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Abstract—Micro-services is a widely adopted architecture to
develop large scale web applications. To provide a scalable and
low-overhead resource service to micro-service applications, the
new container-based clouds are proposed. The new clouds use
both containers and VMs to manage resources to achieve a low-
overhead, high-utilization data center. However, existing resource
allocation approaches either do not consider the dependencies
between containers or can only be applied in OS-level container
clouds which allocate containers directly to physical machines.
To address the multi-objective optimization problem, this work
proposes a multi-objective NSGA-II to optimize the availability
of applications and the energy consumption requirement of
container-based clouds. Our goal is to provide solutions with
different tradeoffs between two objectives for cloud providers
to choose from. We evaluate the algorithm with a wide range
of scenarios by simulation and compare with state-of-the-art
algorithms. The results show that our approach significantly
outperforms other approaches.

Index Terms—micro-service, container, server consolidation,
cloud resource allocation, genetic algorithm, evolutionary com-
putation

I. INTRODUCTION

Micro-service architecture [1] gets extensive attention in
recent years as it has the potential to develop large-scale web
applications (e.g. Netflix, Spotify). Micro-service applications
consist of a set of loosely coupled web services. That is,
these web services are maintained independently, deployed
distributed, and communicating through HTTP or messages.
By deploying web services in clouds, applications benefit
from the seemingly infinite resources and can scale up and
down according to workload fluctuation. To adapt to the new
software architecture, cloud providers propose a new type of
cloud, namely a container-based cloud, to provide the low-
overhead running environment for large-scale applications.

Container-based clouds [2], [3] are a new variant of Platform
as a Service (PaaS) clouds [4] that are designed for managing
large scale web applications with containers. Unlike VM-
based clouds where Virtual Machines (VMs) are used as
a resource unit and allocated to Physical Machines (PMs),
container-based clouds [3] use both containers and VMs. As
containers are allocated to various sizes of VMs and VMs
are allocated to PMs, thus container-based clouds have a two-
level allocation structure. On one hand, this structure increases
the flexibility of allocating resources, e.g. containers from
different providers can be co-located to increase the utilization

of VMs, meanwhile, VMs provide high-security isolation for
containers. On the other hand, such a structure increases the
difficulty for resource allocation.

As a key task in container-based clouds, the Micro-service
Allocation in Container-based clouds (MAC) allocates a set of
applications into a data center. Each application is composed
of a set of micro-services where each micro-service could have
multiple replicas. With each replica wrapped with a container,
these containers are allocated to VMs and then to PMs. The
nature of the MAC problem is a multi-objective, two-level
vector bin packing problem [5]. Multiple objectives come
from stakeholders where the cloud providers have the primary
concern of energy consumption and application providers con-
sider Service Level Agreement (SLA)-related objectives, such
as maximizing availability or minimizing the communication
cost between containers. The MAC problem is a vector bin
packing problem because containers have multiple resources
to be allocated.

Literature has discussed several related problems. Much
research discusses the resource allocation in container-based
clouds [3], [5]–[7]. They allocate independent containers to
minimize the energy consumption of the used PMs. However,
these approaches only consider one objective, i.e. minimizing
energy consumption, and neglect the performance of appli-
cations. Other research [8]–[11] consider the micro-service
allocation as a multi-objective problem and optimize objectives
such as energy consumption, communication cost between
containers, and availability of applications. However, these
multi-objective approaches could only be applied in OS-level
container architecture where containers are allocated to PMs
directly. Hence, there is a need to develop a multi-objective
approach for the micro-services allocation in container-based
clouds.

Multi-objective evolutionary algorithms (MOEAs) are well
suited for the MAC problem. As previously mentioned, MAC
problem involves a two-level vector bin packing problem
which is NP-hard. Integer Linear Programming (ILP) or Mixed
Linear Programming (MLP) approaches cannot be used in
large-scale problems because of the high computation time.
Evolutionary algorithms (EAs) search for near-optimal solu-
tions within a reasonable period. Compared to heuristics, EAs
search with a population of solutions. Thus, it has less chance
to get stuck into local optima. Also, MOEAs provide a set of



trade-off solutions in a single run. This is an effective way to
find solutions.

