A Dual-chromosome Representation Genetic
Algorithm for Resource Allocation in
Container-based Clouds

Abstract—Containerization does not only support fast devel-
opment and deployment of web applications, but also provides
the potential to improve the energy efficiency in cloud data
centers. In container-based clouds, containers are allocated to
virtual machines and VMs are allocated to physical machines.
This new architecture requires consolidation algorithms to select
heterogeneous VMs to host containers and consolidate VMs to
PMs simultaneously. Existing server consolidation techniques in
VM-based clouds can hardly be applied because of the two-
level architecture. This paper proposes a novel dual-chromosome
genetic algorithm (GA) to solve the static container allocation
problem. The experiments show that the proposed GA achieves
significantly higher energy efficiency than the state-of-the-art
algorithms on a wide range of test problems.

Index Terms—container, server consolidation, cloud resource
allocation, genetic algorithm, evolutionary computation

I. INTRODUCTION

Container-based clouds [1] have gradually become the pillar
of the modern software industry with the arise of micro-
services and serve-less applications. With containers, applica-
tion providers can pack, migrate, and deploy web applications
in cloud environment. Internet companies such as Google and
Microsoft run their applications with billions of containers in
their data centers.

In addition to their advantages for application providers,
container-based clouds also provide flexibility of resource
allocation for cloud providers. Containers can be used to
further improve the energy efficiency on top of the virtual
machine (VM)-based clouds [2]. Traditionally, VMs are used
to run multiple applications to improve the utilization in a
single physical machine. Containers are able to further boost
the utilization of VMs since they are sharing operating system
kernels [2]. Therefore, the energy efficiency of data centers can
be further improved.

However, the major gap to improve the energy efficiency
in container-based clouds is the lack of server consolidation
algorithms. Server consolidation means to allocate applications
in fewer PMs so that the overall energy is reduced. However,
since the architecture (see Fig. 1) in container-based clouds is
two-level: containers are deployed on VMs and VMs are de-
ployed on PMs, the extensive server consolidation algorithms
in VM-based clouds [3] can hardly be reused.

Existing algorithms in both industry (e.g Kubernetes,
Mesos) and academia mostly simplify the container allocation
problem by fixing the types of VMs and use heuristics to
allocate containers and VMs. In this sense, they can reuse the

Fig. 1: A comparison of architectures of VM-based clouds and
container-based clouds [6]
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VM-based algorithms such as AnyFit-based algorithms [4] to
solve the problem. However, the energy efficiency is highly
constrained by the fixed type of VMs or greedy allocation
heuristics.

To solve the server consolidation problem in two-level
resource allocation in container-based clouds, two major dif-
ficulties have puzzled researchers. The first difficulty is the
interaction between container allocation and VM allocation.
Since the VMs are normally predefined with certain resource
capacities labeled as VM types, allocation algorithms should
create VMs with suitable types to host containers. However,
the number of VMs does not have a linear relationship with
the number of PMs, e.g. the least number of VMs does not
necessarily lead to the least number of PMs (see the analysis in
Section V-F). Hence, the allocation of the two levels must be
conducted simultaneously. Secondly, both levels of allocation
are vector bin packing problems [5] which are NP-hard.

This research aims at developing a novel consolidation
technique for two-level container-based clouds to minimize
the energy consumption of data centers. To address the VM
selection problem and the interaction between the two levels,
this work proposes a Genetic Algorithm (GA) approach.

GA [7] has been successfully applied to various combina-
torial optimization problem over its fifty-years of history [8].
Not only does GA overcome the shortcoming of greedy-based
heuristics (e.g. First Fit) that are easily stuck at local optimum
but also GA has a controllable computational time. However,
the key difficulty of applying GA to solve the problem is the
design of representation of solutions and genetic operators that
can evolve solutions [9]. This is because a good representation
narrows the search space and good operators are able to



accelerate the searching for near-optimal solutions.

Therefore, the overall goal for this work is to propose a
GA-based approach for the container allocation problem. More
specifically, we have the following objectives:

1) To propose a new dual-chromosome representation for
GA on container allocation problem, which can improve
the search ability over the single-chromosome GA [10].

