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Abstract—Containers are lightweight and provide the potential to reduce more energy consumption of data centers than Virtual
Machines (VMs) in container-based clouds. On-line resource allocation is the most common operation in clouds. However, the on-line
Resource Allocation in Container-based clouds (RAC) is new and challenging because of its two-level architecture, i.e. the allocations
of containers to VMs and the allocation of VMs to physical machines. These two allocations interact with each other, and hence cannot
be made separately. Since on-line container allocation requires a real-time response, most current allocation techniques rely on
heuristics (e.g. First Fit and Best Fit), which do not consider the comprehensive information such as workload patterns and VM types.
As a result, resources are not used efficiently and the energy consumption is not sufficiently optimized. We first propose a novel model
of the on-line RAC problem with the consideration of VM overheads, VM types and an affinity constraint. Then, we design a
Cooperative Coevolution Genetic Programming (CCGP) hyper-heuristic approach to solve the RAC problem, named CCGP-RAC.
CCGP-RAC can learn the workload patterns and VM types from historical workload traces and generate allocation rules. The
experiments show significant improvement in energy consumption compared to the state-of-the-art algorithms.
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1 INTRODUCTION

Containers have long been used in PaaS clouds, such as
Heroku [1] and OpenShift [2], for deploying applica-

tions. With the advent of web-based applications, such as
server-less and micro-service architectures, containers be-
come even popular. Containers are ideal for providing a low
overhead, isolated environment for application components.
Container-based clouds not only allocate more applications
than Virtual Machines-based clouds (see Fig. 1) by sharing
Operating Systems (OSs), but also release the burden of
application providers by managing the cloud resources with
auto-scaling and migration techniques [3].

Although containers have numerous advantages com-
pared to Virtual Machines (VMs), e.g. fast start-up time
and low overhead, they suffer from security threats [4],
[5] and performance interference (e.g. competition on I/O
resources) [6], [7]. Therefore, when facing the diverse re-
quirements from applications, e.g. various OSs and security
levels, cloud providers use VMs to provide an extra level of
isolation for allocating containers. Hence, a new two-level
resource allocation [8]–[11] emerges where on the first level,
containers need to be allocated to VMs. New VMs may be
used if the existing VMs do not enough resources to host
the containers. On the second level, the VMs allocated with
containers need to be allocated to PMs.

The container-based clouds brings new challenges to
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Fig. 1: Compared to VM-based, the number of VM can be reduced in
container-based cloud because containers are co-allocated to VMs.

resource allocation. Resource allocation aims to minimize
overall energy consumption in clouds by appropriately
allocating resources (i.e. CPU and memories) to applica-
tions without overloading the PMs [12]. In a data center,
allocation requests arrive from time to time while existing
containers change over time due to their elastic nature. A
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cloud provider needs to allocate proper resource as requests
arrive, which is called an on-line resource allocation prob-
lem. The problem of on-line Resource Allocation in Container-
based clouds (RAC) is more difficult than resource allocation
in VM-based clouds because of the finer granularity of
resources. Both levels of allocation need to be optimized and
the interaction between the allocations also makes it difficult
to find the optimal solution.

Current works mostly employ rule-based approaches
[13] to achieve fast and acceptable solutions. This is because
the on-line RAC problem requires a real-time solution. Rule-
based approaches are reactive approaches which response to
arrivals of containers and the needs of container migration.
Rule-based approaches are effective for solving RAC prob-
lem because they consider some features that are related to
resource allocation at the time of container arrivals. Other
approaches such as meta-heuristics-based ones [14], [15] are
too slow for the on-line problem.

Current rule-based works have three major drawbacks.
Firstly, some research focuses on container-based cloud
where the allocation is a single-level problem [16]. These
approaches cannot achieve good performance because they
do not consider the interaction between the two levels.
Secondly, the current rules are simple. They only consider
simple features (e.g. residual resources of PMs) to make
decisions. As a result, these rules cannot adapt to various
workload patterns of applications [17] as well as different
sets of VM types. The workload patterns of applications
have been proven a critical factor to the resource allocation
problems [18]. Therefore, the rules that ignore the patterns
and VM types will lead to poor performance. The third
drawback of the framework of AnyFit-based algorithms
[19], [20] is that it always starts from allocating containers
to existing VMs. Hence, it limits the decision and its perfor-
mance.

In our previous works, we addressed the above issues by
proposing a GPHH approach for the single-level allocation
problem [17], GPHH with heuristics [21] for the RAC prob-
lem, named GPHH-RAC. However, previous studies learn a
single-level allocation rule for allocating containers to VMs.
On the other hand, the allocation of VMs to PMs is manually
designed.

In this work, we propose a novel Cooperative Coevo-
lutionary Genetic Programming to RAC (CCGP-RAC) ap-
proach that generates allocation rules for both levels simul-
taneously. Several reasons motivate us to propose a CCGP
approach. Firstly, CCGP-RAC is a learning algorithm that
can train the allocation rules off-line, and then apply them to
solve the on-line RAC problem. Secondly, CCGP-RAC trains
multiple rules simultaneously by considering the interac-
tions between them. CCGP has been successfully employed
in many cooperative problems such as Dynamic Flexible Job
Shop Scheduling (DFJSS) [22], multi-robot path planning
[23] and multi-depot vehicle routing problem [24]. These
combinatorial optimization problems have multiple cooper-
ative stages which are similar with the on-line RAC problem.
Thirdly, CCGP-RAC can learn the workload patterns by
using the historical resource requirements of containers.
Lastly, CCGP-RAC can easily generate reservation-based
rules as shown in [21]. Therefore, CCGP is a promising
technique for our problem.

The overall goal of this paper is to propose a CCGP
approach for solving the on-line RAC problem. In particular,
we will design CCGP-RAC to automatically generate allo-
cation rules for both containers–VMs level and VMs–PMs
level to minimize the overall energy consumption. More
specifically, we have the following objectives:

1) Propose a formal model of the on-line RAC problem
with the consideration of VM overheads, VM types,
and affinity constraint;

2) Design a terminal set including features of work-
loads and VM types for CCGP-RAC;

3) Develop CCGP-RAC for evolving the allocation
rules for two levels simultaneously;

4) Evaluate our proposed approach by comparing it
with human-designed rules and a state-of-the-art
approach [21] on benchmark datasets;

The novelties of our proposed a CCGP approach are
demonstrated in the following aspects. CCGP-RAC uses a
new representation that is able to represent two rules at the
same time, with one for allocating containers to VMs and
the other one for allocating VMs to PMs. In addition, CCGP-
RAC is based on a cooperative coevolution (CC) framework
that can coordinate multiple evolutionary algorithms to
evolve simultaneously. To apply the general CC framework
to solve the RAC problem, we designed a set of novel
problem-specific terminals.

The paper is organized as follows. Section 2 gives a
background of our method and discusses related studies
of the on-line RAC problem. Section 3 first presents the
model of the RAC problem. Then, it introduces the proposed
CCGP-RAC. Section 4 illustrates the experiment design,
results, and analysis. Section 5 provides the analysis of
human-designed rules and the CCGP-RAC evolved rules.
Section 6 summarizes the contributions and discusses the
future works.