Non-dominated Sorting Genetic Algorithm (NSGA)-II is
one of the most widely applied MOEAs proposed by Deb
et al. [12]. Due to its powerfulness of finding wide-spread
solutions and implementation simplicity [13], NSGA-II has
been successfully applied in many real-world multi-objective
combinatorial problems such as web service allocation [14],
service composition [15], [16] and resource allocation in
clouds [17], [18]. These problems have similar representations
and problem structures with the MAC problem.

Therefore, to address the MAC as a multi-objective resource
allocation problem, we propose a NSGA-II-based approach to
minimize the energy consumption and maximize the avail-
ability. The proposed NSGA-II approach provides a set of
non-dominated solutions that allows cloud providers to choose
from. More specifically, we have the following objectives,

1) To propose a novel problem definition for MAC problem;
2) To develop three novel operators in our NSGA-II-based

approach;
3) To evaluate our proposed approach with three state-of-

the-art algorithms on real-world datasets;
The paper is organized as follows. Section II gives a

background of our methodology and discusses related studies
of the MAC problem. Section III presents the model of the
problem. Then, section IV describes the proposed NSGA-II
approach. Section V illustrates the experiment design, results,
and analysis. Section VI summarizes the contributions and
discusses the future work.

II. LITERATURE AND BACKGROUNDS

A. Related Work
Existing research mostly focuses on two related problems,

i.e. resource allocation in container-based clouds and micro-
service allocation in OS-container clouds. The first one mostly
focuses on allocating independent containers to two-level
container-based clouds to optimize energy consumption. Pi-
raghaj et al. [3], Mann [6], [19] and Zhang et al. [5] develop
AnyFit-based [20] algorithms. These simple heuristics use
human-designed scoring rules to select existing VMs/PMs or
types of VMs. For example, if no existing VM is available for a
container, both [19] and [5] create the smallest VM to host the
container. Tan et al. [21], [22] propose automatically evolved
rules with Genetic Programming that adapt to the dynamically
changing workloads. These approaches are designed for dy-
namic scenarios where containers are needed to be allocated
immediately.

Other works allocate a set of containers together and treat
it as a static problem. Guan et al. [23] define one type of
VM and each PM is filled with ten VMs. Then, they propose
an Integer Linear Programming (ILP) to allocate containers.
Tan et al. [7] propose a dual-chromosome Genetic Algorithm
(GA) approach that can be used in container-based clouds
with heterogeneous VMs and homogeneous PMs. The above
approaches treat containers independently without considering
the correlation among them. They focus on satisfying the

resource requirement of containers and optimizing energy
consumption. For MAC problem usually has multi-objective,
hence these approaches perform poorly on other objectives.

The research on micro-service allocation consider a wide
range of objectives and mostly apply MOEAs. Most of
these research consider multiple objectives such as network
transmission time [11], [24]–[26], load-balancing or energy
consumption [11], [24]–[28], availability [11], [28] and other
affinity requirements [26]. Most of the works apply MOEAs
such as Ant colony algorithm (ACO) [11], NSGA-II [8], and
Particle swarm optimization [27] to solve the problem. Since
these works can only be applied in one-level clouds, they are
not suitable for the two-level MAC problem. Therefore, we
intend to develop a novel multi-objective algorithm to address
the two-level MAC problem.

Among all the objectives, we consider two objectives,
energy consumption and availability of applications. The
reason is that these two objectives are both crucial to the
cloud providers and conflicting in nature. Reducing energy
consumption or improving resource utilization is often the
priority for cloud providers as it minimizes the energy cost.
The availability of an application is a key SLA component
that guarantees the time of an application can be accessed.
Maximizing availability is conflicting with minimizing energy
consumption because it requires the replicas of micro-services
to spread across PMs to avoid single point failure.

