
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dual-Tree Genetic Programming with Adaptive
Mutation for Dynamic Workflow Scheduling in

Cloud Computing
Yifan Yang, Gang Chen, Senior Member, IEEE, Hui Ma, Senior Member, IEEE, Sven Hartmann, Member, IEEE,

and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic workflow scheduling (DWS) is a challeng-
ing and important optimization problem in cloud computing,
aiming to execute multiple heterogeneous workflows on dynam-
ically leased virtual machine resources to satisfy user-defined
Quality of Service requirements. For the popular deadline-
constrained DWS in cloud problem, a virtual machine selection
rule (VMSR) and a task selection rule (TSR) need to be
designed simultaneously to minimize the rental fee and deadline
violation penalty. For this purpose, Dual-Tree Genetic Program-
ming (DTGP) has been previously developed to automatically
evolve effective VMSRs and TSRs. However, existing DTGP
approaches assume that VMSR and TSR, as well as terminals
used by VMSRs and TSRs are equally important and evolve both
VMSRs and TSRs in a black box manner, i.e., without using
any knowledge about different impacts of trees and terminals.
Several recent studies clearly indicate that different trees or
terminals have varied performance impacts, making it critical
to develop adaptive mutation mechanisms for effective DTGP.
Driven by this motivation, this paper proposes two new levels of
adaptive mutation mechanisms, contributing to the development
of a new DTGP algorithm, which features the use of three new
probability vectors for adaptive tree selection of VMSR and TSR
at the first level and adaptive terminal selection at the second
level while mutating any existing dual-tree individuals. Extensive
experimental results demonstrate that the proposed two adaptive
mechanisms can improve the effectiveness of DTGP compared to
four baseline algorithms.

Index Terms—dynamic workflow scheduling (DWS), dead-
line constraint, dual-tree genetic programming (DTGP), hyper-
heuristics, adaptive mutation.

I. INTRODUCTION

CLOUD computing is increasingly popular in numerous
industries for workflow execution [1]. For example, Met-

Service in New Zealand employs numerous cloud resources
to run its workflows to forecast daily weather. Compared with
using limited local resources, executing workflows on cloud is
scalable, allowing a large volume of workflows to be executed
quickly and efficiently. Furthermore, it has the flexibility to
rent different types of VM instances for any duration of time
to meet the different requirements of both CPU-intensive and
I/O-intensive workflows.

Y. Yang, G. Chen, H. Ma, and M. Zhang are with the School of Engineering
and Computer Science & Centre for Data Science and Artificial Intelligence,
Victoria University of Wellington, Wellington 6012, New Zealand. E-mail:
{yifan.yang, aaron.chen, hui.ma, mengjie.zhang}@ecs.vuw.ac.nz.

S. Hartmann is with the Department of Informatics, Clausthal Uni-
versity of Technology, 38678 Clausthal-Zellerfeld, Germany. E-mail:
sven.hartmann@tu-clausthal.de.

Workflow scheduling is a vital and challenging optimization
problem in cloud computing, aiming to allocate workflow tasks
to VM instances to achieve some important objectives, such
as minimizing cost and minimizing makespan. Meanwhile, a
service level agreement (SLA) is often used to specify various
Quality of Service (QoS) requirements to be fulfilled, such as
workflow deadline [2].

This paper studies the workflow scheduling problem in
cloud computing from the perspective of a broker [3]. In
brief, the broker receives workflow scheduling requests from
customers and executes workflow tasks in selected cloud com-
puting resources, i.e., virtual machine (VM) instances, rented
from cloud providers such as Amazon EC2 [4]. As shown in
Fig. 1, the broker rents VM instances from Amazon EC2 for
workflow execution and then provides the execution results to
its customers. The broker will compensate its customers in the
case of any deadline violations. This problem is named the
deadline-constrained dynamic workflow scheduling in cloud
(DCDWSC) [5], with the goal of jointly minimizing VM rental
fees and deadline violation penalties. It involves two decision-
making points, VM Selection and Task Selection. One is to
select an appropriate VM instance for executing each workflow
task, and the other is to select a pending task to be executed
on an idle VM instance.

Broker
(Service Provider)

(Cloud User)

workflows

VM instance #2...

VM instance #n

Cloud Resources

VM instance #1

workflows

Customer

Customer

Customer

Fig. 1. Workflow scheduling from the perspective of a broker.

Several categories of approaches have been proposed to
solve dynamic workflow scheduling problems. Firstly, list-
based heuristics are mainly designed for executing a sin-
gle workflow based on domain experts’ knowledge [6]–[8].
However, this approach primarily centers on the allocation
of tasks across a predetermined set of VM instances [7] and
cannot support dynamic resource provisioning required by the
DCDWSC problem.

Secondly, scheduling heuristics/rules, such as First-Come-
First-Service (FCFS) [9], MAXMIN and MINMIN [10], have

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

been proposed to solve dynamic workflow scheduling (DWS)
problems, as they are easy to implement and efficient in
making just-in-time scheduling decisions. However, these
scheduling heuristics are typically manually designed, not ef-
fective or not appropriate for addressing constrained problems
encountered in practice [9]. Furthermore, manually designing
such scheduling heuristics require extensive human labor and
domain expertise.

Thirdly, hyper-heuristic approaches can be used to auto-
matically design heuristics/rules and have gained increasing
attention for job shop scheduling (JSS) [11], resource alloca-
tion [12], and arc routing problems [13]. Among them, genetic
programming hyper-heuristic (GPHH) has shown its effec-
tiveness to evolve scheduling rules for workflow scheduling
problems. Existing works [14]–[16] only evolve VM selection
rules (VMSRs) for selecting an appropriate VM instance to
execute each workflow task, without paying full attention to
optimize the selection of pending task for an idle VM instance.
That is, each VM instance simply follows the First Come
First Serve (FCFS) principle to execute all of its pending
tasks. To overcome this limitation, the GPHH approaches
that can directly generate two scheduling rules have attracted
widespread attention in recent years. Among them, Cooper-
ative Coevolution GP (CCGP) [14], [15] and Dual-Tree GP
(DTGP) [5], [17] are two representative approaches. Notably,
experimental results in [5], [17] indicated that DTGP, which
explicitly considers the inter-dependencies between the two
evolved rules, outperforms CCGP for solving the DCDWSC
problem. Therefore, Dual-tree representation is considered an
important approach in this paper.

Traditional DTGP is implemented based on two key as-
sumptions: (1) Two trees in an individual (i.e., VMSR and
TSR) have the same impact on the whole individual’s per-
formance; and (2) all terminals are equally important while
generating the initial trees and the mutated subtree. However,
several recent studies clearly showed that different trees or
terminals have significantly varied impacts on individual’s
performance/fitness [5], [18], [19]. In order to evolve offspring
with good fitness, it is essential to explicitly consider the
influence of each tree and each terminal on the performance of
an evolved scheduling heuristic. Compared to crossover, it is
more straightforward to achieve this goal through the mutation
operator by selecting a tree with biased tree probabilities
and replacing part of that tree with a subtree generated with
biased terminal probabilities. Furthermore, in a preliminary
work [5], we found that the crossover operator has less
chance of generating more effective offspring for the DWS
problems than other problems (empirical evidence can be
found in Supplementary-A). Therefore, the mutation operator
has attracted our attention to evolve high-quality offspring by
adaptively enhancing the evolution chance of important trees
and terminals.

Although several works in literature have raised approaches
to consider the influence of trees and terminals, certain gaps
persist that necessitate additional research efforts. In [19], a
probabilistic adjustment at the tree selection level is proposed.
However, this method is designed for transfer learning and
cannot be used directly. At the terminal level, existing studies

[18], [20] adjust the terminal probabilities based on individual
fitnesses and terminal frequencies rather than the mathematical
optimization approach.

In this paper, we propose to adaptively choose trees ac-
cording to their performance impact and mutate the chosen
tree with the tendency of using important terminals. For this
purpose, we introduce three novel probability vectors, i.e.,
a tree selection probability vector (TSP) denoted as t⃗s, a
terminal weighting probability vector for VMSR (TWPV)
denoted as t⃗wvmsr and a terminal weighting probability vector
for TSR (TWPT) denoted as t⃗wtsr. As explained in Section
IV, the three vectors are iteratively updated to support adaptive
mutation, enabling DTGP to enhance the quality of its mutated
offspring. Specifically, t⃗s is used for stochastically selecting
the tree to be mutated. Meanwhile, t⃗wvmsr and t⃗wtsr control
terminal sampling upon constructing mutated subtrees.

We develop two new methods to adaptively update t⃗s,
t⃗wvmsr, and t⃗wtsr. Specifically, t⃗s is derived from an un-
derlying Beta distribution, which is updated by using the 1/5
rule [21]. The 1/5 rule is a technique originally proposed
to enhance Evolution Strategy (ES) algorithms. It requires
that 20% of mutations should lead to improvements. This
is achieved by adjusting the mutation deviation during the
evolutionary process, which measures the difference in terms
of the average fitness before and after mutation. Moreover,
t⃗wvmsr and t⃗wtsr are updated using the maximum likelihood
estimation (MLE) technique [22] and convex optimization
methods [23].

Driven by the new adaptive methods, we propose a new
DTGP algorithm with adaptive mutation (DTGPAM) in this
paper to jointly evolve effective VMSR and TSR for DCD-
WSC. Our new algorithm development gives rise to the
following contributions:

1) We propose a new adaptive tree selection method to adjust
t⃗s, which speeds up the convergence rate of DTGP by
explicitly controlling the mutation deviation introduced n
Section IV based on the 1/5 rule [21].

2) We propose a novel terminal weighting method that
follows the maximum-likelihood principle to precisely
calculate t⃗wvmsr and t⃗wtsr. This method is capable of
determining the terminal weights with respect to arbitrary
terminal sampling ratio.

3) Through comprehensive experimental study on a wide
range of DCDWSC problem instances, we show that the
scheduling rules evolved by DTGPAM can outperform
several state-of-the-art approaches under multiple dif-
ferent deadline constraints. DTGPAM also shows better
convergence rates than other GP-based competing algo-
rithms.

4) We perform further analysis on the three probability
vectors, t⃗s, t⃗wvmsr and t⃗wtsr. This analysis indicates
the effectiveness of the two newly developed adaptive
mechanisms.

II. RELATED WORK

This section investigates the related works in terms of
existing methods for DWS, multi-tree genetic programming,
and adaptive mutation in genetic programming.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

A. Existing Methods for DWS

To solve DWS, scheduling heuristics/rules are popularly
used to schedule the execution of dynamic workflows in real-
time, such as FCFS [9], MAXMIN and MINMIN [10]. They
are efficient choices and are easy to implement. However,
manually designing heuristics is time-consuming and requires
domain knowledge. The designed heuristics may not perform
reliably well whenever problem instances change.

To automatically design heuristics without domain knowl-
edge, hyper-heuristics have been used to generate heuristics
for job shop scheduling (JSS) [11], resource allocation [12],
and arc routing problems [13]. Some recent studies attempted
to develop GPHH algorithms to evolve heuristics for workflow
scheduling in cloud [5], [14], [17].

As far as we are aware, most of the existing GPHH
approaches for workflow scheduling problems focus primarily
on VM selection [15], [16]. For example, a SGP approach
in [16] was proposed to prioritize available VM instances for
each task sequentially and assign it to the highest VM instance.
In [15], a High-Level Heuristic SGP method was designed for
DWS to prioritize the task-VM pair.

However, task selection is also important. Due to this
reason, Xiao et. al. [14] designed a CCGP approach to
evolve two rules under a cooperative coevolution framework.
Experimentally, CCGP is shown to outperform several list-
based heuristics and meta-heuristics.

While showing promise, CCGP did not explicitly handle
the inter-dependencies between the rule pairs. To address this
issue, in our preliminary work [5], we propose to solve the
DCDWSC problem by developing a Dual-tree GP (DTGP)
algorithm to evolve a combination of VMSR and TSR. We
found through extensive experiments that DTGP can out-
perform both CCGP and SGP in most DCDWSC problem
instances, confirming that it is effective to evolve VSMR and
TSR in the form of a dual-tree representation. Furthermore,
using both VSMR and TSR achieved better performance than
using VMSR alone.