2 LITERATURE SURVEY

This section gives a brief background of the hyper-
heuristics, GPHH, and CCGP. Then, we discuss the related
works of the on-line RAC problem from both perspectives
of models and methods.

2.1 Hyper-Heuristics, GPHH, and CCGP

Hyper-heuristic is a learning method which searches in the
heuristic space rather than the solution space [25]. Hyper-
heuristic exploits the structure of a problem and uses the do-
main knowledge to automatically design heuristics for that
problem. Although the domain knowledge is still provided
by domain experts, human are freed from the difficulty of
manual search for the best ways of combining potential
components. Hyper-heuristic algorithms can be categorized
into two groups: selective and generative [26]. Selective hyper-
heuristics rank the best heuristics from a set of heuristics.
Generative hyper-heuristics generate heuristics from a set of
building blocks or domain knowledge given by domain ex-
perts. In our problem, we mainly focus on generative hyper-
heuristics because we aim at generating effective rules for
the RAC problem.
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In recent years, genetic programming (GP) has become
popular in generative hyper-heuristics known as GP Hyper-
Heuristic (GPHH) [27]. GP can represent and evolve com-
plex rules, and is therefore naturally suitable for heuristics
generation.

GPHH uses GP as a search mechanism to automatically
find computer programs for solving a specific task. GPHH
optimizes computer programs in an iterative fashion. At
the beginning, GPHH generates a population of individu-
als where each individual represents a computer program.
Then the evolution starts. A fitness function is defined
to evaluate these programs in each iteration. Then, top
individuals will be retained in the next population. Other
individuals will be modified by genetic operators, such as
crossover and mutation, and added to the new population.
The evolution stops after a predefined number of iterations.

CCGP combines GP with a cooperative framework [28],
so that CCGP can simultaneously evolve multiple heuristics
to solve a problem. CCGP maintains N sub-populations for
generating N heuristics respectively.

GPHH has been successfully applied in a variety of
problems. In Job Shop Scheduling (JSS) problems, GPHH
has been widely used for evolving dispatching rules for
various of JSS problems such as multi-objective JSS [29]
the multi-task JSS [30], dynamic flexible JSS [31], and the
JSS with machine breakdown [32]. The generated rules
outperform neural network techniques. For the bin packing
problems, GPHH has been applied to evolve the rules for
1-dimension [33], 2-dimension [34], and 3-dimension [35]
problems. In these cases, the generated rules outperform
human-designed rules in terms of performance. Further, the
automatic learning procedure greatly reduces the complex-
ity of the heuristic-design process.

CCGP has been used for generating multiple cooperative
heuristics. In [36], CCGP generates sequencing and routing
rules for Dynamic Flexible JSS (DFJSS) [22], [37]. Similarly,
Zhou et al. [38] employ CCGP to evolve machine assign-
ment and job sequencing rules for a multi-objective DFJSS
problem. CCGP is suitable for solving the RAC problem
because it can design multiple cooperative rules and these
rules adapt to the changing workload patterns.

2.2 Related Work

This section reviews the current studies on Resource Alloca-
tion in Container-based clouds (RAC) in terms of the problem
model and methods. Then, we summarize their drawbacks
which motivate us to improve the performance of RAC.

2.2.1 Problem Models
The RAC problem is a two-level bin packing problem which
is NP hard [39]. Researchers have simplified the problem
model with different assumptions. For example, Zhang et
al. [11] study resource allocation for applications without
considering service arrive and departure time. Zhang et
al. [40] assume all the applications will be hosted for a
period of time. Many researchers [41], [42] find that live
migration introduces high overhead and downtime. Wolke
et al. [42] suggests that allocation could be performed peri-
odically and treated as a static problem. Other researchers
[13] study resource allocation in clouds by focusing on con-
tainer migrations, for which container migration overhead

is considered in order to decide the time and the number
of containers to migrate. Similar to the studies in [43], [44],
our work studies resource allocation for applications when
allocation requests arrive. Applications would normally be
hosted in clouds for much longer time than the time used
by allocation process.

We summarize the existing models of RAC problem from
the perspectives of objectives, dimensions of resources, and
constraints. Existing studies for the RAC mainly have two
objectives. The first one is from the perspective of cloud
providers. They focus on minimizing the energy consump-
tion of the used PMs [13], [43], [45], [46] or improving the
utilization of resources [47]. Guan et al. [16] and Zhang
et al. [48] consider not only the energy consumption but
also the cost of the data exchange between containers. Fan
et al. [47] focus on improving the utilization of PMs and
load balancing between the VMs in the same PM. The other
objective represents service providers. Guerrero et al. and
Nardelli et al. [8], [49] aim to minimize the cost of the used
resources. In our work, we focus on the energy consumption
of cloud data centers.

Most of the existing studies [13], [44], [46] model the
RAC problem as a vector bin packing problem [20]. They
generally consider two dimensions of resources, i.e. CPU
and memory. Another study [47] considers more resources
such as local and remote disks.

As for the constraints, current studies generally consider
two types of constraints. The first one is the resource con-
straint [13], [44], [46]–[48] where the total resource require-
ment of containers cannot exceed the capacity of the VMs
and the total VM capacities on a PM cannot exceed the
PM. The second one is that each container should only be
allocated to one VM [46], [47].

Current studies mainly ignored three characteristics in
the model of the RAC problem. The first characteristic is the
overall measurement of energy. Most of the existing stud-
ies evaluate allocations by measuring the temporal energy
consumption at a certain time point [44]. However, the eval-
uation is not fair because the energy consumption of a data
center is determined by the overall energy consumption of
a given period [50]. For example, Fig. 2 shows the curves of
energy consumption from two methods. Although energy
consumption is the same at time t, the difference in the
actual energy consumption during the entire period (the
areas under the curves) can be huge. Therefore, to address
this issue, we consider the accumulated energy consumption
as a quality measure.

Fig. 2: The energy consumption at time t are same for method A and B.
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The second limitation is that the existing works do not
consider VM overheads. As a result, small VMs are often
selected for containers. However, a large number of small
VMs leads to VM sprawl [51]. On the other hand, creating
large VMs leads to unused VM resources [44]. This trade-off
is the core issue in the VM creation problem. Some research
considered the existence of overheads [43], [44], but they do
not provide much analysis. We consider VM overheads in
the model and Section 5.1 will provide an analysis of how
the overheads affect energy consumption.

Additionally, no study has considered affinity con-
straints of RAC. Affinity constraints define which containers
can be co-allocated. Without the affinity constraint, all con-
tainers can be allocated directly to PMs. Containers require
distinct Operating Systems (OSs) and software libraries.
Therefore, not all containers can be consolidated into a
single VM [52]. Therefore, we consider the requirement of
OSs as the affinity constraints in this work.

In summary, existing works either use biased evaluation
measure to evaluate container allocations, ignore VM over-
heads or affinity constraints. In this work, we will address
the deficiencies of existing works in our problem model.

2.2.2 Existing allocation methods
For solving the on-line RAC problem, most research [13],
[43], [44], [53] apply an AnyFit-based framework [19] with
a human-design rule. Since the RAC problem has been
considered as a vector bin packing problem with multiple
resources, we need a rule to measure the residual resources.
Many rules have been proposed to combine multiple re-
sources into a single value [19].

