
Enhancing Generalization in Genetic Programming
Hyper-heuristics through Mini-batch Sampling Strategies for
Dynamic Workflow Scheduling
Yifan Yanga,∗, Gang Chena, Hui Maa, Sven Hartmannb and Mengjie Zhanga

aCentre for Data Science and Artificial Intelligence & School of Engineering and Computer Science, Victoria University of Wellington, Wellington
6012, New Zealand
bDepartment of Informatics, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

A R T I C L E I N F O
Keywords:
Dynamic workflow scheduling
Genetic programming hyper-heuristics
Generalization
Mini-batch

A B S T R A C T
Genetic Programming Hyper-heuristics (GPHH) have been successfully used to evolve schedul-
ing rules for Dynamic Workflow Scheduling (DWS) as well as other challenging combinatorial
optimization problems. The method of sampling training instances has a significant impact on
the generalization ability of GPHH, yet they are rarely addressed in existing research. This article
aims to fill this gap by proposing a GPHH algorithm with a sampling strategy to thoroughly inves-
tigate the impact of six instance sampling strategies on algorithmic generalization, including one
rotation strategy, three mini-batch strategies, and two hybrid strategies. Experiments across four
scenarios with varying settings reveal that: (1) mini-batch with random sampling can outperform
rotation in generalizing to unseen workflow scheduling problems under the same computational
cost; (2) employing a hybrid strategy that combines rotation and mini-batch further enhances
the generalization ability of GPHH; and (3) mini-batch and hybrid strategies can effectively
enable heuristics trained on small-scale training instances generalizing well to large-scale unseen
ones. These findings highlight the potential of mini-batch strategies in GPHH, offering improved
generalization performance while maintaining diversity and suggesting promising avenues for
further exploration in GPHH domains.

1. Introduction 1

Cloud computing is a transformative technology that enables remote access to a shared pool of high-performance 2

computing resources and offers scalability, flexibility, and cost-efficiency [4, 5]. As a result, it has been adopted by 3

many different industries, organizations, and research institutions [3]. Scientific applications submitted to the cloud 4

are commonly managed as workflows. These workflows, characterized by a set of tasks connected as a directed acyclic 5

graph (DAG) [8], as shown in Fig. 1, require efficient allocation of task execution across heterogeneous virtual 6

machines (VMs) hosted in the cloud. This practically important schedule decision problem is known as workflow 7

scheduling. It plays a crucial role in cloud computing to minimize the cost of resource usage [17, 35, 38], meet 8

the various quality of service requirements [1, 18], and cope with the dynamic and complex nature of the cloud 9

infrastructure [19, 34, 39].

Inspiral MontageCyberShake SIPHT

Figure 1: Four widely used workflow patterns.

10

∗Corresponding email: {yifan.yang, aaron.chen, hui.ma, mengjie.zhang}@ecs.vuw.ac.nz, sven.hartmann@tu-clausthal.de
ORCID(s):

Yifan Yang et al.: Preprint submitted to Elsevier Page 1 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

This article addresses the problem of deadline-constrained dynamic workflow scheduling in cloud computing11

(DCDWSC) [17, 18, 40]. DCDWSC considers the dynamic arrival of a series of heterogeneous workflows with12

predetermined workflow patterns and deadline constraints that are scheduled to execute on multiple VMs with13

heterogeneous configurations. The overall goal of DCDWSC is to make intelligent decisions in terms of workflow14

assignment and VM provisioning to minimize the total costs associated with VM rental fees and deadline violation15

penalties [17, 47]. To tackle such a dynamic workflow scheduling (DWS) problem, priority-driven heuristics are16

frequently employed in practice[2, 23, 33] due to their easy implementation and fast computation [29, 44]. These17

heuristics iteratively schedule each workflow task to execute on the VM instance with the lowest priority value.18

Genetic Programming Hyper-Heuristic (GPHH) approaches have been effectively utilized to address dynamic19

optimization problems such as DWS and DCDWSC problems [17, 35, 38, 40], enabling the automatic design of20

priority-driven heuristics without the need for domain knowledge or human intervention. As a learning-based method,21

generalization is an important goal for GPHH [16, 30], such that the evolved heuristics obtained in the training stage22

can be used to effectively solve new unseen problem instances.23

Particularly, the generalization of GPHH is defined as the ability of the learned heuristic, evolved for a specific24

problem scenario, to achieve consistently competitive performance for multiple different problem scenarios. A problem25

scenario refers to a probability distribution over problem instances. Moreover, a problem instance refers to a concrete26

configuration of a given problem scenario/domain that needs to be solved. Problem instances are also called training27

instances or testing instances based on their usage stage in the algorithm.28

To achieve good generalization performance, existing GPHH approaches often use the rotation strategy to solve29

optimization problems [16, 28, 30], which involves the use of a small batch of distinct training instances for fitness30

evaluation in each generation. We denote batch size as the number of training instances used per generation. This31

strategy assumes that increasing the chance of encountering different training instances under a limited number of32

fitness evaluations (i.e., simulation calls) can facilitate the search for heuristics with good generalization abilities [7, 16].33

However, there are two key issues to consider when applying the rotation strategy in DWS. First, what batch size is34

appropriate for GPHH to effectively solve DWS problems? Increasing the batch size improves the accuracy of fitness35

estimation at the expense of significantly increased computational cost. For example, in [41], a batch size of 3 required36

20 hours for training over 50 generations on 10 CPUs. In practice, batch sizes are often set to very small numbers37

[11, 28, 38], such as 1 or 3, to reduce computational cost. Second, is the method of sampling training instances that38

constantly uses unseen problem instances suitable for DWS problems? Continuously rotating new problem instances39

to generate mini-batches of small sizes can lead to the loss of valuable heuristics during iterations [6, 29]. This is due40

to the changes in evaluated fitness values, caused by the rotation of training instances, disrupting the stability of the41

heuristic learning process. Particularly for DWS, where problem instances exhibit significant differences, the rotation42

technique might lose its effectiveness [41].43

The mini-batch strategy, a popular technique used in machine learning [14, 42], holds promise for achieving good44

generalization performance within the given computational cost. This strategy assumes that reusing previously seen45

training instances promotes consistency in the evaluated fitness of the same GP tree across consecutive generations,46

thereby enabling a more reliable and stable selection of heuristics during the evolutionary process. It is achieved by47

sampling a mini-batch of problem instances from the training set at each generation [42]. Particularly, when the training48

set is extremely large, the mini-batch strategy becomes analogous to a rotation strategy.49

Despite the potential benefits of mini-batch techniques, there is currently a lack of detailed empirical analysis of50

their impact on the generalization performance of GPHH for DWS. For example, the effects of different training set51

sizes, different sampling strategies, and combinations of rotation and mini-batch strategies are still largely unexplored52

and warrant further investigation. Furthermore, existing GPHH research lacks consensus and clear guidelines on53

proper training set configurations and sampling strategies for the training sets. Although various sampling strategies54

have been explored in existing GPHH research, such as rotating training instances [20, 38] and using a small batch55

of instances [7, 29], there is no systematic study to clarify which strategy is superior. Addressing these gaps is56

critical to understanding the influence of sampling strategies in GPHH and related fields. By investigating instance57

sampling strategies, we can improve algorithmic generalization under fixed computational cost for utilizing training58

sets, providing practical insights into the advancement of the GPHH domain.59

This study is grounded on the hypothesis that employing different sampling strategies on the same training dataset60

has a significant influence on the generalization ability of GPHH. To address this hypothesis, we have formulated61

three key research objectives/questions: (1) Can mini-batch strategies outperform rotation in terms of generalization62

performance? (2) Can hybrid strategies that combine rotation and mini-batch further enhance the generalization ability63

Yifan Yang et al.: Preprint submitted to Elsevier Page 2 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

of GPHH? (3) Can the heuristics generated by mini-batch and hybrid strategies be effective for larger-scale problem 64

instances? 65

The focus of this article is on the critical but understudied issue of how different training instance sampling 66

strategies impact the generalization abilities of GPHH-generated heuristics. To this end, we use a newly proposed 67

framework, called GPHH with an instance Sampling strategy (GPHHS), to examine the generalization performance of 68

six instance sampling strategies, including one rotation [38], three mini-batch [26, 29], and two novel hybrid strategies. 69

Without designing new algorithms, we aim to provide valuable insights into existing GPHH methodologies through 70

thorough empirical evaluations of the generalization performance of six sampling strategies. Specifically, the major 71

contributions are listed as follows: 72

• We compare the performance of three mini-batch strategies with the rotation strategy given an identical budget 73

for computational resources. The results reveal that mini-batch with a random sampling strategy outperforms 74

rotation in terms of generalization. 75

• We conduct experiments with two novel hybrid strategies that combine half mini-batch and half rotation. 76

This study represents the first systematic examination of such hybrid strategies in the literature. The results 77

demonstrate the strong generalization capabilities of the proposed hybrid strategies, revealing the broader 78

applicability of these hybrid approaches in GPHH. 79

• We evaluate the performance of mini-batch and hybrid strategies in terms of generalization to large-scale problem 80

instances. The results show that GPHH using hybrid strategies can provide high-quality heuristics that effectively 81

bridge the gap between problem size in training and test scenarios. 82

• Further analysis of population diversity shows that these instance sampling strategies have different effects 83

on population diversity for maintaining GPHH effectiveness. Instance sampling not only profoundly affects 84

generalization performance but is also critical for effectively producing high-quality heuristics during the 85

evolutionary process. 86

The remaining sections of this article are organized as follows: Section 2 reviews related research on GPHH using 87

rotation and mini-batch strategies. In Section 3, we formulate the DCDWSC problem and illustrate the decision- 88

making process. Section 4 introduces the GPHH framework with instance sampling and discusses specific strategies 89

for building mini-batch sequences. Section 5 presents experimental designs, including configuration and metrics. In 90

Section 6, we analyze mini-batch, hybrid strategies, and scalability. Section 7 explores further analysis of population 91

diversity. Finally, Section 9 concludes this study. 92

2. Related Work 93

In this section, we review existing strategies for constructing the training set that GPHH can use to solve various 94

decision problems. Particularly, we focus on two classes of popular and successful strategies: rotation [32, 40, 46] and 95

mini-batch [24, 26]. 96

2.1. Rotation Strategy 97

The rotation strategy is adopted by most existing GPHH studies for solving job shop scheduling [16, 38], arc routing 98

problems [26, 32], and DWS problems [12, 40]. 99

The batch size plays a crucial role in achieving convergence and ensuring good performance. It is a general 100

observation that the suitable batch sizes depend on the level of differences across all problem instances [20, 26, 38]. We 101

refer to such differences as variance, where a large variance indicates a large difference between the problem instances. 102

In cases with small variances, such as job shop scheduling [37, 46], a batch size of 1 has been empirically shown to be 103

sufficient [16], as the workloads of randomly created problem instances do not vary significantly. Conversely, problem 104

scenarios with large variances typically require larger batch sizes to achieve stable convergence, as increasing the batch 105

size helps in mitigating the impact of data/instance variance during training [21, 27]. For example, arc routing problem 106

usually uses a batch size of 5 for the evaluation in [32, 26]. For DWS problems, previous studies used batch sizes of 107

both 3 [12, 41], 5 [40] or more [35]. 108

The rotation strategy aims to improve the generalization of GPHH by maximizing the exploration of non-repetitive 109

training instances within a limited number of generations [16, 30]. However, for problems with high variance like DWS, 110

Yifan Yang et al.: Preprint submitted to Elsevier Page 3 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 1
Nomenclature.