B. Multi-Objective Optimization

Multi-objective problems consist of multiple conflicting
objectives. Hence, in these problems, not a single solution
achieves the optimal solution among all the objectives. The
goal of multi-objective problems is to find a set of Pareto
optimal solutions. If all the objectives of a solution A are equal
or better than another solution B and at least one objective are
better than B, we say A dominates B. If two solutions can not
dominate each other, then they are non-dominated. A solution
is a Pareto optimal solution if it is a non-dominated solution.

III. PROBLEM MODEL

In the MAC problem, a set of application A = {a1, . . . , as}
arrive to the cloud to be allocated. Each application con-
sists of a set of micro-services MS = {ms1, . . . ,mso}.
Υ(msj) = ai denotes that a micro-service msj is a component
of the application ai. Micro-services have multiple replicas
with each mapping to a container C = {c1, . . . , cn}. Similarly,
Υ(ci) = msj denotes that a container ci is one of the
containers of micro-service msj . Each container ci has a
CPU occupation ζcpu(ci), a memory occupation ζmem(ci).
There is a set of VM types Γ = {τ1, . . . , τm} that can be
selected to allocate the containers. Each VM type with τj has
a CPU capacity Ωcpu(τj) and a memory capacity Ωmem(τj).
Also, it has a CPU overhead πcpu(τj) and memory overhead
πmem(τj), indicating the CPU and memory occupation for
creating a new VM of that type. There is an unlimited set of
PMs P = {p1, . . . , } for allocating the created VMs. Each
PM pk has a CPU capacity Ωcpu(pk) and a memory capacity



Ωmem(pk). Each PM also has a failure rate F(pk) indicating
that at any time point, a PM has a probability to crush.

The MAC problem is subject to the following constraints:
1) Each container is allocated to one VM.
2) Each created VM is allocated to one PM.
3) For each created VM, the total CPU and memory

occupations of the containers allocated to that VM does
not exceed the corresponding VM capacity.

4) For each PM, the sum of the CPU and memory capac-
ities of the VMs allocated on the PM does not exceed
the corresponding PM’s capacity.

The energy consumption is calculated as follows:

E =

K∑
k=1

Ek, (1)

where Ek is the energy consumption of the kth PM and K is
the number of PM used.
Ek is calculated as follows:

Ek = Eidle
k + (Efull

k − Eidle
k ) · µcpu

k , (2)

where Eidle
k and Efull

k indicate the energy consumption of the
kth PM per time unit if it is idle and fully loaded, respectively.
µcpu
k indicates the CPU utilization level of the kth PM. µcpu

k
is calculated as follows.

µcpu
k =

∑L
l=1

(∑m
j=1 π

cpu(τj) · zjl +
∑n

i=1 Ωcpu(ci) · xil
)
· ylk

Ωcpu(pk)
,

(3)
where xil, ylk and zjl are binary decision variables, and J is
the number of created VMs. xil takes 1 if ci is allocated to the
lth created VM, and 0 otherwise. ylk takes 1 if the lth created
VM is allocated to the kth PM, and 0 otherwise. zjl takes 1
if the lth created VM is of type j, and 0 otherwise.

The availability is calculated as follows:

Availability =

∑S
i=1 Λ(ai)

S
(4)

Where Λ(ai) is the availability of the application ai. It is
defined as the product of the availabilities of the application’s
micro-services.

Λ(ai) = λms1 · λms2 · . . . λmso ,∀Υ(msj) = ai (5)

The availability of a micro-service is related to the PMs
that host its containers (see Eq.6). The micro-service msj is
crushed if all its containers ci are crushed (see Eq.7). Eq.7
means that if the PM pk crushed, then, all the containers in the
PM are crushed. Since these containers are not independent,
the case statement returns the failure rate of the PM (denote
as F (pk)) once. Otherwise, it returns 1.