Energy-aware BestFit [53] and Least Full Host Selection
algorithm [13] essentially are the same algorithm. They use
the same energy evaluate function (see in Eq. (2)). Therefore,
these two approaches select PMs with the least CPU usage.
Mann [44] applies six rules (such as sub, sum, and product)
for the RAC problem. Wood et al. [54] propose a volume rule
to allocate resources in VM-based clouds. They choose target
PMs with the least volume = 1

1−cpu ∗
1

1−mem .
However, the performances of human-designed rules

vary on different workload patterns [17]. To generate rules
that can adapt to the given workload patterns, the GPHH-
RAC approach is proposed [17]. The experiments have
shown that the performance of the rules generated by
GPHH-RAC outperformed human-designed rules in both
balanced and unbalanced workload patterns.

In the RAC problem, most of the research employs
AnyFit-based algorithms such as Best-Fit and First-Fit.
AnyFit-based algorithms always select existing VMs until
no VM is available. Then, they apply a simple heuristic such
as a Just-Fit [44] or Largest [44] to create VMs. These simple
heuristics may not lead to the optimal allocation at the end,
because they either create a large number of small VMs,
which wastes the resources on VM overheads or create large
but empty VMs.

To allow a more flexible allocation of containers, a
reservation-based algorithm [20] considers not only the
existing VMs but also new VMs. In particular, the GPHH-
RAC approach is proposed to generate allocation rules to
select the existing VMs as well as new VMs, while the First-
Fit rule is used to allocate new VMs to PMs. Since the VM

creation and selection are combined, the search space is
more comprehensive and we have higher chances to find
the optimal solution.

Hence, this work proposes CCGP-RAC to simultane-
ously generate rules for both levels of resource alloca-
tion with the consideration of workload patterns and VM
types. Specifically, for the container–VM level, we generate
reservation-based rules so that it avoids the drawback of the
Anyfit-based rules. The generated rules cooperate to achieve
a near-optimal allocation of containers.

3 METHODOLOGY

This section introduces the proposed problem model and
CCGP-RAC.

3.1 Problem Model

Fig. 3: The procedure of the on-line RAC.

The Resource Allocation in Container-based Clouds (RAC)
problem is a task of allocating a set of containers to a set
of VMs with various types, then allocating the created VMs
to a set of PMs. Fig. 3 illustrates the allocation with three
decision-making procedures: VM selection, VM creation,
and PM selection. VM selection chooses an existing VM
to allocate a container. VM creation selects a type of VM,
creates a new VM with the selected type and allocates the
container to the new VM. The types of VM are defined
by cloud providers. PM selection chooses an existing PM
to allocate the new VM. If there is no available PM, a
new PM will be created and the data center automatically
allocates the new VM to the new PM. Since the PMs are
homogeneous, no decision is needed for PM creation.

We show the notations used in our model and their
descriptions in Table.1. In the RAC problem, a sequence
of containers C = {c1, . . . , cn} arrives to the cloud to be
allocated. For the sake of simplicity, we assume they arrive
at a constant pace, i.e. container ci arrives at time i. Each
container ci has a CPU occupation ζcpu(ci), a memory
occupation ζmem(ci), and the operating system OS(ci) for
running it. There is a set of VM types Γ = {τ1, . . . , τm}
that can be selected to allocate the containers. Each VM
type τj has a CPU capacity Ωcpu(τj) and a memory capacity
Ωmem(τj). In addition, it has a CPU overhead πcpu(τj) and
memory overhead πmem(τj), indicating the CPU and mem-
ory occupation for creating a new VM of that type. There is
an unlimited set of PMs P = {p1, . . . , } for allocating the
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TABLE 1: Notation and description of the problem model

Notation Description

ci a container of index i
τj the VM type of a VM j
pk a PM of index k
xil An indicator of whether the container i is allocated to the l created VM
ylk An indicator of whether the lth created VM is allocated to the kth PM
zjl An indicator of whether the lth created VM is of type j
E The energy consumption of the data center over the allocation period
Etk The energy consumption of the kth PM at time t
EP idle

k , EP full
k The energy consumption when the kth PM is idle and fully used

ζcpu(ci), ζ
mem(ci) The CPU and memory occupation of the ith container

Ωcpu(),Ωmem() The CPU and memory occupation of a resource entity
πcpu(τj), πmem(τj) The CPU and memory overheads of a VM type of τj
OS(ci) The operating system type of the ith container
µcputk , µmem

tk The CPU and memory utilization of a the kth PM at time t

created VMs. Each PM pk has a CPU capacity Ωcpu(pk) and
a memory capacity Ωmem(pk).

The RAC is subject to the following constraints:

1) Each container is allocated to one VM.
2) Each created VM is allocated to one PM.
3) For each created VM, the total CPU and memory

occupations of the containers allocated to that VM
does not exceed the corresponding VM capacity.

4) For each PM, the sum of the CPU and memory
capacities of the VMs allocated on the PM does not
exceed the corresponding PM’s capacity.

5) For each created VM, the installed operating system
must be the same as the required operating system
of all the allocated containers.

The accumulated energy consumption over the alloca-
tion period is calculated as follows.

E =
n∑

t=1

K∑
k=1

Etk, (1)

where Etk is the energy consumption of the kth PM (K is
the number of PM used) at time t.

Etk is calculated as follows.

Etk = Eidle
k + (Efull

k − Eidle
k ) · µcpu

tk , (2)

where Eidle
k and Efull

k indicate the energy consumption
of the kth PM per time unit if it is idle and fully loaded,
respectively. µcpu

tk indicates the CPU utilization level of the
kth PM at time t. µcpu

tk is calculated as follows.

µcpu
tk =

∑L
l=1

(∑m
j=1 π

cpu(τj) · zjl +
∑n

i=1 Ωcpu(ci) · xil
)
· ylk

Ωcpu(pk)
,

(3)
where xil, ylk and zjl are binary decision variables, and L
is the number of created VMs. xil takes 1 if ci is allocated
to the lth created VM, and 0 otherwise. ylk takes 1 if the lth
created VM is allocated to the kth PM, and 0 otherwise. zjl
takes 1 if the lth created VM is of type j, and 0 otherwise.

Given the above mathematical notations, the RAC prob-
lem can be formulated as follows.

min
n∑

t=1

K∑
k=1

Etk, (4)

s.t.
L∑

l=1

xil = 1, ∀ i = 1, . . . , n, (5)

K∑
k=1

ylk = 1, ∀ l = 1, . . . , L, (6)

m∑
j=1

zjl = 1, , ∀ l = 1, . . . , L, (7)

n∑
i=1

ζres(ci)xil ≤
m∑
j=1

Ωres(τj)zjl,

∀ l = 1, . . . , L, res ∈ {cpu,mem},
(8)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k = 1, . . . ,K, res ∈ {cpu,mem},
(9)

OS(ci1) = OS(ci2), ∀
L∑

l=1

xi1lxi2l = 1, (10)

xil, ylk, zjl ∈ {0, 1}, (11)

where constraints (5) and (6) indicate that each container (or
created VM) is allocated to exactly one created VM (or PM).
Constraint (7) indicates that each created VM must belong to
a type. Constraint (8) implies that the total occupation of all
the containers allocated to each created VM does not exceed
its corresponding capacity. Constraint (9) indicates that the
total capacity of the created VMs allocated to each PM does
not exceed its corresponding capacity. Constraint (10 means
that the containers allocated to the same VM must have
the same required operating system, which is the installed
operating system on that VM. Constraint (11) defines the
domain of the decision variables.

