
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 1

Cost-Effective Web Application Replication and
Deployment in Multi-Cloud Environment

Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann

Abstract—Multi-cloud is becoming a popular cloud ecosystem because it allows enterprise users to share the workload across
multiple cloud service providers to achieve high-quality services with lower operation cost and higher application resilience. In
multi-cloud, cloud services are widely distributed at different locations with differentiated prices. Therefore, Web application providers
face the challenge to select proper cloud services for application replication and deployment with the aim of minimizing the deployment
cost. Meanwhile, the deployed application replicas must satisfy the constraint on request response time to maintain the quality of user
experience. To meet the two major requirements, this article studies a new problem of Web application replication and deployment in
multi-cloud (WARDMC) that jointly considers both the cost minimization and constraints on average response time, including
particularly request processing time and network latency. To address the problem, we develop a new approach named MCApp. MCApp
combines iterative mixed integer linear programming with domain-tailored large neighborhood search to optimize both application
replicas deployment and user requests dispatching. Extensive experiments using the real-world datasets demonstrate that MCApp
significantly outperforms several recently proposed approaches.

Index Terms—Multi-cloud, Web application deployment, service replication, cost optimization, mixed integer linear programming, large
neighborhood search.

F

1 INTRODUCTION

A CCORDING to Statista1, 48% of enterprises have al-
ready moved workloads to the public clouds in 2020.

Through diverse virtualization technologies, e.g., server vir-
tualization and storage virtualization, enterprises can access
on-demand cloud resources with minimal management ef-
forts. To achieve lower operation cost and higher application
resilience, enterprises usually utilize services and resources
from multiple cloud providers [1], [2].

In recent years, enterprises are interested in embracing a
multi-cloud environment [3]. The deployment and manage-
ment of multiple clouds are usually abstracted by a third-
party, i.e., broker, which can provide a single entry point to
multiple clouds [4], [5]. Supported by the broker and the
multi-cloud platform, enterprise applications can be easily
deployed at multiple available locations to bring services
close to users, which is essential to maintain high quality of
user experience [6], [7].

In practice, enterprise applications are often deployed to
serve global users [3]. Many enterprise applications, such as
the meteorological forecast application, must serve diverse
user demands with a suite of Web applications, which interact
with users through a front-end programmed and browser-
based language [8]. To evaluate accurately the performance
of the applications with widely distributed user requests, we

• Tao Shi, Hui Ma, and Gang Chen are with the School of Engineering and
Computer Science, Victoria University of Wellington, Wellington, New
Zealand.
E-mail: {tao.shi, hui.ma, aaron.chen}@ecs.vuw.ac.nz

• Sven Hartmann is with the Department of Informatics, Clausthal Univer-
sity of Technology, Germany.
E-mail: sven.hartmann@tu-clausthal.de

Manuscript received x x, x; revised x x, x.
1. https://www.statista.com

must consider the average response time for all user requests
[9], [10], including both the request processing time and the
network latency [3]. This requires us to adopt a queuing
model to precisely capture the dynamics involved in the
processing of ongoing application requests [11].

In public clouds, three main deployment paradigms,
including Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS) [12], are
applicable to Web applications. Enterprise applications
providers often prefer IaaS in practice in order to achieve
high level of control and flexible management goals [8],
[13], [14]. In this work, we focus on the IaaS paradigm, i.e.,
deploying Web applications on a large group of virtual ma-
chines (VMs), from the perspective of application providers.
Meanwhile service replication is gaining increasing pop-
ularity for cloud-hosted application deployment [7], [15].
Therefore, we take Web application replication into account.

It is widely known that leading cloud providers usually
provide cloud resources, e.g., cloud storage, with region-
tailored pricing2. Several studies take advantage of the stor-
age pricing differences to minimize the deployment cost of
data replicas in clouds [9], [10]. Different from these works,
Web application deployment focuses on request processing
rather than data delivery, which incurs the additional VM
rental cost [3]. Because enterprise application providers
usually care more about cost minimization while ensuring
acceptable performance of applications [9], [10], we consider
the problem of Web application replication and deployment
in multi-cloud (WARDMC) as a constrained optimization
problem to minimize the total deployment cost subject to
the constraints on the response time.

It is challenging to achieve cost minimization without

2. https://aws.amazon.com/s3/pricing/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 2

significantly affecting the performance of cloud-hosted ap-
plications [16], [17]. Concretely, two key issues must be
resolved: (1) How should the types and locations of VMs in
multi-cloud be selected to serve all user requests so that the
total deployment cost is minimized? (2) How should user
requests be distributed among application replicas such that
the average response time can meet application providers’
requirements?

For cloud-hosted Web applications, the request process-
ing time is nonlinearly related to the capacity of deployed
VMs and users’ demands [18]. Therefore, we apply nonlin-
ear programming [19] to define the WARDMC problem with
two optimization decisions: (1) the replica deployment plan
that determines the deployment of all application replicas
on specific VM types in specific multi-cloud data centres,
and (2) the request dispatch plan that determines how to
dispatch user requests among all application replicas. In the
remaining of this paper, we use WARDMC solutions to refer
to the combinations of the two matching plans.

The nonlinear nature of the WARDMC problem ren-
ders several integer linear programming (ILP)-based ap-
proaches in [20], [21] inapplicable. Furthermore, recently de-
veloped meta-heuristic approaches such as GA-ARP [7] and
HMOHM [8] may not be able to solve the WARDMC prob-
lem effectively. For example, GA-ARP applies a heuristic to
dispatch all application requests to the closest application
replicas, which may result in deployed VMs under-utilized.
In this paper, we propose a new approach for Multi-Cloud
Application deployment, named MCApp, to simultaneously
optimize the replica deployment plan and the request dis-
patch plan. MCApp first transfers the WARDMC problem
to a series of mixed integer linear programming (MILP)
problems by bounding the utilization rates of all deployed
VMs. Then a two-stage optimization framework is designed
to effectively optimize WARDMC solutions. An overview of
MCApp is shown in Fig. 1.

Besides the upper bound on VMs’ utilization rate, we
must also consider the upper bound on average response
time that helps to find WARDMC solutions with lower total
deployment cost. Accordingly, we propose a MILP-based
algorithm to obtain a high-quality base solution. Following
a novel double iterative mechanism, the algorithm adaptively
updates the upper bounds on both the VMs’ utilization rate
and average response time to improve the performance of
the base solution. Moreover, we theoretically analyse the
performance of the base solution in terms of worst-case
ratio.

Note that setting the upper bound on the VMs’ utiliza-
tion rate helps to reduce the solution space, since it rules out
the chance of further reducing the total deployment cost by
increasing the utilization rates of some application replicas.
To address this limitation, we develop a large neighborhood
search (LNS)-based algorithm to further improve the base
solution. To build an effective LNS process, a new destroy
heuristic is proposed to remove multiple application replicas
from the replica deployment plan. Then a problem-specific
repair heuristic is designed to effectively deploy new applica-
tion replicas. Besides, we propose a delay-oriented heuristic to
dispatch user requests in order to achieve high performance
based on the current replica deployment plan. The main
contributions of this paper are summarized as follows:

VMs Capacity
and Pricing

in Multi-cloud

Application
Workload and User

Distribution

Target Average
Response Time

Problem Transfer

Observation on
Inter-region

Network Latency

MILP-based Algorithm

Base Solution

LNS-based Algorithm

Replica Deployment Plan
and Request Dispatch Plan

MCApp

Fig. 1. Overview of MCApp with inputs and outputs.

(1) We formalize the WARDMC problem as a constrained
optimization problem with the goal to minimize the total
deployment cost subject to constraints on average response
time. To the best of our knowledge, this is the first study in
the literature on the Web application deployment problem
with realistic consideration of both cost effectiveness and
application replication in multi-cloud environment.

(2) We propose an approach, named MCApp, to solve
the WARDMC problem. MCApp first introduces a bound
on the utilization rates of the deployed VMs to linearize the
WARDMC problem. Then, it creates a hybrid optimization
process that combines an iterative MILP-based algorithm
and a domain-tailored LNS-based algorithm to simultane-
ously optimize the replica deployment plan and the request
dispatch plan.

(3) To evaluate MCApp, we collect the information re-
garding VM capacity and pricing offered by the global top
three cloud providers, i.e. Amazon, Microsoft, and Alibaba.
Based on the collected information, extensive experiments
have been conducted to deploy Web application suites with
different diversities. Our approach is compared to several
state-of-the-art approaches for cloud-hosted Web applica-
tion deployment, including GA-ARP [7] and HMOHM [8].
The experimental results indicate that MCApp significantly
outperforms the existing approaches, achieving up to 35%
savings in terms of the total deployment cost.

The remainder of this paper is organised as follows.
Section 2 discusses the related work about application de-
ployment and replication as well as data placement and
replication in clouds. Section 3 defines the WARDMC prob-
lem, including the problem background. Section 4 presents
the details of the MCApp approach. Section 5 describes the
design of experiments and analyses the evaluation results.
Section 6 concludes the paper.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 3

2 RELATED WORK

This section introduces the related works about applica-
tion deployment and replication in clouds and existing
approaches for cloud-hosted data placement and replication
problems. The main challenges that need to be addressed in
this paper are also highlighted.