B. Multi-Tree Genetic Programming

In recent years, some researchers have begun to pay atten-
tion to the research of MTGP [19], [24]. It is a variant of GP
that allows for the evolution of multiple interconnected trees.
A special case where an individual consists of two trees is
called DTGP.

Typically, genetic operators are applied to one tree randomly
selected from each individual. Some studies have improved
the genetic operators at the tree selection level. In [24], the
crossover operator of DTGP was changed to mate one tree
and swap another tree between the parent individuals. Al-
Helali et. al. [19] proposed new probabilistic crossover and
mutation operators for MTGP at the tree selection level to
address transfer learning problems. According to self-defined
probability functions, well-evolved trees in the individuals are
more likely to be mated while poorly-evolved trees have more
probability to be mutated. In [25], the same-index crossover
operator, which is always performed on trees at the same index
in each individual, was performed on all trees in an individual.

In summary, the selection of trees for evolution in MTGP
poses a question that merits careful consideration. An existing
study [19] proposed to set different selection probabilities
based on a manually-defined function. However, it cannot be
directly used to solve our problem, because they focus on
the level of difference across different domains, rather than
the improvement achieved by the mutated offspring. Different
from [19], we propose to use the 1/5 rule to adaptively
adjust the probabilities of selecting different trees based on
the successful ratio of mutation.

C. Adaptive Mutation in GP
Mutation is an essential genetic operator for GP [26] to

improve the quality of its evolved offspring. Existing works
in the literature improve the effectiveness of mutation via
adaptive mutation rate adjustment [27]–[29], terminal selection
[18], [30], and terminal weighting [20], [31].

Adaptive mutation rate adjustment is achieved by changing
the mutation rate during the evolutionary process based on
several different factors, such as generation number [27], [29]
and elite individual [28]. For example, an adaptive mutation
rate that decreases with the generation number was designed
for GP in [27]. This method gradually reduces the search space
of mutation as the evolution process continues.

Terminal selection is used to mutate GP trees with a subset
of terminals [18], [20], [30], assuming that individuals with
good performance only rely on useful terminals. Zhang et.
al. [18] proposed a terminal selection method for CCGP to
improve the effectiveness and interpretability of the evolved
rules/trees. Particularly, a terminal subset is determined first
at the 50-th generation, and then only this terminal subset is
used to generate mutated subtrees for the next 50 generations.
The performance of this method is heavily influenced by the
terminal subset selected based on the initial 50 generations.

Terminal weighting is designed with the belief that some ter-
minals are more important and their use should be encouraged
in mutation [20], [31]. Different from the terminal selection
approach, this method focuses on assigning varied weights to
different terminals while keeping the terminal set intact. In
[31], a terminal’s weight depends intuitively on the fitness of
the corresponding individuals that use the terminal.

Since this paper aims to consider the influence of terminals,
the terminal weighting method is adopted. Most existing works
on terminal weighting rely on manually designed probability
functions [18], [20], [31] according to terminal frequency
and fitness, without utilizing any mathematically rigorous
optimization methods. The maximum-likelihood principle is
a widely-used statistical method that aims to estimate the
parameters of a model in such a way that the observed
data is most probable under that model [22]. Therefore, the
maximum-likelihood principle is employed in this paper to
accurately quantify the influence of terminals. By using this
technique, we can accurately quantify the terminal influence to
maximize the likelihood of generating high-quality offspring.

III. PRELIMINARY

This section formulates the deadline-constrained dynamic
workflow scheduling in cloud (DCDWSC) problem based on

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

existing works [3], [5], [8], [32]. The relevant parameters are
listed in Table I.

TABLE I
NOMENCLATURE

Notations Descriptions

Wi The i-th workflow
Vk The k-th VM instance
V Tl The l-th VM type
ATi Arrival time of workflow Wi

DLi Deadline of workflow Wi

tij The j-th task in workflow Wi

NOCij Number of successors of task tij in Wi

TSij Task size of tij
CUk Compute unit of Vk

PRICEk Hourly rental fee of Vk

ETk
ij Execution time of tij on Vk

LFTk
ij Latest finish time of tij on Vk at the current time

RWTk
ij Relative waiting time of tij on VM queue of Vk

WTk
ij Waiting time of tij on Vk

STk
ij Start time of tij on Vk

FTk
ij Finish time of tij on Vk

NORi Number of unassigned tasks remaining in Wi

RDLi Remaining time of Wi before the DLi is reached,
calculated by RDLi = DLi − current time

RTij Ready time of task tij
NIQk Number of pending tasks in VM queue of Vk

TIQk Total execution time of pending tasks in VM queue of Vk

VMRk Remaining rental period of Vk of its current lease

In dynamic workflow scheduling problems, a set of dynam-
ically arriving workflows W = {W1,W2, · · · ,Wm} needs
to be executed by a time-varying set of VM instances V =
{V1, V2, · · · , Vn} rented from a predetermined set of VM
types VT = {V T1, V T2, · · · , V Tu}. Information regarding
any workflow, such as workflow size and workflow pattern, re-
mains unknown until it arrives. Each workflow Wi is modeled
as a directed acyclic graph DAGi ∈ {Ti, Ei}, where nodes
represent tasks Ti = {ti1, ti2, · · · , tiqi} and edges connect a
predecessor task to one of its successor tasks to enforce their
execution order Ei = {(ti1, ti2), (ti1, ti3), · · · , (tij , tiqi)}, as
shown in Fig. 2.

Fig. 2. An example of a workflow modeled as a DAG.

Each workflow Wi has an arrival time ATi and a deadline
DLi. For each task tij in workflow Wi, let NOCij denote the
number of its successor tasks in the workflow and TSij denote
its task size. Each VM instance Vk has several attributes: its
compute unit (i.e., computation capacity) CUk, its memory
size MEMk and its hourly rental fee PRICEk.

During the scheduling process, there are some constraints
in the DCDWSC problem that needs to be clarified:

• Only tasks in the ready state (explained in Eq. (1)) can
be scheduled.

• A task can only be processed by one of the available VM
instances and cannot be interrupted during its execution.

• A VM instance can only handle one task at one time.
• Every workflow is associated with a deadline that needs

to be met, otherwise the broker will compensate its users.
• VM instances are rented on an hourly basis. One ad-

ditional hour of lease will be automatically applied to
a cloud resource whenever its current lease hour is
exceeded.

The relationship of the relevant attributes is illustrated in Fig.
3 and their definitions are described as follows.

Time

Fig. 3. Attribute relationship of task tij in workflow Wi.

An unprocessed task transforms into a ready task immedi-
ately when all its predecessor tasks in the same workflow have
been processed. Thus, the ready time RTij of task tij can be
calculated by

RTij =

{
ATi, if taskij is an entry task
maxz∈pred(tij) {FTiz} , otherwise (1)

where ATi is the arrival time of workflow Wi.
Let ET k

ij denote the execution time of task tij on VM
instance Vk. It can be calculated by

ET k
ij =

TSij

CUk
(2)

Note that the higher the computer performance CUk of the
selected VM instance Vk, the shorter the execution time.

Let LFT k
ij denote the latest finish time of tij on VM

instance Vk at the moment to be allocated. It can be calculated
by

LFT k
ij = TIQk + ET k

ij (3)

meaning that tij will be processed last by Vk.
Let RWT k

ij denote the relative waiting time of task tij on
the VM queue of Vk at the current time. It is calculated by

RWT k
ij = current time−RTij (4)

Note that task tij has not been processed at current time.
Let FT k

ij denote the actual finish time of task tij on VM
instance Vk. It depends on its actual start time ST k

ij on Vk and
can be calculated by

FT k
ij = ST k

ij + ET k
ij (5)

Let WT k
ij denote the waiting time of task tij on VM

instance Vk, i.e., the time interval between the actual start time
ST k

ij of task tij on Vk and its ready time RTij (regardless of
which machine). It can be calculated by

WT k
ij = ST k

ij −RTij (6)

Let RentFeek denote the rental fee of VM instance Vk.
It is determined by the rental time and corresponding hourly
prices, and can be calculated by

RentFeek = PRICEk ·

⌈
FT k

tlast
− ST k

tfirst

3600

⌉
(7)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where tfirst and tlast are the first and the last tasks processed
on VM instance Vk, thus the right part of Eq. (7) represents
the lease time of Vk measured in hours.

According to [2], if a workflow Wi cannot be completed
before its deadline, a penalty is applied based on a predefined
penalty rate. Let Penaltyi denote the penalty of workflow Wi

which can calculated by

Penaltyi = δ ·max {0, ATi +Makespani −DLi} (8)

DLi = ATi + ξ ·MinMakespani (9)

where δ is the penalty coefficient [33], and a bigger the
value of δ represents a lower tolerance for violating workflow
deadline. In Eq. (9), ξ is a deadline relaxation coefficient [2],
and a larger value indicates a looser constraint. Moreover,
MinMakespani relates to the shortest execution time of Wi

in theory, calculated by processing all tasks in Wi on the
fastest VM instances without any delay.

The objective of the DCDWSC problem is to minimize
the total cost incurred for workflow execution, including
VM rental fees of all VM instances and workflow deadline
penalties triggered by violations, as following

minTotalCost =
∑

k∈RV MS

RentFeek +
∑

i:Wi∈W

Penaltyi (10)

where RVMS is the set of rental VM instances, and W is the
set of all workflows arrived within a certain period of time.
More details are defined below.

There are two decision variables in the DCDWSC problem,
i.e., a VM selection rule (VMSR) and a task selection rule
(TSR). These are related to two types of scheduling decisions,
VM selection and task selection, each supported by a heuristic
referring to Eq. (11) and Eq. (12).

VM Queues VMs

...

...

...
Ready Task List

Workflow Pool

update workflow information

workflows
arrive

dynamically ...

Task SelectionVM Selection

1

2

3 4

5

3

3

4

4

ready tasks

completed tasks

unready tasks

Fig. 4. Example of scheduling workflows with a scheduling heuristic.

Fig. 4 illustrates the overall scheduling process of DCDWSC
with the support of a VMSR and a TSR. The scheduling
process starts from label 1, where a large number of workflows
with heterogeneous patterns and sizes are dynamically submit-
ted to the workflow pool. The broker then identifies all ready
tasks (explained in Section III) and enters them into the ready
task list (label 2). Tasks in the ready task list (RTL) are sorted
sequentially by RTij , or by the number of successor tasks
NOCij if their RTij are the same, otherwise by their system
indexes. Next, tasks in the ready task list will be sequentially
allocated to one of the available VM instance candidates by

a VM selection method πvmsr (label 3). Whenever the leased
VM instance is idle, it will select a pending task from its
VM queue for execution by a task selection method πtsr

(label 4). Continuously, task completion information based on
current VM instances is fed back to the workflow pool in
real-time (label 5) to activate the remaining unassigned tasks
in workflows to enter the ready task list.

Particularly, VM selection in label 3 refers to selecting a
VM instance (e.g., Vk) with the best priority value from all
VM instance candidates according to a VMSR (represented
as πvmsr) for the first ready task tij in the ready task list,
formulated by

Vk = argmin
θ∈VMcandidates

πvmsr(tij , Vθ) (11)

Task selection in label 4 refers to selecting a pending task
(e.g., tn) with the best priority value from the VM queue of a
leased VM instance Vk to execute based on a TSR (represented
as πtsr), formulated by

tij = argmin
η∈VMqueuek

πtsr(tη, Vk) (12)

IV. PROPOSED ALGORITHM

This section proposes the Dual-tree Genetic Programming
with Adaptive Mutation (DTGPAM) algorithm for solving
the DCDWSC problem. The algorithmic framework of DTG-
PAM is first introduced, followed by the development of two
adaptive methods respectively for tree selection and terminal
weighting. They together enable us to develop a new adaptive
mutation method to effectively evolve scheduling heuristics.