This model is used in the simulation of our experiments
to evaluate the container allocation algorithms. The newly
introduced features, VM overheads, are also considered in
our CCGP-RAC.

3.2 CCGP-RAC

This section describes the proposed Cooperative Coevolu-
tion Genetic Programming (CCGP) approach for the on-line
Resource Allocation in Container-based clouds (RAC) problem
(CCGP-RAC). We first give an overview of CCGP-RAC and
then introduce the representation of the allocation rules, the
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terminal set, and the fitness function. In the end, we describe
the algorithm in details.

3.2.1 Overview
The on-line RAC problem involves three decision processes,
VM selection, VM creation, and PM selection (see Section
3.1). We propose CCGP-RAC to automatically generate rules
for these processes. In our approach, we combine the VM
selection and VM creation and uses a single rule to make
both decisions. The other rule PM selection is also generated
by CCGP-RAC simultaneously.

To generate rules to solve the on-line RAC problem, we
design CCGP-RAC to search for the rules which adapt to the
training data including various workload patterns and VM
types. The training process is performed off-line and may
take a long computation time (hours). The generated rules
will then be used to solve on-line RAC problem.

Fig. 4: The overview of the training process of CCGP-RAC.

Fig. 4 shows an overview of the training process of
CCGP-RAC. CCGP-RAC initializes two populations of rules
randomly. Then, the rules are evolved cooperatively by
the genetic (e.g. crossover and mutation) operators. A set
of training instances are used for fitness evaluation. To
evaluate a rule, first, the rule is combined with a collaborator
from the other sub-population to form a pair of rules. Then,
the pair of rules are applied to each training instance to
generate an allocation solution. Finally, the average quality
(i.e. accumulated energy consumption) of the allocation
solutions is set to the fitness of the evaluated rules. By iter-
atively evaluating and modifying the rules, the population
gradually searches in the space of rules. The performance
keeps improving because only the best pairs of rules are
kept to the next generation. This process of evaluation
and modification continues until a predefined number of
iterations is reached. Finally, CCGP-RAC outputs a pair of
rules with the best fitness value in the training process. The
pair of rules will then be used to generate the allocation
solution for any (unseen) RAC problem instance.

Notice that, CCGP-RAC is different from our previous
GPHH-RAC approach [17] in the training process. CCGP-
RAC evolves two populations of rules. In each generation,

the best individuals of two populations are selected to
cooperate with the rules from the other population, while,
in GPHH-RAC, the individuals cooperate with a predefined
rule throughout the whole evolution process.

3.2.2 Representation, Terminal Set, and Function Set
The allocation rules act as a priority function which assigns a
score to each candidate allocation decisions. With the score,
we can decide which VM/PM to allocate the container/VM.
The allocation rules are constructed by the features in the
terminal set and function set.

Fig. 5: The tree-based representation of a rule.

We use trees to represent rules (see Fig. 5). The benefit
of using trees is that they can be easily interpreted as a
prefix notation [55]. In addition, since the trees can grow,
they can represent a complex relationship. Furthermore,
trees are easy to be manipulated such as by pruning and re-
constructing, therefore, we can easily evolve them to search
in the rule space.

The nodes on Fig. 5 are drawn from the terminal set (the
T nodes) and the function set (the f nodes). To generate
sophisticated rules, we consider many features of the RAC
problem and use them as a terminal set of GP trees. Table
2 describes the terminal and function sets that we used in
CCGP-RAC. Note that the terminal sets for VM selection and
creation rules and PM selection rules are different while the
function set is the same. The design of the terminals follows
the research [34] on 2D bin packing.

An illustration of the terminals is shown in Fig. 6. The
leftVmMem and leftVmCpu are the remaining resources of
a VM. They are calculated as subtracting the configuration
resources of the VM by the overhead of that VM and the
resources used by the containers running on the VM. The
leftPmMem and leftPmCpu are the remaining resources of
a PM. They are calculated as subtracting the configuration
resources of the PM by the configuration resources of the
VMs running on that PM. The protected % returns 1 when
the denominator is 0.

Fig. 6: Illustration of the features used in the terminal set

3.2.3 Fitness Function
To evaluate a pair of rules, we need to first apply the pair of
rules on a training instance. Then, we use a fitness function
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TABLE 2: Terminal and Function sets of CCGP-RAC

Symbol Description

Attributes for VM selection and creation

leftVmMem remaining memory of a VM
leftVmCpu remaining CPU of a VM
vmMemOverhead memory overhead of a VM
vmCpuOverhead CPU overhead of a VM
coCpu container CPU requirement
coMem container memory requirement

Attributes for PM selection

leftPmMem remaining memory of a PM
leftPmCpu remaining CPU of a PM
vmMem the configuration memory of a VM
vmCpu the configuration CPU of a VM

Function set +,-,×, protected %

to calculate its performance and represented as a fitness
value.

Algorithm 1 shows the procedure of an allocation pro-
cess. At the beginning, the training process randomly ini-
tializes a data center by generating a number of PMs and
allocating a random number of containers into them. Then,
a set of containers C arrives and are allocated one by one. To
allocate a container, first, the VMs with conflicting OS to the
container are filtered before the selection. The VM selection
and creation rule vr is used to select an existing VM or create
a new VM in line 6. The idea of the VM selection and creation
rule is to include the new VM (one for each type) into the
candidate VM list. If a new VM is created, the OS of the VM
is set to the same as the container’s OS requirement. Then,
the PM selection rule pr is used to select among the existing
PMs in line 10. If there is no available PM, line 12 creates
a new PM to host the VM. The training procedure outputs
the accumulated energy consumption AE as introduced in
Eq. (1).

Algorithm 1: The procedure of the container alloca-
tion

Input : VM selection and creation rule vr, PM
selection rule pr

Output: accumulated energy consumption AE
1 for a training instance in S do
2 AE = 0;
3 Initialize the data center;
4 for each container in C do
5 Filter the VMs with a conflicting OS with the current

container;
6 vm = vmSelectionCreation(container, vr);
7 allocate(container, vm);
8 if vm is new then
9 add(vm, the list of VMs);

10 pm = pmSelection(vm, pr);
11 if pm is null then
12 pm = pmCreation();
13 add(pm, the list of PMs);
14 end
15 allocate(vm, pm);
16 end
17 AE += calculateEnergy(pm);
18 end
19 end
20 return AE;

The fitness function is then used to evaluate the pair of

rules. The fitness function is designed as follows:

fitness =
ÃE

N
(12)

where ÃE is the normalized accumulated energy consump-
tion of the allocation of a training instance. N is the number
of containers. With ÃE

N , we calculate the average accumu-
lated energy consumption per container.