2.1 Application Deployment and Replication in Clouds

In recent years, cloud computing is becoming a booming
paradigm for flexible and scalable delivery and deployment
of enterprise-scale applications [3]. Several research works
have studied the Web application deployment problem in
clouds [3], [8], [18]. For example, Menzel et al. [8] presented
CloudGenius to handle the deployment of Web applications
across multiple cloud data centres spanning over geograph-
ically distributed network boundaries. A hybrid approach,
i.e., HMOHM, combining the analytic hierarchy process
(AHP) and the genetic algorithm (GA), was proposed to
satisfy conflicting selection criteria, e.g., the lowest latency
and cost of services. In the AHP, different selection criteria
are aggregated by calculating the sum of the weighted
evaluation values. From the perspective of enterprise ap-
plication providers, application deployment often empha-
sizes on minimizing monetary cost subject to performance
requirements [9]. Therefore, we formulate the WARDMC
problem as a cost optimization problem in this paper.

Because Web applications usually involve a potentially
large number of user requests and different applications
must cater for varied user distributions, we model the pro-
cessing of ongoing application requests through a queuing
model. Although queuing theory has been well studied
to analyse the performance of cloud-based systems [22],
[23], existing research works on cloud-based application
deployment did not pay full attention to its role in perfor-
mance evaluation based on the application response time
[18], including the request processing time and the network
latency between users and cloud data centres.

In [3], we studied the multi-cloud service deployment
for composite applications, considering the budget impact.
Particularly, a hybrid GA-based approach, i.e., H-GA, was
proposed to select VMs in multi-cloud for each constituent
service with exactly one instance. Note that even under
sufficient budget, H-GA may fail to bring the average
response time of applications within 200 ms (238-245 ms
in our experiments detailed in Subsection 5.5). For many
applications, a response time beyond 200 ms will deteriorate
the user experience significantly [9].

In practice, deploying application replicas as close to
users as possible is widely exercised to maintain low re-
sponse time [6]. The application replication has attracted
significant attention recently [15], [24]. For example, several
works have been proposed to replicate applications in mul-
tiple locations to ensure the availability of the provisioned
services [25], [26], [27]. Some works focused on reducing
energy consumption for cloud providers by adjusting the
umber of replicas according to the workload, e.g., [28]. From
the perspective of application providers, some works also
studied the problem of minimizing the deployment cost
of replicas [29], [30], [31]. However, these works did not

consider the average response time, which seriously affects
the quality of experience (QoE) of applications [9], [10].

Considering application replication, both the deploy-
ment of application replicas and the dispatching of user
requests among application replicas affect the average re-
sponse time of applications. In this paper, we simultane-
ously optimize the replica deployment plan and the request
dispatch plan. After linearizing the WARDMC problem, we
propose an iterative MILP-based algorithm to obtain a high-
quality base solution.

As a combination of local search and constraint pro-
gramming, LNS was proposed by Shaw [32] to take the
advantages of both exploration and propagation. LNS makes
moves as local search, but uses a tree-based search with
constraint propagation to evaluate the cost and legality of
the moves. In [33], LNS has been used to solve the multi-
cloud service brokering problem due to its flexibility in
designing problem-specific destroy and repair heuristics.
In this paper, we develop a domain-tailored LNS-based
algorithm to further improve the base solutions obtained
by our MILP-based algorithm. The LNS-based algorithm
includes newly designed destroy and repair heuristics to
minimize the total deployment cost subject to constraints
on average response time.

2.2 Data Placement and Replication Problem in Clouds
The cloud-hosted data placement and replication problems
have received much attention in the recent literature. ILP
has been considered as the dominant method to model these
problems [9], [20]. For example, Pyramid was proposed to
maximize both the utility- and locality-awareness of replicas
for P2P cloud storage systems in [20]. ILP was implemented
to find the placement of replicas. To serve the demands on
videos, the problem of finding the optimal content deploy-
ment and request dispatch strategy was formulated as MILP
in [9]. The efficient solutions were achieved by using dual
decomposition [34] and linear programming techniques.
These ILP problems consistently treat the network latency
as the optimization objective. In this paper, we consider the
response time of user requests, including both the network
latency and the request processing time. For the cloud-
hosted Web applications under high workloads, the request
processing time is nonlinearly related to the capacity of
deployed VMs and users’ demands [18]. The nonlinear
nature renders these ILP-based approaches inapplicable for
the WARDMC problem.

Many meta-heuristic algorithms also have been used for
the data placement and replication problem in clouds [35],
[36]. In [35], two GA-based approaches were proposed to
replicate data objects over multiple sites to avert undesired
long delays experienced by end-users. To optimize social
media data placement and replication in cloud data centres,
a GA-based approach was presented to minimise monetary
cost while satisfying latency requirements for all users in
[36]. However, these approaches focus on the location selec-
tion for data replicas and do not explicitly dispatch widely
distributed user requests among all application replicas,
which is a critical component of the WARDMC problem.

Comparing with the cloud-hosted data placement and
replication problems, the WARDMC problem is more chal-
lenging due to its nonlinear nature. Moreover, we need to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 4

Fig. 2. Web application deployment in multi-cloud based on [9].

design effective mechanisms to optimize the request dis-
patch plan based on the corresponding replica deployment
plan so that the total deployment cost is minimized while
satisfying the constraint on average response time.

3 PROBLEM DESCRIPTION

In this section, we first outline the background of multi-
cloud environment and Web applications in Subsection 3.1,
then formulate the WARDMC problem in Subsection 3.2.

3.1 Multi-cloud and Web Applications

The multi-cloud infrastructure consists of multiple disparate
data centres distributed in different geographical locations
(see Fig. 2). These data centres are owned by multiple cloud
providers. Each data centre provides a large collection of
virtualized servers, e.g., VMs. Different data centres are
connected over a WAN [9] (dotted lines in Fig. 2). We
investigate the scenario of IaaS in this work following [8].
It is widely known that leading cloud providers usually
provide VMs with varied pricing subject to regions. There
are two major benefits to deploy enterprise applications
in multi-cloud. On the one hand, to achieve cost saving,
application providers can dynamically distribute workload
among different cloud providers to deal with the changes
of policies and pricing [4]. On the other hand, multi-cloud
can avoid potential service unavailability of the single cloud
provider [2].

To satisfy the diverse needs of users, an enterprise ap-
plication usually consists of a suite of Web applications
(coloured squares in Fig. 2). These Web applications can
be deployed onto a set of VMs in multi-cloud with the
help of a broker. One concrete example is MetService, i.e.,
the meteorological service of New Zealand3, which includes
eight Web applications for different user groups, i.e., Na-
tional Forecast, Towns and Cities Forecast, Rural Forecast,
Marine Forecast, Mountains and Parks Forecast, Maps and
Radar Information, Warnings Information, and Public In-
formation. More industry examples of Web applications
deployed in multi-cloud can be found in VMware use cases,
e.g., Mercedes-Benz.io [37] and GSL General Hospital and
Medical College [38].

3. https://about.metservice.com/our-company/about-us/

TABLE 1
Mathematical notations

Notation Definition
A Suite of Web applications
U Set of regions that the users of all applications span
C Set of multi-cloud data centres
V Set of VM types
ac Replica of application a in data centre c
γa,u Request rate of application a from user region u

δa,v
Amount of requests for application a processable by VM
type v per time unit

rcc,v Rental cost of VM type v in data centre c

dtu,c
Round-trip delay between user region u and data centre
c (periodically observed constant)

R Maximum average response time per request

xa,u,c

Independent variables: percentage of application a
request rate from user region u to be served in data
centre c

ya,c,v
Independent variables: to rent an instance of VM type v
for application replica ac (1) or not (0)

λa,c Dependent variables: workload of application replica ac
µa,c Dependent variables: capacity of application replica ac

pta,c
Dependent variables: average request processing time of
application replica ac

ua,c
Dependent variables: utilization rate of the VM when
deploying application replica ac

n Dependent variable: total number of application replicas

3.2 Formalization of WARDMC Problem
The aim of the WARDMC problem is to select VMs from
multi-cloud for Web applications to minimize the total de-
ployment cost (TDC) subject to the performance require-
ment on average response time (ART). The response time
is measured from the moment a user makes an application
request to the moment when this user receives the corre-
sponding response, consisting of both request processing
time and round-trip delay (RTD) between the user and one
application replica. The key notations to be used for problem
definition are listed in TABLE 1.

An application provider delivers a suite of Web appli-
cations A for its users distributed in global user regions U .
During an epoch, e.g., an hour [39], the request rate γa,u
denotes the request frequency for application a (a ∈ A)
from user region u (u ∈ U).

We consider a set of VM types V and a set of multi-
cloud data centre C . If VM type v (v ∈ V) is available in
data centre c (c ∈ C), we use rcc,v to denote its rental cost
per time unit and δa,v to measure the maximum amount of
requests for application a processable by v per time unit.