A. Framework of the DTGPAM Algorithm

The overall framework of DTGPAM is shown in Fig. 5. An
initial population is composed of randomly generated individ-
uals. The representation of each individual adopts a tree-based
structure, consisting of a pair of rules (i.e., VMSR and TSR),
as shown in Fig. 6. Each individual will be evaluated using
a fitness function. Subsequently, parent selection is applied
via the tournament selection method. The selected parent
individuals are evolved by reproduction, elitism, crossover
and mutation operators to produce their offspring. The above
steps are repeated until the termination criteria is met. Even-
tually, the fittest individual is obtained as the best scheduling
rule/heuristic.

As indicated in Fig. 5, Adaptive Mutation is a key technical
novelty of DTGPAM. Its operation depends on three newly
proposed probability vectors t⃗s, t⃗wvmsr and t⃗wtsr. Details of
the Adaptive Mutation and the three vectors will be described
in the subsequent subsections.

B. Adaptive Mutation via Three Probability Vectors

This subsection explains how to use three probability vec-
tors to improve the quality of evolved VMSRs and TSRs.

To achieve adaptive mutation, we first define three important
probability vectors: t⃗s, t⃗wvmsr and t⃗wtsr. The tree selection
probability vector t⃗s is defined as

t⃗s =[pboth, pvmsr, ptsr]
T (13)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Terminate?

Initialization

Evaluation

Parent Selection

The best individual
Yes

End
Tree Selection

Terminal Weighting

Three
Probability

Vectors

No

Reproduction

Elitism

Crossover

Adaptive Mutation

Fig. 5. Flowchart of the DTGPAM algorithm.

-

+

TS NIQ

ET

+

÷

1 WT

×

RDL ET

VM Selection Rule
(VMR)

Task Selection Rule
(TSR)

Fig. 6. Example of a scheduling heuristic.

where 0 ≤ pboth, pvmsr, ptsr ≤ 1 and pboth+pvmsr+ptsr = 1.
pboth, pvmsr, and ptsr indicate respectively the probability for
selecting both trees, VMSR or TSR for mutation, as shown
in Fig. 6. The terminal weighting probability vectors t⃗wvmsr

and t⃗wtsr are defined as

t⃗wvmsr =[p1, · · · , pj , · · · , pv1]
T

t⃗wtsr =[p̂1, · · · , p̂j , · · · , p̂v2]
T

(14)

Each terminal type can have multiple terminals. Let pj denotes
the probability for selecting the j-th terminal type while
building a mutated subtree for VMSR, and p̂j refers to the
probability for selecting the j-th terminal type while building
a mutated subtree for TSR. We require 0 ≤ pj , p̂j ≤ 1,∑v1

j=1 pj = 1 and
∑v2

j=1 p̂j = 1.

The details of the proposed adaptive mutation method are
described in Algorithm 1. To begin with, one or both trees
in individual Ind are probabilistically selected according to
t⃗s (line 1). For each selected tree tree, a random subtree
subtreepre is removed (line 3). Subject to the selected tree,
either t⃗wvmsr or t⃗wtsr (represented as tws) are used to create
the mutated substree subtreenew at line 9. To encourage
exploration, we also adopt a sampling ratio r to allow every
terminal to be selected uniformly at random with a small prob-
ability. Finally, subtreepre in tree is replaced by subtreenew
(line 5) to form a mutated individual Ind′ (line 6).

The method of generating a new subtree via t⃗ws (i.e.,
t⃗wvmsrort⃗wtsr) and r is elaborated from line 9 to line 21.

Algorithm 1: Adaptive Mutation of DTGPAM

Input: An individual Ind, t⃗s, t⃗wvmsr , t⃗wtsr , r, tree depth
Output: A mutated individual Ind

1 treeSet← Select VMSR, TSR or both from Ind with
probabilities in t⃗s

2 for ∀ tree ∈ treeSet do
3 Randomly select a subtreepre in tree
4 subtreenew ← generate_subtree(tree_depth, t⃗ws,

r)
5 tree′ ← Replace subtreepre by subtreenew

6 Ind[tree]← tree′

7 end
8 return Ind
9 Function generate_subtree(tree_depth, t⃗ws, r):

10 while | subtreenew |≤ tree depth do
11 if must be a terminal then
12 if random.() < r then

// Probability
13 subtreenew ← subtreenew+ a terminal node

sampled probabilistically according to t⃗ws
14 else

// Random
15 subtreenew ← subtreenew+ a terminal node

sampled uniformly at random
16 end
17 else
18 subtreenew ← subtreenew+ a randomly sampled

function node
19 end
20 end
21 return subtreenew

Specifically, the sampling ratio r ∈ (0, 1] is used to determine
whether a terminal should be sampled accordingly to tw or
uniformly at random (line 12). In the former case (line 13),
terminals with higher weights are more likely to be selected. In
the latter case (line 15), all terminals have an equal probability
of being selected.

Algorithm 1 allows r to be adaptively adjusted by a cooling
schedule function [34], which is a crucial component of
simulated annealing algorithms used for trade-off exploration
and exploitation. Three widely used cooling functions, i.e.,
logarithmical multiplicative cooling, exponential multiplicative
cooling, and linear adaptive cooling, are often considered in
literature [35], [36]. Experimental studies will be presented in
Subsection VI-B to choose an appropriate cooling schedule
function.

C. Algorithm for Adaptive Updating of t⃗s

This subsection proposes a method based on the 1/5 rule to
adaptively update t⃗s based on the mutation success ratio (see
Eq. (18)) so as to improve the convergence speed. Specifically,
t⃗s is determined by an underlying Beta distribution parame-
terized by α, which is adjusted by the 1/5 rule [21].

To understand our adaptive method for updating t⃗s, we need
to tackle two problems. The first problem is to how to build
t⃗s. We propose to build t⃗s based on a Beta distribution that
comprises of two fixed parameters (i.e., β and points) and
one varying parameter (i.e., α).

We choose the Beta distribution due to the following
advantages. Firstly, t⃗s defined in this way is guaranteed to
provide a valid probability distribution, i.e., all its elements
add up to 1 and each element is non-negative. Secondly,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

the Beta distribution allows a smooth adjustment of three
probabilities pboth, pvmsr and ptsr in t⃗s by controlling a
single parameter α. Fig. 7 depicts multiple probability density
functions Prβ(x;α, β) of the Beta distribution with α ranging
from 2 to 23 and a step size of 3.

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

mutation deviation
(large small)

pboth pvmsr ptsr

Beta Distribution (= 8)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

Fig. 7. Example of obtaining a vector by Beta distribution.

We divide the definitional domain of the Beta distribution
[0,1] into three equal intervals based on the two thresholds,
i.e. x1 = 0.33 and x2 = 0.66. Consequently, three areas
are obtained corresponding to the values of pboth, pvmsr, ptsr,
calculated by

pboth =

∫ 0.33

0

Prβ(x;α, β)dx

pvmsr =

∫ 0.66

0.33

Prβ(x;α, β)dx

ptsr =

∫ 1

0.66

Prβ(x;α, β)dx

(15)

After some empirical studies (see Supplementary-D), we set
β = 8 to to avoid significant differences among the three
probability values. Since the maximum value of pvmsr is
bounded approximately by 0.85, a limit of α ∈ [2, 23] is set
to bound the maximum values of pboth and ptsr around 0.85
to ensure fairness.

In this paper, we introduce a metric, mutation deviation,
for measuring the fitness variability of the mutated individual,
formulated by

△mut =
1

n

n∑
i=1

∣∣fitness′i − fitnessi
∣∣ (16)

where fitness′i is the fitness of the mutated individual cal-
culated by Eq. (29). and n is the number of individuals
experiencing mutation within a population.

We expect that a larger α leads to a smaller mutation
deviation, since TSR was observed to have a smaller impact
on fitness than VMSR in [5]. As shown in Fig. 7, the mode of
the probability density function shifts from left to right as α
increases. Accordingly, the value of ptsr becomes larger. As
an example, when α goes from 8 to 11, the value of t⃗s shifts
from [0.09, 0.82, 0.10] to [0.01, 0.76, 0.22]. Therefore, the
mutation deviation is expected to be smaller. This assumption
will be verified in Subsection VI-F.

The second problem is how to update t⃗s so as to adaptively
change the probabilities of mutating VMSR and TSR of
any evolved scheduling heuristic. We propose to tackle this
problem through updating parameter α of the Beta distribution
by utilizing the 1/5 rule [21]. According to this rule, the
success rate for mutation should be maintained at the level
of approximately 1/5 for effective evolution with solid math-
ematical guarantees [37]. A mutation is considered successful
if the mutation leads to an improvement in fitness.

In this paper, following existing works [37]–[39], we keep
track of the mutation success ratio ϕ̄ in each generation by
using

ϕcur =
number of successful mutations

number of total mutations
(17)

ϕ̄i = ϕ̄i−1 + sema · (ϕcur − ϕ̄i−1) (18)

where ϕcur refers to the percentage of successful mutations
observed in the i-th generation. ϕ̄i is the estimated mutation
success ratio of the i-th generation. Moreover, sema is the
smoothing factor. Its recommended value is determined as:
2/(10 + 1) = 0.1818 [40].

Algorithm 2: TreeSelection(ϕ̄, G, α)

Input: Successful ratio ϕ̄, a moving window length G, α in Beta
Distribution

Output: A tree selection probability vector t⃗s
1 c = 0.817, β = 8, points = [0.33, 0.66]
2 if ϕ̄ < 1/5 then
3 α← α/c
4 else if ϕ̄ > 1/5 then
5 α← α · c
6 end
7 t⃗s← Beta(α, β, points)

8 return t⃗s

Obeying the 1/5 rule, we develop Algorithm 2 to update t⃗s.
The parameter c adopts the commonly used value of 0.817 for
the 1/5 rule [21], [37]. As described in the algorithm pseudo-
code, if ϕ̄ is less than 1/5 (line 3), then the mutation introduces
too much exploration, which leads to large but infrequent im-
provements, thus the mutation deviation should be decreased
(i.e., increase α to move the mode of the probability density
function to the right in Fig. 7). If ϕ̄ is more than 1/5 (line 5),
then the mutation introduces too little exploration, which leads
to small improvements, thus the mutation deviation should be
increased (i.e., decrease α to move the mode of the probability
density function to the left in Fig. 7).

D. Algorithm for Computing t⃗wvmsr and t⃗wtsr

This subsection proposes a new general algorithm to com-
pute terminal weights for either t⃗wvmsr or t⃗wtsr based on
high-performing individuals in each generation, as elaborated
in Algorithm 3. For the sake of simplicity, we use the joint
notation t⃗w to represent either t⃗wvmsr or t⃗wtsr as both tree
types use different terminal sets and need to be calculated
separately in the same way. The updated t⃗w is expected to
guide mutation to focus more on important terminals. The
maximum likelihood estimation (MLE) method [22] is adopted
to formulate a mathematical optimization problem, which is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

solved by the convex optimization and water-filling techniques
to obtain t⃗w.

Algorithm 3 is designed to calculate t⃗w in consideration of
both the adaptive sampling ratio r and the MLE. Assuming
that there are m high-fitness trees that contain n terminals in
the terminal set, then xji represents the number of the i-th
terminal type found in treej .

Algorithm 3: TerminalWeighting(P)
Input: A population P
Output: A feature weighting probability vector t⃗w

1 Ptw ← Select the best ntw individuals from P
2 χ← Count the terminal frequency matrix of Ptw

3 lnP ← Formulate the log-likelihood function via χ
4 t⃗w ← Solve lnP by convex optimization techniques
5 return t⃗w

The maximum likelihood function P is formulated by

P =

m∏
j=1

P (treej) (19)

where P (treej) represents the probability of selecting several
terminal nodes from the terminal set to construct the specific
tree treej . It can be calculated based on the j-th row of χ
using the formula below:

P (treej) =

n∏
i=1

((1− r) · 1
n
+ r · pi)xji (20)

where r · pj indicates the probability that the j-th terminal
type was sampled according to t⃗w, and (1−r)/n indicates the
probability that the j-th terminal type was sampled uniformly
at random.