We normalize the AE of a rule with the accumulated
energy consumption of a benchmark rule (e.g. AEb) using
Eq. (13). The reason that we use normalized AE is that dif-
ferent training instances have major differences. It is unfair
to use the aggregation of AE of all training instances to
compare algorithms. In our experiments, the normalization
is based on the benchmark rule sub&Just-Fit/FF which is
explained in Section 4.1.2 i.e.

ÃE =
AE

AEsub&Just−Fit/FF
(13)

3.2.4 Algorithm
The proposed CCGP-RAC is described in Algorithm 2. It
starts with the initialization of two sub-populations of Pvr

and Ppr (line 1). Each sub-population contains N randomly
generated rules. We apply the ramped Half-and-Half [55]
in constructing trees to ensure the diversity in each sub-
population.

Algorithm 2: CCGP for the on-line RAC(CCGP-
RAC)

Input : A set of training instance S, Terminal sets
and function sets

Output: The best VM selection and creation rule, The best PM
selection rule

1 Initialize each sub-population Pr with r = {vr, pr}
2 Pr ← {pr1, pr2, · · · , prN};
3 gen← 0
4 while maxGeneration is not reached do
5 for r = vr → pr do
6 for i = 1→ N do
7 AE ← apply pri and pr

′
rep on the training instance

sgen where r′ 6= r (see Algorithm 1);
8 calculate ÃE;
9 pri ←

ÃE
N

;
10 end
11 end
12 for r = vr → pr do
13 pselectedr ← TournamentSelection(pr);
14 pr ← genetic operators(pselectedr );
15 end
16 gen← gen+ 1
17 end

The iteration of evaluation and modification begins
at line 4 and repeats until a predefined maxGeneration is
reached. The gen is the counter of the iteration. We evaluate
the rules in turns (the loop from line 5 to line 11). At the
beginning, each rule pri from Pvr is paired with a represen-
tative rule pr

′

rep from the Ppr (the loop from line 6 to line
10). The best rule is defined as a representative of that sub-
population. In the first generation, we randomly select a
rule from Ppr as the representative. Then the pair of rules is
evaluated in line 7.

In the evaluation stage, we apply the pair of rules to
allocate a set of containers to a set of PMs. The detailed
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allocation process is shown in Algorithm 1. The allocation
returns the accumulated energy consumption of AE. Then,
we normalize the value (line 8) by Eq. (13) and calculates
the fitness value (line 9) by Eq. (12). The information on
containers and PMs are given by a training instance sgen

from the training set. We switch to a different training
instance in each generation to improve the generalization
of the rules.

When all rules have been evaluated, we apply the
tournament selection and genetic operators on two sub-
populations. The tournament selection [55] guides the evo-
lutionary process. The rules with higher fitness values have
larger probabilities to be selected. Then, two genetic oper-
ators, crossover and mutation, are applied on the selected
rules.

Crossover and mutation stochastically generate new so-
lutions from the selected rules. The crossover randomly
selects the branches on two selected rules and switch the
branches. The mutation randomly selects a branch and
replaces it with a randomly generated branch. After the
modification by genetic operators, new rules are added
to the new generation of the population. The tournament
selection and genetic operators keep generating new rules
until the new population has the same number of rules as
before. Then, the next iteration starts.

4 EXPERIMENTS

To evaluate the performance of our proposed CCGP-RAC,
we conduct experiments using two real-world datasets and
compared with two state-of-the-art methods. This section
first illustrates the experiment design including datasets,
compared methods, and test instances, and then shows the
results.

4.1 Experiment Design

The experiment compares our CCGP-RAC with other meth-
ods to demonstrate the effectiveness of CCGP-RAC. We
evaluate the performance of CCGP-RAC with a variety of
scenarios, with different complexities, i.e., 30 of VM types, 3
types of OS, and two real-world datasets.

All algorithms were implemented in Java version 8 and
the experiments were conducted on an i7-4790 3.6 GHz with
8GB of RAM running Linux Arch 4.14.15-1.

4.1.1 Simulation
We designed and implemented a simulator which is used
in the training and testing the rules for container alloca-
tion. The purpose of the simulator is to test whether the
evolved rules can outperform the existing algorithms in the
allocation tasks. Therefore, other features are ruled out to
eliminate their effects. The rules are independent from the
simulator and can be used in other data center simulators.

Below are the configurations of the simulator.

1) Containers arrive uniformly between [0, T];
2) Arrived containers must be allocated immediately;
3) Overload threshold of VM/PM is 100% of resource

utilization;
4) No weight or priority of containers, which means

containers are equally important;

5) Two sets of VMs types and homogeneous PMs (all
PMs have the same initial resources);

6) Assume an infinite number of available VMs/PMs
that can be used;

Each simulation allocates a set of containers into an ini-
tialized data center. The simulation starts with a randomly
initialized data center, which contains a set of containers
running on VMs/PMs. Then, a set of containers arrives at
the data center one by one. A simulation uses four allocation
rules, VM creation, VM selection, PM creation, and PM
selection, to allocate the containers into the data center.

We design the data center initialization to simulate a
real-world scenario in which PMs are running in different
utilization levels. Random initialization can also help to
train rules that are robust to a different initial state of data
centers.

In a data center with an initial state, the container alloca-
tion procedure allocates containers to existing VMs or new
VMs of some available types. The allocation procedure uses
four allocation rules to allocate containers to VMs (existing
or new), which are then allocated to PMs (existing or new).
In particular, PM creation creates a PM with a fixed capacity
for all experiments because we consider homogeneous PMs.
The PM creation rule creates a PM when no existing PM
is available. All other rules can be human-designed rules
or evolved rules. Once all the containers are allocated, the
simulator evaluates the performance of the data center,
which is the accumulated energy consumption of all used
PMs during the period of allocation.

To reliably measure the effectiveness of the rules, a large
number of simulations (e.g. 30 to 50) are usually needed [56].
For training, we use 100 simulations in a rotating manner.
That is, we switch to a new training instance at each
generation. The purpose of switching simulation is to find
good rules for VM selection and creation and PM selection,
independent from training instances. This training method
has been successfully applied in JSS problems [57]. For
testing, we use 30 simulations. The testing result shows an
average performance on the simulations.

4.1.2 Benchmark Algorithms

The sub&Just-Fit/FF rule is proposed in [44]. It applies
BestFit with the sub rule to select the suitable VMs for
containers. The sub rule is a way to measure the balance
between multiple residual resources [58]. sub&Just-Fit/FF
rule aims to maximize the balance in order to achieve a
better energy efficiency. In our problem, the sub rule can be
represented as |cpu−mem|. The Just-Fit first sorts the VM
according to a resource. In our case, we sort the resources
according to residual memory because memory is the
bottleneck in our datasets (see Section 4.1.3). Then, it
creates the smallest VM that can satisfy the resource
requirement of the container. In the second level, VMs are
allocated to PMs with First Fit.