Notations Descriptions

𝜏 a problem instance
𝑆 a problem scenario
𝒟 a workflow type
ℳ a VM type
𝑊 a workflow instance
𝑉 a VM instance
 a set of workflow types 𝒟𝑖
 a set of VM types ℳ𝑘
𝕎 a sequence of workflow instances 𝑊𝑖 contained in 𝜏
𝕍 a sequence of VM instances 𝑉𝑘 utilized in 𝜏
𝑛 the size of the workflow set 
𝑛 the size of the VM set 
𝑚 the size of the workflow sequence 𝕎

𝑊𝐿 the workload of a workflow
𝑡𝑟𝑎𝑖𝑛 the training set
𝑡𝑒𝑠𝑡 the test set
(𝑔) a mini-batch of problem instances used in generation 𝑔
 the mini-batch sequence used in an algorithm run
𝑛𝑎 the size of the training set
𝑛𝑒 the size of the test set
𝑛 the batch size of 
𝑔𝑚𝑎𝑥 the maximum number of iterations

encouraging the rotation of training instances causes the evaluated fitness evaluation values to fluctuate in adjacent111

generations, which may negatively affect the generalization ability of the GPHH algorithm [9].112

2.2. Mini-batch Strategy113

In the context of GPHH, the mini-batch strategy involves a training set from which mini-batches of training114

instances are sampled to enable the reuse of some previously seen training instances for fitness evaluation [7, 29, 42].115

Current GPHH research employs different methods of sampling subsets/mini-batches from the training set. For116

example, Nguyen et al. [29] used random sampling to construct mini-batches, each containing 5 training instances from117

a training set of 351 jobs, for solving resource-constrained job shop scheduling problems. Such a strategy is referred to118

as mb-rand in this article. In contrast, Liu et al. [26] tackled the uncertain capacitated arc routing problem by dividing119

the 90-instance training set into 18 distinct mini-batches (i.e., the batch size is 90 ÷ 18 = 5). These non-overlapping120

mini-batches are then used sequentially during the evolutionary process. For example, the first mini-batch is used in121

the 1-st and 19-th generation, the second mini-batch is used in the 2-nd and 20-th generation, and so on. This type of122

strategy is referred to as mb-non in this article.123

As seen above, different sizes of mini-batches and sampling methods (i.e., the size of the training set, whether124

overlapping or not) are used in the literature. To the best of our knowledge, there is no comprehensive study of125

the impact of mini-batch strategies on GPHH in the literature. To address this research gap, we will conduct a126

comprehensive series of experiments using GPHH to evolve heuristics for solving a wide range of DCDWSC problem127

instances, aiming to provide valuable insights and suggestions for future design of GPHH-based algorithms, especially128

for DWS and related problems.129

3. Background130

In this section, we formulate the DCDWSC problem and then illustrate the process of making scheduling decisions131

using a scheduling heuristic. Important notations used in our discussion are summarized in Table 1.132

Yifan Yang et al.: Preprint submitted to Elsevier Page 4 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

3.1. Problem Formulation 133

First, a workflow type, formed by a workflow pattern and size, is commonly represented as a directed acyclic graph 134

𝒟 = (𝑇 ,𝐸), as shown in Fig. 2. Herein, 𝑇 = {𝑡𝑖 ∣ 𝑖 ∈ {1, 2,⋯ , 𝑛𝑇 }} is a set of nodes representing tasks in the 135

workflow, and 𝐸 = {𝑒𝑖𝑗} is a set of directed edges where 𝑒𝑖𝑗 points from 𝑡𝑖 to 𝑡𝑗 . Instances of a workflow arrive 136

dynamically at a data center to be scheduled and processed. A workflow instance 𝑊𝑖 is associated with an arrival time 137

𝐴𝑇𝑖 and a deadline 𝐷𝐿𝑖 as well as DAG structure information such as the task size of each task 𝑇𝑆𝑖𝑗 . In view of this, a 138

workflow set is denoted as  = {𝒟𝑖 ∣ 𝑖 ∈ {1, 2,⋯ , 𝑛}}, where 𝒟𝑖 refers to a unique workflow type, and a workflow 139

sequence is denoted as 𝕎 = [𝑊𝑖 ∣ 𝑖 ∈ {1, 2,⋯ , 𝑚}], where 𝑊𝑖 refers to a workflow instance.

Figure 2: Diagram of a workflow modeled as a DAG.

140A VM type is denoted by ℳ = (𝐶, 𝑃), where 𝐶 represents the CPU (related to processing speed) and 𝑃 represents 141

the price for one hour. A VM instance (or VM in short) is of a certain type. Each VM instance, 𝑉𝑘 is characterized by 142

the VM identity number, rental time, its computation capacity (known as compute unit 𝐶𝑈𝑘), and hourly rental fee 143

𝑃𝑅𝐼𝐶𝐸𝑘, etc. Accordingly, a VM set is represented by  = {ℳ𝑘 ∣ 𝑘 ∈ {1, 2,⋯ , 𝑛}}, where ℳ𝑘 refers to a VM 144

type, and a VM sequence is represented by 𝕍 = [𝑉𝑘 ∣ 𝑘 ∈ {1, 2,⋯ , |𝕍 |}], where 𝑉𝑘 refers to a VM instance. 145

A DCDWSC problem instance 𝜏 consists of a workflow sequence 𝕎 = [𝑊1,𝑊2,⋯ ,𝑊𝑚] and a VM set  = 146

{ℳ1,ℳ2,⋯ ,ℳ𝑛 }, and requires a heuristic to determine an optimal schedule of workflow tasks to VM instances 147

of the given VM set. Notably, how many VM instances are rented (i.e., |𝕍 |) to execute 𝕎 depends on the employed 148

scheduling heuristic ℎ, thus even the same problem instance 𝜏 can have different |𝕍 | when different heuristics are used. 149

During the scheduling process, there are some constraints or assumptions that need to be considered: 150

• Each task can only be executed by one available VM, with its execution time calculated as 𝐸𝑇 𝑘
𝑖𝑗 = 𝑇𝑆𝑖𝑗∕𝐶𝑈𝑘. 151

• Each VM can only handle one task at a time and cannot be interrupted during execution. 152

• Each workflow has a deadline constraint, exceeding which will be penalized. 153

• Scheduling is only permitted for the task that is in the ready state, which means that all its predecessor tasks 154

𝑝𝑟𝑒𝑑(𝑡𝑖𝑗) have been completed. 155

• VMs are rented hourly and automatically receive an additional hour of rental time when the current rental period 156

is surpassed. 157

The objective of the DCDWSC problem is to minimize the total cost for workflow execution, consisting of rental
fees (denoted as 𝑅𝑒𝑛𝑡𝐹𝑒𝑒) incurred by the provision of resources and deadline penalties (denoted as 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) caused
by violations, formulated by

min 𝑇 𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =
∑

𝑘∶𝑉𝑘∈𝕍
𝑅𝑒𝑛𝑡𝐹𝑒𝑒𝑘 +

∑

𝑖∶𝑊𝑖∈𝕎
𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (1)

where 𝕍 refers to the set of leased VM instances, and 𝕎 refers to the set of workflow instances. Particularly, two key 158

variables introduced on the right-hand side are formulated as follows: 159

• 𝑅𝑒𝑛𝑡𝐹𝑒𝑒𝑘 is the rental fee of 𝑘-th VM instance, defined as:

𝑅𝑒𝑛𝑡𝐹𝑒𝑒𝑘 = 𝑃𝑅𝐼𝐶𝐸𝑘 ⋅

⌈

𝐹𝑇 𝑘
𝑙𝑎𝑠𝑡 − 𝑆𝑇 𝑘

𝑓𝑖𝑟𝑠𝑡

3600

⌉

(2)

where 𝐹𝑇 𝑘
𝑙𝑎𝑠𝑡 is the finish time of the last task on VM instance 𝑉𝑘, and 𝑆𝑇 𝑘

𝑓𝑖𝑟𝑠𝑡 is the start time of the first task 160

on the same VM instance 𝑉𝑘. 161

Yifan Yang et al.: Preprint submitted to Elsevier Page 5 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 2
A decision situation for selecting a VM for 𝑡𝑖𝑗 by the VMSR 𝑓 (𝑡𝑖𝑗 , 𝑉𝑘) = 𝑇𝑆𝑖𝑗 + 𝑃𝑅𝐼𝐶𝐸𝑘 − 𝐸𝑇 𝑘

𝑖𝑗

Candidates TS PRICE ET 𝑓 (𝑡𝑖𝑗 ,𝑀𝑘) Decision
𝑉1 2 0 1 1

𝑉1𝑉2 2 7 2 7
𝑉3 2 3 0.5 4.5

• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 of workflow 𝑊𝑖 is defined as the penalty fee paid for the portion beyond its deadline 𝐷𝐿𝑖:
𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝛿 ⋅max

{

0, 𝐴𝑇𝑖 +𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖 −𝐷𝐿𝑖
} (3)

where 𝛿 is a penalty coefficient [43], and a larger value represents a lower tolerance for violation of the workflow162

deadline.163

3.2. Priority-oriented Heuristics for DCDWSC164

Fig. 3 illustrates the process of using a priority-oriented heuristic to iteratively make VM selection decisions to165

solve a problem instance which includes multiple workflows and a varying set of VMs. In this article, this priority-166

oriented heuristic is referred to as the VM selection rule (VMSR). First, the workflow pool receives dynamically a set167

of workflows with various types and arrival times. Then, each ready task, defined as a workflow task for which all its168

predecessor tasks have been processed, will be identified to be allocated. According to a VMSR, the ready task will169

be allocated to a suitable VM from all VM candidates. Subsequently, each VM executes all pending tasks in its VM170

queue following the First-Come-First-Service principle. Whenever a pending task is processed, this information will171

be fed back to the workflow pool to trigger new ready tasks. The VMSR is used iteratively to make decisions until all172

workflows have been processed. Finally, the system outputs the total cost incurred for the workflow execution.173

Any ready task?

Allocate this task to
one VM

Yes

Allocation

Update

A VM Selection
Rule

Start

Workflow Pool

Cloud Resources

NoEnd

M_1

M_2

M_n

......

......

Figure 3: Diagram of scheduling workflows to the cloud.

For the specific decision point, Table 2 gives an example of how to use a VMSR (e.g., 𝑓 (𝑡𝑖𝑗 , 𝑉𝑘) = 𝑇𝑆𝑖𝑗 +174

𝑃𝑅𝐼𝐶𝐸𝑘−𝐸𝑇 𝑘
𝑖𝑗) to make a decision, i.e., to select an appropriate VM for task 𝑡𝑖𝑗 . According to the terminal values in175

each task-VM pair, the priority values of all candidates, listed in the fifth column, can be calculated separately through176

the VMSR function. Finally, task 𝑡𝑖𝑗 is allocated to the VM with the minimum priority value (i.e., 𝑉1).177

4. Framework Design178

This section begins by introducing key components of conventional GPHH, followed by the framework of GPHH179

with an instance sampling strategy. To facilitate understanding, we define essential concepts related to instance180

sampling in the proposed algorithm. Subsequently, we dive into specific strategies for building mini-batch sequences181

from the training set for fitness evaluation.182

Yifan Yang et al.: Preprint submitted to Elsevier Page 6 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 3
The terminal set.