MLE requires us to find t⃗w that maximizes P in Eq. (19).
Note that maximizing lnP in Eq. (21) is equivalent to maxi-
mizing P directly.

lnP =

m∑
j=1

n∑
i=1

xji · ln (r · pi +
1− r

n
)

=

n∑
i=1

xi · ln (r · pi +
1− r

n
)

(21)

where xi =
∑m

j=1 xji is the i-th column of χ.
The problem in Eq. (21) is therefore transformed into an

equivalent problem of maximizing the log-likelihood function,
formulated by

minimum f(p) = −
n∑

i=1

xi · ln (r · pi +
1− r

n
) (22)

s.t. 0 ≤ pi ≤ 1 (i = 1, · · · , n) (22a)
n∑

i=1

pi = 1 (22b)

We must solve Eq. (22) to obtain t⃗w. Since Eq. (22)
is a convex optimization problem (see Supplementary-B),

its solution must satisfy the Lagrange Karush-Kuhn-Tucker
(KKT) conditions [23] presented below:

L(pi, λ, ν) = −
n∑

i=1

xi · ln (r · pi +
1− r

n
)

+

n∑
i=1

λi(−pi) + ν(

n∑
i=1

pi − 1)

(23)

where λi is the Lagrange multiplier associated with the i-th
inequality constraint in Eq. (22a). ν is the Lagrange multiplier
associated with the equality constraint in Eq. (22b).

According to the Lagrange KKT conditions [23], we have

p∗i ≥ 0 (i = 1, · · · , n)
n∑

i=1

p∗i − 1 = 0

λ∗ ≥ 0

λ∗
i · p∗i = 0 (i = 1, · · · , n)
−r · xi

r · pi + 1−r
n

− λ∗
i + ν∗ = 0

(24)

λ∗ in Eq. (24) can be eliminated first, leaving

p∗i =

{ xi
ν∗ − 1−r

nr
, ν∗ < nr·xi

1−r

0, ν∗ ≥ nr·xi
1−r

(25)

An alternative form of the above equation is

p∗i = max

{
0,

xi

ν∗ − 1− r

nr

}
(26)

Substituting this expression for p∗i into the condition in
Eq. (22a), we obtain

n∑
i=1

max

{
0,

xi

ν∗ − 1− r

nr

}
= 1 (27)

Since Eq. (27) may not have an analytical solution, the
water-filling algorithm [41] is used to efficiently obtain the
empirical solution of Eq. (27) and finally the value of p∗j .
The computational complexity of the water filling algorithm
is O(n log n), where n is the size of the terminal set [41].
When n is not large as for our DCDWSC problem, the
water-filling algorithm can be used efficiently. The validity
of Eq. (27) is verified in Supplementary-C. Furthermore, we
conduct a detailed theoretical analysis on the effectiveness of
the proposed MLE-based method in Supplementary-F.

V. EXPERIMENT DESIGN

The simulation configuration, baseline approaches and al-
gorithm setting are introduced in this section.

A. Simulation Configuration

Simulation is used to measure the performance of schedul-
ing heuristics on the DCDWSC problem. Our simulated DCD-
WSC problem instances consist of the following components.

VM Types: Table II summarizes the configurations of 6
different VM types. We configure all experimented VM types
according to Amazon EC21. Meanwhile, we impose no limit
on the maximum number of instances of each VM type.

1https://aws.amazon.com/ec2/pricing/on-demand/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II
CONFIGURATIONS OF 6 VM TYPES BASED ON AMAZON EC2

Instance Name vCPU Memory On-Demand Hourly Rate

m5.large 2 8 GiB $0.096
m5.xlarge 4 16 GiB $0.192

m5.2xlarge 8 32 GiB $0.384
m5.4xlarge 16 64 GiB $0.768
m5.8xlarge 32 128 GiB $1.536
m5.12xlarge 48 192 GiB $2.304

Workflow Sets: We design problem instances with different
complexities, i.e., workflow patterns and task numbers. Ta-
ble III shows 3 workflow sets (i.e., Mix Small, Mix Middle
and Mix Large) used for training and testing scheduling
heuristics, consisting of 4 popular workflow patterns2 (i.e.,
CyberShake, Montage,, Inspiral and SIPHT) with different
task numbers (e.g., 30, 50, and 100).

TABLE III
THE COMPONENTS OF THREE WORKFLOW SETS

Workflow Set Component

Mix Small CyberShake 30, Montage 25, Inspiral 30, Sipht 30

Mix Middle CyberShake 30, Montage 25, Inspiral 30, Sipht 30,
CyberShake 50, Montage 50, Inspiral 50, Sipht 60

Mix Large
CyberShake 30, Montage 25, Inspiral 30, Sipht 30,
CyberShake 50, Montage 50, Inspiral 50, Sipht 60,
CyberShake 100, Montage 100, Inspiral 100, Sipht 100

Training Stage: Through the training stage, we can ob-
tain the best GPHH heuristic with the highest fitness across
multiple training problem instances. A training problem in-
stance consists of 30 workflows randomly sampled from
the Mix Small workflow set. In each generation, every GP
individual will be evaluated on 5 randomly generated training
problem instances to calculate its fitness, following the settings
used in existing studies [5], [15], [17], [42] and our preliminary
study.

Testing Stage: Evolved heuristics will be further tested in
three testing scenarios to compare its performance with com-
peting algorithms summarized in Subsection VI-A. A testing
problem instances consists of 30 workflows randomly sampled
from the corresponding workflow set, i.e., Mix Small (S for
short), Mix Middle (M for short) or Mix Large (L for short)
workflow set. A testing scenario consists of 30 randomly
generated testing problem instances. Refer to Table VI, ⟨12, S⟩
denotes that ξ = 12 and heuristics are tested on the Mix Small
scenario.

Request generation: Workflow requests are sent to the
broker over time according to a Poisson distribution with
λ = 0.01 [43]. In Eq. (9), the deadline relaxation coefficient
is set to ξ ∈ {1, 6, 12, 18, 24}. As ξ increases, the deadline
becomes more relaxed deadline and can be fulfilled by using
cheaper VM instances. Moreover, the penalty coefficient in
Eq. (8) is δ = $0.24/h according to [33].

2https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+
Generator

B. Baseline Approaches

Four competing approaches are listed below for comparison.
• JIC-FCFS: The VMSR proposed in [8] was used to

first select available VM instances that do not cause
the workflow to exceed its deadline, and then select the
cheapest VM instance. In addition, FCFS [9] is used to
select a task for any idle VM instances.

• HEFT -FCFS: This method uses the widely-used ap-
proach namely HEFT [6] to select VM instances with the
earliest task finish time in conjunction with FCFS [9] for
task selection.

• DTGP : This method evolves VMSR and TSR via stan-
dard mutation [5], i.e., either VMSR or TSR will be
mutated with a randomly generated subtree.

• DTGP f : We apply the terminal weighting method pro-
posed for SGP in [31] to drive adaptive mutation in DTGP
[5]. Following [31], terminal weights are calculated below
in consideration of the frequency of each terminal type in
every selected tree as well as the fitness of the respective
trees (fitness(i)j):

weightk =

gen∑
i=0

pop∑
j=0

fitness
(i)
j × num terminalk,j

total terminalj
(28)

where the numerator denotes the number of the k-th
terminal type found in treej at the i-th generation, and
the denominator denotes the total number of terminals
found in treej at the i-th generation.

• DTGPAM : The new DTGPAM algorithm presented in
Section IV of this paper.

Each competing algorithm will be evaluated by perform-
ing 50 independent runs to determine its average total cost.
A smaller total cost indicates a better performance. The
Wilcoxon test with a significance level of 0.05 is adopted to
compare all competing algorithms in terms of their average
total cost. In Table VI, “+”, “−” or “≈” indicate that the
corresponding result is significantly better, worse or similar to
its counterparts.

C. Algorithm Setting

Two terminal sets for building VMSRs and TSRs are sum-
marized in Table IV. All terminals are categorized into task-
related, VM-related, workflow-related, and problem-specific
terminals based on the information captured by each terminal.
Corresponding notations for each terminal have also been
summarized in Table I. Following many existing works [5],
[14], [15], we set {+,−,×,÷,max,min} as function nodes
for constructing the GP trees.

Fitness evaluation: Each individual ind in the population
will be evaluated on 5 workflow scheduling problem instances,
each consisting of 30 workflows and 6 VM types, in order to
accurately determine the practical performance of the rule pair.
The average total cost formulated in Eq. (10) across all the n
problem instances achieved by the individual is defined as its
fitness value below:

fitnessind =
1

5

5∑
i=1

total cost(ind) (29)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE IV
THE TERMINAL SET OF VMSR AND TSR

VMSR TSR

task-related
TS ET

ET RWT

VM-related

CU TIQ

PRICE NIQ

TIQ

VMR

LFT

NIQ

workflow-related
NOC NOC

NOR NOR

problem-specific RDL RDL

Parameter setting: Following [5], [31], three GP-based
algorithms share several identical parameter settings. The
population size is set to 1024, the number of generations is
51, the number of the elite is 1, and the tournament size is 7.
The initial depth of the GP tree is in the range from 2 to 6,
and the maximum depth of the GP tree during evolution is 8.
The initial population is produced by the popular ramped-half-
and-half method [14]. Besides these, other parameter settings
are different among the three competing algorithms. They are
summarized in Table V. The first three parameters are set fol-
lowing the experimental validation in [31]. Since the proposed
mutation operator is adaptive, we set the fourth parameter as 0.
The sensitivity analysis of the last two parameters is reported
in Subsection VI-B.

TABLE V
PARAMETER SETTING FOR GP-BASED ALGORITHMS

Parameter DTGP
[5]

DTGPf [5], [31]
DTGPAM

crossover rate 0.8 0.65 0.65
mutation rate 0.15 0.3 0.3

reproduction rate 0.05 0.05 0.05
starting of adaptive mutation – 15 0

sampling ratio r – 1.0 log rev
initial α – – 5

* see Table VIII for log rev.

Computation Complexity: The complexity of the adap-
tive mutation operator in DTGPAM across all generations
includes three components [41], [44], [45]: (1) The complexity
of replacing a subtree is O(d2 log d2NG), where N is the
population size, G is the number of generations, and d2
is the maximum depth of generated subtrees in mutation;
(2) The complexity of estimating tree selection probabilities
is O(NG); and (3) The complexity of estimating terminal
weights is O((l1N + s1 log s1 + s2 log s2)G), where l1 is the
maximum allowed number of nodes in a GP tree subject to the
tree depth limit, s1 and s2 are the terminal set size of VMSR
and TSR. In summary, although the adaptive mutation operator
in DTGPAM exhibits higher complexity compared to the
normal mutation operator in DTGP, the DTGPAM algorithm
has the same overall complexity level as that of DTGP, i.e.,
O((d1 log d1 + sk + l1)NG) where sk is the tournament size.
(See Supplementary-E for the detailed process.)

VI. RESULTS AND DISCUSSIONS

A. Main Experiment Results

Table VI reports the mean (standard deviation) total cost
achieved by JIC-FCFS, HEFT-FCFS, DTGP, DTGPf and
DTGPAM across 50 independent runs. In general, the total cost
of all algorithms decreases upon increasing ξ, as they enable
workflows with loose deadline constraints to be executed on
cheaper VM instances. When ξ = 1, all algorithms prefer to
choose the fast VM instance to prevent the deadline violation
penalty, which leads to small differences among different
algorithms.

We found that DTGPAM achieved the minimal total cost
on half of testing scenarios and performed significantly better
under loose (i.e., ξ = 12, 18, 24) deadlines. This demonstrates
that DTGPAM is able to make better VM selection and task
selection decisions than its counterparts when tasks have a low
risk of expiration (i.e., loose deadline). Moreover, although
the scheduling heuristic is trained on a set of small-sized
workflows (i.e., Mix Small) to save computational cost, it
manages to achieve consistently good testing performance on
large-sized workflows (e.g., ⟨6, L⟩, ⟨24,M⟩ and ⟨24, L⟩). This
demonstrates the good scalability of DTGPAM.