2) To develop genetic operators, more specifically, the
crossover and mutation operators for the newly proposed
representation.

3) To evaluate our proposed approach by comparing it with
the state-of-the-art algorithms: BestFit descending and a
single-chromosome GA.

II. RELATED WORKS

In this section, we first review the related works of the
energy-aware container allocation problem. We then provide
a brief background of genetic algorithms.

A. Existing Approaches

Currently, most container allocation approaches treat the
problem as a dynamic problem [3], which means they allocate
one container at a time when the request arrives. Piraghaj
[11] and Kaur [12] approach the problem by considering a
set of predefined VM types in a cloud and First Fit heuristic
to allocate VMs to PMs. At the migration stage, containers are
allocated according to rules such as Least Full Host Selection
Algorithm (LFHS) [11] or First Fit Host Selection (FFHS)
[11]. These rules are mostly greedy-based heuristics which
are designed for fast resource allocations.

The major drawbacks of the above methods are two. First,
as Wolke et al [3] conclude, dynamic approaches are worse
than static approaches in terms of violations and energy con-
sumption because the extra network overhead and the halt on
migrated containers. Secondly, greedy-based heuristics often
provide local optimal solutions. Wolke et al [3] also suggest
the static approaches are more suitable for initial allocation of
containers because the initial allocation normally has a longer
time tolerance. Therefore, we aim at allocating a batch of
containers with a number of new VMs and PMs. Although
the static approach might have longer computational time, it
generally provides much better results than greedy approaches.

As the container-based cloud is a new technology, few static
approaches are proposed in the literature. Although extensive
research have been made in the field of VM allocation, because
of the two levels of allocation, they are hardly applied in the
container allocation. Guan et al [13] define one type of VM
and each PM are filled with ten VMs. Then, they propose
an Integer linear programming (ILP) to allocate containers.
With a predefined type of VM, the data center cannot host
applications that larger than the predefined VM. Furthermore,
allocating more VMs lead to more overhead. In the perspective
of their approach, it is known that the computational time of
ILP-based approaches grow exponentially with the problem
size increases. Therefore, it is infeasible to apply an ILP
approach on large allocation problems.

A multi-objective genetic algorithm approach [10] has been
proposed to solve the two-level container allocation problem.
This approach proposes a novel chromosome representation.
However, their approach might be limited with the design of
genetic operators. Their GA has no crossover operator and
relies completely on mutation for local search. This motivates
us to design a new representation and operators to over come
the drawbacks. In section V, we reuse their representation in
GA and compare with our proposed approach.

B. Genetic Algorithms

Genetic algorithms (GAs) are artificial intelligent algorithms
that are in spired by biological mechanisms of evolution. They
are famous for strong search ability because they have several
distinguished characteristics such as the use of a population-
based search and the ability of avoiding local optimum.

GAs have been applied successfully to solve a variety of
real-world combinatorial optimization problems problems such
the assembly line balancing problem [14], scheduling in Grid
computing [15] and resource allocation problem in clouds [16].

III. PROBLEM MODEL

Given N containers n = 1,..., N, the overall objective
is to allocate containers to V' Virtual Machines (VMs) v =
1,...,V, then allocate VMs to D Physical Machines (PMs)
d = 1,...,D, so that the energy consumption of PMs E
is minimized. The following equations calculate the overall
energy consumption F and the energy of individual PMs P;.
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E (Eq. (1)) aggregates all PMs’ energy consumption Py if a
PM d is activated. The term [ucp,, (d) > 0] returns 1 when the
CPU utilization of a PM d is greater than 0, and O otherwise.
The energy model of a PM P, (Eq. (2)) is a widely used model
proposed by Fan [17]. In their energy model, P*¥¢ and P™*
are the energy consumption when a PM is idle and fully used.

