
A NSGA-II-based Approach for Service Resource
Allocation in Cloud

Boxiong Tan, Hui Ma, Yi Mei
Victoria University of Wellington

Wellington, New Zealand
Email: {Boxiong.tan, Hui.Ma, Yi.Mei}@ecs.vuw.ac.nz

Abstract—Web service and Cloud computing have significantly
reformed the software industry. The need for web service
allocation in the cloud environment is increasing dramatically.
In order to reduce the cost for service providers as well as
improve the utilization of cloud resource for cloud providers,
this paper formulates the web service resource allocation in cloud
environment problem as a two-level multi-objective bin packing
problem. It proposes a NSGA-II-based algorithm with specifically
designed genetic operators. We are compared with two varieties
of the algorithm. The results show that the proposed algorithm
can provide reasonably good results with low violation rate.

I. INTRODUCTION

Service Oriented Architecture (SOA) and Cloud comput-
ing have significantly reformed the software industry. SOA
provides a decentralized application architecture which allows
software composition and reuse in a large, global scale.
Meanwhile, Cloud computing provides a scalable, reliable, and
flexible infrastructure to web services.

As the dramatic increase of web services and cloud facili-
ties, the management of resources has become a critical issue.
In recent years, as the power bill has become the largest frac-
tion of the operating cost of Cloud facility [1], to reduce power
consumption has become a paramount concern for Cloud
service providers. In order to achieve that, a common approach
is to re-allocate web services to a minimum number of physical
machines (PMs) [2]. Therefore, idle computing servers are
turned down or put into save mode. This optimization process,
often called consolidation involves with two levels of delivery
mode, Software as a service (SaaS) and Infrastructure as a
service (IaaS). Because of the complexity, consolidation tasks
for IaaS and SaaS are often considered as separated tasks
with different objectives. For SaaS, the challenges concentrate
on satisfying the Service Level Agreements (SLAs) with
unpredictable requests using a minimum amount of resources.
Whereas, for IaaS, the challenges are the VM migrations and
energy conservation.

There are extensive algorithms proposed for SaaS and IaaS
levels of resource allocation [3], [4]. Ref. [5] proposes a
heuristic algorithm for service consolidation in a set of servers
with minimizing costs while avoiding the overload of server
and satisfying end-to-end response time constraints.

Ref. [6] proposes two algorithms for energy efficient
scheduling of VMs in Cloud, including an exact VM allocation
algorithm which is an extended Bin-Packing approach, and a
migration algorithm based on integer linear programming.

However, as the two levels of resource allocation are
interact with each other, we believe they cannot be sepa-
rated. They should be considered as one global optimization
with multi-objectives from the perspectives of both service
providers and cloud providers. Therefore, in this paper, we
first propose a model for solving service resource allocation
in Cloud (SRAC). Secondly, we propose a NSGA-II-based
multi-objective algorithm with specifically designed operators
to solve the problem. The two objectives are:

1) propose a model for solving IaaS and SaaS resource
allocation together

2) propose a NSGA-II-based algorithm to solve SRAC.
The rest of the paper is organized as follows. Section II

discusses the traditional approaches for IaaS and SaaS and the
power model for VM allocation. It will also introduce related
works of evolutionary multi-objective optimization techniques.
Section III describes the definition of the SRAC problem. Sec-
tion IV introduces the representation and genetic operators for
SRAC problem. Section V illustrates the experiment design,
results and discussions. Section VI draws a conclusion and
discusses the future work.

II. BACKGROUND

A. Traditional approaches
Ref. [7] proposes a single-objective genetic algorithm to

solve placement of service (SaaS) on physical machines.
Their major contributions are three-fold. Firstly, they consider
web services as a workflow and optimize the makespan of
a workflow. Secondly, they design a representation to the
problem. Thirdly, they do not only consider computing nodes,
but storage nodes as well.