The following example shows how to calculate the availabil-
ity of an application. An application has two micro-services A
and B. Micro-service A has two containers c1 and c2 which
are both allocated to PM p1. Micro-service B also has two
container c3 and c4 which are allocated to PMs p2 and p3. We

set failure rate for all PMs as 2%. Then, the availability of
the application is calculated as following. Since containers c1
and c2 are allocated to the same PM, the availability of micro-
service A is λ(msA) = 1− 2% · 1 = 98%. The availability of
micro-service B is also λ(msB) = 1 − 2% · 2% = 99.96%.
Then the availability of the application is 98% · 99.96% =
97.9608%.

λmsj = 1−
K∏

k=1

crushPro(pk) (6)

crushPro(pk) =

{
F (pk), if(

∑n
i=1

∑L
l=1 xil · ylk) > 0, ∀Υ(ci) = msj

1, else
(7)

The MAC problem is to find resource allocation with
minimal overall energy consumption and minimal failure (1
- availability) as shown as follows.

min
K∑

k=1

Ek, (8)

min 1−
∑S

i=1 Λ(ai)

S
, (9)

s.t.

L∑
l=1

xil = 1, ∀ i = 1, . . . , n, (10)

K∑
k=1

ylk = 1, ∀ l = 1, . . . , L, (11)

m∑
j=1

zjl = 1, , ∀ l = 1, . . . , L, (12)

n∑
i=1

ζres(ci)xil ≤
m∑
j=1

Ωres(τj)zjl,

∀ l = 1, . . . , L, res ∈ {cpu,mem},
(13)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k = 1, . . . ,K, res ∈ {cpu,mem},

(14)

xil, ylk, zjl ∈ {0, 1}, (15)

where constraints (10) and (11) indicate that each container (or
new created VM) is allocated to exactly one created VM (or
PM). Constraint (12) indicates that each created VM must be-
long to a type. Constraint (13) implies that the total occupation
of all the containers allocated to each created VM does not
exceed its corresponding capacity. Constraint (14) indicates
that the total capacity of the created VMs allocated to each
PM does not exceed its corresponding capacity. Constraint (15)
defines the domain of the decision variables.

IV. THE PROPOSED NSGA-II BASED APPROACH

This section introduces the design of our NSGA-II ap-
proach, which includes the representation, genetic operators,
and the fitness function.



A. Algorithm
Our proposed algorithm follows the standard NSGA-II

framework described in Algorithm.1. The algorithm starts with
the initialization of a population of solutions. Solutions are
represented as a group of PMs hosting VMs and containers
(see next section). The main evolution is an iterative process
consisting of some generations. In each generation, each
individual is evaluated according to objective functions. In
the subsequent loop, a population of children is generated by
crossover and mutation operators. After a new population of
U is generated, we evaluate U , then we sort and calculate
the crowding distance of P ∪ U . Finally, we select the top
individuals to create a new population. This evolutionary
procedure ends when a predefined generation number or a
satisfactory level of the fitness value has been reached.

Algorithm 1: NSGA-II-based Approach for MAC
Input : A set of VM types, A set of containers,
Output: The allocation of containers

1 Initialize a population P with individuals;
2 while Termination Condition is not meet do
3 for Each individual do
4 Evaluate the fitness values;
5 end
6 while children number is less than the population

size do
7 Apply binary tournament selection to select

two parents;
8 Apply crossover over the selected parents;
9 Apply mutation on two children;

10 Add the children into a new population U ;
11 end
12 evaluate individuals from U ;
13 non-dominated sorting of {P ∪ U};
14 calculate crowding distance of {P ∪ U};
15 P ← select population size of individuals from

{P ∪ U};
16 end
17 return the Pareto front of solutions;

B. Representation
The representation of a solution consists of a list of PMs

hosting VMs. Each VM hosts a list of containers. The sizes
of these lists vary according to the allocation.