GPHH-RAC Approach is proposed in our previous work
[21]. It applies GPHH evolved rules for VM selection and
creation. It uses First Fit to allocate newly created VMs to
PMs. We will use GPHH-RAC to represent the hybrid
approach.
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4.1.3 Dataset

We design 12 scenarios for the experiments (see Table 3)
which are divided into four groups. Each scenario has
distinct numbers of OS from 3 to 5. For each scenario, we
use 100 instances for training and 30 instances for testing.
Each instance contains 2500 containers to be allocated. This
number of containers is large enough for an algorithm to
reach a stable status.

TABLE 3: Test instances

scenarios number of OSs VM types workload patterns

scenario 1 3 synthetic VM types AuverGrid trace
scenario 2 4 synthetic VM types AuverGrid trace
scenario 3 5 synthetic VM types AuverGrid trace

scenario 4 3 synthetic VM types Bitbrains trace
scenario 5 4 synthetic VM types Bitbrains trace
scenario 6 5 synthetic VM types Bitbrains trace

scenario 7 3 real-world VM types AuverGrid trace
scenario 8 4 real-world VM types AuverGrid trace
scenario 9 5 real-world VM types AuverGrid trace

scenario 10 3 real-world VM types Bitbrains trace
scenario 11 4 real-world VM types Bitbrains trace
scenario 12 5 real-world VM types Bitbrains trace

To generate the instances, we use two real-world work-
load datasets – AuverGrid trace and Bitbrains trace [59]. The
original workload trace files contain millions of lines of CPU
and memory usage records of applications. For each dataset,
we select the first 400,000 lines of records as the source files.
Then, we filtered the records to exclude the containers that
require more resources than the largest VM type (see Table 4
and Table 5). The last step is to randomly select the resource
requirement of containers to construct an instance. Fig. 7
shows the distributions of CPU and memory requirements
in two datasets.
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Fig. 7: Resource usage frequency in the real-world datasets

For the configurations of PM and VMs, we use a quad-
core PM size of [13200 MHz, 16000 MB] which has been
used in [44]. We assume each core has 8 threads. To simulate
real-world VM configuration, we use the information of
VM types offered by Amazon EC2 in Table 4. Additionally,
to generalize the VM configuration, we randomly generate
10 VM types (see Table 5) where the values of CPU and
memory are sampled from [0, 3300 MHz] and [0, 4000 MB]
representing the capacity of one core.

For the affinity constraint, we set up an Operating Sys-
tem (OS) constraint. Each container has a requirement of OS
and can only be allocated to the VM which has the same OS
installed. We simulate three scenarios where the number of
OS increases from 3 to 5. The OS requirement of a container
is generated from a distribution (see Table 6). We use this

TABLE 4: Real-world VM types

VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 11 [825, 2000]
2 [412.5, 500] 12 [1650, 250]
3 [825, 1000] 13 [1650, 500]
4 [1650, 2000] 14 [1650, 1000]
5 [412.5, 250] 15 [412.5, 937.5]
6 [412.5, 1000] 16 [825, 1875]
7 [825, 4000] 17 [1650, 3750]
8 [206.25, 500] 18 [412.5, 1312.5]
9 [412.5, 2000] 19 [825, 2625]
10 [412.5, 4000] 20 [2475, 2625]

TABLE 5: Synthetic VM types

VM types [CPU (MHz), Memory (MB)] VM types [CPU, Memory]

1 [719, 2005] 6 [1311, 3238]
2 [917, 951] 7 [1363, 2634]
3 [1032, 1009] 8 [1648, 1538]
4 [1135, 3542] 9 [2047, 1181]
5 [1231, 1989] 10 [2100, 3013]

distribution to simulate a real-world market share of OS
[60].

TABLE 6: OS distribution

number of OS OS distribution (%)

3 50-30-20
4 62.5-17.5-15.5-4.5
5 17.9-45.5-23.6-10.5-2.5

All results have been tested with Wilcoxon signed-rank
test between the rules from our CCGP-RAC and the existing
rules. The significance level is set to α = 0.05.

4.1.4 Parameter Settings
Table 7 shows the parameters that we used in all experi-
ments. All the parameters follow the setting that has been
commonly used in literature (e.g. [61]). CCGP-RAC and
GPHH-RAC algorithms were implemented by ECJ [62].

TABLE 7: Parameter Settings

Parameter Description

Initialization ramped-half-and-half
Crossover/mutation/reproduction 80%/10%/10%
Maximum Depth 7
Number of generations 100
Sub-Population 512
Selection tournament selection (size = 7)

4.2 Experiment Results
This section first shows the accumulated energy consump-
tion comparison of sub&Just-Fit/FF rule, the GPHH-RAC
rules and the CCGP-RAC rules. Then, in the detailed results,
we show the behaviors of these methods by examining their
allocation procedures. We further look at the PM utilization
and PM remaining resources to find out what causes the
differences in these methods.

4.2.1 Overall Results
The comparison of the accumulated energy consumption
among the three methods are shown in Table 8. We can
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see that the CCGP-RAC rules have a major advantage over
sub&Just-Fit/FF rule and the GPHH-RAC rules in all scenar-
ios.

TABLE 8: Mean and standard deviation of the energy consumption
(kwh) of 30 instances for 12 scenarios among sub&Just-Fit/FF rule, the
GPHH-RAC rules, and the CCGP-RAC rules.

sub&Just-Fit/FF GPHH-RAC CCGP-RAC

scenario 1 3.75E7 ± 1.6E6 3.16E7 ± 2.3E6 3.12E7 ± 1.0E5
scenario 2 3.75E7 ± 1.6E6 3.16E7 ± 2.3E6 3.12E7 ± 1.5E5
scenario 3 3.77E7 ± 1.6E6 3.18E7 ± 2.3E6 3.15E7 ± 1.4E5
scenario 4 4.11E7 ± 1.7E6 3.39E7 ± 2.3E6 3.36E7 ± 1.8E5
scenario 5 4.11E7 ± 1.7E6 3.41E7 ± 2.3E6 3.37E7 ± 8.1E4
scenario 6 4.12E7 ± 1.7E6 3.42E7 ± 2.3E6 3.39E7 ± 8.3E4
scenario 7 3.72E7 ± 1.7E6 3.17E7 ± 2.3E6 3.10E7 ± 2.7E5
scenario 8 3.74E7 ± 1.7E6 3.18E7 ± 2.3E6 3.11E7 ± 3.4E5
scenario 9 3.74E7 ± 1.7E6 3.19E7 ± 2.3E6 3.14E7 ± 3.8E5
scenario 10 3.86E7 ± 2.0E6 3.42E7 ± 2.4E6 3.34E7 ± 3.4E5
scenario 11 3.91E7 ± 1.9E6 3.42E7 ± 2.4E6 3.37E7 ± 3.4E5
scenario 12 3.91E7 ± 1.9E6 3.47E7 ± 2.3E6 3.39E7 ± 3.6E5

4.2.2 Detailed Results
The CCGP-RAC rules achieve good performances in all
scenarios and we showed scenario 3 and 12 (see Fig. 8)
because others have similar trends. The allocation procedure

-RAC -RAC

(a) Scenario 3

-RAC -RAC

(b) Scenario 3

(c) Scenario 12

-RAC -RAC

(d) Scenario 12

Fig. 8: Allocation process of simulation 0 from scenarios 3 and 12

shows the increment of energy consumption while allo-
cating containers. The left-hand sides are the comparisons
of three methods. The right-hand sides are the zoom-in
comparisons between the GPHH-RAC rules and the CCGP-
RAC rules. The energy consumption of evolved rules is the
average of 30 runs’ results. In the beginning, the energy
consumptions resulted from three methods increase slowly
because containers are allocated to the free spaces in PMs.
Since no new PM is created, the performances of all methods

look the same (overlapping lines). Later on, the increments
of energy consumption are different for three methods. The
CCGP-RAC rules are the slowest in terms of energy incre-
ment. Another noticeable pattern is that the turning point
of the CCGP-RAC rules is later than sub&Just-Fit/FF rule.
This means the CCGP-RAC rules allocate more containers
into the existing PMs than GPHH-RAC and CCGP-RAC.
Therefore, the CCGP-RAC rules use a smaller number of
PMs and the increment of energy consumption is slow.

