text file for users’ review. All the ragunents in this user story are
fulfilled.

43

The discussion about saving all the objects related to a game ampeessed file
results in an alternative archiving standard for the gams. flRecall from the File
Structure section, all the information about a digital game wiltbead in the directory
with the name of that game. To achieve a higher level of consistency, thergicm be
compressed as a .tar file, so that all the files in thattliry can be accessed or managed
as one entity.

44

7 Conclusions

This project has investigated the feasibility of archiving digitgects, especially digital
games from the 80s and 90s. In order to archive those games, ne# doly need to
store the games themselves, but also need a well developed mstadaztre for storing
information that is related to those games. This informationsiengigl for future study
and research purposes, because it contains data such as ‘saepleitsaper sample’,
etc. without which it would be impossible to decode the WAV file correctly.

The project developed five XML schemas which are efficient ttanirgy all types of the
information mentioned above. Archive Data is designed to be the mainsdaema
which contains URL links pointed to the other four sub-schemas. Theidamés used
in Attachment Data: when the locations of the attachments @existhey are stored as
URLs of the attachment objects. By using URLSs, links betwdes fian be established
while the objects can be grouped by their types in a better file structure.

Since there are many files needed to be stored, a filews&ust needed for the ease of
management and to make sure that objects of the same typtorae is the same
directory. The feasibility of developing this file structures eeen tested in this project
and the idea of implementing the file structure seems practical.

The SC3000 recording system is developed as a part of this prdpecsy$tem went
through a typical XP development process by identifying user sthrg, building up a
test code generator and continuously identifying, designing, implementth¢esting the
new components throughout the project. Because of the development methdtatogy
has been chosen for this project, we decided to make sure thaygadi XML schema
has its own input interface and its own XML file generator, so ¢laty time a new
system component is developed, it can be tested individually by UrErtggt code, and
integrated into the existing SC3000 recording system.

The system was tested on the test code that has been generaexerhove are still
experiencing problems when the system is tested on the realmprdgta. One possible
reason is that for the real program it actually containsutm@corded data at the
beginning of the program and some dummy data at the end. Whestleede is created,
however, these two chunks of data were not added. Although the sgstisigned to
find a meaningful pattern before it starts to load data,bei®ved that because of these
dummy data the system cannot input the real program data bgrthetefore, further
analysis cannot be carried out.

45

7.1 Contributions

Firstly, in this project a basic archiving system is developed &sundation for any
further research on this topic.

Secondly, a well-designed metadata scheme is presented, which gaedbi®r storing
information of a digital object together with that object, so that itfiermation is
consistent and easier to manage. A general research was corgtigrtéal the designing
of the scheme, which included topics such as the advantage of usetgdata scheme,
the storage structure of a scheme and any related work on digit@ing. The scheme
is implemented in XML and verified by a development tool calleME&py. The
metadata can be populated by using the archiving system, wakek user input and
converts it to a valid XML file automatically. Details on theature will be discussed
later in this document.

Thirdly, an in-depth study of how to read games stored in soundafiieextract original
source code representation was carried out in this project. Topicslanthe WAV
format that is used for storing the original data, the open s&lwA&€ format that can be
used for data storage in the future and the input format for the emthat is used for
this project. Some algorithms have been developed for the purpose ofticmnletween
different signal formats, for example, the conversion from a P@pted signal to its
binary format. Issues such as error detection and correctiocoasedered thought-out
the analyze and implement phases. For the testing purpose, a tegeoedator has also
been developed.

7.2 FutureWork

At present, when a game is archived, users have to move filasattyato the correct
archive directory. It is important that the file structure déscr in this project can be
implemented as a part of the future work, so that sorting out thévedcfiles can be
done automatically by the system. The checksum fields shoulddsal dor protecting
the integrity of the archived files, also digital signaturesld be added to the file for
security purposes.

As mentioned in the conclusion, the SC3000 recording system is)gtdriencing
problems when archiving the real digital games. The junk dataohbe tleared out
before the real program data can be processed. The existisgsyesh already process
the program data; therefore, once the junk data is cleared aypat of the future work,
the SC3000 recording system can then be used on the real progeanvithaut any
modification to the existing system.

The current system is able to process SC3000 games that &@ atosource code;
however, some SC3000 games are stored as compiled programs on thé t@apgna

46

Therefore, processing the compiled programs can also be consaker@dgart of the
future work

The SC3000 recording system is designed and implemented especialBBfadBgames.