Fig. 1: Representation

C. Initialization
The initialization intends to create a diverse set of solutions.

First, we randomly shuffles containers and use First Fit (FF)

heuristic to allocate them to a set of VMs with random types
(uniformly choose from a VM table). Then, the VMs are
allocated to a set of PMs with FF. The use of FF guarantees
valid solutions as well as a consolidated VM/PM allocation.

D. Crossover

We propose a gene-level crossover [29] where PMs on the
chromosome are sorted, pair-wisely compared and preserved
(see Fig.2). In the first step, the PMs of a chromosome are
sorted under a criterion, such as CPU utilization or duplication
number (introduced later). Then, two parents are compared
pair-wisely on PMs also under this criterion. The winning
PM preserves its structure by copying all VMs’ types and
containers to the child. Before copying the containers, we
check whether these containers have been allocated in this
child solution. Only the unallocated containers are copied so
that the child solution does not validate the constraint on
containers (Eq. 10). If one parent has more PMs than the other,
the exceeding PMs are copied to the child as well. In the end,
some containers may be unallocated. These free containers are
allocated with the rearrangement operator. After all containers
have been allocated to the child, the empty PMs and VMs in
the child are removed.

Fig. 2: Gene-level crossover

We apply the crossover twice to generate two children with
different sorting criteria. The first criterion considers PM CPU
utilization and prefers higher utilization. The heuristic is that a
good solution contains PMs with higher CPU utilization. The
second criterion favors PMs with duplication numbers. The
duplication number is the total number of containers hosted by
this PM that belong to the same micro-service. The PM with
a high duplication number is undesirable because it increases
the failure of applications.

E. Rearrangement

Rearrangement (see Algorithm.2) inserts free containers
into PMs. Rearrangement randomly selects (50% of chance)
a method from the following methods, i.e. an energy-aware
method, and an availability-aware method. The energy-aware
method (line 3 to line 11) attempts to replace two smaller
containers with a larger free container and uses FF to allocate
the smaller containers. We measure the size of a container



using the product of a container’s normalized utilization of
resources (see Eq. 16). The energy-aware method first sorts
of containers in ascending order (line 3). The basic idea for
this heuristic is that it is easy to allocate small items to bins.
The availability-aware method (line 12 to line 19) intends to
replace a duplicated container of a micro-service from a PM
with a free container.

Algorithm 2: Rearrangement operator
Input : a target container, a list of PMs,
Output: a list of PMs

1 u← Randomly selects from [0, 1];
2 if u > 0.5 then
3 Sort the containers in all VMs according to Eq.16

in ascending order;
4 for each VM do
5 if the two smallest containers in each VM can

be replaced by the target container then
6 Replace two containers with the target VM;
7 Allocate two containers with FF&RC/FF;
8 end
9 end

10 Allocate the target container with FF&RC/FF;
11 end
12 else
13 for each PM do
14 if the target container does not belong to the

same micro-service with any containers in this
PM then

15 Replace a container that has duplicates;
16 Allocate the container with FF&RC/FF;
17 end
18 end
19 end
20 return a list of PMs;

R =
ζcpu(ci)

Ωcpu(pk)
· ζ

mem(ci)

Ωmem(pk)
(16)

F. Mutation
We design two functions in the mutation operator, unpack

and merge. The unpack function intends to improve the
solution by eliminating the PMs with low CPU utilization or
high duplication number. The selection of objectives is also
controlled by a random number. Then, the unpack operator
sorts the PMs according to CPU utilization (descending) or
duplication number (ascending). The operator unpacks the
PMs in a roulette wheel style. That is, the lower-ranking PMs
have a higher chance to be unpacked.

The second function of mutation is merged. Merge replaces
small VMs with a larger one, hence PMs could release more
VM overheads and reduce the degree of segmentation. It also
has two alternative ways, first one merge two smallest VMs in
a PM with a large type of VM without violating the resource
constraint. The alternative is to enlarge the smallest VM with
a larger one. The large type is also selected randomly.

