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Abstract. Dynamic workflow scheduling (DWS) aims to allocate abun-
dant cloud resources to process a large number of heterogeneous work-
flows in order to minimize total operation cost and the penalty for vio-
lating deadline constraints. Instead of using manually designed heuristics
that cannot work effectively across different problem instances, we de-
velop a new Genetic Programming Hyper-Heuristic (GPHH) algorithm
to automatically design scheduling heuristics for a newly formulated
deadline-constrained dynamic workflow scheduling in cloud (DCDWSC)
problem. Different from previous works, our GPHH algorithm can design
a pair of rules for Virtual Machine selection and task selection. A new
dual-tree representation is proposed to jointly evolve the rule pair, en-
abling the algorithm to effectively control the inter-dependencies of the
two rules. Experimental results show that our new algorithm can signif-
icantly outperform three baseline algorithms on a wide range of testing
scenarios. In addition, using GPHH to design the scheduling heuristic
with two rules is more effective than using one rule (e.g., the VM selec-
tion rule) alone for DCDWSC.

Keywords: Dynamic workflow scheduling · Genetic programming hyper-
heuristic · Cloud computing · Deadline constraint

1 Introduction

Many organizations are increasingly relying on cloud computing to process their
workflows due to abundant heterogeneous computing resources and secure data
storage in cloud [2]. For example, MetService in New Zealand uses multiple cloud
resources to process its workflows for daily weather forecasting. Each workflow
consists of a set of tasks with sophisticated inter-dependencies [13] and can
be provided to numerous customers [2] based on pre-determined Service Level
Agreements (SLAs). Effective methods are needed to help organisations to decide
proper cloud resources for processing workflows to minimize the total cloud
resource rental costs and SLA penalties [1, 17, 22]. In this paper, we use brokers
to refer the agents who provide workflows as services in cloud.
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For many brokers in cloud, workflow scheduling is a vital issue for them to
lease and allocate suitable cloud computing resources (i.e., Virtual Machines or
VMs) to execute a series of dynamically requested workflows in order to achieve
important objectives, such as to minimize the total makespan and cost [16]. Many
previous studies proposed various scheduling heuristics to tackle such workflow
scheduling problems on the fly. However, manual design of scheduling heuristics
demands for extensive human labor and domain expertise [7, 15, 21]. Further,
manually designed heuristics can quickly lose effectiveness due to the increasing
variety of cloud computing resources and workflow workloads. Furthermore, ex-
isting heuristics did not consider penalties resulted from violations of deadline
constraints defined by SLA.

Hyper-heuristic techniques can automatically design a wide variety of heuris-
tics and have been extensively utilized to solve diverse combinatorial optimiza-
tion problems in recent years [11, 14, 25]. Particularly, a few research works re-
cently developed Genetic Programming Hyper-Heuristic (GPHH) algorithms to
tackle dynamic workflow scheduling (DWS) problems successfully. In [5, 6, 22],
GPHH is explored to evolve a single rule/heuristic to select appropriate VM
instances to process each workflow task. However, due to the highly dynamic
nature of workflow execution in cloud, using VM selection rule alone is often
insufficient (see Subsection 3.1 and Fig. 1 for detail). Hence, [20] developed a co-
operative coevolution GP (CCGP) approach to evolve a pair of task prioritizing
rule and VM selection rule. Nevertheless, this method was designed to execute
a single workflow without explicitly controlling the inter-dependencies between
the two evolved rules. Effective methods are needed to cooperatively generate
two rules to schedule a sequence of workflows dynamically arriving the cloud.

The goal of this paper is to develop a new dual-tree GP (DTGP) algorithm
to jointly evolve VM selection rules (VMSRs) and task selection rules (TSRs) to
effectively solve the deadline-constrained dynamic workflow scheduling in cloud
(DCDWSC) problem. Three major contributions have been achieved:

1. We formally model the DCDWSC problem and demonstrate its practical
importance. Different from existing problems, the new problem model con-
sidered for the first time the possibility of reordering pending tasks in VM
queues to reduce the total cost involved in executing multiple heterogeneous
workflows.

2. We develop a DTGP algorithm that uses a new dual-tree representation to
effectively support the joint evolution of VMSRs and TSRs and explicitly
control their inter-dependencies. Multiple new terminal types (i.e., features
used for making scheduling decisions) have also been proposed to facilitate
the design of effective VMSRs and TSRs.

3. We conduct extensive experimental evaluation on diverse DCDWSC problem
scenarios with a variety of heterogeneous workflows to verify the effectiveness
of DTGP. DTGP is experimentally shown to significantly outperform several
existing approaches.
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2 Related Work

Workflow scheduling aims to allocate cloud resources to process all tasks of one or
multiple workflows [16]. All the previously studied workflow scheduling problems
are either static or dynamic.