Let xa,u,c ∈ [0, 1] denote the percentage of requests from
user region u for application a that will be dispatched to the
data centre c. We assume that all requests for application a
dispatched to data centre cwill be served by the only replica
of a in c. In the remaining of this paper, we use ac to refer
to the replica of application a in data centre c. The workload
of ac can be measured by combining relevant request rates
from all user regions:

λa,c :=
∑
u∈U

γa,uxa,u,c. (1)

Typically the execution platform of a Web application
includes the Web server, application server, and database
server [40]. Refer to [8], we assume that each application

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 5

replica is bundled with its own execution platform upon
deployed to one instance of the particular VM type v in
multi-cloud. For higher flexibility and agility, the applica-
tion replica with multiple interdependent functionalities,
i.e., constituent services, can be deployed as microservices
in the same VM instance [41]. We further assume that
application replicas apply the eventual consistency model
when they access database servers, since the consistency
model is commonly used by widespread distributed sys-
tems with large numbers of user requests [42], [43]. Let
binary variable ya,c,v indicate whether an instance of v is
rented for application replica ac, the capacity of ac depends
on the processing speed of the selected VM type by:

µa,c :=
∑
v∈V

δa,vya,c,v, (2)

where
∑
v∈V ya,c,v 6 1 (∀a ∈ A,∀c ∈ C). There are two

situations for eq. (2). If application a is deployed in data
centre c, µa,c = δa,v where ya,c,v = 1. Otherwise, µa,c = 0.

Referring to [3], the average resource consumption per
request over a long sequence of requests for the same ap-
plication is considered highly stable, while different appli-
cations can incur different resource requirements. We follow
[44] and model the operation of each individual application
replica as an M/M/1 queue. According to Little’s Law [45],
the average request processing time of replica ac depends
on both xa,u,c and ya,c,v :

pta,c :=
1

µa,c − λa,c
=

1∑
v∈V δa,vya,c,v −

∑
u∈U γa,uxa,u,c

.

(3)
With the goal to minimize TDC of the Web applica-

tion suite in multi-cloud, we have two decision variable
vectors, i.e. request dispatch plan X , which determines how
user requests of Web applications are dispatched among
all data centres, i.e., xa,u,c, and replica deployment plan Y ,
which determines the types of VMs and the corresponding
data centres to deploy all application replicas, i.e., ya,c,v .
Concretely, the WARDMC problem is formulated as follows:

Problem 1.

min TDC =
∑
a∈A

∑
c∈C

∑
v∈V

ya,c,vrcc,v (4)

subject to:

(a) ya,c,v ∈ {0, 1} ∀a ∈ A,∀c ∈ C, ∀v ∈ V

(b)
∑
v∈V

ya,c,v 6 1 ∀a ∈ A,∀c ∈ C

(c)
∑
a∈A

∑
c∈C

∑
u∈U γa,uxa,u,c(dtu,c + pta,c)

S
6 R

(d) pta,c > 0 ∀a ∈ A,∀c ∈ C

(e) 0 6 xa,u,c 6 1 ∀a ∈ A,∀u ∈ U,∀c ∈ C

(f)
∑
c∈C

xa,u,c = 1 ∀a ∈ A,∀u ∈ U

Constraint (a) indicates whether an instance of VM
type v in data centre c is rented for hosting application
a. Constraint (b) guarantees that each application replica
is deployed to one VM instance. Constraint (c) guarantees
that ART of the whole Web application suite is below
the acceptable threshold R set by the application provider.
Particularly, dtu,c represents RTD between user region u
and data centre c. The denominator at LHS of constraint
(c), i.e., S =

∑
a∈A

∑
u∈U γa,u, is the overall request rate

across Web application suite A. Constraint (d) guarantees
that µa,c > λa,c, i.e., the capacity of any application replica
must be sufficient to process its workload. Constraints (e)
and (f) guarantee that every request for application a from
user region u will be processed.

To obtain the optimal solution to Problem 1, we must
optimize X and Y jointly. Problem 1 is nonlinear due to
constraint (c). In particular, the average request process time
pta,c is determined by the workload µa,c and capacity λa,c
for application replica ac. Note that µa,c and λa,c also to-
gether determine the utilization rate of the deployed VM for
ac. We can linearize Problem 1 by bounding utilization rates
of the VMs in order to obtain a base solution to Problem 1.
Inevitably, such upper bound reduces the solution space for
Problem 1. Hence, the base solution is not necessarily the
optimal solution to Problem 1. In view of this, we further
design a problem-specific LNS algorithm to improve the
base solution. In what follows, we discuss the proposed
approach in detail.

4 MCAPP – A HYBRID APPROACH TO WARDMC
PROBLEM

In this section, we introduce our MCApp approach (see Fig.
1). It first transforms the WARDMC problem to a series of
MILP problems in Subsection 4.1. These linearized problems
are then solved by using the MILP-based algorithm to obtain
the base solution in Subsection 4.2. Finally, the LNS-based
algorithm to improve the base solution is introduced in
Subsection 4.3.

4.1 Problem Transfer
MCApp linearizes the WARDMC problem making it solv-
able by off-the-shelf MILP methods. We first determine the
utilization rate of the VM for application replica ac by:

ua,c =
λa,c
µa,c

, (5)

where 0 6 ua,c < 1 based on constraint (a), (d), and (e)
in Problem 1. According to eq. (5), the average request
processing time of ac in eq. (3) can be rewritten as:

pta,c =
1

µa,c − λa,c
=

1
λa,c

ua,c
− λa,c

=
1

λa,c(
1

ua,c
− 1)

=
1

λa,c
· ua,c

1− ua,c
.

Therefore, in Constraint (c) of Problem 1:

∑
u∈U

γa,uxa,u,cpta,c = λa,cpta,c =
ua,c

1− ua,c
.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 6

In the above, f(ua,c) =
ua,c

1−ua,c
is monotonically increas-

ing with respect to ua,c ∈ [0, 1). Let the constant ûa,c denote
the upper bound on ua,c and û = max

a∈A,c∈C
{ûa,c}, we have:

∑
u∈U

γa,uxa,u,cpta,c =
ua,c

1− ua,c
6

ûa,c
1− ûa,c

6
û

1− û
. (6)

Therefore, Problem 1 can be transferred as follows:

Problem 2.

min TDC =
∑
a∈A

∑
c∈C

∑
v∈V

ya,c,vrcc,v (7)

subject to:

(a’) Y ∈ C1

(b’) X ∈ C2

(c’)

∑
a∈A

∑
c∈C(

∑
u∈U γa,uxa,u,cdtu,c + û

1−û)

S
6 R

(d’) ûµa,c − λa,c > 0 ∀a ∈ A,∀c ∈ C

In constraint (a’), C1 stands for the set of feasible replica
deployment plans Y that satisfy constraints (a), (b) in Prob-
lem 1. In constraint (b’), C2 refers to the set of feasible
request dispatch plans X that satisfy constraints (e), (f) in
Problem 1. Constraint (c’) is derived from constraints (c)
in Problem 1 based on eq. (6). Constraint (d’) guarantees
that the utilization rate of the VM instance for application
replica ac never exceed û. With different û, Problem 2 can
be considered as a series of MILP problems and solved
directly using popular MILP methods, e.g., cutting-plane
[46] and branch and cut [47], provided by many open source
software tools, e.g., Google OR-Tools [48].

4.2 Mixed Integer Linear Programming

Clearly increasing û can improve the overall VM utilization
rate, thus decrease TDC in Problem 2. Note that if û is too
large, we cannot find feasible solutions to Problem 2 subject
to constraint (c’). One practicable method is to initialize
û at its maximum, then repeatedly reduce û = û − ∆u
until a feasible solution can be found. Next, we theoretically
analyse the upper bound on û.

Let dt denote the average RTD across all requests for all
application replicas. We have:

dt :=

∑
a∈A

∑
c∈C

∑
u∈U γa,uxa,u,cdtu,c
S

. (8)

Given request rate γa,u, we can easily obtain the lower
bound L of dt by:

L =

∑
a∈A

∑
u∈U γa,umin

c∈C
{dtu,c}

S
.

This lower bound is realized when all user requests are
dispatched to the respective data centre with the minimal
dtu,c.

Algorithm 1 Our MILP-based algorithm in MCApp.
Input: A,U,C, V, γa,u, rcc,v, δa,c,v, dtu,c,R.
Output: Request dispatch plan X and replica deployment

plan Y .
1: û← S(R−L)

S(R−L)+|A|
2: while MILP methods cannot find a feasible solution to

Problem 2 with û do
3: û← û−∆u
4: end while
5: For the feasible solutionX and Y to Problem 2, calculate
ART and TDC

6: R′ ← R
7: while ART 6 R and termination rule is not met do
8: Gain X ′ and Y ′ to Problem 2 with R′ ← R′+ ∆R by

MILP methods and calculate its ART ′ and TDC ′

9: if ART ′ 6 R and TDC ′ < TDC then
10: X,Y ← X ′, Y ′

11: TDC ← TDC ′

12: end if
13: ART ← ART ′

14: end while
15: return X and Y

Theorem 1. The maximum of û is S(R−L)
S(R−L)+|A| subject to

constraints (c’).