G. Fitness Assignment

The two objective functions are introduced in the previous
section. The energy consumption is calculated according to
Eq. 1 and the availability is calculated according to Eq. 4.

V. EXPERIMENT

The goal of the experiment is to test the performance
of algorithm in two conflicting objectives: energy consump-
tion and availability. We conduct experiments and compare
our proposed algorithms with three benchmark algorithms,
two rule-based FF&BF/FF [6], [30] approach and a Spread
[31] (a method in Kubernetes), and a single-objective dual-
chromosome Genetic Algorithm (dual-chromosome GA) ap-
proach [32].

A. Dataset and Test Instance

We design 8 test instances (see Table.I) with increasing
number of applications from 50 to 200. For each application,
we generate a maximum of 5 micro-services. Each micro-
service has several replicas/containers selected from 2 to 5.
We use a real-world application trace (AuverGrid trace [33]).
We generate the containers using the same way as in [7]. We
set a crush rate of 2.5% for PMs.

For the settings of PMs and VMs, we assume homogeneous
PMs which have 8 cores and the total capacity is [13200 MHz,
16000 MB]. The maximum energy consumption for the PM
is set to 540 KWh. This setting has been used in [6]. We
design two sets of VM types (see Table II), a real-world VMs
(20 types from Amazon EC2) and a synthetic set of VMs (10
types). The real-world VM types are proportional whereases
the synthetic ones are random. The CPU and memory of
synthetic VM types are sampled from [0, 3300 MHz] and
[0, 4000 MB] representing the capacity of one core.

TABLE I: test instances

instance VM types number of applications

1
synthetic
VM types

50
2 100
3 150
4 200

5
real-world
VM types

50
6 100
7 150
8 200

B. Benchmark Algorithms

FF&BF/FF [6], [30] uses three heuristics to allocate
containers. It uses First Fit heuristics to allocate both
containers and VMs and applies a Best Fit (BF) for selecting
VM types. Whenever no available VM can host a container,
the BF selects a type of VM which has just enough resource
to host the container.

Spread [31] is an approach provided by an open-source
container management tool Kubernetes. The simple rule tries



TABLE II: VM types

real world VM types

VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 11 [825, 2000]
2 [412.5, 500] 12 [1650, 250]
3 [825, 1000] 13 [1650, 500]
4 [1650, 2000] 14 [1650, 1000]
5 [412.5, 250] 15 [412.5, 937.5]
6 [412.5, 1000] 16 [825, 1875]
7 [825, 4000] 17 [1650, 3750]
8 [206.25, 500] 18 [412.5, 1312.5]
9 [412.5, 2000] 19 [825, 2625]

10 [412.5, 4000] 20 [2475, 2625]

synthetic VM types

1 [719, 2005] 6 [1311, 3238]
2 [917, 951] 7 [1363, 2634]
3 [1032, 1009] 8 [1648, 1538]
4 [1135, 3542] 9 [2047, 1181]
5 [1231, 1989] 10 [2100, 3013]

TABLE III: Parameter Settings

Parameter Description

mutation rate 0.1
crossover rate 0.7
elitism top 5 individuals
Number of generations 100
Population 100
Selection tournament selection (size = 2)

to allocate containers from the micro-services to different
PMs so that it maximizes the availability of micro-services.
Spread iteratively goes through PMs and uses FF to select a
VM to allocate the container. If no available VM exists, it
will try to create a VM with just enough resources or move
on to the next PM. If no PM is available, a new PM is
created. After allocating a container, it always skips this PM
when allocating the containers from the same micro-service.

Dual-chromosome GA is a recent approach proposed in
[32] to solve the resource allocation problem in
container-based clouds. This approach uses a dual
chromosome representation which includes two vectors, one
represents a permutation of containers, the other represents
the selected VM types. An individual requires a decoding
process to construct a dual-chromosome into a solution. The
rest of the algorithm follows a standard GA process with
vector-based crossover and mutation operators.