In our model, containers, VMs, and PMs are associated with
two types of resources, CPU and Memory. Containers’ CPU
and memory requirements are denoted as C,, and M,,; VMs’
CPU and memory capacities VC,, and V M,,; PMs’ CPU and
memory capacities DCy and DM,. The amount of resources
is defined by a domain (i.e CPU capacity of an entity) of
[1,..., R]. For example, the CPU required by a container is
defined by a value between 0 and 100. In addition, each VM
has an overhead of CPU and memory denoted as OC(v) and
OM (v). The overheads are also represented as resources. For
example, the memory overhead of a VM is OM (v) = 200Mb.

This work considers a data center with homogeneous PMs
which means all the PMs have the same CPU and memory
capacities. We consider a number of types of VMs which
constrain the combination of VC and VM into Type,. For
containers, unlike Piraghaj’s approach [11] which uses three
types of containers for all applications, we consider one-on-
one mapping between applications and containers. That is, we



define the domain of containers’ resource requirement between
1 to the capacity of the largest VM type. Therefore, our model
is much flexible and more realistic (real-world containers, e.g
Jelastic, use much granular measurement (MHz and Mb) for
applications [18]).

The two-level allocation model mainly reflects in modeling
the resource utilizations. At the VMs—PMs level, the CPU
and memory utilization of a PM is computed with Eq.(3) and
Eq.(4). The utilization of a PM aggregates the used resources
by the VMs which are deployed on the PM. Then, it is divided
by the capacity of the PM to calculate the utilization. The
binary variable y,4 denotes if a VM wv is allocated on a PM
d.
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At the containers—VMs level, the CPU and memory utiliza-
tion of a VM are computed with Eq.5 and Eq.6. The binary
variable z,,, indicates whether a container n is deployed on a
VM wv.
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We consider two types of constraints in the model. First,
similar to other models [11], the total resource requirement of
containers cannot exceed the capacity of the target VM v (see
Eq. (7)). The aggregate resource requirement of VMs cannot
exceed the capacity of the target PM d (see Eq. (8)). Second,
the container n can only be deployed once (see Eq. (9)).
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IV. THE PROPOSED DUAL-CHROMOSOME GA

This section introduces the design of our GA approach,
which includes the representation, genetic operators, and the
fitness function.

A. Algorithm

GA is a population-based search algorithm [9]. In GA, a
solution to a problem is represented as a vector of numbers
called chromosome or individual. GA searches for the best
solution by iteratively changing the values in the chromosome
by genetic operators such as crossover and mutation.

Our proposed algorithm is described in Algorithm 1. In the
beginning, a population of individual is initialized with the
Initialization process. The individual is represented as a dual-
chromosome representation.

The evolution is an iterative process consisting of a number
of generation. In each generation, each individual is evaluated
according to a defined fitness function. Then, we apply Elitism
to copy the top ten individuals sorted by their fitness values
to the next generation of population U. Then, we apply
tournament selection to select two parents. These two parents
crossover by a probability called crossover rate. The generated
children mutate according to a mutation rate. In the end, these
children are added to the new population U. As a search
mechanism, these two operators move solutions to explore the
search space.

This evolutionary procedure ends when a predefined gen-
eration number or a satisfactory level of the fitness value has
been reached. The parameters of GA such as crossover rate,
mutation rate, and generations are defined in Table II.

Algorithm 1: GA framework
Input : A set of VM types, A set of containers,
Output: The allocation of containers
1 Initialize a population P with dual-chromosome
individuals;

2 while Termination Condition is not meet do
3 for Each individual do
4 Evaluate the fitness value by a fitness function;
5 end
6 Apply elitism to copy ten top individuals to the
new population U;
7 while children number is less than the population
size do
8 Apply tournament selection to select two
parents;
9 Apply crossover on two parents and obtain two
children;
10 Apply mutation on two children;
11 Add the children into a new population U;
12 end
13 end

14 return the best individual;

B. Representation

Fig. 2 shows the design of chromosome, the input, and
the output of a solution. The representation of an individual
consists of two separate chromosomes: one for container allo-
cation and the other for VM allocation. A complete allocation
solution needs to be decoded from these two chromosomes.

Both the chromosomes of container allocation and VM
allocation are vectors of integer value. Specifically, in the
chromosome of container allocation, each value represents the
indexes of the containers in the original input. The length of
the chromosome is the total number of containers.