The proof of the theorem is given in the appendix A.
With û, ART of any feasible solution to Problem 2 is less

thanR in constraint (c’), because ua,c 6 û for all application
replicas. Increasing R to R′ when solving Problem 2 is
helpful to find solutions with lower TDC . However, if R′
is too large, the found solutions cannot be feasible due to
violation of constraint (c’), i.e., ART of the solutions exceed
R. Another iterative method can be used to gradually
increase R′ = R′ + ∆R in constraint (c’) until we cannot
find feasible solutions.

Algorithm 1 shows the procedure of the MILP-based
algorithm with the adaptive û and R′. After initializing û
(step 1), we iteratively determine an appropriate û through
step 2-4. After a feasible solution to Problem 2 is found,
we calculate ART and TDC in step 5. Next we relax the
performance requirement to R′ in an attempt to decrease
TDC . The process is repeated untilART is greater thanR or
the termination rule (e.g., the maximum optimization time)
is met (step 6-14).

Finally, we theoretically analyse the performance of the
base solution by Algorithm 1 in terms of worst-case ratio.

For each VM type v in data centre c, we can obtain the
unit cost of processing a single request for application a:

ka,c,v =
rcc,v
δa,v

. (9)

We denote the minimal unit cost for application a across
all VM types and data centres as ka.min = min

c∈C,v∈V
{ka,c,v}

and the minimal unit cost among all applications as K =
min
a∈A
{ka.min}.

Next we generate a WARDMC solution subject to all the
constraints in Problem 2. Therefore, TDC of this WARDMC
solution is the upper bound on TDC of the optimal solution
to Problem 2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 7

Algorithm 2 Our LNS-based algorithm in MCApp.
Input: Base solution to Problem 2 X◦ and Y ◦, itermax.
Output: Xbest, Ybest

1: Xbest, Ybest ← X◦, Y ◦

2: i← 0
3: while i < itermax do
4: Y ← destroy(Ybest) /* Algorithm 3
5: X,Y ← repair(Y) /* Algorithm 5
6: if TDC(X,Y) < TDC(Xbest, Ybest) then
7: Xbest, Ybest ← X,Y
8: i← 0
9: else

10: i← i+ 1
11: end if
12: end while
13: return Xbest, Ybest

Concretely, let this WARDMC solution have dt = L,
i.e., all user requests are served in the data centres with
the minimal dtu,c. Based on this request dispatch plan, we
can obtain the workload of application replica λ′a,c and the
number of replicas H. In this case, we have û′ 6 S(R−L)

S(R−L)+H
following the proof of Theorem 1.

Let û′ = S(R−L)
S(R−L)+H , we always choose the cheapest VM

type to deploy replica ac subject to δa,v′ >
λ′
a,c

û′ . Let rc′a,c
denote the rental cost of the cheapest VM for ac, TDC of
this WARDMC solution can be calculated by:

C =
∑
a∈A

∑
c∈C

rc′a,c. (10)

Theorem 2. TDC of the optimal the solution to Problem 2 is at
most C(R−L)

KS(R−L)+K times of the optimal TDC to Problem 1.

The proof of the theorem is given in the appendix B.

4.3 Large Neighborhood Search
LNS has been widely used to solve various combinatorial
optimization problems with practical importance [49], in-
cluding multi-cloud service brokering in [33]. In this section,
we explain the LNS-based algorithm to improve the base
solutions found by Algorithm 1. LNS explores solution
space by applying destroy and repair heuristics to the most
recently discovered solution in each iteration [32]. Since the
best achievable TDC depends on the number, locations,
and types of the deployed VMs, we decide to design a
LNS algorithm to improve the replica deployment plan Y .
Particularly, three problem-specific heuristics are designed
for replica replacement, VM selection, and request dispatch,
respectively. First, we propose a destroy heuristic to remove
varied number of application replicas from Y based on a
domain-tailored relatedness measurement. Next, we design
a repair heuristic to effectively transfer the destroyed Y vio-
lating constraint (c) to a feasible Y . To facilitate the process
of repairing Y , we also propose a delay-oriented heuristic for
request dispatch and ART evaluation.

Algorithm 2 shows the procedure of our LNS-based
algorithm. The input parameter itermax denotes the max-
imum number of iterations without improving Y before
terminating the algorithm. Xbest and Ybest together denote

Algorithm 3 Destroy heuristic.
Input: Replica deployment plan Ybest, ρ, r.
Output: New replica deployment plan Y after replicas re-

moval.
1: k ← random(1, dρ|Ybest|e)
2: Randomly select an application replica ac from Ybest
3: Initialize a set of application replicas D ← {ac}
4: while |D| < k do
5: Create a list L including all application replicas from

Y not in D
6: Randomly select an application replica ac from D
7: Sort L such that i < j ⇒ N(ac, L[i]) < N(ac, L[j])
8: Choose a random number ξ ∈ [0, 1)
9: D ← D ∪ L[ξr|L|]

10: end while
11: Update Ybest as Y by removing replicas in D
12: return Y

the best WARDMC solution obtained so far during LNS.
The function destroy(Ybest) in step 4 destroys a copy of
Ybest by removing a portion of application replicas (intro-
duced in Subsection 4.3.1). The function repair(Y) in step
5 transforms the destroyed replica deployment plan into a
new feasible Y and determines the request dispatch plan X
accordingly (detailed in Subsection 4.3.2). In step 6, TDC
of the new WARDMC solution is evaluated. Based on that,
the solution is either rejected or accepted as the current
solution for the next search iteration. Specifically, we only
accept the cheaper solution and update Xbest and Ybest
correspondingly (step 7). Finally, Algorithm 2 returns the
best replica deployment plan and request dispatch plan.

4.3.1 Destroy Heuristic
Our destroy heuristic is inspired by [33], which removes the
related request-VM assignments based on their similarities,
e.g., the deployment location, to improve the performance
of multi-cloud service brokering. We propose to measure the
relatedness among application replicas for destroying Ybest.
Thus,N(ac, a

′
c′) in eq. (12) quantifies the relatedness between

replicas ac and a′c′ :

N(ac, a
′
c′) =

{
dt(c, c′) if a = a′

∞ otherwise, (11)

where dt(c, c′) is the RTD between two data centres c and
c′. That is, application replicas are related if they belong to
the same application and the deployed data centres c and
c′ are close to each other, while unrelated if they belong to
different applications.

Algorithm 3 shows the procedure of the proposed de-
stroy heuristic. The parameter ρ ∈ (0, 1) is the percentage
of application replicas to be removed and r (r > 1) con-
trols random selection of replicas for removal. To discover
possibly better WARDMC solutions, our destroy heuristic
first randomly generates an integer k ∈ [1, dρ|Ybest|e] as the
number of replicas to be removed in step 1. The mechanism
has been verified to improve the performance of LNS in our
experiments (Subsection 5.7). Then the heuristic randomly
selects one replica ac from Ybest (step 2) and adds it to set
D (step 3), which is initially empty. Next, we create a list
L to include all application replicas not in D (step 5) and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 8

randomly pick up a replica ac from D (step 6). In step 7,
the application replicas in L is sorted in the ascending order
according to the relatedness with ac in eq. (12). We select
one replica from L with a probability proposed in [33] and
add the replica to D (step 8-9). The procedure is repeated
until k application replicas have been selected for removal.
Finally, Ybest is updated by removing all replicas in D.

4.3.2 Repair Heuristic
It is highly likely that the replica deployment plan Y after
replica removal cannot satisfy constraint (c). Our repair
heuristic aims to generate new WARDMC solutions such
that ART 6 R. Particularly, we must resolve four issues
during the repair process: (1) How many new replicas
should be deployed? (2) Where should these new replicas
be placed? (3) Which types of VMs should be deployed? (4)
How to dispatch user requests based on the current replica
deployment plan?

To ensure that the number of replicas after repair is
not too different from |Ybest|, we first randomly generate
the required number of application replicas l ∈ [|Ybest| −
∆l, |Ybest| + ∆l]. Here, ∆l is a hyper-parameter which
controls the exploration of the repair heuristic. That is,
larger ∆l creates more optional values for l. It is helpful
to consider more different and potentially good WARDMC
solutions. The mechanism has also been verified to improve
the performance of LNS in our experiments (Subsection 5.7).

To identify appropriate data centres to place new repli-
cas, we design a greedy-based mechanism to add data centres
until the number of application replicas reaches l. First, we
calculate each application’s average utilization rate:

ua =

∑
u∈U γa,u∑
c∈C µa,c

. (12)

The application with the highest average utilization rate
has the priority to receive new replicas. The rationale is as
follows. On the one hand, if ua > 1, at least one application
replica ac have ua,c > 1, which violates eq. (5). On the other
hand, if ua < 1, adding replicas for an application with the
higher average utilization rate helps to reduce the average
request processing time of application effectively.

Next, we determine the data centre to place a new replica
for the selected application. Here, we calculate the benefit of
each data centre c as follows:

benefitc =
dta+c − dta

ka,c,v
, (13)

where dta+c and dta are the average RTD of application a
after and before adding a replica for application a using the
cheapest VM type v in data centre c, respectively.