To understand why the CCGP-RAC rules has a slower
increment of energy consumption compared to other rules,
we show the CPU and memory utilization of four repre-
sentative scenarios, i.e. 3, 6, 9, 12 in Fig. (9). The sub&Just-
Fit/FF rule generates the lowest utilization in both CPU and
memory among all scenarios except the memory utilization
of scenario 12. Since sub&Just-Fit/FF rule generally has a
low resource utilization, it is not surprising that it uses
more PMs and more energy consumption. To compare the
GPHH-RAC rules and the CCGP-RAC rules, the GPHH-RAC
rules have better CPU utilization while the CCGP-RAC rules
have better memory utilization in all scenarios. As shown
in Section 4.1.3, memory resource is the bottleneck in both
real-world datasets. It is now clear that the CCGP-RAC rules
outperform GPHH-RAC rules on the critical resource, e.g.
memory. A remaining question is that, compared to the
GPHH-RAC rules, why CCGP-RAC rules can obtain high
utilization of memory?

-RAC -RAC

(a) PM CPU utilization

-RAC -RAC

(b) PM memory utilization

Fig. 9: PM resource utilization

To improve the utilization of resources, one can improve
the utilization of VMs, reduce the PMs remaining resources
(see Fig. 6), or both. Since the GPHH-RAC rules and the
CCGP-RAC rules show differences only in the VM–PM level,
we now focus on the reduction of PM remaining resources.
The PM remaining resources are the idle resources in PMs
which are affected by two factors, i.e. the number of VMs on
the PM and the types of these VMs. The only way to reduce
the PM remaining resource is constructing a combination
of VMs which uses all or majority resources in a PM. To
construct such a combination, the VM creation and PM
selection rules must be used together.

From Fig. 10, the CCGP-RAC rules have a higher remain-
ing CPU and a lower remaining memory than the GPHH-
RAC rules do. It means that the CCGP-RAC rules use the
memory more effectively than the GPHH-RAC rules on PMs.
This is consistent with the figure of PM utilization shown in
Fig. 9. The CCGP-RAC rules achieve this because they are
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co-evolved while the GPHH-RAC rules use an independent
rule, i.e. First-Fit as the PM selection rule. First-Fit always
selects the first available PM. It is hard to construct a good
combination of allocations. The detailed reason for why
the CCGP-RAC rules achieve a better memory utilization
is explained in the Section 5.

To this end, we have shown the CCGP-RAC rules achieve
the lowest accumulated energy consumption. The GPHH-
RAC rules have slightly worse performance than the CCGP-
RAC rules while sub&Just-Fit/FF rule has the worst perfor-
mance.

-RAC -RAC

(a) PM remaining CPU

-RAC -RAC

(b) PM remaining memory

Fig. 10: PM remaining resource

In summary, the experimental evaluations in this section
show that the GPHH-RAC rules achieve the best perfor-
mance among three methods. In particular, the rules gen-
erated by CCGP-RAC can lead to better container to VM
allocations and therefore lower PM remaining resources,
comparing with other two methods.

5 RULE ANALYSIS

This section further analyzes the drawbacks of sub&Just-
Fit/FF rule and shows how CCGP-RAC evolved rules make
the allocation decisions.

5.1 VM Creation Behavior

We analyze the ratio of VM types and the quantity of VMs
of three methods to show the patterns of VM types selection
among three approaches. Fig. 11 illustrates the average ratio
of VMs (bar chart) and the average quantity of VMs (pie
chart) used by three methods in scenarios 3, 6, 9, 12. With
these patterns, we found three facts. First, from the pie
charts (see Fig. 11), we have seen that sub&Just-Fit/FF uses
2 to 4 times more VMs than the evolved rules. Second, we
found that the most frequently used VM type by sub&Just-
Fit/FF is type 2 which is a small VM type. Third, from the
PM utilization (see Fig. 9), sub&Just-Fit/FF also generates the
lowest utilization. From these facts, we infer that sub&Just-
Fit/FF leads to the VM sprawl.

VM sprawl [51] is the major reason for the low utilization
of data centers and sub&Just-Fit/FF rule can lead to it. In a
data center where VM sprawl occurs, PMs are filled with
a large number of small VMs and most of them are low
utilized. Therefore, the average of PM utilization is low, e.g.
15% to 20%. From the above patterns of VM types selection,
sub&Just-Fit/FF rule has created a large number of small

VMs and has the lowest utilization among three methods
which are the symptoms of VM sprawl.

To understand the consequence of VM sprawl, we ob-
serve the increment of VM wasted memory and memory
overhead throughout the allocation process in Fig. 12. This
figure shows that when applying sub&Just-Fit/FF rule, mem-
ory is consumed by VM overheads and wasted quickly. VM
wastes are the small resource segmentation inside VMs that
will never be used. The fast accumulation of VM overheads
and wastes are due to the vast number of VMs. Therefore,
the actual resources used by containers are low when VM
sprawl occurs. However, for the evolved rules, the wastes
and overheads increase much slower than sub&Just-Fit/FF
rule.

The main reason that causes VM sprawl is that the Just-
Fit rule only greedily considers the resource requirement of
the current container. Since most containers have a small
resource requirement (less than 100 in CPU and 200 in
memory) (see Section 4.1.3). The Just-Fit, therefore, tends to
create small VMs, e.g. type 2 and type 15. In the scenarios of
real-world VM types (scenarios 9 and 12), the Just-Fit might
achieve a low PM remaining resources (see Fig. 10) because
these VM types happen to be divisible (32 VMs can fill a
PM). However, with a different set of VM configurations,
e.g. synthetic VM types, the Just-Fit cannot construct a com-
bination of VM types which uses PM resources efficiently.

On the other hand, the evolved rules can select a good
combination of VMs with the given VM types to avoid VM
sprawl. The evolved rules consider both the capacities of
VMs and the residual resources on PMs. Therefore, they can
create a combination of VM types so that PMs’ resources are
used more efficiently. For example, in scenario 3, evolved
rules favor type 1, 2, 4, 6, 10. This is because the combination
of these types of VM can easily achieve a high memory
utilization of PMs. With the combination of type 10 × 2,
type 1 × 3, and type 6 × 1, the aggregated memory is 15279
MB which uses 95% of a PM’s memory. This is the reason
that the evolved rules remain stable in PM utilization and
PM remaining regardless of the given set of VM types.