In the chromosome of VM allocation, each entry represents
a VM. The value denotes the type of the VM. The length
of the VM allocation chromosome is the maximum number
of VMs reserved for the containers. Since no container can



Fig. 2: Representation
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require more resources than the capacity of the largest VM,
we may infer that the maximum number of VMs is used when
all containers are allocated to different VMSs. Therefore, the
maximum number of VMs equals the number of the input
containers. The reserved VMs are always more than the actual
number needed by containers.

To decode an individual, we apply a bin packing heuristic
— Next Fit algorithm [19] in both levels. At the container—
VM level, containers are packed sequentially into VMs. For
example, In Fig. 2, after container 5 was packed into VM 0, the
following container I cannot fit into VM 0. Therefore, we close
VM 0 and open the VM I to accommodate container 1. The
closed VMs are never check again later on. This decoding ends
when all containers are allocated. Similarly, VMs are packed
into PMs using the same rule. A decoded solution includes
both levels of allocation as well as the types of VMs.

On one hand, this representation guarantees the validity of
solutions by applying Next Fit heuristic to decode the solution.
Therefore, we do not need extra constraint handling methods.
On the other hand, this representation is able to cover the entire
solution space so that we may find the optimal solution.

C. Initialization

The design of initialization aims at producing a set of
diverse solutions. Based on this principle, for each individual,
we randomly shuffle the indexes of containers to generate con-
tainer allocation chromosomes. For initializing VM allocation
chromosomes, we uniformly generate the types of VMs.

D. Crossover

The design of crossover aims at retaining the “good” genes
from the parents. For the chromosome of container allocation,
the definition of “good” is the permutation which leads to
a high utilization of VMs’ resources. We apply the order
1 crossover [20] to pass the useful permutation to the next
generation. For the chromosome of VM allocation, we apply
the single-point crossover [21].

Fig. 3: Order 1 crossover
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Order 1 crossover randomly selects a sequence of
consecutive entries from one parent. The remaining values
are placed in the child with the same order in the other
parent. For example, in Fig 3, container 3 and 4 are selected
and copied from parent to child 1. Then, the same containers
(3 and 4) are crossed out from parent 2. The rest values are
copied from parent 2 starts from the second cut point and
roll back to the head, e.g. container 1, 5, and 2. The same
rules are applied to the second child.

Single-point crossover first randomly cuts a chromosome
into two parts. A child inherits one part from parent 1 and
the other part from parent 2 (see Fig. 4).

E. Mutation

Mutation operator provides a local search mechanism that
aims at exploring the neighbors of the current individual.
We design two types of mutation to achieve this goal. The
mutation can be see in Algorithm 2.

Algorithm 2: Mutation
Input : An individual, mutation rate (3
Output: A mutated individual

1 u = random();

2 if u < 3 then

3 Switch_mutation() on container allocation
chromosome;

4 end

s for each entry on the VM allocation chromosome do

6 u = random();

7 if u < 3 then

8 | Change_type_mutation();

9 end

10 end

11 return the mutated individual;

Switch mutation randomly selects two entries on container
allocation chromosome and switch their values. This
mutation changes the allocation of two containers.



Change VM type mutation loops through the VM
allocation chromosome and changes the value uniformly
from the VM type list by a probability. This mutation
modifies the types of VMs.

F. Fitness Function

The fitness is determined by the decoded sequence of PMs.
The energy consumption is calculated according to Eq. (1)
where all PMs’ energy consumption is aggregated.

V. EXPERIMENT

This section first introduces the purpose of the experi-
ment. Then we illustrate test instances, experiment settings,
and briefly introduce the compared algorithms: the modified
single-chromosome GA and BestFit descending algorithm.
The reason that we compare with these two algorithms is
because the single-chromosome GA solves the same problem
with ours. The BestFit descending is widely used in the cloud
resource allocation research. Finally, we illustrate and analyze
the results.