Note that RTD depends on the request dispatch plan X .
Therefore, we develop a delay-oriented heuristic to quickly
revise X for the purpose of minimizing the total RTD
between users and application replicas. Here, we assume
that all replicas of the same application have the identical
utilization ua, which can be calculated by eq. (12). Although
this assumption based on the capacity-based round-robin
scheduling [50] cannot guarantee the optimality of X for
given Y , it can effectively prevent any application replica
from being heavily utilized, thereby reducing the risk of

Algorithm 4 Delay-oriented heuristic for request dispatch.
Input: Replica deployment plan Y , γa,u, dtu,c.
Output: Request dispatch plan X .

1: for all Application a ∈ A do
2: λa,c ←

∑
u∈U γa,u∑
c∈C µa,c

µa,c
3: Create two lists RTDList and DCList
4: while Exist γa,u not dispatch do
5: Find the user region u with min(RTDList) and the

corresponding replica ac by DCList
6: if λa,c > γa,u then
7: ra,u,c ← γa,u
8: λa,c ← λa,c − γa,u
9: else

10: ra,u,c ← λa,c
11: λa,c ← 0 and update DCList and RTDList

without considering ac
12: end if
13: end while
14: end for
15: return Request dispatch plan X

long request processing time. After defining the workload,
i.e., λa,c = uaµa,c, for each application replica, X is gener-
ated as detailed below.

Algorithm 4 demonstrates the process of the delay-
oriented heuristic. For each application a, the heuristic first
calculates the workload of all replicas λa,c (step 2) and
creates two lists, i.e., RTDList and DCList, to record the
minimal RTD among all replicas and the corresponding
data centre for each user region (step 3). Then the heuristic
iteratively finds the user region with the minimum value
in RTDList, dispatches the requests from this region to the
corresponding replica according to DCList. Concretely, if
λa,c > γa,u, that is, the workload of ac is in surplus, the
requests rate from u to ac, i.e., ra,u,c is determined by γa,u
in step 7 and λa,c is updated in step 8. Otherwise, ra,u,c is
determined by λa,c in step 10 and the two lists DCList and
RTDList are updated regardless of ac in step 11. Finally, the
heuristic returns X by setting each of its component xa,u,c
to ra,u,c

γa,u
.

The new application replica is placed in the data centre
with the largest benefit defined in eq. (13) until the number
of application replicas reaches l. Then we verify whether
the new replica deployment plan Y is feasible. If ART > R,
we can select new VM types with higher processing speed,
e.g., change the VM type from Amazon Web Services (AWS)
m5.large to m5.xlarge, for existing application replicas.

Note that the upgrade of VMs will change request dis-
patch plan X and upgrading a single VM may increase the
average RTD. For example, if a Web application has more
Asian users than European users, upgrading the application
replica in Europe alone will reduce the request processing
time for European users. However, the upgrade can increase
RTD for some Asian users due to the workload variation
based on eq. (12). To decrease ART , multiple replicas should
be upgraded simultaneously. We design a random-based
mechanism to select varied sets of application replicas and
upgrade them correspondingly. This mechanism helps to
identify an appropriate replica set for upgrade. The overall

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 9

Algorithm 5 Repair heuristic.
Input: Replica deployment plan Y after replicas removal.
Output: Repaired replica deployment plan Y and request

dispatch plan X .
1: l← random(|Ybest| −∆l, |Ybest|+ ∆l)
2: while |Y | < l do
3: Determine the application a with the highest average

utilization rate according to eq. (12)
4: Determine the data centre c with the largest benefit

according to eq. (13)
5: Add a new application replica for a at cwith a random

VM type
6: end while
7: Obtain request dispatch plan X by Algorithm 4 and

calculate ART
8: while ART > R do
9: Randomly select application replicas from Y

10: Update the selected replicas by upgrading the current
VM types

11: Obtain request dispatch plan X by Algorithm 4 and
calculate ART

12: end while
13: return X and Y

repair heuristic is shown in Algorithm 5.

5 PERFORMANCE EVALUATION

In the absence of a publicly available global multi-cloud
testbed, many recently published research works mainly
rely on simulations to evaluate algorithm performance [3],
[51]. In this section, we present the experimental evalu-
ation of our proposed MCApp approach for solving the
WARDMC problem.

5.1 Datasets
Based on the latest report regarding the worldwide IaaS
public cloud services market share [52], we collect the real
VM type descriptions and pricing schemes in February 2021
from three leading cloud providers, i.e. AWS4, Microsoft
Azure5 and Alibaba Elastic Compute Service (ECS)6. 21 dif-
ferent VM types (8 from AWS m5-series, 8 from Azure Dav4-
series, and 5 from Alibaba g6-series) have been included in
the experiments. We also consider a total of 15 locations
for major AWS, Azure and Alibaba data centres, i.e., North-
ern Virginia, Northern California, Dublin, London, Paris,
Frankfurt, Stockholm, Hong Kong, Singapore, Seoul, Tokyo,
Sydney, Sao Paulo, Mumbai, and Johannesburg. Further-
more, we adopt 82 user centres from 35 countries on 6
continents in the Sprint IP Network7 to simulate the global
user community.

To evaluate the network latency between users and
deployed services, we use the network latency information
in the Sprint8 IP backbone network databases.

4. https://aws.amazon.com/ec2/instance-types/
5. https://azure.microsoft.com/en-us/services/virtual-machines/
6. https://www.alibabacloud.com/product/ecs
7. https://www.sprint.net/tools/ip-network-performance (locations

are shown as pink dots) and https://github.com/qingdaost/LBARDM
8. https://www.sprint.net/tools/ip-network-performance

5.2 Configuration Settings
In our experiments, the range of Web application processing
time for a single request is based on [3], that is, 10-20
ms running on AWS m5.large VM. The number of Web
applications in an experimented suite ranges from 1 to
10 to simulate a wide variety of user requirements. It is
sufficient for enterprise applications because the meteoro-
logical service of New Zealand, i.e., MetService9, provides
8 Web applications. Referring to [53], we apply Facebook
subscribers statistics10 to simulate the distribution of appli-
cation requests from every user region. By January 2020,
there are approximately 1.3 billion Facebook subscribers
from all of 35 countries considered in our simulation. We
consider the total number of users for our simulated Web
applications as 1/1000th of Facebook subscribers to simulate
the Web application providers with millions of users11. That
is, the number of users in different regions ranges from 2100
to 71800. For each Web application, we select 30 out of all
82 user regions randomly, and each user from the selected
user regions makes 25 requests on average daily following
[53]. Accordingly, the application request rate spans from
52 to 304 requests per second (that is, approximately 4.5-
26.3 millions of requests daily). We assume that new appli-
cation requests from user regions are generated according
to a Poisson distribution, following the common practice
in many previous works [3], [54]. R is set to 150 ms since
the response time beyond 200 ms will deteriorate the user
experience significantly [9].

5.3 Competing Approaches and Parameter Settings
We adapt the following three approaches to the WARDMC
problem and compare MCApp to them.

The LNS-based approach proposed in [33] supports pe-
riodical VM selection in multi-cloud. For convenience, we
denote the competing algorithm as LNS-MC. This approach
applies a greedy-based constructive heuristic, a Shaw-based
destroy heuristic [32], and a greedy-based repair heuristic.
We apply the same parameter settings as [33]: itermax =
2000, ρ = 0.3, r = 4.

HMOHM [8] is proposed to deploy Web applications to
public clouds. The GA-based algorithm in HMOHM applies
two evolutionary operators, i.e., mutation and nascency,
to balance global and local search. For parameters of GA,
we adopt the same settings as recommended in [8]: the
population size is 100, the elite size is 10, both the mutation
rate and the nascency rate are 0.5, and termination time is 5
minutes.

GA-ARP [7] is recently proposed for budget-constrained
application replication and deployment in multi-cloud. The
GA-ARP approach minimizes ART of applications subject
to a budget constraint. To ensure the quality of deployment
solutions, GA-ARP adds a heuristic-based solution to the
initial GA population. To apply GA-ARP to the WARDMC
problem, we change its time-based fitness function to TDC
and budget-related constraint to ART . On the other hand,
we change the heuristic in GA-ARP, i.e., GreedyAdd, to a

9. https://www.metservice.com/
10. https://worldpopulationreview.com/country-rankings/

facebook-users-by-country
11. https://github.com/qingdaost/LBARDM

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 10

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

1 2 3 4 5 6 7 8 9 10

T
o

ta
l

d
ep

lo
y
m

en
t

co
st

 (
U

S
D

)

Number of applications to be deployed

MCApp LNS-MC HMOHM GA-ARP

Fig. 3. Comparison of average TDC by competing approaches.

new heuristic that generates a cost-saving solution within
the given R as the seed. For the adapted GA-ARP, our
parameter settings include: the population size is 100, the
maximum generation is 100, which are sufficient for the
search process to converge. The crossover rate and mutation
rate are 0.9 and 0.1 respectively following common practice
in the literature [55].