Terminal Definition

task-related
𝑇𝑆 The size of a task
𝐸𝑇 The execution time of a task

VM-related

𝐶𝑈 The compute unit of a VM
𝑃𝑅𝐼𝐶𝐸 Price of renting a VM for one hour
𝑇 𝐼𝑄 Total execution time of all tasks in a VM queue
𝑉𝑀𝑅 The remaining available time for a VM
𝐹𝑇 The finish time of a task on a VM
𝑁𝐼𝑄 Number of tasks in a VM queue

workflow-related
𝑁𝑂𝐶 Number of successor tasks of a task
𝑁𝑂𝑅 Number of remaining tasks in a workflow

problem-specific 𝑅𝐷𝐿 Remaining deadline time of a workflow

4.1. Components of Conventional GPHH 183

The conventional GPHH algorithm commonly includes five key components: representation, initialization, fitness 184

evaluation, parent selection, and evolution. Details are presented below: 185

Representation. Each heuristic/individual evolved by GPHH is represented as a syntax tree, also known as a GP 186

tree, in which the leaves are terminal nodes and the internal nodes are function nodes. The set of all possible terminals 187

is summarized in Table 3, which can be classified as task-related, VM-related, workflow-related, and problem-specific 188

terminals. With respect to the function set, we consider {+,−,×,÷, 𝑚𝑎𝑥, 𝑚𝑖𝑛}, consistent with many existing works 189

[13, 36, 38]. 190

Initialization. The individuals in the initial population are randomly generated by the ramped-half-and-half method 191

[22]. In particular, half of the individuals are created by randomly adding function and terminal nodes to the GP tree 192

until it reaches the initial depth limit. The remaining half of the individuals are created by randomly adding function 193

nodes to the GP tree until it reaches the maximum tree depth. 194

Fitness Evaluation. Each evolved GP individual is evaluated on multiple training instances to calculate its fitness.
In the 𝑔-th generation, where 𝑔 ∈ {0, 1,… , 𝑔𝑚𝑎𝑥 − 1}, 𝑛 training instances contained in (𝑔) are used for evaluating
the fitness of each individual ℎ ∈ 𝑃 (𝑔), which is calculated by

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(ℎ|(𝑔)) = 1
𝑛

∑

𝜏∈(𝑔)

𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡(ℎ|𝜏), ∀ ℎ ∈ 𝑃 (𝑔) (4)

where 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡(ℎ|𝜏) is the total cost incurred by using the heuristic ℎ to solve the training instance 𝜏. 195

Parent Selection. The tournament selection technique is employed to choose suitable parents to produce their 196

offspring, and the tournament size is set to 7 according to [38, 46]. Specifically, this means that a set of individuals is 197

randomly picked from the population and selecting the fittest one as a parent. 198

Evolution. The evolution component of convectional GPHH [39, 36] consists of elitism, crossover, mutation, and 199

reproduction. 1) Elitism ensures that the best-performing individuals from the current generation are carried over to the 200

next generation. In elitism, top 𝑛𝑒 individuals in 𝑃 (𝑔) are directly copied to 𝑃 (𝑔+1). In addition, three genetic operators 201

are employed to evolve individuals, namely reproduction, one-point crossover, and one-point mutation. 2) Crossover 202

combines parts of two parent solutions to create offspring, facilitating the exchange of genetic material. Fig. 4 (a) depicts 203

the one-point crossover operator. A crossover point is first chosen randomly among each of two parent individuals, and 204

then the subtrees rooted at the chosen points of the two parents are exchanged. 3) Mutation introduces random changes 205

to individuals, helping to explore new areas of the representation space and avoid local optima. Fig. 4 (b) depicts the 206

one-point mutation. A mutation point is randomly chosen in the individual, and then the subtree rooted at that point 207

is replaced with a newly generated subtree. 4) Reproduction involves selecting individuals based on their fitness to 208

produce the next generation, ensuring that better-performing solutions are more likely to survive. Specifically, several 209

individuals selected via tournament selection are directly copied to the next generation. 210

Yifan Yang et al.: Preprint submitted to Elsevier Page 7 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Parent 1 Parent 2
Crossocer Point

Crossocer Point Mutation Point

Parent

Offspring 1 Offspring 2 Offspring

(a) one-point crossover (b) one-point mutation

Figure 4: Genetic operators of the GPHH algorithm.

4.2. Framework of GPHH with Sampling Strategies211

The overall framework of GPHH with an instance Sampling strategy (GPHHS) is shown in Fig. 5, which consists of212

two parts: an instance sampling phase guided by an instance sampling strategy (will be elaborated in Section 4.3 and213

Section 4.4), and a general GPHH process encompassing representation, initialization, fitness evaluation, selection,214

and evolution (will be elaborated in Section 4.1).

Terminate?

Initialization

Fitness evaluation

NO Selection

Elite individuals

Yes

Evolution

crossover
mutation

reproduction

elitism

Start

Terminate = No

Training
set

End

Sampling
Strategy

Mini-batch
Sequence

The best individual

Scenario

Terminate = Yes

Instance
Sampling

Instance Sampling

Test set-X

Test set-A Scenario

Scenario

Figure 5: Flowchart of the GPHHS algorithm.

215

Compared with conventional GPHH approaches, GPHHS features two key differences as follows:216

(1) Instance Sampling. It aims to build a mini-batch sequence from one scenario (e.g., Scenario 𝑆𝐴) for fitness217

evaluation, and produce multiple test sets from different scenarios (e.g., Scenario 𝑆𝐴 and 𝑆𝑋) for evaluating the218

Yifan Yang et al.: Preprint submitted to Elsevier Page 8 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

best individual/heuristic. Fig. 6 shows a schematic diagram of instance sampling. To build a mini-batch sequence 219

 = {(𝑔)}, we initially create a training set 𝑡𝑟𝑎𝑖𝑛 randomly generated from scenario 𝑆𝐴. Then, a mini-batch of 220

training instances (𝑔) used in generation 𝑔 is sampled sampled from 𝑡𝑟𝑎𝑖𝑛, following an instance sampling strategy 𝜋 221

introduced in Section 4.4. For test sets  (𝑎)
𝑡𝑒𝑠𝑡 and  (𝑥)

𝑡𝑒𝑠𝑡 , they are randomly generated from their respective scenarios 𝑆𝐴 222

and 𝑆𝑋 . Related terms and definitions will be described in Section 4.3. 223

(2) Best Individual. The elite individuals (i.e., the top 10) obtained in the last generation will be re-evaluated 224

on the entire training set 𝑡𝑟𝑎𝑖𝑛, and then the best-performing individual among them will be determined as the best 225

individual/heuristic for the training phase.

Training Set

Test Set-A

randomly

randomly

Mini-batch
Sequence

sampling
strategy

Text

randomly

Test Set-X

Figure 6: Connections between different concepts within instance sampling.

226

4.3. Essential Concepts for Instance Sampling 227

As aforementioned in Section 3.1,  = {𝒟𝑖} represents a set of workflow types, and  = {ℳ𝑘} represents a set 228

of VM types. In addition, 𝕎 = [𝑊𝑖] denotes a sequence of instantiated workflows, and 𝕍 = [𝑉𝑘] represents a sequence 229

of instantiated VMs rented for executing 𝕎. 230

Definition 1. A problem scenario 𝑆 is a distribution over problem instances 𝜏, denoted by

𝑆 ∶ 𝑝(𝜏 ∣  , , 𝜃) (5)
with respect to a workflow set  , a VM set  , and additional parameter settings 𝜃. Particularly, 𝜃 is a collection of 231

parameters, including the workflow arrival rate 𝜆 and the deadline penalty coefficient 𝜉, which will be elaborated in 232

Section 5.2. 233

500 1000 1500 2000
Total Workload (h)

0.000

0.002

0.004

0.006

Pr
ob

ab
ilit

y

Scenarios
S0
S1
S2

Figure 7: Example of different problem scenarios in terms of total workload.

Yifan Yang et al.: Preprint submitted to Elsevier Page 9 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Definition 2. A problem instance 𝜏 is an instantiation of a scenario that is randomly generated based on the settings
in the corresponding scenario, denoted by

𝜏 = (𝕎𝑚, , 𝜃) ∼ 𝑆 (6)
where 𝕎𝑚 indicates a sequence of 𝑚 workflow instances generated following 𝜃 (e.g., arrival rate 𝜆). In each problem234

instance, 𝕎𝑚 needs to be executed on the VM set  under the parameter setting 𝜃 (e.g., deadline penalty coefficient 𝜉).235

Three points need explanation for Definition 2: (1) A problem instance can be used as either a training instance or a
test instance. (2) In any problem instances, the allowed VM types (i.e., ||) are pre-determined, while the total number
of allowed VM instances (i.e., |𝕍 |) is unlimited. (3) The workflow sequence 𝕎𝑚 is formed by independently sampling
𝑚 workflows one-by-one from the workflow set  , following an identical distribution, as follows.

𝕎𝑚 = [𝒟𝑖 + 𝜃 ∣ 𝑖 ∈ Uniform(1, 𝑛 , 𝑚),𝒟𝑖 ∈ ]
= [𝑊1,𝑊2,⋯ ,𝑊𝑚]

(7)

where parameter 𝑚 is user-defined. We set 𝑚 = 30 in this article, following [40].236

Definition 3. The workload of a workflow, denoted by 𝑊𝐿, refers to the total time required for performing all tasks
of the workflow one-by-one on a reference VM with a unit processing capability, calculated by

𝑊𝐿 =
∑

𝑖∶𝑡𝑖∈𝑊
𝑇𝑆𝑖 (8)

where 𝑇𝑆𝑖 represents the task size of task 𝑡𝑖 of workflow 𝑊 .237

Definition 4. The training set or test set is a collection of problem instances randomly and independently sampled
from a specific problem scenario 𝑆, represented by

𝑡𝑟𝑎𝑖𝑛(𝑆) = {𝜏1, 𝜏2,⋯ , 𝜏𝑛𝑎} ∼ 𝑆 (9)
𝑡𝑒𝑠𝑡(𝑆) = {𝜏1, 𝜏2,⋯ , 𝜏𝑛𝑒} ∼ 𝑆 (10)

where 𝑛𝑎 and 𝑛𝑒 are the size of the training set and test set, respectively. Notably, each problem instance in 𝑡𝑟𝑎𝑖𝑛 has238

a unique index, serving as a reference number to build the subset for fitness evaluation in each generation .239

Notably, the entire test set is used to assess the generalization performance of the best evolved heuristic/individual.240

In contrast, only a subset of the training set, sampled with an instance sampling strategy 𝜋, is utilized in any specific241

generation of GPHH for fitness evaluation. This subset is called a mini-batch, defined as follows.242

Definition 5. A mini-batch (𝑔) for generation 𝑔 ≤ 𝑔𝑚𝑎𝑥 is a set of 𝑛 problem instances obtained by an instance
sampling strategy 𝜋, denoted by

(𝑔) = {𝜏(𝑔)𝑏1
, 𝜏(𝑔)𝑏2

,⋯ , 𝜏(𝑔)𝑏𝑛
} ∼ 𝜋(𝑡𝑟𝑎𝑖𝑛) (11)

where 𝑛 is the batch size, 𝑏𝑛 is the index corresponding to any specific problem instance in 𝑡𝑟𝑎𝑖𝑛, and 𝜋 is an243

instance sampling strategy for sampling problem instances from the training set 𝑡𝑟𝑎𝑖𝑛. Particularly, any (𝑔) ⊆ 𝑡𝑟𝑎𝑖𝑛244

and 𝑛𝑎 ≤ 𝑛 × 𝑔𝑚𝑎𝑥.245

Definition 6. A sequence of mini-batches used in a GPHH evolutionary process with 𝑔𝑚𝑎𝑥 generations is expressed
as

 = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)] (12)
In the next subsection, we will investigate different strategies to sample a sequence of mini-batches  for GPHH,246

to train heuristics that can achieve high generalization performance on unseen problem instances.247