A. Design of Experiments

The overall goal of the experiment is to test the performance
of our proposed GA algorithm in terms of energy consumption.
To achieve this goal, we conduct experiments on real-world
datasets with our proposed GA and two benchmark algorithms
(single-chromosome GA and BestFit descending). Their effec-
tiveness are compared according to the energy consumption.
Then, we will analyze the efficiency of the representation and
the search mechanisms by comparing the convergence between
our proposed GA and the single-chromosome GA. Last but
not least, we will also compare the execution time of these
algorithms.

Additionally, to benefit other researchers, we share two
insights of two-level container allocation problem. The first
insight shows the number of VM does not proportional to
the total energy consumption. In other words, least number of
VMs does not always lead to the least energy consumption.
Second insight shows that providing more VM types may have
a negative influence on the algorithm’s performance because
redundant VM types unnecessarily enlarges the search space.

B. Dataset and Test instance

We use a real-world dataset where applications’ resource re-
quirement are recorded in a data center (AuverGrid trace [22]).
We assume homogeneous PMs with the resource capacity of
[3300 MHz, 4000 MB]. The energy consumption for the fully
utilized PM is set to 135W.

To test the algorithms’ performance on a variety of VM
configurations, we design three sets of VM type with increas-
ing numbers of VM types (see Table III). The first set (yellow
area) contains five VM types. The second set includes seven
VM types (yellow and green areas). The third set includes
all ten VM types. We designed four test instances shown in
Table I, listed with increasing sizes and difficulties. We test
algorithms on these instances for each VM type settings, which
includes total 12 experiments.

TABLE I: Instance Settings

Instances 1 2 3 4
Number of containers 100 200 500 1000

C. Benchmark Algorithms

Single-chromosome GA is proposed in [10] to solve service
allocation problem which is a similar problem with container
allocation problem.

The two differences prevent us from directly reuse their
algorithm. First, their algorithm is a multi-objective version
of GA called NSGA-II. Second, one of the major assumption
in their approach is that they allow VM overbooking [3]
which tolerates a certain degree of utilization overhead. In
our assumption, VM overbooking is not allowed. Therefore,
in order to make a comparison, we only reuse their represen-
tation and re-design the initialization (see Algorithm 3) and
mutation operator. The mutation operator randomly switches
two containers.

Algorithm 3: Initialization for single-chromosome GA

Input : A set of containers with CPU,memory
requirement, VM types
Output: A population of individuals
1 while number of individual i < population_size do

2 for each container in an individual do

3 Apply First Fit to find an existing VM to
allocate;

4 if no existing VM is available then

5 candidate VM Type = Iterate the VM type

and find the first VM that has the capacity
to host this container;

6 Generate a VM type which equal or
stronger than the candidate VM Type;

7 end

8 end

9 Add the individual to population;
10 i++;

11 end

BestFit Descending algorithm is static bin packing heuristic
that can only select existing VMs for containers.

In this work, we implement a BestFit Descending with
sum rule [4] which is used to measure the residual resources
from multiple dimensions (e.g CPU and memory). The sum
rule assigns each candidate VM with a score. The score is
calculated by aggregating the each dimension of remaining
resources on the VMs after the container is allocated. The
BestFit algorithm always selects the VM with the minimum
score which indicates the minimum residual resources.

Since BestFit Descending does not have the functionality
to select VM types, in order to create new VMs, we always
select the largest VM type (Type five in Table III).



TABLE II: Parameter Settings

Parameter Description
crossover 80%
mutation rate for dual-chromosome GA 10%
mutation rate for single-chromosome GA  80%
elitism top 10 individuals
Number of generations 1000
Population 100
Selection tournament selection (size = 7)
TABLE III: Configuration of VMs
VM types CPU (MHz) Memory (MB) VM types CPU (MHz) Memory (MB)
1 660 800 6 660 2400
2 1320 1600 7 1320 2800
3 1320 2800 8 660 2800
4 1980 2400 9 1980 1200
5 2310 2800 10 2310 1600
D. Parameter Settings
The parameter settings for both single- and dual-

chromosome GAs are listed in Table II. In addition to our
proposed operators, we apply the elitism [23] with size 10
and tournament selection [24] with size 7. These methods are
standard and widely applied. For single-chromosome GA, we
set its mutation rate to 0.8 because it completely relies on
mutation to search.