We use CBC solvers from Google OR-Tools package
version 7.3.7 [48] to implement Algorithm 1. Based on
our preliminary simulation studies, we decide to set the
parameters: ∆u = 1% and ∆R = 5ms. We set 10 minutes
as the termination rule for Algorithm 1 to control the overall
computational time of MCApp. For Algorithm 2, we follow
[33] to determine its parameter settings: itermax = 2000,
ρ = 0.3, r = 4. Besides, we set ∆l = 2, which is sufficient
to explore search space, because we cannot gain significant
improvements on the quality of the final solutions by using
larger ∆l. To compare the results, we run each experiment
30 times on the same computer with Intel Core i7-8700 CPU
(3.2 GHz and 16 GB of RAM).

5.4 Performance Comparison

Because all competing approaches can satisfy the constraints
on average response time, we show the average TDC
achieved for the WARDMC problem with different numbers
of Web applications in Fig. 3. The mean and standard
deviation of TDC are presented in TABLE 2.

When the number of applications |A| is 1, the supe-
riority of MCApp over LNS-MC and HMOHM is about
2%. As |A| increases, MCApp can generate solutions with
much lower TDC than LNS-MC and HMOHM. Particularly,
when deploying more than 4 applications simultaneously,
the performance improvement of MCApp over HMOHM
is substantial, i.e., the cost reduction is more than 30%.
We also find that except |A| = 10, GA-ARP always has
the worst performance, which demonstrates that dispatch-
ing the requests from the same user region to different
application replicas rather than the closest one results in
better solutions. Comparing to some competing approaches,
the cost reduction of MCApp can be more than 35% in
some problem instances. For example, when |A| = 5 and
7 comparing with GA-ARP and |A| = 10 comparing with
HMOHM.

From TABLE 2, we can calculate that the average im-
provement of MCApp in terms of TDC is 10.47% lower
than LNS-MC, 25.55% lower than HMOHM, and 32.33%
lower than GA-ARP among all problem instances. The
observed performance differences between MCApp and
three competing approaches are verified by a statistical test
(Wilcoxon Rank-Sum test) with significance level of 0.05 for
all problem instances. We also find that MCApp has small
standard deviation, confirming its stability and reliability
for the WARDMC problem.

5.5 Effectiveness of Application Replication

In this subsection, we evaluate the effectiveness of appli-
cation replication for satisfying constraints on ART . As
reviewed in Subsection 2.1, H-GA is proposed for multi-
cloud application deployment without replication in [3]. We
show the ART achieved by MCApp and H-GA in Fig. 4.
For all problem instances, H-GA cannot generate solutions
having ART within 150 ms, i.e., the red dotted line in Fig. 4.
For example, the minimal ART achieved by H-GA is 238.18
ms for the problem instance with |A| = 5 and the maximal
ART achieved by H-GA is 244.93 ms for the problem in-
stance with |A| = 9. MCApp is capable of replicating and
deploying Web applications with ART strictly below 150
ms.

If most users of an application are geographically local-
ized, H-GA may generate adequate solutions without repli-
cation. When serving the requests from widely distributed
users, H-GA cannot bring ART under 150 ms even selecting

TABLE 2
Performance comparison of the approaches for WARDMC with different application diversities (TDC per month in USD, the best is highlighted).

No. of MCApp LNS-MC [33] HMOHM [8] GA-ARP [7]
Apps TDC n∗ TDC n∗ TDC n∗ TDC n∗

1 1219.68±0 3 1244.16±0 2 1246.08 ±10.52 2 1649.76±5.46 6
2 1978.56±0 4 2240.64±0 3 2251.70 ±84.40 4 2787.14±71.34 10
3 3694.25±41.49 7 3935.81±7.77 6 4492.32 ±179.33 6 5198.9±127.63 18
4 3816.96±30.11 8 4190.50±0.53 6 5244.10 ±333.92 8 5595.98±216.57 22
5 4481.28±0 9 5558.40±0 6 6434.93 ±355.30 10 7059.34±154.57 30
6 5687.16±40.48 13 6373.44±0 7 8182.58 ±587.35 12 8586.84±143.12 41
7 7580.52±43.15 13 8323.20±0 8 11413.37 ±819.92 14 11745.65±210.32 47
8 7794.19±197.69 15 8876.16±0 9 11549.78 ±709.09 16 11564.04±175.6 54
9 9009.41±308.45 15 10535.04±0 10 13481.40 ±1091.05 18 13829.18±198.22 61
10 9558.6±237.74 19 10644.48±0 11 14968.92 ±1421.10 20 14547.79±248.01 68

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 11

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
v

er
ag

e
re

sp
o

n
se

 t
im

e
(m

s)

Number of applications to be deployed

MCApp H-GA

Fig. 4. Comparison ofART for evaluating the effectiveness of application
replication.

the most expensive VMs for all Web applications. In that
case, deploying application replicas at different data centres
is imperative to reduce response time [56]. Therefore, we
study the important problem of application replication for
Web application deployment in this paper.

5.6 Replica Amount
Next, we investigate the effectiveness of MCApp by com-
paring the numbers of application replicas in the final
replica deployment plans. The replica number n∗ of the best
solution among 30 runs is presented in TABLE 2.

n∗ obtained by GA-ARP is always significantly greater
than the other competing approaches. Each application has
approximately 6 replicas on average. Too many replicas
cause the leased VMs heavily under-utilized. In contrast,
LNS-MC tends to use smaller n∗ than those decided by
MCApp. The smaller replica number decided by LNS-MC
means more expensive VMs with higher processing speed
have to be rented to serve the user requests, which also
restrict the utilization of VMs.

Comparing MCApp and HMOHM, n∗ are different for
8 out of 10 problem instances. From above results, we
can conclude that the number of replicas seriously impacts
TDC , and MCApp can effectively search for appropriate n
for replica deployment plans. For example, when |A| = 1,
MCApp determines n as 3 and deploys the three applica-
tion replicas in Northern Virginia, Seoul, and Mumbai data
centres respectively.

5.7 Effectiveness of Algorithm 1
As shown in TABLE 3, we also examine the performance
of our proposed MILP-based algorithm, i.e., Algorithm 1,
using two baseline methods, i.e., the greedy-based con-
structive heuristic in [33] (GreedyCon for convenience) and
GreedyAdd in [7], in terms of TDC . The values of n of the
the base solutions are also reported in TABLE 3.

GreedyCon achieves the same performance as Algorithm
1 for single application deployment. However, when |A|
is between 2 and 6, Algorithm 1 outperforms GreedyCon
significantly. Besides, Algorithm 1 can generate better solu-
tions than GreedyAdd with fewer n in all problem instances,
benefiting from the flexible request dispatch plans.

TABLE 3
Base solutions’ comparison for deploying applications with different

application diversities (TDC per month in USD, the best is highlighted).

No. of Algorithm 1 GreedyCon [33] GreedyAdd [7]
Apps TDC n TDC n TDC n

1 1244.16 2 1244.16 2 2376.00 3
2 2052.00 5 2240.64 3 4354.56 4
3 3767.04 8 4193.28 6 10091.52 6
4 4033.44 9 4193.28 6 7672.32 8
5 5353.92 11 5558.40 6 9440.64 10
6 6134.40 12 6373.44 7 18869.76 11
7 9385.92 13 8323.20 8 33730.56 13
8 9650.88 17 8876.16 9 19560.96 15
9 11269.44 17 10535.04 10 21041.28 17
10 11721.60 19 10644.48 11 64258.56 18

Note that for the problem instances where |A| > 6,
there is not enough time for Algorithm 1 to generate good
base solutions. However, using the information obtained
from the solutions generated by Algorithm 1, e.g., the ap-
propriate replica number for applications, MCApp still can
obtain high quality final solutions by our proposed LNS-
based algorithm, e.g., Algorithm 2. Overall, Algorithm 2
improves the base solutions from Algorithm 1 for all 10
problem instances, whereas GreedyCon solutions can only
be improved for 2 out of 10 problem instances (|A| = 3, 4).
Therefore, the hybrid approach MCApp is effective in find-
ing good WARDMC solutions.

5.8 Effectiveness of Algorithm 2

Since there are several newly developed heuristics in Algo-
rithm 2, we perform ablation studies to analyse its effec-
tiveness. For the destroy heuristic, we compare Algorithm
3 with the destroy heuristic in [33] where k = dρ|Ybest|e.
We also compare Algorithm 5 with the repair heuristic in
[33] that sets l = |Ybest|. For application replica placing,
we compare our greedy mechanism with the random mech-
anism. For VM type selection, we compare our random
mechanism with the greedy mechanism. The mean TDC
of these ablation heuristics are presented in TABLE 4.

