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Visitors (physical or virtual) should be able to interact with 

preserved software as easily as borrowing a book from the 

library.

What are the available technical options? What are the tradeoffs?



Emulation for Access
Emulators recreate the original hardware/software 

environment in a new hardware/software 

environment.

Allows you to run the original software “as is”.

Client-side emulation requires you to install an 

emulator on the device.

Within an institution might be PCs provided locally, a 

service provided over the Internet (legal issues!) or 

BYO devices such as mobile phones etc.
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Technologies
Community has developed many emulators.

Native applications (for example, ubee512) that you 

install on your device (PC in this case).

Flash-based (for example, http://nesbox.com/) only 

require browser plugin (downside – won’t work on 

iOS).

HTML5/Javascript based emulators provide greater 

portability depending upon capabilities of the 

browser.

1. The generic approach (Internet Archive) 

(http://jsmess.textfiles.com/ port of jsmess).

2. The per-machine approach 

(http://nanowasp.org).

http://nesbox.com/
http://jsmess.textfiles.com/
http://nanowasp.org/


Pro’s and Con’s
Pro’s:

- Browser-based emulators = zero installation.

- Scales with the number of visitors.

- No security concerns (for the institution).

- Once browser closed, copyright material removed 

from the client’s machine.

Con’s:

- Javascript does vary between browsers, won’t 

work with all browsers.

- Responsiveness depends on capabilities of the 

client’s machine. Works well on PCs but 

mileage varies on mobile devices.

- Machine-specific emulators often assume a 

physical keyboard.

- Generic emulators tend to be slower (but could 

get better! Jsmess is in beta).



Remote Access to Emulators
Run the emulator on remote machines.

Use generic viewer running on a client.

Pro’s: 
- Client is much simpler than the emulator (reduces client 

hardware requirements).

- One client can be used to access a wide number of 

different emulators.

- Full control over access to copyrighted content by the 

institution (except for artwork …).

Con’s:
- Responsiveness is affected by network performance 

(latency and bandwidth).

- Need to provision machines to run the emulators (possibly 

could use the cloud or provide your own cluster).

- Need to ensure remote user cannot break out of the 

emulator or the virtual machine. (Ausama Al-Sahaf, 2012 –

Evaluation of Remote Client Approach using VNC). 



Technologies
We have built some prototypes demonstrating practicality of the approach and investigated minimum 

performance requirements. 

bwFLA — Emulation as a Service (http://bw-fla.uni-freiburg.de/) is a state of the art implementation by 

Dirk von Suchodoletz et. al. from Frieburg University (came out of KEEP and related EU projects).

Scalable -- spawn environment on demand based upon technical details.

Portable approach for accessing the service can be installed:

- as native applications for PCs and mobile devices.

- as browser-based zero install applications for PCs and mobile devices.

1. Example of the Hobbit running on a local server accessed via a browser client.

http://192.168.43.61:6080/vnc_auto.html

2. Example of using it to provide access to hypercard (served from Germany):

http://bw-fla.uni-freiburg.de/demo-flusser.html

http://bw-fla.uni-freiburg.de/
http://192.168.43.61:6080/vnc_auto.html
http://bw-fla.uni-freiburg.de/demo-flusser.html


What next?
Want to use these technologies to provide access to the Popular Memory Archive.

Key idea is to provide two levels of access for different types of audience: 

(1) large number of causal users accessing particular examples of historic software (via the website); 

(2) small number of expert users who need access to a wider range of systems and more faithful 

emulation (perhaps onsite).

Provide access to casual gamers and casual programmers via javascript/html5 emulators. 

Focus on specific emulators for specific platforms/games of historical value (want good performance).

Assume users using particular browser on a PC/Mac. Evaluate mobile device access.

Longer term:

- Build upon the work done by bwFLA to allow access to on-demand emulation (mobile device 

access, performance engineering, security issues, definition of technical metadata needed for on-

demand emulation).

- Improve the performance of JSmess as a generic solution for emulation so can be used for casual 

users?