Although DTGPAM is not significantly better than DTGP
and DTGPf on testing scenarios with tight deadlines (i.e.,
ξ=1, 6), it still obtained lower average total costs. Comparing
DTGP and DTGPf , the results of DTGPf are significantly
better than DTGP in scenarios ⟨18, S⟩ and ⟨18, L⟩, and the
average total cost of DTGPf are less than that of DTGP in
most scenarios. Regarding JIC-FCFS and HEFT-FCFS, there
is a slight improvement on the total cost between several
loose deadlines (i.e., ξ=12, 18, 24). Compared to GP-based
algorithms, this implies a limitation in their capability to
develop better VM rental plans when dealing with loose
deadlines.

0 20 40

57.5

60.0

62.5

65.0

1, S

0 20 40

35

40

45

50
6, S

0 20 40

30

35

40

12, S

0 20 40

25

30

35
18, S

0 20 40

24

26

28

30
24, S

DTGP DTGP DTGPAM

Covergence Curves of Baselines on Training Instances

Generation

To
ta

l C
os

ts

f

Fig. 8. Convergence curves of the total cost of GP-based algorithms on
training instances across 50 independent runs.

Fig. 8 shows the convergence curves of DTGP, DTGPf

and DTGPAM on training instances across 50 independent
runs. These convergence curves confirm that all competing
GPHH algorithms are quite stable and can converge during
the training phase. For several cases, including ⟨6, S⟩, ⟨12, S⟩

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE VI
THE MEAN (STANDARD DEVIATION) TOTAL COST OF 5 ALGORITHMS ON 15 TESTING SCENARIOS ACROSS 50 INDEPENDENT RUNS

Scenarios JIC-FCFS
[8], [9]

HEFT-FCFS
[6], [9]

DTGP
[5]

DTGPf [5], [31]
DTGPAM

⟨1, S⟩ 63.35(1.06) 61.99(7.35)(+) 56.64(1.32)(+)(+) 56.56(1.01)(+)(+)(≈) 56.43(1.03)(+)(+)(≈)(≈)

⟨1,M⟩ 80.43(1.29) 85.14(1.85)(-) 71.76(3.94)(+)(+) 71.91(3.45)(+)(+)(≈) 71.62(3.60)(+)(+)(≈)(≈)

⟨1, L⟩ 99.45(1.08) 90.61(1.45)(+) 82.47(1.67)(+)(+) 82.38(1.46)(+)(+)(≈) 82.20(1.49)(+)(+)(≈)(≈)

⟨6, S⟩ 73.86(1.31) 39.38(8.42)(+) 32.62(4.32)(+)(+) 32.80(4.34)(+)(+)(≈) 31.97(4.47)(+)(+)(≈)(≈)

⟨6,M⟩ 86.86(0.86) 64.26(1.8)(+) 54.44(7.29)(+)(+) 54.20(6.88)(+)(+)(≈) 52.67(7.01)(+)(+)(≈)(≈)

⟨6, L⟩ 103.82(1.14) 73.1(3.1)(+) 64.43(7.92)(+)(+) 62.47(5.34)(+)(+)(≈) 61.82(5.23)(+)(+)(+)(+)

⟨12, S⟩ 58.17(2.79) 38.11(8.93)(+) 25.67(2.13)(+)(+) 25.31(2.17)(+)(+)(≈) 25.44(2.48)(+)(+)(≈)(≈)

⟨12,M⟩ 79.33(1.65) 62.41(1.97)(+) 45.40(6.54)(+)(+) 45.97(6.41)(+)(+)(≈) 43.81(7.07)(+)(+)(≈)(+)

⟨12, L⟩ 99.54(1.53) 67.2(1.37)(+) 53.46(3.55)(+)(+) 52.54(3.12)(+)(+)(≈) 52.01(3.49)(+)(+)(+)(≈)

⟨18, S⟩ 57.43(2.48) 37.41(9.04)(+) 23.82(1.15)(+)(+) 23.44(0.82)(+)(+)(+) 23.37(0.70)(+)(+)(+)(≈)

⟨18,M⟩ 67.95(1.64) 60.72(1.68)(+) 37.51(3.99)(+)(+) 38.17(4.90)(+)(+)(≈) 37.91(4.12)(+)(+)(≈)(≈)

⟨18, L⟩ 87.67(1.02) 66.27(1.17)(+) 49.79(3.33)(+)(+) 48.54(2.14)(+)(+)(+) 48.85(2.16)(+)(+)(+)(≈)

⟨24, S⟩ 53.34(1.33) 36.88(9.13)(+) 23.03(0.43)(+)(+) 23.33(0.72)(+)(+)(-) 23.08(0.31)(+)(+)(≈)(+)

⟨24,M⟩ 66.15(1.23) 59.59(1.64)(+) 38.62(4.29)(+)(+) 39.04(4.83)(+)(+)(≈) 37.74(3.60)(+)(+)(+)(+)

⟨24, L⟩ 82.46(1.42) 65.15(1.55)(+) 51.13(5.87)(+)(+) 52.28(6.61)(+)(+)(≈) 49.64(4.10)(+)(+)(+)(+)

* ⟨12, S⟩ denotes that ξ = 12 and heuristics are tested on the Mix Small scenario.
* (+), (-) or (≈) indicates that the matching result is significantly better, worse, or equivalent to its counterpart.

and ⟨24, S⟩, our proposed DTGPAM appears to converge faster
than DTGP and DTGPf .

In summary, our experimental evidence suggests that DT-
GPAM is more effective than other competing algorithms
for tackling the DCDWSC problem with loose deadlines.
Moreover, DTGPAM has been shown to possess an advantage
in handling large workflows compared to its counterparts.

B. Parameter Sensitivity Analysis

In order to measure the influence of tree selection-related
and terminal selection-related parameters on DTGPAM, pa-
rameter sensitivity analysis is performed to find a suitable
setting for the initial parameter α0 in Eq. (18) and the sampling
ratio r in Eq. (27). All experiments are trained in the scenario
⟨12, S⟩ with 50 independent runs and then are tested in the
scenarios ⟨12, S⟩, ⟨12, S⟩ and ⟨12, S⟩.

For the first parameter α0, it determines the initial distribu-
tion of three probabilities pboth, pvmsr and ptsr in t⃗s. For the
second parameter r, it determines the probability of using t⃗w
to generate the mutated subtree.

1) α0 for DTGP with tree selection: Table VII shows the
mean (standard deviation) total cost of tree selection based
DTGP (DTGPts) with α0 ∈ {2, 5, 8, 11, 14, 17, 20, 23} on
3 testing scenarios across 50 independent runs. Particularly,
α0 ∈ {2, 8, 23} respectively correspond to the upper bounds
of the three values [pboth, pvmsr, ptsr] in t⃗s, namely [0.86,
0.14, 0.0], [0.09, 0.82, 0.10] and [0.0, 0.17, 0.83]. The results
suggest that the initial setting of t⃗s has negligible impact on
the performance of DTGPts. In other words, DTGPts has a
stable performance under different α0.

Since DTGPts is less sensitive to α0, the value
of α0 can be determined arbitrarily from the range
{2, 5, 8, 11, 14, 17, 20, 23}. According to our preliminary work

TABLE VII
THE MEAN (STANDARD DEVIATION) TOTAL COST OF DIFFERENT α0 OF

DTGPts ACROSS 50 INDEPENDENT RUNS

α0 ⟨12, S⟩ ⟨12,M⟩ ⟨12, L⟩

2 30.00(2.01) 45.29(3.15) 63.79(4.62)

5 30.32(2.33) 45.93(3.45) 64.15(4.35)

8 30.00(2.09) 45.33(3.46) 63.74(4.47)

11 29.88(1.96) 45.93(3.32) 64.44(4.25)

14 30.41(2.19) 45.91(3.56) 64.37(4.83)

17 30.01(2.05) 45.48(3.29) 63.65(3.98)

20 29.68(2.05) 45.00(3.51) 63.36(4.87)

23 30.29(1.87) 45.85(2.93) 64.66(4.07)

[5], mutating VMSR often leads to larger changes in individual
performance than TSR, hence it is better to concentrate on
mutating VMSR in the earlier generations. Consequently,
we set α0 = 5 for DTGPts which corresponds to t⃗s0 =
[0.37, 0.61, 0.02].

2) Sampling Ratio r for DTGPAM: Table VIII shows the
mean (standard deviation) total cost of DTGPAM achieved
with different sampling ratios r and cooling schedule func-
tions on 3 testing scenarios across 50 independent runs. We
tested six cooling schedule functions listed in the second
column, namely linear, log, expo, linear rev, log rev and
expo rev. These alternative versions, such as linear and
linear rev, are used to verify whether the changing trend
of r (rise or fall) had an influence on the results. The
results indicate that using a cooling schedule function that
gradually increases r (i.e., linear, log rev and expo rev)
yields better performance in comparison to using a cooling

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE VIII
THE MEAN (STANDARD DEVIATION) TOTAL COST OF DTGPAM WITH DIFFERENT r ACROSS 50 INDEPENDENT RUNS

Name r = f(gen) Tendency ⟨12, S⟩ ⟨12,M⟩ ⟨12, L⟩

cons 1 −→ 29.71(1.95) 45.05(3.33) 63.37(4.79)

linear 1− 50−gen
50

↗ 30.08(2.08) 45.20(3.20) 63.32(4.50)

log 1
1+2 log(gen+1)

↘ 30.06(2.29) 45.74(3.68) 63.99(4.51)

expo 0.9gen ↘ 30.10(2.05) 46.23(3.41) 64.61(3.93)

linear rev 50−gen
50

↘ 30.08(2.06) 46.07(4.06) 64.95(5.41)

log rev 1− 1
1+2 log(gen+1)

↗ 29.68(2.26) 44.77(4.02) 62.77(4.68)

expo rev 1− 0.9gen ↗ 29.91(1.99) 45.42(3.81) 63.40(4.50)

* gen denotes the index of generation.

0 20 40
Generation

0.2

0.3

0.4

Su
cc

es
sf

ul
 R

at
io

1, S

0 20 40
Generation

0.15

0.20

0.25

0.30

Su
cc

es
sf

ul
 R

at
io

6, S

0 20 40
Generation

0.15

0.20

0.25
Su

cc
es

sf
ul

 R
at

io

12, S

0 20 40
Generation

0.10

0.15

0.20

0.25

0.30

Su
cc

es
sf

ul
 R

at
io

18, S

0 20 40
Generation

0.15

0.20

0.25

0.30

Su
cc

es
sf

ul
 R

at
io

24, S

5

10

15

20

al
ph

a

5

10

15

20
al

ph
a

5

10

15

20

al
ph

a

5

10

15

20

al
ph

a

5

10

15

20

al
ph

a

Fig. 9. Curves of ϕ̄ and α for one run of DTGPAM on 5 training scenarios.

0 20 40
Generation

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 (%

)

1, S

0 20 40
Generation

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 (%

)

6, S

0 20 40
Generation

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 (%

)

12, S

0 20 40
Generation

0.00

0.25

0.50

0.75

1.00
Pe

rc
en

ta
ge

 (%
)

18, S

0 20 40
Generation

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 (%

)

24, S

pboth pvmsr ptsr

Fig. 10. Distribution of pboth, pvmsr , and ptsr for one run of DTGPAM on 5 training scenarios.

schedule function that gradually reduces r (i.e., log, expo and
linear rev).

Further comparing linear, log rev and expo rev, we
found that DTGPAM achieved the lowest average total cost
on the three testing scenarios by using logrev. Due to this
observation, we recommend adjusting r during evolution ac-
cording to log rev for DTGPAM.

C. Tree Selection Analysis

Fig. 9 shows the variation of ϕ̄ and α over generations for
one run of DTGPAM on 5 training scenarios. We can see
that the proposed tree selection mechanism can successfully
maintain ϕ̄ around 1/5 (the gray dotted line) in the later 25
generations. In the early generations of DTGPAM, there is a
high successful ratio ϕ̄ due to the randomness and diversity of
the initial population. This is independent of the value of α0.
Referring to Subsection IV-C, if the successful ratio ϕ̄ is more
than 1/5 (corresponding to 0.2 in Fig. 9), we should decrease
α. Meanwhile, if ϕ̄ is less than 1/5, we should increase α.