Yifan Yang et al.: Preprint submitted to Elsevier Page 10 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

4.4. Different Instance Sampling Strategies 248

For the instance sampling in Fig. 5, we study six important strategies with their corresponding pseudo-code for 249

building the mini-batch sequence  from the training set 𝑡𝑟𝑎𝑖𝑛: (1) rotation (i.e., rt) [38], (2) mini-batch with random 250

sampling (i.e., mb-rand) [14, 29], (3) mini-batch without overlapping sampling (i.e., mb-non) [26], (4) mini-batch 251

with overlapping sampling (i.e., mb-lap), (5) mini-batch combined with rotation (i.e., mb+rt that uses the mb-rand 252

strategy first, followed by rt), and (6) rotation combined with mini-batch (i.e., rt+mb that uses the rotation strategy 253

first, followed by mb-rand). The effectiveness of these strategies will be examined thoroughly through experiments in 254

Section 5. 255

(1) Rotation (rt) 256

This strategy is chosen due to its common usage in current GPHH research [20, 38], and its pseudo-code is presented 257

in Algorithm 1. Given the scenario 𝑆, the batch size 𝑛, and the number of generations 𝑔𝑚𝑎𝑥, we randomly select 258

𝑛 × 𝑔𝑚𝑎𝑥 elements (i.e., problem instance 𝜏) from the distribution 𝑆 to form the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛×𝑔𝑚𝑎𝑥
𝑖=1 (line 259

1). Then, in each generation 𝑔, we construct a mini-batch (𝑔) by extracting 𝑛 elements numbered from 𝑛 × 𝑔 to 260

𝑛 × (𝑔 + 1) in the training set 𝑡𝑟𝑎𝑖𝑛 (line 4). 261

For example, given 𝑛 = 3 and 𝑔𝑚𝑎𝑥 = 4, we can build a training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏1, 𝜏2,⋯ , 𝜏12}. Then, the mini-batch 262

sequence is established as  = {(0),(1),(2),(3)} = {{𝜏1, 𝜏2, 𝜏3}, {𝜏4, 𝜏5, 𝜏6}, {𝜏7, 𝜏8, 𝜏9}, {𝜏10, 𝜏11, 𝜏12}}. 263

Algorithm 1: The rotation strategy
Input: scenario 𝑆, batch size 𝑛, number of generations 𝑔𝑚𝑎𝑥
Output:  = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)]

1 generate the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛×𝑔𝑚𝑎𝑥
𝑖=1 ∼ 𝑆

2 𝑔 ← 0; ← []
3 while 𝑔 < 𝑔𝑚𝑎𝑥 do
4 (𝑔) = {𝜏𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛 ∣ 𝑛 × 𝑔 < 𝑖 ≤ 𝑛 × (𝑔 + 1)}
5  ←  ∪ (𝑔)

6 𝑔 ← 𝑔 + 1
7 end

(2) Mini-batch with random sampling (mb-rand) 264

This strategy is selected as it allows for the random reuse of training instances during fitness evaluation, with 265

the potential to achieve good generalization. It has been studied in several previous research on GPHH [6, 29]. Its 266

pseudo-code is shown in Algorithm 2. In addition to 𝑆, 𝑛 and 𝑔𝑚𝑎𝑥, the size of the training set 𝑛𝑎 = |𝑡𝑟𝑎𝑖𝑛| needs 267

to be determined initially to form the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1 (line 1). For each generation 𝑔, a mini-batch (𝑔) is 268

created by randomly selecting 𝑛 distinct problem instances from 𝑡𝑟𝑎𝑖𝑛 (line 4). 269

For example, with the size of the training set size 𝑛𝑎 being 6, we can construct 𝑡𝑟𝑎𝑖𝑛 = {𝜏1, 𝜏2,⋯ , 𝜏6}. Given 𝑛 = 3 270

and 𝑔𝑚𝑎𝑥 = 4, a mini-batch sequence can be determined as  = {(0),(1),(2),(3)} = {{𝜏1, 𝜏2, 𝜏5}, {𝜏4, 𝜏5, 𝜏3}, 271

{𝜏3, 𝜏1, 𝜏2}, {𝜏6, 𝜏2, 𝜏4}}.

Algorithm 2: The mini-batch with random sampling strategy
Input: scenario 𝑆, training set size 𝑛𝑎, batch size 𝑛, number of generations 𝑔𝑚𝑎𝑥
Output:  = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)]

1 generate the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1 ∼ 𝑆

2 𝑔 ← 0; ← []
3 while 𝑔 < 𝑔𝑚𝑎𝑥 do
4 (𝑔) = {𝜏𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛 ∣ 𝑖 = Uniform(1, 𝑛𝑎, 𝑛)}
5  ←  ∪ (𝑔)

6 𝑔 ← 𝑔 + 1
7 end

272

Yifan Yang et al.: Preprint submitted to Elsevier Page 11 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

(3) Mini-batch without overlapping sampling (mb-non)273

This strategy is chosen as it is a variant of the mini-batch technique proposed in [26], which does not overlap training274

instances between adjacent generations to increase instance diversity. The pseudo-code is shown in Algorithm 3. The275

training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1 is partitioned into 𝑛0 = ⌊

𝑛𝑎
𝑛
⌋ non-overlapping partitions (line 2). Each partition, denoted276

by (𝑗) with index 𝑗 (0 ≤ 𝑗 ≤ 𝑛0 − 1), contains 𝑛 problem instances from 𝜏𝑛×𝑗 to 𝜏𝑛×(𝑗+1) in 𝑡𝑟𝑎𝑖𝑛. All partitions277

jointly form the sequence . In each generation 𝑔, a specific (𝑗) is used as the mini-batch (𝑔) where 𝑗 = 𝑚𝑜𝑑(𝑔, 𝑛0)278

(line 5).279

Given 𝑛𝑎 = 7, 𝑛 = 3 and 𝑔𝑚𝑎𝑥 = 4, we have 𝑡𝑟𝑎𝑖𝑛 = {𝜏1, 𝜏2,⋯ , 𝜏7}, and then partition it into 𝑛0 = ⌊

7
3⌋ = 2280

parts to form 0 = {{𝜏1, 𝜏2, 𝜏3}, {𝜏4, 𝜏5, 𝜏6}}. Consequently, the mini-batch sequence is  = {(0),(1),(2),(3)} =281

{0[0],0[1],0[0],0[1]} = {{𝜏1, 𝜏2, 𝜏3}, {𝜏4, 𝜏5, 𝜏6}, {𝜏1, 𝜏2, 𝜏3}, {𝜏4, 𝜏5, 𝜏6}}.

Algorithm 3: The mini-batch without overlapping sampling strategy
Input: scenario 𝑆, training set size 𝑛𝑎, batch size 𝑛, number of generations 𝑔𝑚𝑎𝑥
Output:  = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)]

1 generate the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1 ∼ 𝑆

2 divide 𝑡𝑟𝑎𝑖𝑛 into 𝑛0 = ⌊

𝑛𝑎
𝑛
⌋ parts to get 0 = {(𝑗)}𝑛0−1𝑗=0 , where

(𝑗) = {𝜏𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛 ∣ 𝑛 × 𝑗 < 𝑖 ≤ 𝑛 × (𝑗 + 1)}
3 𝑔 ← 0; ← []
4 while 𝑔 < 𝑔𝑚𝑎𝑥 do
5 (𝑔) ← (𝑗) ∈ 0 where 𝑗 = 𝑚𝑜𝑑(𝑔, 𝑛0)
6  ←  ∪ (𝑔)

7 𝑔 ← 𝑔 + 1
8 end

282 (4) Mini-batch with overlapping sampling (mb-lap)283

This strategy is proposed to mitigate training instance variability in fitness evaluation as it ensures a more stable284

and reliable evaluation of algorithm performance across different generations. It is realized by changing one problem285

instance per generation. It is a new variant of the mini-batch strategy and presents its pseudo-code in Algorithm 4.286

Given the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1, a moving window of size 𝑛 traverses 𝑡𝑟𝑎𝑖𝑛 with 𝑠𝑡𝑒𝑝 = 1 in each generation 𝑔,287

capturing a fragment as the mini-batch (𝑔) (line 4). The captured fragment consists of problem instances with index288

𝑖 ∈ {𝑚𝑜𝑑(𝑔 + 𝑘, 𝑛𝑎) + 1}𝑛−1𝑘=0 in 𝑡𝑟𝑎𝑖𝑛.289

For example, we can produce 𝑡𝑟𝑎𝑖𝑛 = {𝜏1, 𝜏2, 𝜏3, 𝜏4} with 𝑛𝑎 = 4. Given 𝑛 = 3 and 𝑔𝑚𝑎𝑥 = 4, the mini-batch290

sequence is  = {(0),(1),(2),(3)} = {{𝜏1, 𝜏2, 𝜏3}, {𝜏2, 𝜏3, 𝜏4}, {𝜏3, 𝜏4, 𝜏1}, {𝜏4, 𝜏1, 𝜏2}}.

Algorithm 4: The mini-batch with overlapping sampling strategy
Input: scenario 𝑆, training set size 𝑛𝑎, batch size 𝑛, number of generations 𝑔𝑚𝑎𝑥
Output:  = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)]

1 generate the training set 𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}
𝑛𝑎
𝑖=1 ∼ 𝑆

2 𝑔 ← 0; ← []
3 while 𝑔 < 𝑔𝑚𝑎𝑥 do
4 (𝑔) = {𝜏𝑖 ∈ 𝑡𝑟𝑎𝑖𝑛 ∣ 𝑖 ∈ {𝑚𝑜𝑑(𝑔 + 𝑘, 𝑛𝑎) + 1}𝑛−1𝑘=0 }
5  ←  ∪ (𝑔)

6 𝑔 ← 𝑔 + 1
7 end

291 (5) Mini-batch combined with rotation (mb+rt)292

We propose a new hybrid strategy to explore the potential effects of combining two different sampling approaches,293

aiming to leverage the strengths of both methods and potentially achieve superior generalization in GPHH. It294

Yifan Yang et al.: Preprint submitted to Elsevier Page 12 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

sequentially combines the mb-rand strategy and the rt strategy. Specifically, given a total of 𝑔𝑚𝑎𝑥 generations, from 295

generation 0 to generation ⌈

𝑔𝑚𝑎𝑥
2 ⌉−1, the mb-rand strategy is adopted. Subsequently, from generation ⌈

𝑔𝑚𝑎𝑥
2 ⌉ onward, 296

the rt strategy is used. The pseudo-code of this hybrid strategy, denoted as mb+rt, is shown in Algorithm 5. Different 297

from the strategies introduced above, the mb+rt strategy uses two separate training sets, i.e.,  𝑓
𝑡𝑟𝑎𝑖𝑛 for the mb+rt 298

strategy and  𝑙
𝑡𝑟𝑎𝑖𝑛 for the rt strategy, with  𝑓

𝑡𝑟𝑎𝑖𝑛 ∩  𝑙
𝑡𝑟𝑎𝑖𝑛 = ∅.