It might be a good idea to extend its flexibility by allowithigo process digital games
that were created for other consoles. As the system is develgpedsibg XP
methodology, each component of the system can be executed independeatiginge

the SC3000 recording system for other type of games, the developer only needgéo cha
the program decoder class so that it can decode the program according to fibvenagw

47

48

8 Bibliography

[1] M. Swalwell, I. Welch, C. Susai Proposal for Community Partnership Fund. , The Digital
Strategy, Wellington, NZ, 2005.

[2] C. DeanConserving Early New Zealand Digital Games, Faculty of Humanities and Social
Sciences, Victory University of Wellington, 2005.

[3] D. Flecker,Digital Archiving: What is Involved?, avaliable from
http://www.educause.edu/ir/library/pdf/ERM0316.pldist accessed: August 2006.

[4] G.M. Hodge Best Practicesfor Digital Archiving an Information Life Cycle Approach,

avaliable fromhttp://www.dlib.org/dlib/january00/01hodge.htndist accessed: September
2006.

[5] Digital Archiving: Procedures and Guidelines, avaliable fromhttp://www.english-
heritage.org.uk/server/show/nav.001002003009001002&8accessed: October 10 2006.

[6] A. Frienlander Summary of Findings-Center for Information Strategy and Policy, avaliable

from http://flac.sourceforge.netast accessed: August 2006.

[7] Archives New Zealand, avaliable fromhttp://www.e.govt.nz/resources/research/ready-access-
2004/chapter5.1.htmlast accessed: October 2006.

[8] Rothenberg, J. (1995nsuring Tthe Longevity of Digital Documents. Scientific American,
272(1), 42-47.

[9] M. Fayzullin, Emulators for Windows and Msdos, avaliable from

http://fms.komkon.org/EmuWindowdast accessed: September 2006.
[10] Technical Page for SC3000, avaliable from
http://homepages.ihug.co.nz/pinwhiz/sc3000,Hast accessed: September 2006.

[11] M. Fayzullin,Master Systeny Gamegear Emulator, avaliable from
http://fms.komkon.org/MG/last accessed: June 2006.

[12] Internet Archive Sructure, avaliable fromhttp://www.archive.org/about/about.pHpst

accessed: September 2006.
[13] Wav Freguently Asked Questions, avaliable fromhttp://www.mp3-

converter.com/fag/wav.htntast accessed: September 2006.
[14] M. Boldin, WAV File Format Description, avaliable from
http://rti.etf.bg.ac.yu/rti/irlpp2/domaci/WavFileFormat.htfalst accessed: October 15 2006.

49

[15] R. Mavati,Sega SC3000-SC7000 Technical Page, avaliable from
http://membres.lycos.fr/mavati/sf700MHst accessed: September 2006.

[16] What is FLAC?, avaliable fromhttp://flac.sourceforge.netiast accessed: July 2006.

[17] Codec, avaliable fromhttp://en.wikipedia.org/wiki/Codedast accessed: October 20 2006.

[18] K. Beck,Extreme Programming Explained: Embrace Change, Addison Wesley, 2002.

[19] Data Dictionary for Preservation Metadata, The PREMIS Working Group, OCLC and RLG,
2005.

[20] M. Bosi, WAV PCM Sound File Format, avaliable from
http://ccrma.stanford.edu/CCRMA/Courses/422/projects/WaveFhrastt accessed: August
2006.

[21] Domyj: The Flexible XML Framework for Java, avaliable fromhttp://www.dom4j.org/last

accessed: September 2006.

50

9 Appendices

9.1 Sound For mat

commnicates with the devices comected to it. These routines
can be called independently by the programmer, using a CALL
statement, Table XXX3 lists some important ROM routines.

¥!
FM RUTDMES: These routines are used by the epu when it I“‘L]
]

Tahle XXX2., BASTC KEYWORIE.