All algorithms were implemented in Java version 8 and the
experiments were conducted on 17-4790 3.6 GHz with 8 GB
of RAM memory running Linux Arch 4.14.15. We applied
Wilcoxon rank sum to test the statistic significance.

E. Experiment Results

This section first illustrates the performance comparison
among three algorithms in terms of energy consumption.
Then, we show the efficiency of the representation and search
mechanisms by comparing the convergence curve between our
GA and the single-chromosome GA [10]. Lastly, we compare
the time complexity of three algorithms.

Fig. 5 shows the comparison of the average energy con-
sumption among three algorithms for test cases with three
VM types. BestFit descending algorithm (Red line) uses the
most energy consumption. Single-chromosome GA (Green
line) shows better performance than BestFit Descending in
most of the cases except one. Our proposed dual-chromosome
GA has shown the best performance in all test instances. The
Wilcoxon signed rank test show that it is significantly different
between our GA and others with a confidence interval of 95%.

Fig. 6 shows the average number of PMs for the test cases
with 5 VM types and 10 VM types. We omit the figure of
7 VM types because it shows a similar pattern with 5 VM
types. In the test instances with 5 and 7 VM types, BestFit
Descending (Green line) uses the largest number of PMs.
Single-chromosome GA (Blue line) uses more PMs than our
dual-chromosome GA. In the test instances with 10 VM types,
single-chromosome uses the most PMs in the fourth instances
(allocating 1000 containers).

Fig. 5: Comparison of the average energy consumption among
three algorithms for three VM type configurations
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The energy consumption of the solution generated by the
BestFit Descending is not affected by the number of VM types
because it always use the largest VM type (see Section V-C).
Additionally, Best Fit descending is a deterministic algorithm,
which means with the same input set of containers, the output
energy will always be the same.

Fig. 7 compares the convergence curve of two GAs. Con-
vergence curve is depicted by connecting the average fitness
values from two GAs of 30 runs during 1000 generations.
Dual-GA’s (Red line) starts with worse fitness values than
single-chromosome GA. Only within a few generations, the
fitness values from dual-chromosome GA quickly decrease
(less than 400 generations in the largest instance) and surpass
the single-chromosome GA. In contrast, the convergence curve



of single-chromosome GA (Blue line) remain stagnant during
the entire evolution.

We can explain the reason that the single-chromosome GA
has better initial fitness values with the detailed comparison
of two GAs’ initialization methods. In the single-chromosome
GA, shown as Algorithm 3, we apply First Fit to allocate
containers in line 3. Since First Fit always scan the VMs from
the oldest and never close a VM, it guarantees the existing
VMs are filled before creating a new VM. In contrast, in
dual-chromosome GA, containers are allocated to VMs with
Next Fit. Next Fit closes a VM whenever the current container
cannot be allocated even though other containers can still be
allocated into the VM. Therefore, Next Fit does not guarantee
the closed VMs are filled. Therefore, at the initial stage, the
utilization in PMs of single-chromosome GA are much higher
than dual-chromosome GA.

The stagnant of single-chromosome GA can be explained by
its search operators. The search operator in single-chromosome
GA is very limited as it completely relies on mutation operator
and does not have a crossover operator. This design has two
drawbacks. Firstly, without crossover, there is no interaction
among individuals. The algorithm lacks the ability of combin-
ing good parts from multiple individuals. Therefore, it leads
to a lower convergence. Secondly, the mutation operator in
single-chromosome GA can only be conducted when two host
VMs have enough resources for the switching, otherwise, the
individual will remain unchanged. Hence, this mutation also
limits the search ability.

Fig. 7: Convergence curve
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Table. IV shows the mean and standard deviation of cal-
culation time of three algorithms. BestFit descending is the
fastest algorithm among all. Dual-GA uses much less time
than single-chromosome GA, especially when the test instance
gets larger. Specifically, in test instance 3 and 4, single-
chromosome GA uses more than 20 times more time than
dual-chromosome GA.