Algorithm 5: The mini-batch combined with rotation strategy
Input: scenario 𝑆, training set size of the mb-rand strategy 𝑛(𝑚𝑏)𝑎 , batch size 𝑛, number of generations 𝑔𝑚𝑎𝑥
Output:  = [(0),(1),⋯ ,(𝑔𝑚𝑎𝑥−1)]

1 training set size of the rt strategy 𝑛(𝑟𝑡)𝑎 = 𝑛 × (𝑔𝑚𝑎𝑥 − ⌈

𝑔𝑚𝑎𝑥
2 ⌉)

2 generate the first half training set  𝑓
𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑖}

𝑛(𝑚𝑏)𝑎
𝑖=1 ∼ 𝑆

3 generate the last half training set  𝑙
𝑡𝑟𝑎𝑖𝑛 = {𝜏𝑗}

𝑛(𝑟𝑡)𝑎
𝑗=1 ∼ 𝑆

4 𝑔 ← 0; ← []
5 while 𝑔 < 𝑔𝑚𝑎𝑥 do
6 if 𝑔 ≤ ⌈

𝑔𝑚𝑎𝑥
2 ⌉ then

7 (𝑔) = {𝜏𝑖 ∈  𝑓
𝑡𝑟𝑎𝑖𝑛 ∣ 𝑖 = Uniform(1, 𝑛(𝑚𝑏)𝑎 , 𝑛)}

8 else
9 𝑔′ = 𝑔 − ⌈

𝑔𝑚𝑎𝑥
2 ⌉

10 (𝑔) = {𝜏𝑗 ∈  𝑙
𝑡𝑟𝑎𝑖𝑛 ∣ 𝑛 × 𝑔′ < 𝑗 ≤ 𝑛 × (𝑔′ + 1)}

11 end
12  ←  ∪ (𝑔)

13 𝑔 ← 𝑔 + 1
14 end

299(6) Rotation combined with mini-batch (rt+mb) 300

This is another hybrid strategy denoted as rt+mb proposed by us, aiming to use different orders to combine the two 301

methods as a comparison of the mb+rt strategy. From generation 0 to generation ⌈

𝑔𝑚𝑎𝑥
2 ⌉ − 1, the rt strategy is used. 302

From generation ⌈

𝑔𝑚𝑎𝑥
2 ⌉ onward, the mb-rand strategy is adopted. We omit the pseudo-code for this hybrid strategy 303

since it is similar to Algorithm 5 except that rt and mb-rand strategies are used with a different order. 304

5. Experimental Design 305

This section introduces the detailed settings of the experiment, including the simulation environment configuration 306

in Section 5.1, specific parameter settings in Section 5.2, and employed performance metrics in Section 5.3. 307

5.1. Simulation Configuration 308

A simulated cloud environment1 is used to measure the evolved heuristics (i.e., VMSRs). The simulation 309

environment includes several key components listed below. 310

VM Set: According to Amazon EC22, the cloud environment supports 6 different VM types (i.e, 𝑛 = 6) with their 311

respective configurations summarized in Table 4. The maximum number of VM instances of each type is unlimited. 312

Workflow Set: Consistent with many previous studies [8, 17, 38], this article uses four workflow patterns (shown 313

in Fig. 1) with three sizes (a.k.a., small, medium, large), forming a total of 4 × 3 = 12 different workflow types (i.e, 314

𝑛 = 12). Table 5 presents the information of each workflow type. 315

Problem Instance: Referring to the common setting [36, 40], each training or test instance involves the processing of 316

30 workflows that are randomly sampled from the workflow set  of a specific problem scenario, i.e., 𝑚 = |𝕎| = 30. 317

Problem Scenario: Table 6 outlines four distinct problem scenarios that are frequently used in the workflow 318

scheduling domain [17, 38], covering mixed workflow types. For the VM set  , all scenarios use the same six VM 319

1https://github.com/YifanYang1995/Simulator-Dynamic-Workflow-Scheduling-in-Cloud-Computing.git
2https://aws.amazon.com/ec2/pricing/on-demand/

Yifan Yang et al.: Preprint submitted to Elsevier Page 13 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 4
Configurations of 6 VM types based on Amazon EC2.

Instance Name vCPU Memory On-Demand hourly rate

m5.large 2 8 GiB $0.096
m5.xlarge 4 16 GiB $0.192
m5.2xlarge 8 32 GiB $0.384
m5.4xlarge 16 64 GiB $0.768
m5.8xlarge 32 128 GiB $1.536
m5.12xlarge 48 192 GiB $2.304

Table 5
Information of different workflow types.

Index Type name
Number
of tasks

Number
of edges

Average task
execution time

1 CyberShake_30 30 52 405.62 s
2 Inspiral_30 30 35 3529.10 s
3 Montage_25 25 45 145.76 s
4 SIPHT_30 29 33 3060.12 s
5 CyberShake_50 50 88 487.86 s
6 Inspiral_50 50 60 3763.82 s
7 Montage_50 50 106 162.76 s
8 SIPHT_60 58 66 3219.01 s
9 CyberShake_100 100 180 514.52 s
10 Inspiral_100 100 119 3363.83 s
11 Montage_100 100 233 172.69 s
12 SIPHT_100 97 109 2866.76 s

Table 6
Components of the workflow set in each problem scenario. (* corresponds to the index of the workflow type in Table 5.)

Scenario Scenario Name * 𝑛 𝑛

𝑆0 mix_all 1-12 12 6
𝑆1 mix_small 1-4 4 6
𝑆2 mix_medium 5-8 4 6
𝑆3 mix_large 9-12 4 6

types listed in Table 4. In scenario mix_all (𝑆0), all 12 workflow types in Table 5 are considered; In scenario mix_small320

(𝑆1), 4 workflow types with a number of tasks around 30 are considered; In scenario mix_medium (𝑆2),4 workflow321

types are considered, each with approximately 50 tasks; In scenario mix_large (𝑆3), 4 workflow types with a number322

of tasks around 100 are considered. Fig. 8 illustrates the distinctions between four problem scenarios in terms of323

the total workload of each problem instance. In each scenario, we randomly generate 10,000 problem instances, and324

then calculate the total workload of each problem instance. We can observe that the total workload distribution of325

Yifan Yang et al.: Preprint submitted to Elsevier Page 14 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 7
Configurations of ⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩ for six strategies (e.g., ⟨mb-lap, 10⟩ stands for GPHH that uses the mini-batch with overlapping
sampling strategy, and the size of the training set is 10. ⟨rt+mb, 20⟩ represents GPHH using the hybrid strategy, where
the first 50 generations use ⟨rt,∞⟩ and the subsequent 50 generations follow ⟨mb-rand, 20⟩.)

𝑛𝑎𝑚𝑒 𝑛𝑎 computational cost

rt ∞

𝑛 × 𝑔𝑚𝑎𝑥 × 𝑝𝑠 = 310, 272

mb-rand {10, 20, 30, 40}
mb-non {15, 30, 45, 60}
mb-lap {5, 10, 15, 20}

𝑛𝑎𝑚𝑒 𝑛𝑎(𝑔 ≤ 50) 𝑛𝑎(𝑔 > 50)

mb+rt {10, 20, 30, 40} ∞
rt+mb ∞ {10, 20, 30, 40}

problem instances in all problem scenarios approximately follows a Gaussian distribution. This is consistent with 326

the practical findings that the job execution time on high-performance computing systems often obeys a Gaussian 327

distribution [2, 36].

mix_all mix_small mix_medium mix_large
Four Problem Scenarios

500

1000

1500

2000

To
ta

l W
or

kf
lo

ad
 in

 A
 P

ro
bl

em
 In

st
an

ce
 (h

)

Figure 8: Violin plot of the total workload of a problem instance under four problem scenarios over 10,000 problem
instances.

328

Training Set: Only problem scenario mix_all (𝑆0) is employed to build the training set in our experiments. The 329

choice of 𝑆0 is because its workflow set contains all workflow types that occur in the other scenarios 𝑆1, 𝑆2, and 330

𝑆3. Additionally, 𝑆0 offers a comprehensive representation of the diverse workflow types encountered in real-world 331

applications. The varying settings of the training set size 𝑛𝑎 for six strategies are listed in Table 7. The corresponding 332

experiments are labeled as ⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩, referring to the strategy name and the training set size. All experiments have 333

a similar computational cost measured in terms of the total number of independent simulations performed, i.e., 334

3 × 101 × 1024 = 310272. 335

Test Set: All scenarios listed in Table 6 are employed to construct multiple test sets for assessing the generalization 336

performance of the trained heuristics. The size of each test set is set to 𝑛𝑒 = 50, i.e., 50 test instances are randomly 337

sampled from the corresponding problem scenario. 338

5.2. Other Settings 339

Request Generation: Our experiments follow parameter settings widely adopted in previous studies [17, 39] in 340

the DWS field. Particularly, workflows arrive at a cloud data center over time following a Poisson distribution with 341

𝜆 = 0.01 [25]. The penalty coefficient in Eq. (3) is set to the unit price of the most expensive VM in Table 4, i.e., 342

Yifan Yang et al.: Preprint submitted to Elsevier Page 15 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

𝛿 = $2.304∕ℎ. In addition, the deadline 𝐷𝐿𝑖 of each workflow is set to 1∕4 of its makespan on unit-speed VMs,343

following [17, 39].344

GPHHS: The parameters of GPHHS in this study adhere to the default values recommended in [22, 38]. The345

population size is 𝑝𝑠 = 1024, the number of generations is 𝑔𝑚𝑎𝑥 =101, the number of elites is 10, and the tournament346

size is 7. The crossover, mutation, and reproduction rates are 0.80, 0.15, and 0.05, respectively. In addition, the initial347

depth of GP trees ranges from 2 to 6, and the maximum depth is limited to 8 during the evolutionary process [46].348

5.3. Performance Metrics349

Three important metrics are used to analyze all experiment results. Below we briefly introduce and justify the use350

of each metric.351

• Test performance352

Equation (13) is used to measure how well the learned heuristic performs on a test set that is different from the
training set. The performance of a specific heuristic ℎ on a specific test set  (𝑖)

𝑡𝑒𝑠𝑡 is evaluated by the average total cost
achieved by ℎ across 50 test instances, formulated by

𝑃𝑒𝑟𝑓 (ℎ| (𝑖)
𝑡𝑒𝑠𝑡) =

1
50

50
∑

𝑗=1
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡(ℎ|𝜏𝑗 ∈  (𝑖)

𝑡𝑒𝑠𝑡) (13)

where  (𝑖)
𝑡𝑒𝑠𝑡 is the test set of scenario 𝑆𝑖. The lower the value of 𝑃𝑒𝑟𝑓 (ℎ), the better the test performance of ℎ. Moreover,353

a Wilcoxon signed-rank test with a significance level of 0.05 is performed to compare the test performance across these354

strategies.355

• Generalization ability356

The generalization ability, denoted as𝐺𝑒𝑛𝑒𝑟𝑎𝑙, is a scalar that measures the average test performance of a heuristicℎ
trained in scenario𝑆0 across multiple scenarios (i.e.,𝑆0, 𝑆1, 𝑆2 and𝑆3). The Friedman test in terms of test performance
𝑃𝑒𝑟𝑓 (ℎ|⋅) is used to calculate the generalization of GPHH, calculated by

𝐺𝑒𝑛𝑒𝑟𝑎𝑙(ℎ) = 1
4

4
∑

𝑖=1
𝑟𝑎𝑛𝑘(𝑖) (14)

where 𝑟𝑎𝑛𝑘(𝑖) is the ranking of 𝑃𝑒𝑟𝑓 (ℎ| (𝑖)
𝑡𝑒𝑠𝑡) among all competing heuristics. Specifically, a smaller value of357

𝐺𝑒𝑛𝑒𝑟𝑎𝑙(ℎ) indicates better generalization performance.358

• Population diversity359

This metric is used to quantify the diversity of GP evolved heuristics within a single GP population. Existing studies360

often use the phenotypic characterization (PC) to measure the population diversity [15, 37, 45].361