988

; oo
, b 0 1 82 LST N o :
Table XXX1. RFSFRVED RAM ARFAS, 2 e 5w g ;‘I)D
[] % A A2 FRASE o
Tex Address Purpose ‘ m & a dRR o L
B160/8161 Start of Besic program " & @T ;; ESM{E ® <>
8162/8163 Fnd of Pasic progran [_J 7 <l 2 SGms O 2=
S164/8165 String Storage pointer ‘ 88 éﬁ:k Y Ih | <=
8166/8167 Top of String Storage = g VTRIFY .-\8 LINE © >
8168/8160 Top of Memory pointer [& K 0 D @G <
8242 Program found flag, O=found ™o J-\;\ ot B =
s Filename Deing loaded (16 bytes) N o N w0 A
303 Filename being saved (16 bytes) [: g ! : M2 S
B Basic Stack Ares g ENoef N O3 S84 TAN
2% SHA) bytes. Virite to VRAM GHIS0DH & CLPRINCaenn A O 86 S
9336 Screen control =Fe 0 DA AE CAL BR8 106
9339 Color text screen byte [. IFE o % 8084 LIW
933 Color graphiics screen byte i gg E”HM;DT SLI’ P AEC RAD
9364 B0 byles VRAM stores QIS0 bere =5 e B b fOEL FT
G411 Top range of cursor i ©® D B ADE B0 1K
9412 Bottom range of cursor G T r(srﬁm 8092 ASC
9413 8 bytes for storage of PATTERN conmand _ . 05 HOPY 8004 VAL
%420 &2B bytes for storage of VRAM data [; : i 206 1N
460 " 9D TNKEYS Storage area j s MR B SPRIE g P
na Cursor, Oenormal, Z-praphics T X N BT PATIERN gy oreig
9485 1=lovercase, O=uppercase Ea LY B mﬁ Bl HEXS
%85 keybesp, Dcbeep, l=ncboep £ GEUB ba KTRAE g3 1Ty
) Cursor position ¥ value E BAOMAG 45 MITS
an Cursoy position ¥ value @ B VRORE W7 TIMES
O4FR Time§ seconds
Q48F Time$ minutes
9450 Time$ hours
GIAL/YT45 Mdress of DATA byre

Figure 14 — The SC3000 Manual

B8

)

0o
A

BEGROAGREDR

REREREGECEERUAEE

Supplementary Chart 12. Format for Recording on Cassette Tape

[Representation of 1 bit]
r——- 833.3 ff sec i

Bit "1" (2 cycles of 2400 Hz) r—_l_'f__l"J

I-—- ua.s,m..u—i
Bit "0" (1 cycle of 1200 Hz)

[Representation of 1 byte]

Example
For l-byte data, 27H

START
BIT BITO BIT1 BIT2 BIT4 BIT4 BITS
0 1 b § 1 0 0 1
ll 9.167 msec

STOP STOP
BITé BIT? BIT BIT
0 0 1 1

-182=

Figure 15 — The Tape Format

52

[General format)

Leader field Data portion
SRS R S ST S S ST e)|

(=l i I)

Leader field: 3600 records of bit 1 [—&p-
Data portion: A collection of byte data

[Format for save of text]

Unrecorded
field
(10 sec)
Leader
field
2 el Key code: For identification
of header portion
Key code 1 bytes of BASIC text
16H Header portion
= = File name: 16 char. max. A
= =] shorter name is
== . followed by spaces
| File name _| 16 bytes 4 to £ill 16 posi-
| o | ¢ tions.
* L _dex —
e Program length: 16-bit binary
[sxogx —_ 2 bytes //J 7z ' -
1eng‘u1, n oy 3
15 = Lower | o
T
Parity 15kyias Parity: Two's complement of
I sum of data in aster-
L isked ranges
l-Dunmy data- 2 bytes Dummy data: For prevention
l of overread

(continutes)

-183-

Figure 16 — The Input Format for SC3000

53

(continued)

Unrecorded
field
(1 sec)
Leader
field
Key code
1 b
178 =
— Program —
* : : n bytes
o= el
Parity 1 bytes
Dummy data
free - 2 bytes

Key code: For identification
of data field of
BASIC text

Data portion

Program: Contents of text
area

Parity: Two's complement of
sum of data in aster-
risked ranges

Dummy data: For prevention

of overread

Figure 17 — The Input Format for SC3000 (Continued)

9.2 XML Schema

D:APani el €. Doe Wy Dociment Wy Projeet\TestA. Narchivedata, xsd €2 v 2006-10-12 15:10:30

et iavaive |
-.--I‘objuel!hn I

_{ —1 -.—-F;:{EL‘IMIM I

ob ject denti fier ﬁ' P rTTE— - -

| objectPublisher

S, & ey
.{ I, - =l
(“bitsPerSample i

totalSaeples

- rormattase
L Ll = R s = & A —
b ‘-"E L rermatVersfon E

ST e { ersatinatosticationtons]