Fig. 10 shows the distribution of pboth, pvmsr, and ptsr
across all generations on 5 training scenarios, which corre-
sponds to the same runs in Fig. 9. It can be seen that the

variation of t⃗s = [pboth, pvmsr, ptsr] is consistent with the
distribution parameter α in Fig. 9. As α decreases, pboth
becomes larger. Conversely, as α increases, pboth becomes
smaller. This realizes adaptive adjustment of t⃗s through the
1/5 rule. In addition, pboth dominates tree selection in the early
generations. Hence mutated individuals tend to undergo large
changes in early generations, as we expected.

D. Terminal Analysis

We count the number of terminals among the best 50 rule
pairs generated by DTGPAM to identify important terminals.
An analysis of their significance in solving the DCDWSC
problem was also conducted. The percentage of each terminal
type is calculated as the ratio of the number of each terminal
type to the total number of terminals in VMSRs or TSRs,
formulated by

pi =
1

50

50∑
j=1

number of terminali in treej
total number of terminals in treej

(30)

Fig. 11 shows the average percentage of VMSR terminals
observed on 50 independent runs for DTGPAM on 5 training

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

scenarios. As deadline constraints become looser (i.e., ξ in-
creases), all terminal types exhibit variations in their relative
frequencies. Specifically, certain types (such as ET and NIQ)
demonstrate an upward trend, while others (such as LFT)
exhibit a decrease. Conversely, certain types (such as TIQ)
tend to remain relatively stable. It is noted that the remaining
rental period of a VM instance (VMR) plays a crucial role
when the deadline constraints are extremely tight (i.e., ξ = 1).
Specifically, when the execution time of the task exceeds the
VMR of the VM instance, VMSRs must determine whether
to rent a new VM instance or extend its rental period. As such,
VMR has a strong influence on the performance of VMSRs
when workflow deadlines are tight.

TS ET CU PRICE TIQ VMR LFT NIQ NOC NOR RDL
0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge
 (%

)

=1
=6

=12
=18

=24

Fig. 11. Terminal statistic for best VMSR of DTGPAM.

ET WT TIQ NIQ NOC NOR RDL
0.0

0.1

0.2

0.3

0.4

Pe
rc

en
ta

ge
 (%

)

=1
=6

=12
=18

=24

Fig. 12. Terminal statistic for best TSR of DTGPAM.

Fig. 12 shows the average percentage of TSR terminals
observed on 50 independent runs for DTGPAM on 5 training
scenarios. The top two terminal types appeared in TSRs are
ET and RDL, which capture the execution information of
the workflow. ET is considered an important terminal type
because the execution time of a task (ET) has a significant
impact on the waiting time of other tasks in the same VM
queue. Meanwhile, the remaining time before the workflow
deadline (RDL) also impacts strongly the executing order
of those pending tasks in the same VM queue. Besides ET
and RDL, our experiment results show that the number of
unassigned tasks remaining in a workflow (NOR) has a strong
influence on TSRs when workflow deadlines are tight (i.e.,
ξ = 1). This is because NOR captures the current progress
toward completing a workflow. It must be considered by TSR
to reduce the chance of violating the workflow deadline.

E. Rule Analysis

In order to further understand the evolved scheduling rule,
rule analysis is performed on the best VMSR and TSR evolved
by DTGPAM in scenario ⟨24, S⟩. These two rules, π

(24)
vmsr

and π
(24)
tsr , which are simplified by using Mathematica3, are

shown in Eq. (31) and Eq. (32). Particularly, a smaller value
calculated by the corresponding rule results in a higher priority
for the candidate VM instance or task.

π(24)
vmsr =min{max{ET,max{1, 2ET} − CU}, (31)

max{NOC, TIQ,ET + LFT − VMR

+min{CU,ET}}}

In π
(24)
vmsr, the remaining usage time of the VM instance (i.e.,

VMR) plays an importance role, since its value (> 1000) can
be much larger than other terminals ([10, 500]). If the priority
of candidate VM instances equals to “max{NOC, TIQ,ET+

LFT − VMR + min{CU,ET}” in Eq. (31), then π
(24)
vmsr

tends to get smaller values under a larger VMR. That means
π
(24)
vmsr prefers to choose VM instances with more available

time for the task, rather than those that are nearing expiration.
Meanwhile, according to “max{NOC, TIQ}”. VM instances
with shorter waiting queues are more likely to be selected.
Meanwhile, if the priority of candidate VM instances equals
to “max{ET,max{1, 2ET} − CU}” in Eq. (31), then VM
instances with faster processing speeds are more likely to be
selected.

π
(24)
tsr = max{ET,ET ·RDL · (min{NIQ,NOC}+ 1)

+2NOC +max{ET,RDL}}
(32)

In π
(24)
tsr , whenever RDL ≤ 0 (i.e., remaining deadline), the

corresponding workflow deadline has been exceeded. When
such a rare situation happens under loose deadline constraints
(i.e. ξ = 24), pending tasks with smaller ET (i.e., shorter
processing times) in the VM queue are more likely to be
processed first according to Eq. (32). When RDL > 0, ET

and RDL have significant influence on π
(24)
tsr . In this case,

pending tasks with smaller ET and smaller RDL (i.e., tighter
deadlines) are more likely to be selected. Moreover, π

(24)
tsr

prefers to select the pending tasks with a less number of
successor tasks.

In brief, the evolved scheduling heuristics/rules are com-
prised of simple heuristics but are assembled in an effective
way that is not easy to be designed manually. Moreover,
the interpretability ability of these scheduling heuristics is
important and beneficial for practical applications.

F. Successful Ratio Analysis

There are three choices in the tree selection level of adaptive
mutation: both rules, VMSR and TSR. We further analyze the
successful ratio of these three choices, i.e., ϕ̄both, ϕ̄vmsr and
ϕ̄tsr, to verify the rationality of how the 1/5 rule is applied in
Algorithm 2, defined by

ϕi =
number of successful mutations for using pi

number of total mutations for using pi

ϕ̄i =
1

MaxGen

MaxGen∑
i=1

ϕi

i ∈ {both, vmsr, tsr}

(33)

3https://www.wolfram.com/mathematica/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

The larger the ϕ̄both, ϕ̄vmsr or ϕ̄tsr, the greater its potential
to find better offspring.

=1 =6 =12 =18 =24
0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge
 (%

)

both vmsr tsr

Fig. 13. Average values of ϕ̄both, ϕ̄vmsr and ϕ̄tsr for DTGPAM on 4
training scenarios across 50 independent runs.

Fig. 13 shows the average values of ϕ̄both, ϕ̄vmsr and
ϕ̄tsr upon 50 independent runs for DTGPAM on 5 training
scenarios. In all scenarios, the ascending order of these three
elements is ϕ̄both < ϕ̄vmsr < ϕ̄tsr. Given this observation, a
larger α in Fig. 7 leads to a larger ptsr, which results in a
higher chance of obtaining better mutated offspring. Thus, it
is more likely to increase the larger overall successful ratio
ϕcur defined in Eq. (17). For example, t⃗s1 = [0.05, 0.15, 0.8]
corresponding to a larger α is more likely to find a large num-
ber of high-quality offspring than that of t⃗s2 = [0.7, 0.2, 0.1]
corresponding to a smaller α.

The above observation is in line with the principle of the 1/5
rule. As shown in Fig. 9, when ϕ̄ is less than 1/5, increasing
α will result in an increase in ptsr (i.e., the peak of curve
moves to the right in Fig. 7), so as to increase ϕ̄. When ϕ̄
is more than 1/5, decreasing α will result in an increase in
pvmsr (i.e., the peak of curve moves to the left in Fig. 7), so
as to decrease ϕ̄.

G. Terminal Weighting Methods Comparison

An analysis is conducted to compare the performance
of frequency-based [31] and MLE-based terminal weighting
methods through three scenarios ⟨24, S⟩, ⟨24,M⟩ and ⟨24, L⟩.
Following the settings in [31], the utilization of learned
terminal weights starts from generation 15. Furthermore, two
constant sampling rates r = 0.2 and r−0.8 are set to compare
their performance under different terminal weight utilizations.

TABLE IX
THE MEAN (STANDARD DEVIATION) TOTAL COST OF TWO TERMINAL

WEIGHTING METHODS ACROSS 50 INDEPENDENT RUNS

Scenarios Frequency-based MLE-based

⟨S, 0.2⟩ 23.28(0.63) 23.22(0.64)(≈)

⟨M, 0.2⟩ 38.04(4.6) 38.70(4.92)(≈)

⟨L, 0.2⟩ 51.48(6.76) 51.40(7.60)(≈)

⟨S, 0.8⟩ 23.37(0.74) 23.19(0.58)(+)

⟨M, 0.8⟩ 38.44(4.69) 38.44(4.66)(≈)

⟨L, 0.8⟩ 51.13(5.48) 51.38(6.68)(≈)

* ⟨S, 0.2⟩ means testing heuristics on scenario Mix Small with r = 0.2.

Table IX shows the mean (standard deviation) total cost of
frequency-based and MLE-based terminal weighting methods
in 6 scenarios across 50 independent runs. It is observed that
the MLE-based terminal weighting method is not significantly
better than the frequency-based terminal weighting method
in all scenarios. The reason may be that the two methods,
although distinctly different, in practice only produce slightly
different t⃗w. However we believe the MLE-based method
presents a principled way to adjust the weightings of different
terminals. It can work reliably well with respect to different
sampling ratio r. Therefore, it is the preferred choice in
addressing the DCDWSC problem.

VII. CONCLUSIONS

In this paper, we have successfully achieved the overall goal
of designing an effective DTGPAM algorithm to jointly evolve
effective VMSRs and TSRs for the DCDWSC problem. Three
innovative probability vectors were introduced and adaptively
updated using the 1/5 rule and the maximum-likelihood tech-
nique in DTGPAM. The adapted vectors enable DTGPAM to
mutate selected scheduling heuristics in accordance with the
impact of each tree and terminal on the performance of the
mutated scheduling heuristics.

Experimental results confirmed that the scheduling rules
evolved by the proposed DTGPAM algorithm have outper-
formed several state-of-the-art algorithms on a range of DCD-
WSC problem instances under multiple different deadline con-
straints. Through additional experimental analysis, we found
that DTGPAM is not sensitive to the initial setting of the
tree selection vector. We also performed terminal analysis and
identified VMR and LFT as the top two terminals for the VM
selection rules. Our analysis further showed that RDL was
more frequently used in evolved task selection rules when the
deadline constraints became more relaxed. Furthermore, the
evolved scheduling heuristics in our experiments were easily
interpretable, making them more amenable for practical use.

In the future, we plan to investigate the generalization per-
formance of DTGP on other resource allocation and schedul-
ing problems in the cloud. Furthermore, the mechanism of
adaptively updating the probability vectors can be generalized
to these GP variants with appropriate modifications to fit
the characteristics of each variant. We also plan to explore
the potential application of the two proposed mechanisms to
other GP variants. Subject to the availability of resources
and funding, we also plan to carry out practical evaluation
of the scheduling heuristics evolved by DTGPAM in real-
world cloud computing applications, in collaboration with our
industry partners.

REFERENCES

[1] H. Li, B. Wang, Y. Yuan, M. Zhou, Y. Fan, and Y. Xia, “Scoring and dy-
namic hierarchy-based nsga-ii for multiobjective workflow scheduling in
the cloud,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 2, pp. 982–993, 2022.

[2] V. Arabnejad, K. Bubendorfer, and B. Ng, “Dynamic multi-workflow
scheduling: A deadline and cost-aware approach for commercial clouds,”
Future Generation Computer Systems, vol. 100, pp. 98–108, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[3] V. Huang, C. Wang, H. Ma, G. Chen, and K. Christopher, “Cost-
aware dynamic multi-workflow scheduling in cloud data center using
evolutionary reinforcement learning,” in International Conference on
Service-Oriented Computing. Springer, 2022, pp. 449–464.

[4] H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer,
and N. Rasouli, “Grp-heft: A budget-constrained resource provisioning
scheme for workflow scheduling in iaas clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 6, pp. 1239–1254, 2020.

[5] Y. Yang, G. Chen, H. Ma, and M. Zhang, “Dual-tree genetic program-
ming for deadline-constrained dynamic workflow scheduling in cloud,”
in International Conference on Service-Oriented Computing. Springer,
2022, pp. 433–448.