A VM selection decision situation refers to a specific time or event during the scheduling process where a decision362

needs to be made to select a VM instance from candidate VMs. Following [37], we randomly select 40 VM selection363

decision situations to obtain the PC vector of each heuristic, denoted by 𝑃𝐶(ℎ𝑖) = (𝑥(𝑖)1 , 𝑥(𝑖)2 ,⋯ , 𝑥(𝑖)40)
𝑇 . In particular,364

𝑥(𝑖) is the corresponding rank of the highest-ranked VM instance by ℎ𝑖 on the reference rule ℎ𝑟𝑒𝑓 . Table 8 gives an365

example of how to obtain the PC vectors of heuristic ℎ1 and ℎ2 in 3 decision situations.366

Given the PC vectors of any two heuristics ℎ𝑖 and ℎ𝑗 , we can calculate their phenotypic distance by the Hamming
distance [10]:

𝑑(𝑖,𝑗) =
40
∑

𝑘=1
𝜀𝑘, where 𝜀𝑘 =

{

0, if 𝑥(𝑖)𝑘 = 𝑥(𝑗)𝑘
1, otherwise (15)

For example, the phenotypic distance of ℎ1 and ℎ2 in Table 8 is 2. After obtaining the PC vectors of all heuris-
tics/individuals in a population  , we define population diversity as the averaged phenotypic distance between any two
individuals, calculated by

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦() = 2
||(|| + 1)

∑

ℎ𝑖,ℎ𝑗∈
𝑑(𝑖,𝑗), where 𝑖 < 𝑗 (16)

Particularly, a large value indicates high population diversity.367

Yifan Yang et al.: Preprint submitted to Elsevier Page 16 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 8
Example of obtaining the PC vector of two heuristics. (The PC vectors of two heuristics upon 3 decision situations are
𝑃𝐶(ℎ1) = (2, 2, 2)𝑇 and 𝑃𝐶(ℎ2) = (3, 2, 1)𝑇 , respectively.)

Candidates reference rule ℎ𝑟𝑒𝑓 ℎ1 𝑃𝐶(ℎ1) ℎ2 𝑃𝐶(ℎ2)
𝑉1 2 1○

2
2

3𝑉2 1 2 3
𝑉3 3 3 1○
𝑉1 1 2

2

2

2
𝑉2 2 1○ 1○
𝑉3 4 4 3
𝑉4 3 3 4
𝑉1 1 2

2
1○

1𝑉2 3 3 2
𝑉3 2 1○ 3

6. Results and Analysis 368

In this section, we empirically investigate three components: mini-batch strategies, hybrid strategies, and scalability 369

on large-scale problem instances. For each component, we present the research question, experiments, results, and 370

observations. 371

6.1. Mini-batch Strategies 372

• Question: Can mini-batch strategies outperform rotation in terms of generalization performance? 373

• Experiments: We compare the generalization performance of heuristics generated by GPHH using one rotation 374

and three mini-batch strategies defined in Section 4.4: rt [38], mb-rand [14, 29], mb-non [26], and mb-lap. We analyze 375

the performance of different mini-batch strategies across varying training set sizes 𝑛𝑎, as shown in Table 7. In addition, 376

the batch size is 𝑛 = 3 according to the common practice [41]. Particularly, ⟨rt,∞⟩ is treated as a baseline with the 377

same computational cost as the mini-batch-related experiments. 378

• Results: Table 9 reports the test performance (i.e., mean and standard deviation of the total cost) of rt, mb-rand, 379

mb-non and mb-lap on four problem scenarios across 30 independent runs. Notably, all these experiments consume 380

the same number of simulations during one run, approximately requiring 18 hours on 15-CPU. 381

It can be observed that ⟨mb-rand, 20⟩ is the best configuration regarding the generalization ability, representing 382

that 3 training instances are randomly sampled from a training set of size 20 in each generation for fitness evaluation. 383

Although ⟨mb-rand, 20⟩ is not significantly better than ⟨rt,∞⟩ in terms of test performance across four problem 384

scenarios, it shows improvements regarding the test performance with a much smaller training set than that of ⟨rt,∞⟩. 385

This is valuable for solving practical optimization problems where data collection (i.e., training instances) is expensive 386

or difficult. 387

Furthermore, in mini-batch-related experiments, we can observe that the size of the training set is not linearly 388

related to the generalization performance of the GPHH algorithm. How the sampling is conducted appears to be more 389

crucial, such as random sampling, with or without overlapping. 390

Upon comparing experiments of three mini-batch strategies, it is evident that mini-batch with random sampling 391

outperforms the other two variants. Particularly, the mb-lap strategy achieves the worst test performance and 392

generalization. For mb-lap, there exists significant overlap between adjacent subsets, i.e., |(𝑖) ∩ (𝑖+1)
| = 𝑛 − 1. 393

For mb-non, it prohibits overlapping between adjacent subsets, i.e., (𝑖) ∩ (𝑖+1) = ∅. As for the mb-rand strategy, it 394

can be viewed as an intermediary strategy since 0 ≤ |(𝑖)∩(𝑖+1)
| ≤ 𝑛. This suggests a more balanced way to explore 395

and exploit training instances, which might be the reason why it is better than the mb-non and mb-lap strategies. 396

• Observations: Under the same computational cost, the mini-batch with random sampling strategy can yield 397

better generalization of GPHH compared with the rotation strategy, resulting in moderate improvement in the test 398

performance. 399

Yifan Yang et al.: Preprint submitted to Elsevier Page 17 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 9
The mean (standard deviation) test performance of all experiments on four problem scenarios with 𝑚 = 30 workflows. ((+),
(≈) or (−) indicates that the matching result is significantly better, equivalent or worse to ⟨rt,∞⟩.)

⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩ mix_all mix_small mix_medium mix_large 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 +∕ ≈ ∕−

⟨rt,∞⟩ 66.39(3.73) 37.06(3.69) 62.42(4.09) 97.32(5.61) 3.5 —

⟨mb-rand, 10⟩ 67.96(3.56)(≈) 38.77(3.82)(−) 64.13(3.81)(≈) 99.91(6.73)(≈) 11.75 0/3/1

⟨mb-rand, 20⟩ 65.93(4.57)(≈) 36.45(4.16)(≈) 61.60(4.79)(≈) 96.95(4.91)(≈) 1.25 0/4/0

⟨mb-rand, 30⟩ 67.32(4.00)(≈) 37.56(3.45)(≈) 63.00(4.30)(≈) 98.11(4.92)(≈) 5.5 0/4/0

⟨mb-rand, 40⟩ 66.37(3.76)(≈) 37.28(4.11)(≈) 62.21(4.00)(≈) 97.30(4.24)(≈) 3 0/4/0

⟨mb-non, 15⟩ 67.88(4.21)(≈) 37.82(4.45)(≈) 63.11(4.83)(≈) 99.36(5.24)(≈) 8.75 0/4/0

⟨mb-non, 30⟩ 66.90(3.84)(≈) 37.87(3.31)(≈) 62.78(3.98)(≈) 98.27(8.60)(≈) 6 0/4/0

⟨mb-non, 45⟩ 67.50(3.60)(−) 37.97(3.84)(−) 63.18(3.81)(≈) 98.69(5.34)(≈) 8.75 0/2/2

⟨mb-non, 60⟩ 66.21(4.23)(≈) 37.59(4.26)(≈) 62.23(5.92)(≈) 96.75(4.93)(≈) 3 0/4/0

⟨mb-lap, 5⟩ 71.26(4.39)(−) 39.80(3.69)(−) 66.21(4.85)(−) 104.34(5.36)(−) 13 0/0/4

⟨mb-lap, 10⟩ 67.44(4.07)(≈) 37.91(4.67)(≈) 63.06(4.51)(≈) 99.63(6.73)(≈) 8.25 0/4/0

⟨mb-lap, 15⟩ 67.70(4.56)(≈) 38.60(4.84)(≈) 63.53(4.54)(≈) 100.10(10.01)(≈) 11 0/4/0

⟨mb-lap, 20⟩ 67.58(3.77)(≈) 37.27(4.20)(≈) 63.33(4.60)(≈) 98.46(4.57)(≈) 7.25 0/4/0

Table 10
The mean (standard deviation) test performance of all experiments on four problem scenarios with 𝑚 = 30 workflows. ((+),
(≈) or (−) indicates that the matching result is significantly better, equivalent or worse to ⟨rt,∞⟩ and ⟨mb-rand, 20⟩.)

⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩ mix_all mix_small mix_medium mix_large 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 +∕ ≈ ∕−

⟨rt,∞⟩ 66.39(3.73) 37.06(3.69) 62.42(4.09) 97.32(5.61) 8.75 —

⟨mb-rand, 20⟩ 65.93(4.57)(≈) 36.45(4.16)(≈) 61.60(4.79)(≈) 96.95(4.91)(≈) 5.5 0/4/0

⟨mb+rt, 10⟩ 66.19(3.86)(≈)(≈) 37.49(4.23)(≈)(−) 62.17(4.47)(≈)(≈) 96.58(3.77)(≈)(≈) 8.5 0/7/1

⟨mb+rt, 20⟩ 64.31(4.77)(+)(+) 35.77(4.42)(≈)(+) 60.31(4.99)(+)(+) 94.22(5.74)(+)(+) 1 7/1/0

⟨mb+rt, 30⟩ 65.73(3.77)(≈)(≈) 37.44(4.40)(≈)(≈) 61.56(4.13)(≈)(≈) 95.95(4.79)(≈)(≈) 5.25 0/8/0

⟨mb+rt, 40⟩ 64.99(3.62)(+)(≈) 36.01(4.03)(≈)(≈) 60.48(4.02)(+)(≈) 95.86(4.23)(+)(≈) 2.25 3/5/0

⟨rt+mb, 10⟩ 66.29(4.21)(≈)(≈) 36.96(3.69)(≈)(≈) 61.96(4.47)(≈)(≈) 96.66(5.29)(≈)(≈) 8.75 0/8/0

⟨rt+mb, 20⟩ 65.76(4.25)(≈)(≈) 37.07(4.09)(≈)(≈) 61.58(4.59)(≈)(≈) 95.88(4.72)(≈)(≈) 5.25 0/8/0

⟨rt+mb, 30⟩ 66.25(4.07)(≈)(≈) 37.13(3.95)(≈)(≈) 61.90(4.53)(≈)(≈) 96.56(4.47)(≈)(≈) 6.75 0/8/0

⟨rt+mb, 40⟩ 65.34(4.49)(≈)(≈) 36.51(4.27)(≈)(≈) 61.31(4.86)(≈)(≈) 95.37(5.02)(≈)(≈) 3 0/8/0

6.2. Hybrid Strategies400

• Question: Can hybrid strategies further enhance the generalization ability of GPHH?401

• Experiments: We assess the performance of two hybrid strategies, mb+rt and rt+mb, under the same computation402

cost as Section 6.1. Particularly, mb+rt indicates half mb-rand followed by half rt, and rt+mb indicates half rt followed403

by half mb-rand. As shown in Table 7, sensitivity analysis regarding the training set size is performed for both hybrid404

strategies, where 𝑛(𝑚𝑏)𝑎 denote the training set size of the mb-rand strategy.405

• Results: Table 10 records the mean (standard deviation) of test performance of two hybrid strategies mb+rt and406

rt+mb on four problem scenarios across 30 independent runs. Particularly, ⟨rt,∞⟩ and ⟨mb-rand, 20⟩ are treated as407

baselines. Among them, the configuration with the best generalization ability is ⟨mb+rt, 20⟩.408

In terms of test performance, ⟨mb+rt, 20⟩ and ⟨mb+rt, 40⟩ significantly outperform ⟨rt,∞⟩ across three problem409

scenarios, i.e., mix_all, mix_medium and mix_large. Moreover, ⟨mb+rt, 20⟩ is significantly better than ⟨mb-rand, 20⟩410

Yifan Yang et al.: Preprint submitted to Elsevier Page 18 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 11
The mean (standard deviation) test performance of experiments on four problem scenarios with 𝑚 = 50 workflows. ((+),
(≈) or (−) indicates that the matching result is significantly better, equivalent or worse to ⟨rt,∞⟩ and ⟨mb-rand, 20⟩.)

⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩ mix_all mix_small mix_medium mix_large 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 +∕ ≈ ∕−

⟨rt,∞⟩ 118.27(12.55) 66.93(9.39) 112.14(12.74) 184.63(37.13) 6 —

⟨mb-rand, 20⟩ 114.40(13.27)(≈) 64.23(9.46)(≈) 108.21(12.96)(≈) 173.01(17.63)(≈) 3 0/4/0

⟨mb+rt, 20⟩ 111.13(12.05)(+)(+) 62.71(9.31)(+)(+) 105.30(11.91)(+)(+) 169.03(15.52)(+)(+) 1.5 8/0/0

⟨mb+rt, 40⟩ 110.98(10.67)(+)(≈) 62.87(8.81)(+)(≈) 104.24(10.81)(+)(≈) 169.30(14.65)(+)(≈) 1.5 4/4/0

⟨rt+mb, 20⟩ 116.31(12.62)(≈)(≈) 65.88(8.85)(≈)(≈) 109.94(12.26)(≈)(≈) 175.77(17.84)(≈)(≈) 5 0/8/0

⟨rt+mb, 40⟩ 114.74(13.05)(≈)(≈) 64.85(9.59)(≈)(≈) 108.34(12.76)(≈)(≈) 174.14(18.30)(≈)(≈) 4 0/8/0

Table 12
The mean (standard deviation) test performance of experiments on four problem scenarios with 𝑚 = 70 workflows. ((+),
(≈) or (−) indicates that the matching result is significantly better, equivalent or worse to ⟨rt,∞⟩ and ⟨mb-rand, 20⟩.)

⟨𝑛𝑎𝑚𝑒, 𝑛𝑎⟩ mix_all mix_small mix_medium mix_large 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 +∕ ≈ ∕−

⟨rt,∞⟩ 153.04(18.62) 87.6(11.74) 149.39(20.29) 262.00(214.64) 6 —

⟨mb-rand, 20⟩ 146.99(13.30)(≈) 84.16(11.72)(≈) 142.99(14.71)(≈) 218.06(14.64)(≈) 3 0/4/0

⟨mb+rt, 20⟩ 143.75(12.69)(+)(+) 82.97(12.19)(≈)(≈) 140.03(13.64)(+)(≈) 213.15(15.16)(+)(+) 1 5/3/0

⟨mb+rt, 40⟩ 144.81(11.63)(+)(≈) 83.89(11.65)(≈)(≈) 140.42(13.87)(+)(≈) 216.03(12.45)(≈)(≈) 2 2/6/0

⟨rt+mb, 20⟩ 148.34(11.56)(≈)(≈) 86.21(10.23)(≈)(≈) 144.26(12.53)(≈)(≈) 218.56(14.31)(≈)(≈) 4.25 0/8/0

⟨rt+mb, 40⟩ 149.45(17.95)(≈)(≈) 85.82(11.85)(≈)(≈) 144.77(17.42)(≈)(≈) 222.52(31.92)(≈)(≈) 4.75 0/8/0

in all four problem scenarios. We further calculate the averaged improvement ratio of test performance across four 411

scenarios of ⟨mb-rand, 20⟩ and ⟨mb+rt, 20⟩ relative to ⟨rt,∞⟩. The values are 1.01% and 3.29% respectively, indicating 412

that the hybrid algorithm further improves the generalization ability of GPHH using compared with the mini-batch with 413

random sampling. 414

Overall, employing a hybrid strategy – whether starting with rotation or mini-batch strategies – to sample the 415

training set yields superior test performance compared with only using rotation. Notably, in several cases, it yields 416

significantly improved results. These highlight the advantages of using the hybrid strategy, including enhanced 417

generalization capability and reduced sensitivity to parameter settings. 418

• Observations: The combined use of the rotation and mini-batch strategies in GPHH holds a high potential to 419

enhance the test performance (i.e., generalization performance) of GPHH, compared with using the rotation strategy 420

alone. 421

6.3. Scalability on Large-scale Problem Instances 422

• Question: Can the heuristics generated by mini-batch and hybrid strategies be effective for larger-scale problem 423

instances? 424

• Experiments: We assess the test performance and generalization ability of heuristics trained on small-scale 425

instances (i.e.,𝑚 = 30workflows) directly on larger-scale scenarios. Specifically, the number of workflows contained in 426

a problem instance 𝑚 is increased to 50 and 70 workflows for testing in four problem scenarios, i.e., mix_all, mix_small, 427

mix_medium and mix_large. 428

• Results: Table 11 (𝑚 = 50) and Table 12 (𝑚 = 70) show the mean and standard deviation of test performance 429

of six configurations in four scenarios. Two configurations serve as baselines: ⟨rt,∞⟩ and ⟨mb-rand, 20⟩. In addition, 430

four well-performing configurations of the hybrid strategy are considered: ⟨mb+rt, 20⟩, ⟨mb+rt, 40⟩, ⟨rt+mb, 20⟩, and 431

⟨rt+mb, 40⟩. 432

Yifan Yang et al.: Preprint submitted to Elsevier Page 19 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

Table 11 shows that all configurations of the hybrid strategy perform better than ⟨rt,∞⟩ in terms of generalization.433

Particularly, ⟨mb+rt, 20⟩ and ⟨mb+rt, 40⟩ demonstrate significantly superior test performance compared with ⟨rt,∞⟩434

and ⟨mb-rand, 20⟩ across all scenarios. Furthermore, the test performances of ⟨mb+rt, 20⟩ are 6.89% and 2.55% better435

than those of ⟨rt,∞⟩ and ⟨mb-rand, 20⟩, respectively.436

Table 12 shows that ⟨mb+rt, 20⟩ is significantly better than ⟨rt,∞⟩ in three scenarios (i.e., mix_all, mix_medium437

and mix_large), while ⟨mb+rt, 40⟩ significantly outperforms it in two (i.e., mix_all and mix_medium). In addition, while438

not significantly superior to ⟨mb-rand, 20⟩ in all scenarios, they still demonstrate commendable test performance based439

on the mean and standard deviation values. For example, in scenario mix_large, ⟨mb+rt, 20⟩ demonstrates both a lower440

total cost and a smaller standard deviation than that of ⟨mb-rand, 20⟩. This highlights the effectiveness of using the441

hybrid strategy in GPHH approaches.442

Under the same computational cost, the mb+rt strategy enables the evolved heuristics to have significantly better443

test performance in most high-workload problem scenarios than using the rotation strategy. Although not significantly444

outperforming mb-rand in many scenarios, mb+rt does improve test performance by about 2.73% in terms of the mean445

values.446

• Observations: Compared with the rotation strategy, heuristics trained using the mini-batch and hybrid strategies447

in small-scale scenarios exhibit superior generalization performance on large-scale scenarios.448

7. Further Analysis449

This section analyzes the impact of fitness evaluation criteria in Eq. (4) resulting from different sampling strategies450

on population diversity. Population diversity is crucial for maintaining the effectiveness of GPHH. This is because451

diverse populations facilitate the exploration of a wider heuristic space, leading to the discovery of more robust and452

adaptable heuristics.453

0 20 40 60 80 100
Generation

10

15

20

25

Po
pu

la
tio

n
D

iv
er

si
ty

rt,
mb-rand, 20
mb+rt, 20
rt+mb, 40

Figure 9: Curves of the population diversity in ⟨rt,∞⟩, ⟨mb-rand, 20⟩, ⟨mb+rt, 20⟩ and ⟨rt+mb, 40⟩.

According to the metric defined in Eq. (16), we perform the population diversity analysis on strategies ⟨rt,∞⟩,454

⟨mb-rand, 20⟩, ⟨mb+rt, 20⟩ and ⟨rt+mb, 40⟩. Fig. 9 presents the population diversity curves across the evolutionary455

process. Higher values indicate greater phenotypic distances between heuristics, implying higher population diversity.456

It can be observed that all instance sampling strategies maintain high population diversity in the early stage of evolution,457

with varying degrees of decline in the later stage. This pattern suggests that initial exploration efforts yield diverse458

heuristics, but as the evolutionary process progresses, convergence towards promising heuristics leads to a reduction459

in diversity.460

Compared to ⟨rt,∞⟩, we can see that curves of ⟨mb-rand, 20⟩, ⟨mb+rt, 20⟩ and ⟨rt+mb, 40⟩ strongly reduce461

the population diversity after 50 generations. Compared with ⟨mb-rand, 20⟩, two hybrid strategies slightly enhance462

population diversity in the last 20 generations. Consequently, the population diversity must be traded in a reasonable463

range to contribute to the effectiveness of the algorithm [9]. Furthermore, instance sampling not only has a464

profound impact on the generalization performance, but also plays a vital role in effectively producing high-quality465

heuristics/rules during the evolutionary process. We suggest using the hybrid strategy that provides a middle ground466

by maintaining some diversity while improving generalization compared to rotation and mini-batch strategies.467

Yifan Yang et al.: Preprint submitted to Elsevier Page 20 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

8. Discussion 468

In this study, we investigated the impact of various instance sampling strategies on the generalization ability of 469

GPHH for DWS problems. We compared the performance of one rotation strategy, three mini-batch strategies, and 470

two novel hybrid strategies across different problem scales and scenarios. 471

Our research findings provide the following recommendations for practitioners when applying instance sampling 472

strategies in GPHH: (1) Using the mini-batch with random sampling strategy improves the generalization ability of 473

GPHH; (2) Leverage Hybrid Strategies: Combining rotation and mini-batch strategies enhances GPHH’s generalization 474

performance significantly compared to using rotation alone; and (3) Heuristics trained on small-scale scenarios 475

using hybrid strategies perform consistently better than using rotation or mini-batch alone, especially regarding their 476

performance on large-scale scenarios. 477

Our study contributes to the existing literature by offering a systematic examination of instance sampling strategies 478

in the context of GPHH. While previous studies have used instance sampling strategies in an ad hoc way, our research 479

provides comprehensive experiments to verify their effectiveness. By rigorously evaluating the performance of different 480

strategies across various problem scales and scenarios, we contribute to advancing the understanding of GPHH 481

methodologies. 482

Despite the strengths of our study, several limitations should be acknowledged. While our proposed strategies have 483

demonstrated significant improvements in most scenarios, we acknowledge that achieving consistent results across all 484

scenarios can be challenging. In future work, we can leverage machine learning techniques, such as transfer learning, 485

to further enhance the generalization ability of GPHH. For example, we can fine-tune the GPHH model trained on 486

an existing scenario to improve its performance on any new scenarios. Furthermore, this study aims to improve 487

generalization under the given computational cost. While the trade-off between generalization and computational costs 488

is also an important consideration, it falls beyond the scope of this study. We will consider exploring this trade-off in our 489

future research endeavors. For example, we can dynamically adjust the number of generations and training instances 490

used for fitness evaluation during the evolutionary process based on changes in the generalization behavior of the 491

evolved heuristics. 492

Our research has significant implications for the design and implementation of GPHH algorithms. By highlighting 493

the importance of instance sampling strategies in enhancing generalization performance, we provide valuable insights 494

for practitioners seeking to optimize heuristic search algorithms for complex scheduling problems. 495