4 ereatimAppl icatioh H—I'-o_u_-‘_E-- | creatinghopl icat it eesion |

--E' envi rommeniNote E

.[FROGRAN g

The genes o Alomizon

— saftware E--’:'B-ri.‘s\‘ﬂxlen h

—-.l_s-ﬂlherlnl'armllm E
1 syt bt

e

; I.:; = |---Fn,nulndnl
u-?mtcgsu]l!mu I

e S e g T

ki - necossoryhvailabitity |

e
— onviromont §—|-—-- -

| starage G- v B extont |
L iskavai abitity |
S _--i‘;m']
oniaute |
| updaier |

E'W]

| origimateay

~| mbliles B-{-ee e

{ia B J| ==
1 -i'lllm:h-:lﬁt h

aba@‘;ﬁ_ﬂ_ﬂﬁ_l.lmm Gubll hueps/ S altova, coa Begistered to Danicl € (VUE) Page |

Figure 18 — The Archive Data Structure

55

DD el 0 B e\l Doctment s\ Projee t\Test Ana . tapeda ta, gsd @ﬁ%

Thts fily mply doscrbes
ey ex A Infarmpticn absut
Eh original tape Note that
e DML (T e Lhs st ou
hae a url tha
ecatin its paneod foldor

b e B —

2006-00-27 22:18:20

| E“_m-.';i'h. =
—| Lape Scheme I
— createdbate '

—i:collcctor i
—- !ﬂ 1 randNalcl
—Ei-'?l-ot:nt.lm I

1 avad labil ity

2006 Altova Gubll

g/ fwww, o liovi, com Begist ered to Baniel € (VUR)

Figure 19 — The Tape Data Structure

Page 1

56

DPaniel, O Tae\My Docmint s\My Projec t\Teatdnal v, ., wavidats, ssd

D

0060027 22&17_
P
!E actrib, ..)
i | originalWavSchene I

— createdDate !
|y
e — ~ creator
| ORIGINALRAY B a=l
Thiies Mg shuld € ortsin 08 e [E
techiveal iformation about it
the original way e, Note that
s L file 2haikd B 8 il

|

e r— ;"7_ -
thial cain b Lsed to focation sofLware el ﬁ sw¥ersion |
ts perent foider ;

rl swlLhier Informa tion h

Friiesine

—f sa-pleltat.e_-_

——i bi tsPerSaapl o |

L totalSamples H

2006 Altova Gubll

2 fowwaltova, com Regist ered to Daniel € L"I'E';}

Page |

Figure 20 — The Original WAV Data Structure

57

D:\Da el € Doc My Document s\ Projiee t\Test A , \soureedata, xisd Qi 2006-0%-27 22:17:50

S

| Ehn ttrib..,)
1 sourceSchoese ”

| languageName

: 1 —— e
t — language Q-I_-"--- ﬁ | languageYersion
Thiss fike should £ ontishn e - v =
sourtes code of the arghal

program. The ecto cord be -'l Nanguagedtherlnlforsation I
stonitd ither in binary fommat

or, more profoeatly, In BASIC, — —
wehich can b copiidl drectly] mewa= ﬁ . -1 recoderName ﬂ
I B emad. Bots thit = | —

& XOHL Tibg for S0urce code jEm=t=nd=n“ E_" EP { E

shvoukd e 1 L that can be -| reeaderYersion '
wied b RGabion B ganend

foddir I

2006 Altova Gubll hiaps//wew, o ltova, com Rogis'{crl:d_m_llnnivl o VE) Page 1

Figure 21 — The Source Code Data Structure

D:\Bani el C Boc\bly: Docimint s\My Praject\Te, , , Wit techeentdat o, ssd Eminy

E artrib, ..
T ATTACIMENT g | T -'_M.T.ach'lean')'w :
. | at tachmen thnme |
= 1 nl.tu.chli:nlSunriJ

1 altachlehlﬂthﬂrlnl‘umtinu [

cl‘ii‘.‘JS-EIHB r';lmm .(-‘.u.bll T/ foww ol tova, com -Nz-siiswrrd to 1!.'unu;l C ['l'['l!‘

Figure 22 — The Attachment Data Structure

J006-10-12 15:06:29

Fage 1

59