In summary, sub&Just-Fit/FF rule causes VM sprawl by
allocating too many small VMs. The CCGP-RAC rules create
VMs purposefully with the consideration of multiple fac-
tors, e.g. PM residual resources and VM types, so that they
improve the utilization of PMs and successfully avoid VM
sprawl.

5.2 Structural Analysis of Evolved Rules

To better understand how the rules utilize the given features
to decide the allocation of containers, we analyze an exam-
ple of the CCGP-RAC rules. We first manually simplifying
the evolved rules, i.e. the VM selection and creation and
PM selection rules. Then, we analyze the rules’ behaviors
by plotting them on a 3-D surface.

We select a CCGP-RAC rule from scenario 9, run 15,
called Rule-15, and illustrate its performance. The reason
that we select this rule is that the size of the rule is small
and easy to explain. Rule-15 achieves a better training
performance than sub&Just-Fit/FF rule, e.g. with 12748.55
vs. 14997.29 in fitness values. It also achieves a better test
performance with an average of 3.39E7 Kwh vs. 4.12E7 Kwh.
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(a) scenario 3 (b) scenario 6
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Fig. 11: The average frequency of VM types used by three algorithms
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(a) average wasted memory
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(b) average Memory overhead

Fig. 12: The average waste and overhead of memory in scenario 1, run
0.

Rule-15 consists of two sub rules, e.g. the VM selection and
creation rule called Rule-15v and the PM selection rule called
Rule-15p.

Fig. 13: The simplification of Rule-15v.

We first simplify the Rule-15v rule so that we can study
its behavior. As previously introduced (see Section3), the
VM selection and creation rule Rule-15v has the functionalities
of VM selection and VM type selection when creating a new
VM. The switch between these functionalities is controlled
by the feature of VM overhead. Specifically, in Rule-15v
(see Fig. 13), in terms of VM selection, the vmMemOverhead
becomes 0. Therefore, Rule-15v becomes a constant of 1 (as
we applied the protected ÷). A constant means Rule-15v

chooses the first VM which has enough resources. In other
words, the VM selection of Rule-15v acts like First-Fit. In
terms of VM creation, the vmMemOverhead is a constant of
0.0125 because it is a normalized number of 200 MB. Then,
the rule can be simplified (see Fig. 13). Since the simplified
rule has two variables, e.g. leftVmCpu and leftVmMem, we
plot the rule on a 3-D surface.

The 3-D surface plot of Rule-15v (see Fig. 14) shows why
the rule favors type 17 and type 20 VMs when creating
a VM. The leftVmMem ranges in [0, 0.125] and leftVmCpu
ranges in [0, 0.1875]. This is because type 10 that owns the
largest memory has 4000 MB memory which is normalized
to 0.125 and type 20 has the largest VM CPU (2475 MHz)
which is normalized to 0.1875. We observe that the score
of Rule-15v is higher when both leftVmMem and leftVmCpu
is getting larger. The score is more sensitive to leftVmCpu
than leftVmMem. Applying Rule-15v on twenty VM types,
we found that type 17 generally obtains the highest score
followed by type 20. This observation is consistent with the
VM frequency shown in the last section (see Fig. 11, scenario
9).

The Rule-15p allocates the VMs to achieve a good
combination of VMs. Rule-15p is f = leftPmMem −
leftPmCpu + vmCpu/leftPmMem. If we allocate a type
17 VM with Rule-15p, the vmCpu is replaced by 0.125.
Fig. 15a shows a contour plot of using Rule-15p to allocate
a type 17 VM. The lighter area represents the region of a
higher score. It shows that the rule prefers two types of
PMs. The first type of PMs (appears on the right-bottom
corner in the contour map) has high residual memory (more
than 12800 MB) and low residual CPU. This type of PMs
can allocate more VMs with large memory capacity and low
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Fig. 14: The 3D and contour plot of the GP tree: f = 10×(leftV mCpu−
leftV mCpu3) × leftV mMem, where x-axis is the leftVmMem and y-
axis is the leftVmCpu

CPU capacity. The other type of preferred PMs (appears on
the left-bottom corner) has less or equal residual memory
of 4000 MBs regardless of residual CPU. This means that
Rule-15p tries to allocate the VM into a PM with the capacity
just enough for one type 17 VM. Similarly, if we allocate a
type 20 VM with Rule-15p, the vmCpu is replaced by 0.1875.
Fig. 15b shows the preferred PMs should have low residual
memory regardless of residual CPU capacity.

In summary, this section provides an analysis of a rule,
generated by CCGP-RAC. From the analysis, we can see
how the rule leads to a better VM type selection and how to
construct a good combination of VMs. Besides Rule-15, we
have analyzed other rules and reach the same conclusion.
Due to the page limit, we only describe one rule.

(a) Allocate a type 17 VM with Rule-15p (b) Allocate a type 20 VM with Rule-15p

Fig. 15: The contour map shows the high-score regions of Rule-15p
when allocating VM of type 17 and 20.

6 CONCLUSIONS AND FUTURE WORK

This paper proposed the novel CCGP-RAC to solve the on-
line resource allocation in container-based clouds (RAC) prob-
lem. In this work we have the following contributions. First,
we propose a formal model for the on-line RAC problem
with consideration of new features such as VM overheads,
VM types, and an affinity constraint. Secondly, this work
proposes CCGP-RAC that cooperatively evolves rules for
both containers–VMs and VMs–PMs levels of allocation. For
this new approach, we design new features for the terminal
set. Thirdly, we test the rules generated by CCGP-RAC
on two real-world container datasets and two groups of
VM settings. Experiment results show that the CCGP-RAC
evolved rules (CCGP-RAC) achieve significantly lower accu-
mulated energy consumption than the human-designed rule

(sub&Just-Fit/FF) and a state-of-the-art approach (GPHH-
RAC). Lastly, the analysis of rules shows some important
insights for cloud providers. Specifically, this work mainly
studies the influence of the historical workload patterns and
the current status of the data center includes the resources
status of VMs, PMs, and containers. This work shows that
neglecting these features leads to the problem of VM sprawl.
By using the rules that generated from CCGP-RAC, VM
sprawl can be effectively avoid.

For cloud providers, our proposed CCGP-RAC provides
several advantages for the on-line RAC problem. First of all,
CCGP-RAC automatically designs allocation rules without
human intervention. Secondly, the evolved rules have an
explainable structure with cloud features interaction. The
explainability provides insights for algorithm designers to
understand how the interactions of cloud features reflect the
information such as the historical workload patterns, VM
types, and the status of VMs and PMs. The insights can help
algorithm designers to develop more effective algorithms.

Future work can follow two directions. Firstly, we will
consider the statistical features such as the mode of the
resource requirement in improving the current CCGP-RAC.
Second, we will apply clustering techniques as a preprocess-
ing step to categorize containers, then apply ensemble tech-
niques on the training process of CCGP-RAC. Specialized
rules trained by ensemble technique may further improve
the performance of CCGP-RAC.
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