Ref. [8] develops a Resource-Allocation-Throughput (RAT)
model for web service allocation. The RAT model mainly
defines several important variables for an atomic service which
represents a software component. Based on this model, firstly,
an atomic service’s throughput equals its coming rate if the
resources of the allocated VM are not exhausted. Secondly,
increasing the coming rate will also increase an atomic ser-
vice’s throughput until the allocated resource is exhausted.
Thirdly, when the resource is exhausted, the throughput will
not increase as request increasing. At this time, the virtual
machine reaches its capacity.

Anton Beloglazov et al. [9] propose two algorithms for VM
allocation. The first one is a bin-packing algorithm, called

978-1-5090-4601-0/17/$31.00 c©2017 IEEE

Modified Best Fit decreasing (MBFD) which is used when
a new VM allocation request arrives. The second algorithm,
named Minimization of Migration, is used to adjust the current
VMs allocation according to the CPU utilization of a physical
machine. Their experiments have shown that these methods
lead to a substantial reduction of energy consumption in Cloud
data centers.

B. Power Model

Shekhar’s research [10] is one of the earliest in energy aware
consolidation for cloud computing. They conduct experiments
of independent applications running in physical machines.
They explain that CPU utilization and disk utilization are the
key factors affecting the energy consumption. They also find
that only consolidating services into the minimum number of
physical machines does not necessarily achieve energy saving,
because the service performance degradation leads to a longer
execution time, which increases the energy consumption.

Bohra [11] develops an energy model to profile the power
of a VM. They monitor the sub-components of a VM which
includes: CPU, cache, disk, and DRAM and propose a linear
model (Eq 1). Total power consumption is a linear combina-
tion of the power consumption of CPU, cache, DRAM and
disk. The parameters α and β are determined based on the
observations of machine running CPU and IO intensive jobs.

P(total) = αP{CPU,cache} + βP{DRAM,disk} (1)

Although this model can achieve an average of 93% of
accuracy, it is hard to be employed in solving SRAC problem,
for the lack of data.

Anton Beloglazov et al. [9] propose a comprehensive energy
model for energy-aware resource allocation problem (Eq 2).
Pmax is the maximum power consumption when a virtual
machine is fully utilized; k is the fraction of power consumed
by the idle server (i.e. 70%); and u is the CPU utilization.
This linear relationship between power consumption and CPU
utilization is also observed by [12], [13].

P (u) = k · Pmax + (1− k) · Pmax · u (2)

C. Multi-objective Evolutionary Optimization

A multi-objective optimization problem consists of multiple
objective functions to be optimized. A multi-objective opti-
mization problem can be stated as follows:

min ~f(~x) = (f1(~x), . . . , fm(~x)), (3)
s.t. ~x ∈ Ω. (4)

where Ω stands for the feasible region of ~x.
Multi-objective Evolutionary Optimization Algorithm

(MOEA) are ideal for solving multi-objective optimization
problems [14], because MOEAs work with a population of
solutions. With an emphasis on moving towards the true
Pareto-optimal region, a MOEA algorithm can be used to find
multiple Pareto-optimal solutions in one single simulation
run [15]. Therefore, this project would employ MOEA
approaches. This is also the first time to employ MOEAs
technique for SRAC problem.

III. PROBLEM DESCRIPTION

We consider the problem as a multi-objective problem
with two potentially conflicting objectives, minimizing the
overall cost of web services and minimizing the overall energy
consumption of the used physical machines.

To solve the SRAC problem, we model an atomic service as
its request and requests’ coming rate, also known as frequency.

The request of an atomic service is modeled as two critical
resources: CPU time A = {A1, Ai, . . . , At} and memory con-
sumption M = {M1,Mi, . . . ,Mt}, for each request consumes
a Ai amount of CPU time and Mi amount of memory. The
coming rate is denoted as R = {R1, Ri, . . . , Rt}. In real
world scenario, the size and the number of a request are both
variant which are unpredictable, therefore, this is one of the
major challenges in Cloud resource allocation. In this paper,
we use fixed coming rate extracted from a real world dataset
to represent real world service requests.