[6] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[7] H. Djigal, J. Feng, J. Lu, and J. Ge, “Ippts: An efficient algorithm for
scientific workflow scheduling in heterogeneous computing systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5,
pp. 1057–1071, 2020.

[8] J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment,” IEEE Transactions on Cloud Computing, vol. 6, no. 1,
pp. 2–18, 2015.

[9] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in IEEE International
Conference on E-science. IEEE, 2012, pp. 1–8.

[10] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy, “Task scheduling strategies for workflow-based applications
in grids,” in IEEE International Symposium on Cluster Computing and
the Grid, vol. 2. IEEE, 2005, pp. 759–767.

[11] M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming for
dynamic flexible job shop scheduling: evolution with single individuals
and ensembles,” IEEE Transactions on Evolutionary Computation, 2023.

[12] B. Tan, H. Ma, Y. Mei, and M. Zhang, “A cooperative coevolu-
tion genetic programming hyper-heuristic approach for online resource
allocation in container-based clouds,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2020.

[13] Y. Liu, Y. Mei, M. Zhang, and Z. Zhang, “A predictive-reactive approach
with genetic programming and cooperative coevolution for the uncertain
capacitated arc routing problem,” Evolutionary Computation, vol. 28,
no. 2, pp. 289–316, 2020.

[14] Q.-z. Xiao, J. Zhong, L. Feng, L. Luo, and J. Lv, “A cooperative co-
evolution hyper-heuristic framework for workflow scheduling problem,”
IEEE Transactions on Services Computing, vol. 15, no. 1, pp. 150–163,
2022.

[15] K.-R. Escott, H. Ma, and G. Chen, “A genetic programming hyper-
heuristic approach to design high-level heuristics for dynamic workflow
scheduling in cloud,” in IEEE Symposium Series on Computational
Intelligence. IEEE, 2020, pp. 3141–3148.

[16] Y. Yang, G. Chen, H. Ma, M. Zhang, and V. Huang, “Budget and sla
aware dynamic workflow scheduling in cloud computing with hetero-
geneous resources,” in IEEE Congress on Evolutionary Computation.
IEEE, 2021, pp. 2141–2148.

[17] M. Xu, Y. Mei, S. Zhu, B. Zhang, T. Xiang, F. Zhang, and M. Zhang,
“Genetic programming for dynamic workflow scheduling in fog com-
puting,” IEEE Transactions on Services Computing, 2023.

[18] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving schedul-
ing heuristics via genetic programming with feature selection in dy-
namic flexible job-shop scheduling,” IEEE Transactions on Cybernetics,
vol. 51, no. 4, pp. 1797–1811, 2020.

[19] B. Al-Helali, Q. Chen, B. Xue, and M. Zhang, “Multitree genetic
programming with new operators for transfer learning in symbolic
regression with incomplete data,” IEEE Transactions on Evolutionary
Computation, vol. 25, no. 6, pp. 1049–1063, 2021.

[20] A. Friedlander, K. Neshatian, and M. Zhang, “Meta-learning and feature
ranking using genetic programming for classification: Variable terminal
weighting,” in IEEE Congress of Evolutionary Computation. IEEE,
2011, pp. 941–948.

[21] I. Rechenberg, Evolutionsstrategie. Holzmann-Froboog, Stuttgart, 1973.
[22] R. J. Rossi, Mathematical statistics: An introduction to likelihood based

inference. John Wiley & Sons, 2018.
[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.

Cambridge University Press, 2004.
[24] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree

representation for dynamic flexible job shop scheduling,” in Australasian

Joint Conference on Artificial Intelligence. Springer, 2018, pp. 472–
484.

[25] Y. Bi, B. Xue, and M. Zhang, “Dual-tree genetic programming for few-
shot image classification,” IEEE Transactions on Evolutionary Compu-
tation, vol. 26, no. 3, pp. 555–569, 2021.

[26] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic
programming. Lulu Enterprises, UK Ltd., 2008.

[27] H. Assimi, A. Jamali, and N. Nariman-Zadeh, “Multi-objective sizing
and topology optimization of truss structures using genetic programming
based on a new adaptive mutant operator,” Neural Computing and
Applications, vol. 31, no. 10, pp. 5729–5749, 2019.

[28] T. Umeda, Y. Nozaki, and M. Yoshikawa, “Dynamic adaptive mutation
based genetic programming for ring oscillator puf,” in International
Conference on Computational Intelligence and Applications, 2018, pp.
210–213.

[29] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 24, no. 4, pp. 656–667, 1994.

[30] D. P. Muni, N. R. Pal, and J. Das, “Genetic programming for simul-
taneous feature selection and classifier design,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 36, no. 1, pp. 106–117, 2006.

[31] M. Riley, Y. Mei, and M. Zhang, “Improving job shop dispatching rules
via terminal weighting and adaptive mutation in genetic programming,”
in IEEE Congress on Evolutionary Computation. IEEE, 2016, pp.
3362–3369.

[32] N. Rizvi, R. Dharavath, L. Wang, and A. Basava, “A workflow schedul-
ing approach with modified fuzzy adaptive genetic algorithm in iaas
clouds,” IEEE Transactions on Services Computing, pp. 1–1, 2022.

[33] C.-H. Youn, M. Chen, and P. Dazzi, Cloud broker and cloudlet for
workflow scheduling. Springer Singapore, 2017.

[34] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of
Operations Research, vol. 13, no. 2, pp. 311–329, 1988.

[35] M. Pei, H. An, B. Liu, and C. Wang, “An improved dyna-q algorithm for
mobile robot path planning in unknown dynamic environment,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 52, no. 7, pp.
4415–4425, 2021.

[36] A. Jiménez-Martı́n, A. Mateos, and J. Z. Hernández, “Aluminium parts
casting scheduling based on simulated annealing,” Mathematics, vol. 9,
no. 7, p. 741, 2021.

[37] D. Simon, Evolutionary optimization algorithms. John Wiley & Sons,
2013.

[38] A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their appli-
cations to engineering problems,” Neural Computing and Applications,
vol. 32, no. 16, pp. 12 363–12 379, 2020.

[39] B. Doerr, C. Doerr, and J. Lengler, “Self-adjusting mutation rates with
provably optimal success rules,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019, pp. 1479–1487.

[40] F. Klinker, “Exponential moving average versus moving exponential
average,” Mathematische Semesterberichte, vol. 58, no. 1, pp. 97–107,
2011.

[41] S. Khakurel, C. Leung, and T. Le-Ngoc, “A generalized water-filling
algorithm with linear complexity and finite convergence time,” IEEE
Wireless Communications Letters, vol. 3, no. 2, pp. 225–228, 2014.

[42] S. Wang, Y. Mei, and M. Zhang, “A multi-objective genetic program-
ming algorithm with α dominance and archive for uncertain capacitated
arc routing problem,” IEEE Transactions on Evolutionary Computation,
2022.

[43] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, and
N. Najjari, “Online multi-workflow scheduling under uncertain task
execution time in iaas clouds,” IEEE Transactions on Cloud Computing,
vol. 9, no. 3, pp. 1180–1194, 2019.

[44] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India,
2006.

[45] A. Lissovoi and P. S. Oliveto, Computational complexity analysis of
genetic programming. Springer International Publishing, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

SUPPLEMENTARY

A. Crossover Comparison

A crossover is defined as successful if the total fitness
of the two offspring is better than the total fitness sum of
their parents. We applied GPHH approaches with the same
parameter setting on the dynamic workflow scheduling (DWS)
problem and the symbolic regression (SR) problem. Fig. 14
shows the respective crossover successful ratios. It can be
seen that crossover has a lower successful ratio on the DWS
problem.

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20 DWS
SR

Generation

C
ro

ss
ov

er
 S

uc
ce

ss
fu

l R
at

io

Fig. 14. Crossover successful ratio comparison for DWS and SR problems.

B. Convex Problem

This Supplementary aims to verify Eq. (22) is a convex op-
timization problem. The convex problem has three additional
requirements [23]:

(1) The objective function must be convex.
We set φ = 1−r

n ∈ (0, 1/n] in Eq. (22) for ease of
derivation, then the objective function is

minimum f(p) = −
n∑

i=1

xi · ln (r · pi + φ) (34)

The Hessian matrix of Eq. (34) is calculated as

▽2f =
∂2f

∂p
=


r2x1

(rp1+φ)2
0 · · · 0

0 r2x2
(rp2+φ)2

· · · 0

...
...

. . .
...

0 0 · · · r2xn
(rpn+φ)2

 (35)

Given r ∈ (0, 1], xi ∈ [0,+∞) and φ ∈ (0, 1/n], we have
|▽2 f | ≥ 0, thus the Hessian matrix as shown in Eq. (35) is a
positive definite matrix, so that Eq. (34) is a convex function.

(2) The inequality constraint functions as Eq. (22a) must
be convex.

Since 0 ≤ pi ≤ 1, the constraint functions are line segments,
thus Eq. (22a) is obviously convex.

(3) The equality constraint function h(p) =
∑n

i=1 pi − 1
must be affine.

Definition: a set C is affine if for any xi, x2 ∈ C and θ ∈ R,
we have θx1 + (1− θ)x2 ∈ C.

Set the set C = {pi|
∑n

i=1 pi − 1 = 0}, for any two points
p1 = [p11, p

1
2, · · · , p1n]T and p2 = [p21, p

2
2, · · · , p2n]T belonging

to C, we have {∑n
i=1 p

1
i − 1 = 0∑n

i=1 p
2
i − 1 = 0

(36)

For any θ ∈ [0, 1], we have{
θ(
∑n

i=1 p
1
i − 1) = 0

(1− θ)(
∑n

i=1 p
2
i − 1) = 0

(37)

add up
=⇒ [θ

n∑
i=1

p1i + (1− θ)

n∑
i=1

p2i]− 1 = 0 (38)

Thus, θ
∑n

i=1 p
1
i + (1 − θ)

∑n
i=1 p

2
i is also in the line∑n

i=1 pi − 1 = 0, belonging to the set C. As a result,
C = {pi|

∑n
i=1 pi − 1 = 0} is affine.

In conclusion, Eq. (22) is a convex optimization problem.

C. Validity of Using Water Filling Algorithm

This Supplementary aims to elaborate how to use the water
filling algorithm [41] to solve the example shown in Table X.

TABLE X
NUMBER OF EACH TERMINAL TYPE IN THREE TREES

terminal1 terminal2 terminal3

tree1 1 2 3

tree2 2 2 2

tree3 0 1 3

xi 3 5 8

Table X gives an example of how to compute t⃗w =
[p1, p2, p3]

T with respect to three selected trees that use
collectively tree terminal types, where [x1, x2, x3] = [3, 5, 8]
and n = 3. Give the sampling ratio as r = 1/2, by Eq. (27),
we have

{ 3

ν∗
− 1

3
}+ + { 5

ν∗
− 1

3
}+ + { 8

ν∗
− 1

3
}+ = 1 (39)

Water Filling Solution

Po
w

er
 L

ev
el

Bucket Width

1/8

1/9

1/15

1/24

3 8 16

1/24

7/24
2/3

0

Fig. 15. Example of using the water filling algorithm.

The solution of Eq. (39) is presented in Fig. 15. The width
of each bucket is xi (i.e., 3, 5, 8), and the area of each
bucket is 1−r

nr = 1/3 (i.e., the orange rectangles), thus the
height of buckets are 1/9, 1/15, 1/24, respectively. When the
water level line 1/ν∗ = 1/8 is determined, the area from each
bucket to the water level line (i.e., the blue rectangles) is the
corresponding solution.

p∗1 = (1/8− 1/9) · 3 = 1/24

p∗2 = (1/8− 1/15) · 3 = 7/24

p∗3 = (1/8− 1/24) · 3 = 2/3

(40)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

To verify the effectiveness of Eq. (27), the optimal p∗1, p
∗
2, p

∗
3

can also be solved by using the extreme value theorem [37] to
maximize Eq. (41). According to Table X, the log-likelihood
function is denoted as

f(p) = lnP = ln (P (tree1) · P (tree2) · P (tree3))

= 3 ln (
1

6
+

p1
2
) + 5 ln (

1

6
+

p2
2
)+

8 ln (
1

6
+

1− p1 − p2
2

)

(41)

Then, Eq. (41) can be solved as follows:
∂f
∂pi

= 0∑3
i=1 pi = 1

⇒


p1 = 4−9·p2

33

p2 = 4−5·p1
13

p3 = 1− p1 − p2

⇒


p∗1 = 1/24

p∗2 = 7/24

p∗3 = 2/3

(42)

Clearly, the solution found above matches exactly with the
solution obtained by the water-filling algorithm, confirming the
correctness of using the water-filling algorithm to compute t⃗w.

