
Accessing Preserved? Archived? 

Conserved? Games using Emulation
Knowledge Exchange Event @ Melbourne University (June 2014)

Ian Welch and Stuart Marshall
School of Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko,

Victoria University of Wellington, New Zealand



Visitors (physical or virtual) should be able to interact with 

preserved software as easily as borrowing a book from the 

library.

What are the available technical options? What are the tradeoffs?



Emulation for Access
Emulators recreate the original hardware/software 

environment in a new hardware/software 

environment.

Allows you to run the original software “as is”.

Client-side emulation requires you to install an 

emulator on the device.

Within an institution might be PCs provided locally, a 

service provided over the Internet (legal issues!) or 

BYO devices such as mobile phones etc.
Emulator

Digital object

Original software

Current computer



Technologies
Community has developed many emulators.

Native applications (for example, ubee512) that you 

install on your device (PC in this case).

Flash-based (for example, http://nesbox.com/) only 

require browser plugin (downside – won’t work on 

iOS).

HTML5/Javascript based emulators provide greater 

portability depending upon capabilities of the 

browser.

1. The generic approach (Internet Archive) 

(http://jsmess.textfiles.com/ port of jsmess).

2. The per-machine approach 

(http://nanowasp.org).

http://nesbox.com/
http://jsmess.textfiles.com/
http://nanowasp.org/


Pro’s and Con’s
Pro’s:

- Browser-based emulators = zero installation.

- Scales with the number of visitors.

- No security concerns (for the institution).

- Once browser closed, copyright material removed 

from the client’s machine.

Con’s:

- Javascript does vary between browsers, won’t 

work with all browsers.

- Responsiveness depends on capabilities of the 

client’s machine. Works well on PCs but 

mileage varies on mobile devices.

- Machine-specific emulators often assume a 

physical keyboard.

- Generic emulators tend to be slower (but could 

get better! Jsmess is in beta).



Remote Access to Emulators
Run the emulator on remote machines.

Use generic viewer running on a client.

Pro’s: 
- Client is much simpler than the emulator (reduces client 

hardware requirements).

- One client can be used to access a wide number of 

different emulators.

- Full control over access to copyrighted content by the 

institution (except for artwork …).

Con’s:
- Responsiveness is affected by network performance 

(latency and bandwidth).

- Need to provision machines to run the emulators (possibly 

could use the cloud or provide your own cluster).

- Need to ensure remote user cannot break out of the 

emulator or the virtual machine. (Ausama Al-Sahaf, 2012 –

Evaluation of Remote Client Approach using VNC). 



Technologies
We have built some prototypes demonstrating practicality of the approach and investigated minimum 

performance requirements. 

bwFLA — Emulation as a Service (http://bw-fla.uni-freiburg.de/) is a state of the art implementation by 

Dirk von Suchodoletz et. al. from Frieburg University (came out of KEEP and related EU projects).

Scalable -- spawn environment on demand based upon technical details.

Portable approach for accessing the service can be installed:

- as native applications for PCs and mobile devices.

- as browser-based zero install applications for PCs and mobile devices.

1. Example of the Hobbit running on a local server accessed via a browser client.

http://192.168.43.61:6080/vnc_auto.html

2. Example of using it to provide access to hypercard (served from Germany):

http://bw-fla.uni-freiburg.de/demo-flusser.html

http://bw-fla.uni-freiburg.de/
http://192.168.43.61:6080/vnc_auto.html
http://bw-fla.uni-freiburg.de/demo-flusser.html


What next?
Want to use these technologies to provide access to the Popular Memory Archive.

Key idea is to provide two levels of access for different types of audience: 

(1) large number of causal users accessing particular examples of historic software (via the website); 

(2) small number of expert users who need access to a wider range of systems and more faithful 

emulation (perhaps onsite).

Provide access to casual gamers and casual programmers via javascript/html5 emulators. 

Focus on specific emulators for specific platforms/games of historical value (want good performance).

Assume users using particular browser on a PC/Mac. Evaluate mobile device access.

Longer term:

- Build upon the work done by bwFLA to allow access to on-demand emulation (mobile device 

access, performance engineering, security issues, definition of technical metadata needed for on-

demand emulation).

- Improve the performance of JSmess as a generic solution for emulation so can be used for casual 

users?