9. Conclusions 496

This study thoroughly investigated the impact of various instance sampling strategies, including one rotation 497

strategy, three mini-batch strategies and two novel hybrid strategies, on the generalization performance of GPHH. 498

We formally defined essential concepts such as scenario, problem instance, and workload. We further proposed the 499

corresponding training framework named GPHH with an instance sampling strategy (GPHSS). Guided by it, we 500

experimentally examined six instance sampling strategies on three problem scales in four scenarios. 501

This study marks the first systematic examination of the hybrid strategy that combines mini-batch with rotation in 502

the literature. Empirical experiments demonstrated using mini-batch strategies can enhance the generalization ability of 503

GPHH for DWS. In addition, the hybrid strategies can further provide high-quality heuristics in tackling complex DWS 504

problems, which enhance generalization ability and reduce sensitivity to parameter settings. Furthermore, the mini- 505

batch and hybrid strategies demonstrate strong abilities in effectively scaling to large-scale unseen problem instances. 506

Future research can explore adaptive mini-batch designs and investigate their applicability to other problem 507

domains. In addition, the idea derived from the use of prioritized replay in the deep Q-network variant [31] can also 508

be employed to enhance the performance of GPHH methods. By prioritizing certain training instances, GPHH can be 509

used to evolve heuristics that can effectively solve large-scale and complex problems. 510

References 511

[1] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained workflow scheduling algorithms for infrastructure as a service clouds. 512

Future Generation Computer Systems, 29(1):158–169, 2013. 513

[2] S. G. Ahmad, C. S. Liew, M. M. Rafique, E. U. Munir, and S. U. Khan. Data-intensive workflow optimization based on application task 514

graph partitioning in heterogeneous computing systems. In IEEE Fourth International Conference on Big Data and Cloud Computing, pages 515

129–136. IEEE, 2014. 516

Yifan Yang et al.: Preprint submitted to Elsevier Page 21 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

[3] V. Arabnejad, K. Bubendorfer, and B. Ng. Dynamic multi-workflow scheduling: a deadline and cost-aware approach for commercial clouds.517

Future Generation Computer Systems, 100:98–108, 2019.518

[4] S. A. Bello, L. O. Oyedele, O. O. Akinade, M. Bilal, J. M. D. Delgado, L. A. Akanbi, A. O. Ajayi, and H. A. Owolabi. Cloud computing in519

construction industry: Use cases, benefits and challenges. Automation in Construction, 122:103441, 2021.520

[5] A. Benlian, W. J. Kettinger, A. Sunyaev, T. J. Winkler, and G. Editors. The transformative value of cloud computing: a decoupling,521

platformization, and recombination theoretical framework. Journal of Management Information Systems, 35(3):719–739, 2018.522

[6] Y. Bi, B. Xue, and M. Zhang. Instance selection-based surrogate-assisted genetic programming for feature learning in image classification.523

IEEE Transactions on Cybernetics, 2021.524

[7] Y. Bi, B. Xue, and M. Zhang. Using a small number of training instances in genetic programming for face image classification. Information525

Sciences, 593:488–504, 2022.526

[8] W. Chen and E. Deelman. Workflowsim: a toolkit for simulating scientific workflows in distributed environments. In IEEE International527

Conference on E-science, pages 1–8. IEEE, 2012.528

[9] S. Y. Chong, P. Tino, and X. Yao. Relationship between generalization and diversity in coevolutionary learning. IEEE Transactions on529

Computational Intelligence and AI in Games, 1(3):214–232, 2009.530

[10] W. S. Du. Subtraction and division operations on intuitionistic fuzzy sets derived from the hamming distance. Information Sciences, 571:206–531

224, 2021.532

[11] K.-R. Escott, H. Ma, and G. Chen. Transfer learning assisted gphh for dynamic multi-workflow scheduling in cloud computing. In Australasian533

Joint Conference on Artificial Intelligence, pages 440–451. Springer, 2022.534

[12] K.-R. Escott, H. Ma, and G. Chen. Cooperative coevolutionary genetic programming hyper-heuristic for budget constrained dynamic multi-535

workflow scheduling in cloud computing. In Evolutionary Computation in Combinatorial Optimization: European Conference, EvoCOP536

2023, pages 146–161. Springer, 2023.537

[13] D. Farinati, I. Bakurov, and L. Vanneschi. A study of dynamic populations in geometric semantic genetic programming. Information Sciences,538

648:119513, 2023.539

[14] N. Gazagnadou, R. Gower, and J. Salmon. Optimal mini-batch and step sizes for saga. In International Conference on Machine Learning,540

pages 2142–2150. PMLR, 2019.541

[15] T. Hildebrandt and J. Branke. On using surrogates with genetic programming. Evolutionary Computation, 23(3):343–367, 2015.542

[16] T. Hildebrandt, J. Heger, and B. Scholz-Reiter. Towards improved dispatching rules for complex shop floor scenarios: a genetic programming543

approach. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 257–264, 2010.544

[17] V. Huang, C. Wang, H. Ma, G. Chen, and K. Christopher. Cost-aware dynamic multi-workflow scheduling in cloud data center using545

evolutionary reinforcement learning. In International Conference on Service-Oriented Computing, pages 449–464. Springer, 2022.546

[18] M. Hussain, L.-F. Wei, A. Rehman, F. Abbas, A. Hussain, and M. Ali. Deadline-constrained energy-aware workflow scheduling in547

geographically distributed cloud data centers. Future Generation Computer Systems, 132:211–222, 2022.548

[19] G. Ismayilov and H. R. Topcuoglu. Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud549

computing. Future Generation Computer Systems, 102:307–322, 2020.550

[20] A. Jajoo, Y. C. Hu, X. Lin, and N. Deng. A case for task sampling based learning for cluster job scheduling. IEEE Transactions on Cloud551

Computing, 2022.552

[21] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for deep learning: Generalization gap and553

sharp minima. arXiv preprint arXiv:1609.04836, 2016.554

[22] W. B. Langdon and R. Poli. Foundations of genetic programming. Springer Science & Business Media, 2013.555

[23] Z. Li, V. Chang, H. Hu, H. Hu, C. Li, and J. Ge. Real-time and dynamic fault-tolerant scheduling for scientific workflows in clouds. Information556

Sciences, 568:13–39, 2021.557

[24] B. M. Lima, N. Sachetti, A. Berndt, C. Meinhardt, and J. T. Carvalho. Adaptive batch size cgp: Improving accuracy and runtime for cgp logic558

optimization flow. In Genetic Programming: European Conference, EuroGP 2023, pages 149–164. Springer, 2023.559

[25] J. Liu, J. Ren, W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, and N. Najjari. Online multi-workflow scheduling under uncertain task execution560

time in iaas clouds. IEEE Transactions on Cloud Computing, 9(3):1180–1194, 2019.561

[26] Y. Liu, Y. Mei, M. Zhang, and Z. Zhang. Automated heuristic design using genetic programming hyper-heuristic for uncertain capacitated arc562

routing problem. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 290–297, 2017.563

[27] D. Masters and C. Luschi. Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612, 2018.564

[28] Y. Mei, S. Nguyen, B. Xue, and M. Zhang. An efficient feature selection algorithm for evolving job shop scheduling rules with genetic565

programming. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(5):339–353, 2017.566

[29] S. Nguyen, D. Thiruvady, M. Zhang, and D. Alahakoon. Automated design of multipass heuristics for resource-constrained job scheduling567

with self-competitive genetic programming. IEEE Transactions on Cybernetics, 52(9):8603–8616, 2021.568

[30] S. Nguyen, M. Zhang, and K. C. Tan. Surrogate-assisted genetic programming with simplified models for automated design of dispatching569

rules. IEEE Transactions on Cybernetics, 47(9):2951–2965, 2016.570

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.571

[32] S. Wang, Y. Mei, and M. Zhang. A multi-objective genetic programming algorithm with 𝛼 dominance and archive for uncertain capacitated572

arc routing problem. IEEE Transactions on Evolutionary Computation, 2022.573

[33] X. Xia, H. Qiu, X. Xu, and Y. Zhang. Multi-objective workflow scheduling based on genetic algorithm in cloud environment. Information574

Sciences, 606:38–59, 2022.575

[34] J.-P. Xiao, X.-M. Hu, and W.-N. Chen. Dynamic cloud workflow scheduling with a heuristic-based encoding genetic algorithm. In International576

Conference on Neural Information Processing, pages 38–49. Springer, 2020.577

[35] Q.-z. Xiao, J. Zhong, L. Feng, L. Luo, and J. Lv. A cooperative coevolution hyper-heuristic framework for workflow scheduling problem.578

IEEE Transactions on Services Computing, 15(1):150–163, 2019.579

Yifan Yang et al.: Preprint submitted to Elsevier Page 22 of 23

Enhancing Generalization in Genetic Programming by Mini-batch Strategies

[36] Q.-z. Xiao, J. Zhong, L. Feng, L. Luo, and J. Lv. A cooperative coevolution hyper-heuristic framework for workflow scheduling problem. 580

IEEE Transactions on Services Computing, 15(1):150–163, 2022. 581

[37] M. Xu, Y. Mei, F. Zhang, and M. Zhang. A semantic genetic programming approach to evolving heuristics for multi-objective dynamic 582

scheduling. In Australasian Joint Conference on Artificial Intelligence, pages 403–415. Springer, 2023. 583

[38] M. Xu, Y. Mei, S. Zhu, B. Zhang, T. Xiang, F. Zhang, and M. Zhang. Genetic programming for dynamic workflow scheduling in fog computing. 584

IEEE Transactions on Services Computing, 2023. 585

[39] Y. Yang, G. Chen, H. Ma, S. Hartmann, and M. Zhang. Dual-tree genetic programming with adaptive mutation for dynamic workflow 586

scheduling in cloud computing. IEEE Transactions on Evolutionary Computation, pages 1–1, 2024. 587

[40] Y. Yang, G. Chen, H. Ma, and M. Zhang. Dual-tree genetic programming for deadline-constrained dynamic workflow scheduling in cloud. In 588

International Conference on Service-Oriented Computing, pages 433–448. Springer, 2022. 589

[41] Y. Yang, H. Ma, G. Chen, and S. Hartmann. A model-driven machine learning approach to dynamic multi-workflow scheduling. In Proceedings 590

of the International Conference on Conceptual Modeling, 2023. 591

[42] Z. Yang, C. Wang, Z. Zhang, and J. Li. Mini-batch algorithms with online step size. Knowledge-Based Systems, 165:228–240, 2019. 592

[43] C.-H. Youn, M. Chen, and P. Dazzi. Cloud broker and cloudlet for workflow scheduling. Springer Singapore, 2017. 593

[44] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi. Learning to dispatch for job shop scheduling via deep reinforcement learning. 594

Advances in neural information processing systems, 33:1621–1632, 2020. 595

[45] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang. Phenotype based surrogate-assisted multi-objective genetic programming with brood 596

recombination for dynamic flexible job shop scheduling. In IEEE Symposium Series on Computational Intelligence, pages 1218–1225. IEEE, 597

2022. 598

[46] F. Zhang, Y. Mei, S. Nguyen, M. Zhang, and K. C. Tan. Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible 599

job shop scheduling. IEEE Transactions on Evolutionary Computation, 25(4):651–665, 2021. 600

[47] L. Zhang, L. Zhou, and A. Salah. Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud computing 601

environments. Information Sciences, 531:31–46, 2020. 602

Yifan Yang et al.: Preprint submitted to Elsevier Page 23 of 23