D. Empirical Studies for Beta Distribution

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

2

4

6

8

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 2)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(a) β = 2

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 4)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(b) β = 4

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 6)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(c) β = 6

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 8)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(d) β = 8

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 10)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(e) β = 10

0.0 0.2 0.4 0.6 0.8 1.0
Points

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
De

ns
ity

 Fu
nc

tio
n

(P
DF

)

pboth pvmsr ptsr

mutation deviation
(large small)

Beta Distribution (= 12)

= 2
= 5

= 8
= 11

= 14
= 17

= 20
= 23

(f) β = 12

Fig. 16. Distribution map corresponding to different β values.

The parameter β = 8 is selected based on some numerical
studies. For a clear explanation, we presented the results of our
numerical studies in Figure 16 of this response letter, which
shows the Beta distribution with different β values (i.e., β =
2, 4, 6, 8, 10, 12). β controls the difference among the three
probability values t⃗s = [pboth, pvmsr, ptsr]

T . Moreover, the
parameter α is a variable used in the 1/5 rule to adjust the

mutation deviation, and Figure 16 shows its possible range.
When β = 2, 4, 6, 12, the resulting probability distributions
exhibited noticeable imbalances. It can be seen that the slope
of the PDF curve for β = 8 is smaller compared to β =
10, resulting in relatively small differences among the three
probability values obtained from the Beta distribution. In view
of the above, we decide to set β to 8 in our experiments.

E. Computational Complexity Analysis

Related notations are introduced in Table XI. We analyze
the worst-case complexity of DTGP and DTGPAM using the
Big-O notation. The time complexity of DTGP and DTGPAM,
denoted by T dtgp

max and T dtgpam
max , mainly consist of the complex-

ities for evaluation (T1), parent selection (T2), crossover (T3),
mutation (T4) and elitism (T5). The complexity of each part
is listed in Table XII. Specifically, the detailed explanation of
each part is as follows:

1) Fitness evaluation. In addition to the population size (N)
and the number of generations (G), T1 is also impacted
by the complexity for parsing the GP tree, which is
O(d1 log d1) following [2]. Thus, the complexity T1 of
fitness evaluation across all generations is d1 log d1NG.

2) Parent selection. Given the tournament size as sk, we have
the complexity T2 of parent selection across all generations
as (sk + sk)×N ×G = 2skNG [3], where the first sk is
for the random selection of sk individuals, and the second
sk is for selecting the one with the best fitness among these
sk individuals.

3) Crossover. For each crossover operation of two parent
individuals, the algorithm executes 2l1+3 steps, including
1 step to select one of two trees to be mated, 2l1 steps to
label all nodes in the two trees, and 2 steps to select one
crossover point in two trees. Thus, the complexity T3 of
crossover across all generations is (2l1 +3)× pcN ×G =
(2l1 + 3)pcNG.

TABLE XI
NOMENCLATURE.

Notion Description Range

N population size 1024

G number of generations 51

d1 maximum depth of both GP trees, i.e., VMSR 8

and TSR

d2 maximum depth of generated subtrees in mutation 3

l1 maximum allowed number of nodes in a GP tree 2d1

subject to the depth limit d1
l2 maximum allowed number of nodes in a subtree of 2d2

mutation subject to the depth limit d2
s1 size of the terminal set used for constructing VMSRs 11

s2 size of the terminal set used for constructing TSRs 7

pc crossover rate [0,1]

pm mutation rate [0,1]

sk the tournament size 7

* an individual consists of a VMSR and a TSR.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

TABLE XII
COMPLEXITY ANALYSIS OF DTGP AND DTGPAM.

Components DTGP DTGPAM

T1 evaluation d1 log d1NG d1 log d1NG

T2 parent selection 2skNG 2skNG

T3 crossover (2l1 + 3)pcNG (2l1 + 3)pcNG

T4 mutation (d2 log d2 + 2)pmNG (d2 log d2 + 3)pmNG++2l1NG+ (2 + s1 log s1 + s2 log s2)G

T5 elitism NG NG

4) Mutation. In DTGPAM, the complexity T4 of mutation
across all generations consists of three components, i.e.,
T

(0)
4 + T

(1)
4 + T

(2)
4 .

• Common steps required for mutation (T (0)
4): When

mutating an individual, the algorithm executes
d2 log d2+2 steps, including 1 step to randomly select
one tree, 1 step to randomly select one mutation point
in that tree, and d2 log d2 steps to generated a subtree.
Thus, for T

(0)
4 we have (d2 log d2 + 2)pmNG, which

is bounded by O(d2 log d2NG).
• Estimation of tree selection probabilities (T (1)

4). In
each generation, we need pmN steps to compare the
fitness changes of mutated individuals according to the
1/5 rule, 1 step to calculate the mutation successful
ratio, and 1 step to obtain tree selection probabilities
by inputting the mutation successful ratio into the Beta
distribution. Thus, for T

(1)
4 we have (pmN + 2)G,

which is bounded by O(NG).
• Estimation of terminal weights (T (2)

4). In each gener-
ation, we need 2l1N steps to count the total number
of each terminal, and s1 log s1 + s2 log s2 steps to
calculate the terminal weights of two trees use the
water-fill algorithm [4]. Therefore, for T

(2)
4 we have

(2l1N + s1 log s1 + s2 log s2)G, which is bounded by
O((l1N + s1 log s1 + s2 log s2)G).

Finally, the complexity T4 of mutation in DTGPAM across
all generations is (d2 log d2+3)pmNG++2l1NG+(2+
s1 log s1 + s2 log s2)G.

5) Elitism. In each generation, we need N steps to iterate
through the population once to identify the top individuals
based on their fitness. Thus, the complexity T5 of elitism
across all generations is NG.

To sum up, the overall complexity of the DTGP and that of
our DTGPAM algorithm is calculated by Eq. (43) and Eq. (44),
respectively.

T (dtgp)
max =T1 + T2 + T3 + T

(0)
4 + T5

=[d1 log d1 + 2sk + (2l1 + 3)pc

+ (d2 log d2 + 2)pm + 1]NG

≤c1(d1 log d1 + sk + l1)NG

(43)

T (dtgpam)
max =T1 + T2 + T3 + T4 + T5

=[d1 log d1 + 2sk + (2l1 + 3)pc

+ (d2 log d2 + 2)pm + 1]NG

+ 2l1NG+ (2 + s1 log s1 + s2 log s2)G

≤c2(d1 log d1 + sk + l1)NG

(44)

where c1 > 0, c2 > 0, d1 > d2 and N ≥ s1logs1 + s2logs2.
Based on the Big-O method, although the mutation operator
of DTGPAM exhibits a higher complexity than that of DTGP,
these two algorithms have the same complexity level, i,e,
O((d1 log d1 + sk + l1)NG).

F. Theoretical Analysis on the MLE-based Method

To make our theoretical analysis feasible, we consider the
case where only two terminal types τ1 and τ2 exist in GP
trees. It is worth noting that the analysis presented here can
be extended to cases involving more than two terminal types.
Assuming that each GP tree I has n terminal nodes, of which x
are terminal type τ1 and n−x are terminal type τ2. We further
assume that the fitness of the GP tree I depends directly on
x and n− x, specifically

fitness(I) =

{
1 if x ∈ {a, a+ 1, · · · , b}
0 otherwise

(45)

where a and b are integers and 0 < a ≤ b ≤ n.
Given any two good GP trees (i.e., fitness(I1) = 1 and

fitness(I2) = 1), where the number of terminal type τ1 in
each tree is X1 and X2 respectively. For ∀x1, x2, we have
P(X1 = x1 ∪ X2 = x2) = P(X1 = x1) · P(X2 = x2). In
addition, X1 and X2 follow a discrete uniform distribution,
denoted by

P(X1 = x1) =

{
1

b−a+1
if x1 ∈ {a, a+ 1, · · · , b}

0 otherwise
(46)

P(X2 = x2) =

{
1

b−a+1
if x2 ∈ {a, a+ 1, · · · , b}

0 otherwise
(47)

According to the calculation steps introduced in our
manuscript, we can obtain the terminal weights estimated by
the MLE-based [4] and frequency-based [5] methods through
Eq. (48) and Eq. (49) respectively.

fMLE(x1, x2) =
x1 + x2

2n
(48)

fFre(x1, x2) =
(x1 + x2)r

2n
+

1− r

2
(49)

We denote the weight of terminal type τ1 as W and the weight
of terminal type τ2 as 1−W . The distribution of W obtained
by these two methods is calculated by

PMLE(W = w) =

b∑
x1=a

b∑
x2=a

P(X1 = x1) · P(X2 = x2)

· 1{fMLE(x1, x2) = w}

(50)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

PFre(W = w) =

b∑
x1=a

b∑
x2=a

P(X1 = x1) · P(X2 = x2)

· 1{fFre(x1, x2) = w}

(51)

In our method, a terminal node has 0 ≤ r ≤ 1 probability
to be selected according to the terminal weights, and has
1 − r probability to be randomly selected, as shown in
Figure 17. Therefore, the probability of sampling each terminal
is calculated by Eq. (52) and Eq. (53).

Start

select random terminal

select through
terminal weights

terminal node

Fig. 17. The mechanism of sampling a terminal node in this article.

P(τ1 | W = w) = r · w + ·1− r

2
(52)

P(τ2 | W = w) = r(1− w) + ·1− r

2
(53)

Consequently, the expected fitness of the new individual
generated according to the distribution of W in Eq. (50) and
Eq. (51) is calculated by

EFWMLE =

b
n∑

w= a
n

b∑
x=a

(
n

x

)
PMLE(W = w)(rw +

1− r

2
)x

· [r(1− w) +
1− r

2
]n−x

(54)

EFWFre =

br
n

+ 1−r
2∑

w= ar
n

+ 1−r
2

b∑
x=a

(
n

x

)
PFre(W = w)(rw +

1− r

2
)x

· [r(1− w) +
1− r

2
]n−x

(55)

Given the complexity of directly comparing Eq. (54) and
Eq. (55), we provide specific values of EFWMLE

and EFWFre

under a wide range of different settings of a, b, n and r in
Table XIII. It can be observed that EFWMLE

is consistently
higher than EFWFre

across all parameter settings. This sug-
gests that the MLE-based method effectively addresses the
issue of estimating terminal weights.

Compared to the frequency-based method, the MLE-based
method leverages mathematical optimization to derive terminal
weights that lead to higher expected fitness of newly generated
individuals. This translates to a greater likelihood of generating
“good” individuals, ultimately improving the overall perfor-
mance of the DTGPAM algorithm.

TABLE XIII
SPECIFIC VALUES OF EFWMLE

AND EFWFre
UNDER SOME

PARAMETERS.

a b n r EFWMLE EFWFre

4 5 8 1
4

0.5035 0.4955

4 5 8 3
4

0.5110 0.5107

4 5 16 1
4

0.1778 0.1124

4 5 16 3
4

0.3750 0.3078

4 6 8 1
4

0.6497 0.6149

4 6 8 3
4

0.6945 0.6870

4 6 16 1
4

0.3300 0.2434

4 6 16 3
4

0.5321 0.4714

4 7 8 1
4

0.7232 0.6572

4 7 8 3
4

0.8223 0.8005

4 7 16 1
4

0.5039 0.4198

4 7 16 3
4

0.6593 0.6190

* [a, b] is the desired range to achieve good fitness, n is the number
of terminal nodes in each GP tree, and r is the probability of using
terminal weights to sample terminal.