The cloud data center has a number of available
physical machines which are modeled as CPU time
PA = {PA1, PAj , . . . , PAp} and memory PM =
{PM1, PMj , . . . , PMp}. PAj denotes the CPU capacity of
a physical machine and PMj denotes the size of memory.
A physical machine can be partitioned or virtualized into a
set of virtual machines; each virtual machine has its CPU
time V A = {V A1, V An, . . . , V Av} and memory VM =
{VM1, V Mn, . . . , V Mv}.

The decision variable of service allocation is defined as Xi
n.

Xi
n is a binary value (e.g. 0 and 1) denoting whether a service

i is allocated on a virtual machine n. The decision variable of
virtual machine allocation is defined as Y n

j . Y n
j is also binary

denoting whether a VM n is allocated on a physical machine
j.

In this work, we consider homogeneous physical machine
which means physical machines have the same size of CPU
time and memory. The utilization of a CPU of a virtual
machine is denoted as U = {U1, Un, . . . , Uv}. The utilization
can be calculated by Eq.5.

Uk =

{∑t
i=1 Ri·Ai·Xi

n

V An
, If

∑t
i=1Ri ·Ai < 1

1 , otherwise
(5)

The cost of a type of virtual machine is denoted as C =
{C1, Cn . . . , Cv}.

In order to satisfy the performance requirement, Service
providers often define Service Level Agreements (SLAs) to
ensure the service quality. In this work, we define throughput
as a SLA measurement [16]. Throughput denotes the number
of requests that a service could successfully process in a
period of time. According to RAT model, the throughput is
equal to the number of requests when the allocated resource is
sufficient. Therefore, if a VM reaches its utilization limitation,
it means that the services have been allocated exceedingly.
Therefore, all services in that VM suffer from performance
degradation.

Then we define two objective functions as the total energy
consumption and the total cost of virtual machines:

minimize

Energy =

p∑
j=1

(k · Vmax + (1− k) · Vmax ·
v∑

n=1

Un · Y n
j)

(6)

Cost =

p∑
j=1

v∑
n=1

Cn · Y n
j (7)

1) Hard constraint: A virtual machine can be allocated on
a physical machine if and only if the physical machine has
enough available capacity on every resource.

v∑
n=1

VMn · Y n
j ≤ PMj

v∑
n=1

V An · Y n
j ≤ PAj

(8)

2) Soft constraint: A service can be allocated on a virtual
machine even if the virtual machine does not have enough
available capacity on every resource, but the allocated services
will suffer from a quality degradation.

t∑
i=1

Mi ·Ri ·Xn
i ≤ VMn (9)

IV. METHODS

As we have discussed, Multi-objective Evolutionary Al-
gorithms are good at solving multi-objective problems and
NSGA-II [17] has shown his effective and efficiency. NSGA-
II is a well-known MOEA that has been widely used in many
real-world optimization problems. In this paper we also adopt
NSGA-II to solve the SRAC problem. We first propose a
representation and then present a NSGA-II based algorithm
with novel genetic operators.

A. Chromosome Representation

SRAC is a two-level bin-packing problem, in the first level,
bins represent physical machines and items represent virtual
machines. Whereas, in the second level, a virtual machine acts
like a bin and web services are items. Therefore, we design
the representation in two hierarchies, virtual machine level and
physical machine level.

Figure 1 shows an example individual which contains seven
service allocations. Each allocation of a service is represented
as a pair where the index of each pair represents the number
of web service. The first number indicates the type of virtual
machine that the service is allocated in. The second number
denotes the number of virtual machine. For example, in Figure
1, service #1 and service #2 are both allocated in the virtual
machine #1 while service #1 and service #5 are allocated to
different virtual machines sharing the same type. The first
hierarchy shows the virtual machine in which a service is
allocated by defining VM type and number. Note that, the
VM type and number are correlated once they are initialized.