First, we can observe that Algorithm 3 achieves bet-
ter performance than [33] with determinate k (shown as
Determinate k in TABLE 4) except the single application
deployment. This means that removing a random number
of replicas in step 2 of Algorithm 3 helps to explore search
space, especially for high application diversity (the improve-
ments exceed 10% when |A| = 8, 9, 10). Second, the better
exploration by setting l randomly in step 1 of Algorithm
5 also can lead to better performance than determinate l in
[33] (shown as Determinate l in TABLE 4) for the majority of
problem instances (|A| = 1, 2, 5, 7, 8, 10). Third, the greedy-
based mechanism for placing new replicas in steps 3 and 4 of
Algorithm 5 performs significantly better than the random
mechanism (shown as Random placing in TABLE 4). This
supports our analysis in Subsection 4.3.2, e.g., replicating the
application with the highest average utilization rate. Lastly,
the random-based mechanism for VM selecting in steps
5 and 9 of Algorithm 5 clearly outperformed the greedy
mechanism (shown as Greedy selecting in TABLE 4). The
random mechanism works effectively in the scenario where

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 12

TABLE 4
Ablation of Algorithm 2 across each contribution in mean TDC

No. of Determinate Determinate Random Greedy
Apps k l placing selecting

1 1219.68 1244.16 1232.54 1244.16
2 1979.14 1995.84 1978.66 1978.56
3 3724.75 3684.96 3757.44 3767.04
4 3877.56 3815.83 3918.50 4021.92
5 4484.78 4488.12 4483.34 4492.51
6 5732.11 5606.21 5720.74 5714.64
7 7798.32 7610.81 7642.32 7664.40
8 8779.99 7860.34 8164.97 8190.94
9 10043.30 8983.90 9498.12 9657.65
10 10733.28 9658.63 10218.10 10419.07

(a) 7 applications to be deployed (b) 8 applications to be deployed

(c) 9 applications to be deployed (d) 10 applications to be deployed

Fig. 5. Changes of TDC of Algorithm 2

upgrade of a single VM has the indeterminate impact on
ART as analysed in Subsection 4.3.2.

We depict the change of TDC obtained by Algorithm
2 in Fig. 5. While the experiment results are obtained on
the problem instance with 7, 8, 9 and 10 applications to
be deployed, the same convergence behavior has also been
witnessed on other problem instances. In Fig. 5, the conver-
gence of TDC can be found after the computation time of
Algorithm 2 exceeds about 100-130s.

5.9 Further Analysis

Since our proposed approach, i.e., MCApp, combines the
iterative MILP and the domain-tailored LNS, the total over-
head of MCApp includes the computation time (CT) of
Algorithm 1 and Algorithm 2. In TABLE 5, we present the
observed CT spent by the two algorithms with respect
to different numbers of applications. The corresponding
variable numbers (i.e., request dispatch plan X and replica
deployment plan Y) and numbers of constraints are also
included in TABLE 5. We find that the total computation
time (TCT) of MCApp increases with the number of ap-
plications to be deployed, because every application will
produce some variables and constraints to be handled by
MCApp. As shown in TABLE 5, Algorithm 2 spends most of

TABLE 5
Variable numbers, numbers of constraints, and overhead of MCApp

(TC and TCT in s.)

No. of Variable Variable No. of CT of CT of TCT of
Apps No. of X No. of Y constraints Alg. 1 Alg. 2 MCApp

1 450 120 61 1.45 14.26 15.71
2 900 240 121 183.9 21.75 205.65
3 1350 360 181 296.47 40.87 337.34
4 1800 480 241 468.87 52.73 521.6
5 2250 600 301 600.00 55.23 655.23
6 2700 720 361 600.00 133.98 733.98
7 3150 840 421 600.00 146.06 746.06
8 3600 960 481 600.00 169.57 769.57
9 4050 1080 541 600.00 183.3 783.3
10 4500 1200 601 600.00 196.51 796.51

TCT when |A| = 1. For |A| > 1, CT of Algorithm 1 takes up
a majority of TCT . The increasing number of variables and
constraints has a greater impact on CT of Algorithm 1 than
Algorithm 2. Overall, MCApp can generate a WARDMC
solution within 15 minutes. The competing approach LNS-
MC can generate solutions within 10 minutes. We attempt
to extend the termination time of HMOHM, i.e., 5 minutes,
without obtaining noticeably better performance. The com-
putation time required by GA-ARP varies from 20 to 6000
seconds subject to the number of applications.

As confirmed by many existing studies [39], [56], the
workload of many Web applications does not change signif-
icantly within an hour. MCApp can be periodically applied
to re-optimize the replica deployment plan and request dis-
patch plan, e.g., every hour, to reduce the total deployment
cost while satisfying the constraint on average response
time. The reactive strategy has been shown to be highly
effective in many existing works [57], [58].

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we studied the Web application replication
and deployment problem in multi-cloud that considers the
average response time, including both request processing
time and network latency, to reflect the real performance
of Web applications. To solve the problem, we propose an
approach, i.e., MCApp, which can decide the number of
replicas and select VMs from multi-cloud for Web applica-
tions subject to the given average response time so that the
total deployment cost is minimized. We first transform the
nonlinear WARDMC problem into a series of MILP prob-
lems through bounding the utilization rate of VMs for appli-
cation replicas. Further, we propose a MILP-based algorithm
to effectively generate a base solution with good resource
utilization. Furthermore, to explore the search space, we
design a problem-specific LNS-based algorithm to further
optimize the base solution. The experiments based on the
datasets collected from the real world cloud providers,
network environment, and Web applications show that our
approach can achieve up to 35% reduction in terms of TDC
comparing with the existing approaches.

In this work, we consider the constraint on the average
response time, because it seriously affects the user satisfac-
tion with applications [9]. We believe it is a promising future
direction to use worst-case response time to evaluate the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 13

performance of Web applications. Accordingly, new moni-
toring and reactive mechanisms will be proposed to satisfy
the performance requirement. The other promising direction
is to explicitly consider data sovereignty [59] during appli-
cation deployment. Designing novel approaches for solving
the problem of security-aware application deployment and
replication is an interesting future research topic.

REFERENCES

[1] N. Grozev and R. Buyya, “Inter-cloud architectures and appli-
cation brokering: taxonomy and survey,” Software: Practice and
Experience, vol. 44, no. 3, pp. 369–390, 2014.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica et al.,
“Above the clouds: A berkeley view of cloud computing,” Techni-
cal Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Tech. Rep., 2009.

[3] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and
budget-constrained service deployment for composite applica-
tions in multi-cloud environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 8, pp. 1954–1969, 2020.

[4] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud
computing environments: Challenges, taxonomy, and survey,”
ACM Computing Surveys (CSUR), vol. 47, no. 1, pp. 7–53, 2014.

[5] T. Shi, H. Ma, and G. Chen, “A genetic-based approach to location-
aware cloud service brokering in multi-cloud environment,” in
2019 IEEE International Conference on Services Computing (SCC).
IEEE, 2019, pp. 146–153.

[6] G. Shipley. (2018) Best practices for deploying your apps in the
cloud. [Online]. Available: https://developer.ibm.com/articles/c
l-best-practices-deploying-apps-in-cloud/

[7] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and
budget-constrained application replication and deployment in
multi-cloud environment,” in 2020 IEEE International Conference
on Web Services (ICWS). IEEE, 2020, pp. 110–117.

[8] M. Menzel, R. Ranjan, L. Wang, S. U. Khan, and J. Chen, “Cloud-
genius: a hybrid decision support method for automating the
migration of web application clusters to public clouds,” IEEE
Transactions on Computers, vol. 64, no. 5, pp. 1336–1348, 2014.

[9] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. Lau, “Scaling
social media applications into geo-distributed clouds,” IEEE/ACM
Transactions On Networking, vol. 23, no. 3, pp. 689–702, 2014.

[10] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization for
dynamic replication and migration of data in cloud data centers,”
IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp. 705–718,
2017.

[11] S. Wang, X. Li, and R. Ruiz, “Performance analysis for heteroge-
neous cloud servers using queueing theory,” IEEE Transactions on
Computers, vol. 69, no. 4, pp. 563–576, 2019.

[12] NIST. Cloud computing definitions. [Online]. Available: https:
//csrc.nist.gov/projects/cloud-computing

[13] S. KardaniMoghaddam, R. Buyya, and K. Ramamohanarao, “Adrl:
A hybrid anomaly-aware deep reinforcement learning-based re-
source scaling in clouds,” IEEE Transactions on Parallel and Dis-
tributed Systems, 2020.

[14] A. Erradi, W. Iqbal, A. Mahmood, and A. Bouguettaya, “Web ap-
plication resource requirements estimation based on the workload
latent features,” IEEE Transactions on Services Computing, 2019.

[15] S. Slimani, T. Hamrouni, and F. Ben Charrada, “Service-oriented
replication strategies for improving quality-of-service in cloud
computing: a survey,” Cluster Computing, pp. 1–32, 2020.

[16] M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, “Auto-
scaling web applications in clouds: A cost-aware approach,” Jour-
nal of Network and Computer Applications, vol. 95, pp. 26–41, 2017.

[17] J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource
auto-scaling for web applications,” in 2013 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing. IEEE,
2013, pp. 58–65.

[18] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Pro-
viding performance guarantees for cloud-deployed applications,”
IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp. 269–281,
2017.

[19] D. P. Bertsekas, “Nonlinear programming,” Journal of the Opera-
tional Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[20] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and O. Ozkasap, “Decen-
tralized utility-and locality-aware replication for heterogeneous
DHT-based P2P cloud storage systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 5, pp. 1183–1193, 2019.