We may explain the fast execution of BestFit descending
with two reasons. First, unlike GAs, BestFit does not calculate
the fitness values for a population of solutions. Second, the

TABLE IV: Average execution time (s) for three algorithms
on four test instances with five VM types

Time (s)

Instances BestFit Descending  dual-chromosome GA  single-chromosome GA
Test instance 1 0.11 £ 0.0 0.92 £+ 0.17 5.20 £0.28
Test instance 2 0.16 = 0.0 1.45 £ 0.17 12.04 £ 0.43
Test instance 3 0.48 £+ 0.0 3.07 £0.28 60.79 + 2.38
Test instance 4 1.01 £ 0.0 7.12 £ 0.26 181.06 + 7.25

VM type is predefined, hence, BestFit does not spend time on
optimizing the VM types and their locations.

The reason that the single-chromosome GA is much slower
than dual-chromosome GA due to the extensively use of mu-
tation operator. With 0.8 mutation rate, the mutation is almost
conducted on every container. This is very time consuming
operation because the algorithm must guarantee the host
VMs have enough resource for switching. Furthermore, the
computation time is proportional to the number of containers.

Our proposed dual-chromosome GA, on the other hand, has
acceptable time complexity and produces the best performance
among all three algorithms.

F. Result Analysis

These experiments provide two insights for the container
allocation problem. The first insight shows the number of VM
does not proportional to the total energy consumption. In other
words, the least number of VMs does not necessary lead to the
least energy consumption. Fig. 8 shows the average number
of VMs used in all test instances. As we may seen, BestFit
descending (Red bar) always uses the least number of VMs
because it chooses the largest VM type in default. However,
the largest VM type (Type five in Table III) is account for
70% of total resources in a PM. That means, the maximum
resources that can be used by BestFit is only 70% of the total
resources in a PM because a PM can only accommodate one
largest VM.

In contrast, both single- and dual-chromosome GAs use
more VMs than BestFit. When we examine the VM types
that GAs used, we found that in most of the cases, GAs
found the complementary VMs. For example, in Table III, the
combination of types (2, 4), (3, 9), (2, 2, 1) is able to use 100%
of PM’s resources. We observed that GAs can always find
these complementary VM types to maximize the utilization.
The best combination of VM types may not use the least
number of VMSs. As in our test instances, dual-chromosome
GA always generates better performance with more VMs than
the single-chromosome GA does.

Second insight shows that providing more VM types may
have a negative influence on algorithms because of redundant
VM types extends the search space. In Fig.5, with test instance
1 to 3, a clear pattern shows the dual-chromosome GA
achieves the best performance applying on seven VM types
and the performance drops on ten VM types. As mentioned
above, GA searches for complementary VM types to fully
utilized PMs. The performance increased when providing
seven VM types because the additional VM types are useful
to construct better combination of types. However, when



providing ten types, the additional types (compared to 7 VM
types) are redundant, therefore, it only lead to longer searching
time and worse performance.

In instance 4, since the size of containers are much more
than the previous instances, the search space are also much
larger. The performance of both GAs decreases.

These two insights provide a better understanding of the
container allocation problem, which may be useful for de-
veloping new allocation algorithms. In addition, the second
insight may inspire the cloud providers to provide a minimum
set of complementary VM types which may accelerate the
optimization process.

Fig. 8: Average number of used VMs
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VI. CONCLUSION

Container-based clouds have become increasing popular
in recent years. However, the existing algorithms for server
consolidation in traditional VM-based clouds can hardly be
used in container-based cloud because two-level allocations are
needed: containers to VMs and VMs to PMs. The traditional
algorithms did not consider the selection of heterogeneous
VMs and VM allocation at the same time.

This work proposes a dual-chromosome representation GA
to solve the two-level container allocation problem. The ex-
periments ran on real-world datasets with the comparison of a
single-chromosome GA and a BestFit descending algorithm.
The results show that our proposed GA performs much better
than the compared algorithms in all test instances with a much
shorter time. This work also provide two insights for the
container allocation problem: The number of VMs does not
proportional to the total energy consumption. Second insight
shows redundant VM types have an negative influence on the
allocation algorithms.
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