With this feature, the search procedure is narrowed down in
the range of existing VMs which largely shrinks the search
space. The second hierarchy shows the relationship between a
physical machine and its virtual machines, which are implicit.
The physical machine is dynamically determined according to
the virtual machines allocated on it. For example, in Figure
1, the virtual machines are sequentially packed into physical
machines. The boundaries of PMs are calculated by adding up
the resources of VMs until one of the resources researches the
capacity of a PM. At the moment, no more VMs can be packed
into the PM, then the boundary is determined. The reason
we designed this heuristic is because a physical machine is
always fully used before launching another. Therefore, VM
consolidation is inherently achieved.

Clearly, specifically designed operators are needed to ma-
nipulate chromosomes. Therefore, based on this representa-
tion, we further developed initialization, mutation, constraint
handling and selection method.

B. Initialization

Algorithm 1 Initialization
Inputs:
VM CPU Time V A and memory VM ,
Service CPU Time A and memory M
consolidation factor c
Outputs: A population of allocation of services
1: for Each service t do
2: Find its most suitable VM Type
3: Randomly generate a VM type vmType which is equal or better than

its most suitable type
4: if There are existing VMs with vmType then
5: randomly generate a number u
6: if u < consolidation factor then
7: randomly choose one existing VM with vmType to allocate
8: else
9: launch a new VM with vmType

10: end if
11: else
12: Create a new VM with its most suitable VM type
13: end if
14: end for

The initialization (see Alg 1) is designed to generate a
diverse population. In the first step, for each service, it is able
to find the most suitable VM type which is just capable of
running the service based on its resource requirements. In the
second step, based on the suitable VM type, a stronger type is
randomly generated. If there exists a VM with that type, the
service is either deployed in the existing VM or launch a new
VM. We design a consolidation factor c which is a real number
manually selected from 0 to 1 to control this selection. If a
random number u is smaller than c, the service is consolidated
in an existing VM.

This design could adjust the consolidation, therefore, con-
trols the utilization of VM.

C. Mutation

The design principle for mutation operator is to enable indi-
viduals exploring the entire feasible search space. Therefore,
a good mutation operator has two significant features, the

Fig. 1. An example chromosome representation

Fig. 2. An example mutation without insertion that causes a lower resource
utilization

exploration ability and the its ability to keep an individual
within the feasible regions. In order to achieve these two
goals, firstly, we generate a random virtual machine type
which has a greater capacity than the service needs. It ensures
the feasible of solutions as well as exploration capability.
Then, we consider whether a service is consolidated with the
consolidation factor c.

The consolidation is conducted with a roulette wheel
method which assigns fitness value to each VM according
to the reciprocal of its current utilization. The higher the
utilization, the lower the fitness value it is assigned. Therefore,
a lower utilization VM has a greater probability to be chosen.

At last, if a new VM is launched, it will not be placed at the
end of VM lists. Instead, it will be placed at a random position
among the VMs. The reason is illustrated in Figure 2. In the
example, VM #2 is mutated into a new type and be placed at
the end of the VM list. However, because of the size of VM
#3 is too large for PM #0, the hollow in PM #0 will never be
filled. This problem can be solved with the random insertion
method.

Algorithm 2 Mutation
Inputs:
An individual VM CPU Time V A and memory VM ,
Service CPU Time A and memory M
consolidation factor c
Outputs: A mutated individual
1: for Each service do
2: Randomly generate a number u
3: if u < mutation rate then
4: find the most suitable VM Type for this service
5: Randomly generate a number k
6: if k < consolidation factor then
7: calculate the utilization of used VMs
8: assign each VM with a fitness value of 1 / utilization and

generate a roulette wheel according to their fitness values
9: Randomly generate a number p, select the VM according to p

10: Allocate the service
11: else
12: launch a new VM with the most suitable VM Type
13: insert the new VM in a randomly choose position
14: end if
15: end if
16: end for

D. Violation control method

A modified violation ranking is proposed to deal with
the soft constraint, for the hard constraint is automatically
eliminated by the chromosome representation. We define a
violation number as the number of services which are allocated
in the degraded VMs. That is, if there are excessive services
allocated in a VM, then all the services are suffered from a
degraded in performance. The violation number is used in the
selection procedure, where the individuals with less violations
are always preferred.