C. Parameter Settings

The parameter settings for dual-chromosome GA is listed in
Table III. In addition to our proposed operators, we apply the
elitism [34] with size 5 and tournament selection [35] with
size 2. These methods are standard and widely applied.

All algorithms were implemented in Java version 8 and the
experiments were conducted on i7-4790 3.6 GHz with 8 GB of
RAM running Linux Arch 4.14.15. We applied the Wilcoxon
rank-sum to test the statistical significance.

D. Experiment Results and Analysis

The performance of our proposed NSGA-II is far better
than the other three algorithms. Fig.3a shows the solutions
from 4 algorithms of test case 8 and Fig.3b shows the zone-
in comparison of two GAs. We only show one out of eight
results because their patterns are similar. We plot the combined
results of 30 runs from two GAs and solutions from rule-
based approaches. As we minimizing both energy consumption
and the failure probability, better results are closer to the
origin. As the results showed, the result from FF&BF/FF is
far worse than other approaches at both objectives. Spread
has the best failure probability but it also has the largest
energy consumption. Compared to two GAs, the results from
dual-chromosome GA are dominated by our proposed NSGA-II
approach.

Fig. 3: The best solutions found in four algorithms in test case
8.
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The reasons that FF&BF/FF has a high energy consumption
and failure probability are because of two disadvantages.
Firstly, using FF to allocate containers according to the
original sequence, applications by applications, cause most
containers from the same micro-services are allocated in the



same PM. Hence, the failure probability is high. Secondly, BF
selects the smallest VM to allocate a container. This strategy
creates many small VMs that causing a large amount of VM
overheads and fragmented resources inside VM that cannot be
used. The number of VM can be seen in Fig.4. FF&BF/FF
creates the most number of VMs and then followed by Spread.
Both GAs use much fewer VMs.
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Fig. 4: Number of VMs that four algorithms used in the test
cases with real-world VMs

To compare two GAs, our proposed NSGA-II has two
advantages. The first advantage is that NSGA-II uses a group
representation inspired by group GA. In dual-chromosome
GA, because the vector-based representation needs to be
decoded to evaluate, the search and evaluation are separated
in genotype space and phenotype space. Human-designed
heuristics can hardly be used in the search process because
of this separation. Dual-chromosome GA can only rely on
stochastic search without any domain knowledge. In contrast,
our group representation does not require a decoding process.
Hence, it is easy to embed heuristics in the operators to
improve the performance such as the switch of containers in
the rearrangement operator. The second advantage is that our
NSGA-II provides a set of non-dominated solutions in a run
while the dual-chromosome GA has only one solution in a run.
In such a case, the cloud providers can select an allocation
strategy from the trade-off solutions.

From the evolution process, we may observe both objectives
are improving. Fig.5 shows the evolution of Pareto front in
NSGA-II from a random selected to run from test case 8.
Different colors of circles (from red to orange) represent the
solutions from generation 1 to 100. At the beginning (red
circles), both the solutions are much worse in both objectives.

Later generations of solutions are pushed towards the original
and we may observe the solutions are converging as more and
more solutions are overlapping. This means they can hardly
find better solutions for a long time.
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Fig. 5: The evolution of Pareto front in NSGAII from test case
8 run 27.

VI. CONCLUSION

This work proposes a NSGA-II approach to solving the
micro-service allocation problem in container-based clouds.
Our approach considers the dependencies between micro-
services of applications, and two conflict objectives, minimiz-
ing energy consumption and maximizing application availabil-
ity. Our proposed NSGA-II adopts a group-based representa-
tion and embedded with bin-packing heuristics in the genetic
operators. We run experiments on real-world datasets with
comparison with three state-of-the-art algorithms: FF&BF/FF,
Spread, and a dual-chromosome GA. The results show that our
proposed NSGA-II outperforms all other approaches in both
objectives. Also, NSGA-II provides a set of solutions that has
a trade-off between energy consumption and availability.
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