[21] X. Ren, P. London, J. Ziani, and A. Wierman, “Datum: Managing
data purchasing and data placement in a geo-distributed data
market,” IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp.
893–905, 2018.

[22] Y. Xia, M. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, “Stochas-
tic modeling and quality evaluation of infrastructure-as-a-service
clouds,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 1, pp. 162–170, 2013.

[23] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+ r queuing systems,”
IEEE Transactions on parallel and distributed systems, vol. 23, no. 5,
pp. 936–943, 2011.

[24] M. F. Mohamed, “Service replication taxonomy in distributed en-
vironments,” Service Oriented Computing and Applications, vol. 10,
no. 3, pp. 317–336, 2016.

[25] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic
sla-driven provisioning for cloud applications,” in 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting. IEEE, 2011, pp. 434–443.

[26] B.-Y. Ooi, H.-Y. Chan, and Y.-N. Cheah, “Dynamic service place-
ment and replication framework to enhance service availability
using team formation algorithm,” Journal of systems and Software,
vol. 85, no. 9, pp. 2048–2062, 2012.

[27] J. Wu, B. Zhang, L. Yang, P. Wang, and C. Zhang, “A replicas place-
ment approach of component services for service-based cloud
application,” Cluster Computing, vol. 19, no. 2, pp. 709–721, 2016.

[28] M. Björkqvist, L. Y. Chen, and W. Binder, “Dynamic replication
in service-oriented systems,” in 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE, 2012, pp. 531–538.

[29] K.-T. Tran and N. Agoulmine, “Adaptive and cost-effective service
placement,” in 2011 IEEE Global Telecommunications Conference-
GLOBECOM 2011. IEEE, 2011, pp. 1–6.

[30] M. Björkqvist, L. Y. Chen, and W. Binder, “Opportunistic service
provisioning in the cloud,” in 2012 IEEE Fifth International Confer-
ence on Cloud Computing. IEEE, 2012, pp. 237–244.

[31] H. Ghanbari, M. Litoiu, P. Pawluk, and C. Barna, “Replica place-
ment in cloud through simple stochastic model predictive con-
trol,” in 2014 IEEE 7th International Conference on Cloud Computing.
IEEE, 2014, pp. 80–87.

[32] P. Shaw, “Using constraint programming and local search methods
to solve vehicle routing problems,” in International conference on
principles and practice of constraint programming. Springer, 1998,
pp. 417–431.

[33] L. Heilig, R. Buyya, and S. Voß, “Location-aware brokering for
consumers in multi-cloud computing environments,” Journal of
Network and Computer Applications, vol. 95, pp. 79–93, 2017.

[34] L. Xiao, M. Johansson, and S. P. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,” IEEE Transactions on
Communications, vol. 52, no. 7, pp. 1136–1144, 2004.

[35] T. Loukopoulos and I. Ahmad, “Static and adaptive distributed
data replication using genetic algorithms,” Journal of Parallel and
Distributed Computing, vol. 64, no. 11, pp. 1270–1285, 2004.

[36] H. Khalajzadeh, D. Yuan, J. Grundy, and Y. Yang, “Improving
cloud-based online social network data placement and replica-
tion,” in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, 2016, pp. 678–685.

[37] VMware. (2021) Mercedes-benz.io. [Online]. Available:
https://www.vmware.com/company/customers/index/fullp
age.html?path=/content/web-apps-redesign/customer-stories
/2021/building-an-entirely-virtual-consumer-experience

[38] ——. (2021) Gsl general hospital medical college. [Online].
Available: https://www.vmware.com/company/customers/ind
ex/fullpage.html?path=/content/web-apps-redesign/customer
-stories/2021/leveraging-vmware-solutions-for-an-enhanced-p
atient-experience

[39] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using ARIMA model and its impact on cloud applica-
tions’ QoS,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp.
449–458, 2014.

[40] IBM Cloud Education. (2020) Three-tier architecture. [Online].
Available: https://www.ibm.com/cloud/learn/three-tier-archite
cture

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTION SYSTEMS 14

[41] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microser-
vice applications in clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 1, pp. 98–115, 2020.

[42] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, pp. 40–44, 2009.

[43] MySQL. (2021) Eventual consistency. [Online]. Avail-
able: https://dev.mysql.com/doc/mysql-cluster-manager/1.4/
en/mcm-eventual-consistency.html

[44] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” The Journal of
Supercomputing, vol. 69, no. 1, pp. 492–507, 2014.

[45] J. D. Little and S. C. Graves, “Little’s law,” in Building intuition.
Springer, 2008, pp. 81–100.

[46] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting
planes in integer and mixed integer programming,” Discrete Ap-
plied Mathematics, vol. 123, no. 1-3, pp. 397–446, 2002.

[47] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial op-
timization problems,” Handbook of applied optimization, vol. 1, pp.
65–77, 2002.

[48] Google. Ortools. [Online]. Available: https://developers.google.
com/optimization

[49] D. Pisinger and S. Ropke, “Large neighborhood search,” in Hand-
book of metaheuristics. Springer, 2010, pp. 399–419.

[50] N. Ghani, A. Shami, C. Assi, and M. Raja, “Intra-onu bandwidth
scheduling in ethernet passive optical networks,” IEEE Communi-
cations Letters, vol. 8, no. 11, pp. 683–685, 2004.

[51] W. Li, X. Yuan, K. Li, H. Qi, X. Zhou, and R. Xu, “Endpoint-
flexible coflow scheduling across geo-distributed datacenters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 10,
pp. 2466–2481, 2020.

[52] C. Stamford. (2020) Gartner says worldwide iaas public
cloud services market grew 37.3% in 2019. [Online].
Available: https://www.gartner.com/en/newsroom/press-relea
ses/2020-08-10-gartner-says-worldwide-iaas-public-cloud-servi
ces-market-grew-37-point-3-percent-in-2019

[53] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst:
A cloudsim-based visual modeller for analysing cloud computing
environments and applications,” in Advanced Information Network-
ing and Applications (AINA), 2010 24th IEEE International Conference
on. IEEE, 2010, pp. 446–452.

[54] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Pias:
Practical information-agnostic flow scheduling for commodity
data centers,” IEEE/ACM Transactions on Networking (TON), vol. 25,
no. 4, pp. 1954–1967, 2017.

[55] K.-F. Man, K.-S. Tang, and S. Kwong, “Genetic algorithms: con-
cepts and applications [in engineering design],” IEEE Transactions
on Industrial Electronics, vol. 43, no. 5, pp. 519–534, 1996.

[56] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applica-
tions in clouds: A taxonomy and survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–33, 2018.

[57] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna,
“Reactive resource provisioning heuristics for dynamic dataflows
on cloud infrastructure,” IEEE Transactions on Cloud Computing,
vol. 3, no. 2, pp. 105–118, 2015.

[58] D. J. Dubois and G. Casale, “Optispot: minimizing application
deployment cost using spot cloud resources,” Cluster Computing,
vol. 19, no. 2, pp. 893–909, 2016.

[59] C. Esposito, A. Castiglione, F. Frattini, M. Cinque, Y. Yang, and
K.-K. R. Choo, “On data sovereignty in cloud-based computation
offloading for smart cities applications,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4521–4535, 2018.

Tao Shi is working toward the PhD degree in the
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand.
His main research interests include cloud com-
puting and distributed system. His research fo-
cuses on resource management and combina-
torial optimization in clouds.

Hui Ma received her B.E. degree from Tongji
University and her B.S. (Hons.), M.S. and Ph.D
degrees from Massey University. She is currently
an Associate Professor in Software Engineering
at Victoria University of Wellington. Her research
interests include service computing, conceptual
modelling, database systems, and resource allo-
cation in clouds. Hui has more than 100 publica-
tions, including leading journals and conferences
in databases, cloud computing, service comput-
ing, evolutionary computation, and conceptual

modelling. She is a steering committee member of ER, and has served
as a PC member for more than 70 international conferences, including
seven times as a PC chair for conferences such as ER, DEXA, and
APCCM. She has also served as local co-chair for Australian AI 2018
and CEC 2019.

Gang Chen received the Ph.D degree from
Nanyang Technological University (NTU), Singa-
pore. He is currently a Senior Lecturer with the
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand.
His research interests include reinforcement
learning, evolutionary computation and their ap-
plication to optimization and scheduling prob-
lems, resource management and load balancing
in networked systems.

Sven Hartmann received his Ph.D. in 1996 and
his D.Sc. in 2001, both from the University of Ro-
stock (Germany). From 2002 to 2007 he worked
first as an associate professor, then full profes-
sor for information systems at Massey University
(New Zealand). Since 2008 he is a full professor
of computer science and chair for databases and
information systems at Clausthal University of
Technology (Germany). There he is also serving
as academic dean at the Faculty of Mathematics,
Informatics and Mechanical Engineering. Sven

has more than 150 publications. He served as a PC member for more
than 80 conferences, including 10 times as PC chair. His research
interests include database systems, big data management, conceptual
modelling, and combinatorial optimization.