E. Selection

Our design uses the binary tournament selection with a
constrained-domination principle. A constrained-domination
principle is defined as following. A solution I is considered
constraint-dominate a solution J , if any of the following
condition is true:

1) Solution I is feasible, solution is not,
2) Both solutions are infeasible, I has smaller overall

violations,
3) Both solutions are feasible, solution I dominates solu-

tion J .
An individual with no or less violation is always selected.

This method has been proved effective in the original NSGA-II
paper [17].

F. Fitness Function

The cost fitness (Eq.7) is determined by the type of VMs at
which web service are allocated. The energy fitness is shown
in Eq.6, the utilizations (Eq.5) of VM are firstly converted into
the utilizations of PM according to the proportion of VMs and
PMs CPU capacity.

G. Algorithm

The main difference between our approach and the original
NSGA-II is that our approach has no crossover operator.

That is, a random switch of chromosome would completely
destroy the order of VMs, hence, no useful information
will be preserved. Therefore, we only apply mutation as the
exploration method. Then, the algorithm becomes a parallel
optimization without much interaction between its offspring,
which is often addressed as Evolutionary Strategy [18].

V. EXPERIMENT

A. Dataset and Problem Design

This project is based on both real-world datasets WS-Dream
[19] and simulated datasets [20]. The WS-Dream contains
web service related datasets including network latency and
service frequency (request coming rate). In this project, we
mainly use the service frequency matrix. For the cost model,
we only consider the rental of virtual machines with fixed
fees (monthly rent). The configurations of VMs are shown in
Table II, the CPU time and memory were selected manually
and cost were selected proportional to their CPU capacity. The
maximum PM’s CPU and memory are set to 3000 and 8000

Algorithm 3 NSGA-II for SRAC
Inputs:
VM CPU Time V A and memory VM ,
PM CPU Time PA and memory PM ,
Service CPU Time A and memory M
consolidation factor c
Outputs: A Non-dominated Set of solutions
1: Initialize a population P
2: while Termination Condition is not meet do
3: for Each individual do
4: Evaluate the fitness values
5: Calculate the violation
6: end for
7: non-Dominated Sorting of P
8: calculate crowding distance
9: while child number is less than population size do

10: Selection
11: Mutation
12: add the child in a new population U
13: end while
14: Combine P and U { for elitism}
15: Evaluate the combined P and U
16: Non-dominated sorting and crowding distance for combined popula-

tion
17: Include the top popSize ranking individuals to the next generation
18: end while

TABLE I
PROBLEM SETTINGS

Problem 1 2 3 4 5 6
Number of services 20 40 60 80 100 200

respectively. The energy consumption is set to 220W according
to [20].

We designed six problems shown in Table I, listed with
increasing size and difficulty, which are used as representative
samples of SRAC problem.

Selection Method with violation Control vs. without
violation control

We conducted two comparison experiments. For the first
experiment, we make a comparison between NSGA-II with
violation control and NSGA-II without violation control. In
second experiment, two mutation operators are compared. The
first is the roulette wheel mutation, the second is the mutation
with greedy algorithm. The mutation with greedy algorithm is
a variant of roulette wheel mutation. The only difference is that
instead of selecting a VM to consolidate with fitness values,
it always selects the VM with the lowest CPU utilization.
Therefore, it is a greedy method embedded in the mutation.

The experiments were conducted on a personal laptop with
2.3GHz CPU and 8.0 GB RAM. For each approach, 30 in-

TABLE II
VM CONFIGURATIONS

VM Type CPU Time Memory Cost

1 250 500 25
2 500 1000 50
3 1500 2500 150
4 3000 4000 300

(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

(e) Problem 5 (f) Problem 6

Fig. 3. Non-dominated solutions evolve along with the generation

dependent runs are performed for each problem with constant
population size 100. The maximum number of iteration is 200.
k equals 0.7. We set mutation rate and consolidation factor to
0.9 and 0.01.

B. Results

As we conducted the experiment for 30 runs, we first obtain
an average non-dominated set over 30 runs by collecting the
results from a specific generation from all 30 runs, and then
apply a non-dominated sorting over them.

Firstly, we show the non-dominated solutions evolve along
with the evolution process in Figure 3. These results come
from selection method without violation control. As it illus-
trated, different colors represent different generations from 0th
to 200th. For problem 1, because the problem size is small,
the algorithm converged before 100 generations. Therefore,
the non-dominated set from the 100th and 150th generations
are overlapping with results from the 200th generation. For
problem 2 and problem 3, it clearly shows the improvement
of fitness values. For problem 4 onwards, the algorithm can

(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

(e) Problem 5 (f) Problem 6

Fig. 4. non-dominated solutions comparison between selection with violation
control and without violation control

only obtain a few solutions as the problem size is large, it is
difficult to find solutions.

Then, the non-dominated sets of the last generation from
two selection methods are compared in Figure 4. There are
much fewer results are obtained from the violation control
method throughout all cases. For the first three problems,
the non-dominated set from the violation control method has
similar quality as the no violation control method. From
problem 4 onwards, the results from selection with violation
control are much worse in terms of fitness values. However,
most of the results from non-violation control selection have
a high violation rate. That is, the method without violation
control is stuck in the infeasible regions and provide high-
violation rate solutions.

From figure 5, we can observe the violation rate between
two methods. It proves violation control has a great ability
to prevent the individual from searching the infeasible region.
On the other hand, without violation control, although, the al-
gorithm can provide more solutions with better fitness values,

TABLE III
COMPARISON BETWEEN TWO MUTATION METHODS

Problem roulette wheel mutation Greedy mutation

cost fitness energy fitness cost fitness energy fitness
1 2664.6 ± 66.4 1652.42 ± 18.2 2661.7 ± 56.9 1653.2 ± 18.2
2 6501.1 ± 130.2 4614.0 ± 110.7 6495.37 ± 110.7 4132.5 ± 80.4
3 8939.2 ± 118.5 6140.7 ± 204.0 9020.5 ± 204.0 5739.6 ± 148.6
4 11633.7 ± 301.1 9301.9 ± 254.0 12900.6 ± 243.0 9376.3 ± 120.9
5 14102.0 ± 231.7 10164.8 ± 238.9 14789.2 ± 238.8 9876.3 ± 120.9
6 27194.3 ± 243.0 19914.4 ± 307.5 27654.2 ± 307.5 19187.1 ± 176.6

Fig. 5. Violation Percentage comparison between selection with violation
control and without violation control

most of them have a high violation rate over 10% which are
not very useful in reality.

As we mentioned in previous section, the mutation rate and
consolidation factor are set differently for the two methods. For
the method with violation control, the mutation rate is set to
0.9 and the consolidation factor c is set to 0.01, this is because
the feasible region is narrow and scattered. In order to avoid
stucking in the local optima, a large mutation rate can help
escape local optima. For the factor c, a larger percentage would
easily lead the algorithm to infeasible regions. Therefore, it is
set to a small number.

Mutation with roulette wheel vs. Mutation with greedy
algorithm

Table III shows the fitness value comparison between muta-
tion methods. According to statistics significant test, there is
little difference between methods. The possible reason is the
consolidation factor is set to 0.01. In each mutation iteration,
there is only 1% probability that a service will be consolidated
in an existed VM, therefore, the influence between different
consolidation strategies is trivial.

VI. CONCLUSION

In this paper, we first propose a multi-objective formulation
of a two levels of bin packing problem, web service resource
allocation in Cloud. It solves the resource allocation in IaaS
and SaaS at the same time. Two objectives, minimizing
the cost from service providers’ perspective and minimizing
the energy consumption from cloud provider’s objective are
achieved. Secondly, we propose a NSGA-II based algorithm
with specific designed genetic operators to solve the problem.
The results are compared with different variances of the
algorithm. The results show our approach can solve the very
complicate optimization problem.

With current work as a baseline, in future work, we could
improve the quality of solutions as well as provide better
violation control mechanisms.

REFERENCES

[1] R. E. Brown, E. R. Masanet, B. Nordman, W. F. Tschudi, A. Shehabi,
J. Stanley, J. G. Koomey, D. A. Sartor, and P. T. Chan, “Report to
congress on server and data center energy efficiency: Public law 109-
431,” 06/2008 2008.

[2] S. Desai, S. Bahadure, F. Kazi, and N. Singh, “Article: Multi-objective
constrained optimization using discrete mechanics and NSGA-II ap-
proach,” International Journal of Computer Applications, vol. 57, no. 20,
pp. 14–20, 2012.

[3] S. Mazumdar and M. Pranzo, “Power efficient server consolidation for
cloud data center,” Future Generation Computer Systems, vol. 70, pp. 4
– 16, 2017.

[4] D. J. Dubois and G. Casale, “Autonomic provisioning and application
mapping on spot cloud resources,” in Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on. IEEE, 2015, pp. 57–68.

[5] J. Anselmi, E. Amaldi, and P. Cremonesi, “Service consolidation with
end-to-end response time constraints,” in 2008 34th Euromicro Confer-
ence Software Engineering and Advanced Applications, Sept 2008, pp.
345–352.

[6] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient vm scheduling
for cloud data centers: Exact allocation and migration algorithms,” in
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on. IEEE, 2013, pp. 671–678.

[7] Z. I. M. Yusoh and M. Tang, “A penalty-based genetic algorithm for
the composite saas placement problem in the cloud,” in Evolutionary
Computation (CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1–8.

[8] S. S. Yau and H. G. An, “Adaptive resource allocation for service-
based systems,” in Proceedings of the First Asia-Pacific Symposium on
Internetware. ACM, 2009, p. 3.

[9] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future generation computer systems, vol. 28, no. 5, pp.
755–768, 2012.

[10] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” in Proceedings of the 2008 conference on Power
aware computing and systems, vol. 10. San Diego, California, 2008,
pp. 1–5.

[11] A. E. H. Bohra and V. Chaudhary, “Vmeter: Power modelling for
virtualized clouds,” in Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on.
Ieee, 2010, pp. 1–8.

[12] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
power struggles: Coordinated multi-level power management for the data
center,” in ACM SIGARCH Computer Architecture News, vol. 36, no. 1.
ACM, 2008, pp. 48–59.

[13] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Cluster computing, vol. 12, no. 1, pp.
1–15, 2009.

[14] S. Desai, S. Bahadure, F. Kazi, and N. Singh, “Article: Multi-objective
constrained optimization using discrete mechanics and NSGA-II ap-
proach,” International Journal of Computer Applications, vol. 57, no. 20,
pp. 14–20, 2012.

[15] D. Kanagarajan, R. Karthikeyan, K. Palanikumar, and J. Davim, “Op-
timization of electrical discharge machining characteristics of wc/co
composites using non-dominated sorting genetic algorithm (NSGA-

II),” The International Journal of Advanced Manufacturing Technology,
vol. 36, no. 11-12, pp. 1124–1132, 2008.

[16] A. Paschke and E. Schnappinger-Gerull, “A categorization scheme for
sla metrics.” Service Oriented Electronic Commerce, vol. 80, no. 25-40,
p. 14, 2006.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-II,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[18] K. Y. Lee and F. F. Yang, “Optimal reactive power planning using evolu-
tionary algorithms: A comparative study for evolutionary programming,
evolutionary strategy, genetic algorithm, and linear programming,” IEEE
Transactions on power systems, vol. 13, no. 1, pp. 101–108, 1998.

[19] Y. Zhang, Z. Zheng, and M. Lyu, “Exploring latent features for memory-
based QoS prediction in cloud computing,” in Reliable Distributed
Systems (SRDS), 2011 30th IEEE Symposium on, 2011, pp. 1–10.

[20] D. Borgetto, H. Casanova, G. Da Costa, and J.-M. Pierson, “Energy-
aware service allocation,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 769–779, 2012.