Most of the static problems concern mainly about scheduling a single work-
flow [4, 15]. Dynamic resource provisioning is often neglected in the problem
formulation. In view of the highly dynamic cloud computing environment, the re-
search community is starting to pay more attention to the DWS problems [1,8,19]
that consider either dynamic workflow arriving time [1,19] or dynamic resource
provisioning [8] based on pre-determined workflow patterns. In fact, existing
DWS problems rarely handle multiple heterogeneous workflows simultaneously.
Although some studies [6, 9] considered several different workflows patterns, a
common assumption is to handle each workflow pattern one at a time. As far
as we know, no existing studies considered the general and realistic problem for
brokers to process a series of dynamically requested workflows with previously
unknown patterns.

Most of existing research works focused on VM selection [5,8]. In this paper,
we study the DWS problem with deadline constraints that aims to maximize the
total profit. On the one hand, it is challenging to decide the number and type
of VM instances to rent. To address this issue, we use GPHH to evolve a VM
selection rule to select VMs to process each task in order to balance the VM
rental fees and deadline penalties. On the other hand, it is critical to determine
suitable orders to process all tasks pending for execution on a VM instance.
Therefore, we further use GPHH to evolve a task selection rule to control the
processing order of pending tasks so as to reduce deadline violations and shorten
the workflow makespan. To the best of our knowledge, this is the first work to
jointly consider VM selection and task selection for DWS.

3 Problem Description

3.1 Problem Overview

We assume that workflow requests arrive at a cloud data center dynamically
over time. There are a fixed number of VM types available at the data center.
An unlimited number of instances can be rented with respect to each VM type.
Every workflow consists of a number of tasks and has a workflow pattern and
size (see Fig. 1), which are unknown before arrival. Any task can be allocated
to either an existing VM instance or any newly leased instance.

Fig. 1 illustrates how a scheduling heuristic is used to schedule the execution
of workflow tasks in the cloud. Different from several existing works [6, 20, 22],
the scheduling heuristic in this paper is composed of a VMSR and a TSR. They
are used to jointly support two interdependent scheduling decisions, which are
highlighted as VM selection and task selection in Fig. 1, respectively.

Whenever one or multiple workflows arrive at the cloud, all the ready tasks
within these workflows will be identified. For each ready task, the VMSR selects
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Fig. 1. The procedure of using a heuristic to schedule dynamic workflow execution.

from all candidate VM instances the instance with the highest-priority to process
it. We do not only consider existing leased VM instances but also VM instances
of any type that can be further leased for workflow execution. In other words,
when a task is assigned to a VM instance that was not leased previously, we will
lease the VM instance immediately. Upon allocating a task to a VM instance, if
the VM instance is idle and has no pending task in its VM Queue, it immediately
executes the allocated task; otherwise, the task is added into the instance’s VM
queue.

Whenever a VM instance completes its execution of one task, the TSR will
be activated to select a pending task with the highest priority in its VM queue
to be executed next. After a task is processed, some of its successor tasks in
the same workflow will become ready. They will be subsequently allocated to
either existing VM instances or newly leased VM instances. The above process
will be repeated until all tasks of all workflows are processed. Afterwards, the
VM rental fees in eq. (9) and the deadline violation penalties in eq. (11) will be
computed to quantify the performance of the workflow scheduling process.

3.2 Formulation

The broker has no access to the size and pattern of any workflow before its
arrival. The broker will also compensate its users if the execution of any workflow
violates its deadline constraint specified in the respective SLA.

We consider a collection of dynamically arriving workflows for the DWS
problem, denoted as W = {W1,W2, ...,Wm}. A workflow Wi is defined as:

Wi = (DAGi, ATi, NORi, DLi, RDLi) (1)

where DAGi capture the workflow pattern, ATi denotes the arriving time of
the workflow, NORi is the total number of unassigned tasks remaining in the
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workflow, and DLi denotes the deadline of the workflow. Additionally, RDLi is
the remaining time before the deadline is due, which is calculated by

RDLi = DLi − current time (2)

These workflows will be processed by a time varying set of VM instances,
denoted as V = {V1, V2, ..., Vn}. A VM instance Vk is defined as a tuple below:

Vk = (TY PEk, NIQk, T IQk, V MRk) (3)

where TY PEk = (CUk,MEMkPRICEk) denotes its VM type. CUk is the
compute unit (i.e., computation capacity), MEMK is the memory size, and
PRICEk is the hourly rental fee charged by cloud providers. NIQk refers to the
number of pending tasks in the VM Queue of Vk, TIQk is the total execution
time of all pending tasks in the queue, and VMRk is the remaining lease period
of Vk of its current lease.

Given the set of all tasks {ti1, ti2, ..., tiq} that belong to a workflow Wi, each
task tij = (NOCij , TSij).NOCij is the number of its successor tasks. TSij refers
to its size, i.e., the execution time of tij on a VM instance with the compute
unit CU = 1. Accordingly, the actual execution time of tij on Vk is

ET k
ij =

TSij

CUk
(4)

Furthermore, we can obtain the time RTij when the task tij is assigned to an
VM instance:

RTij = max
z∈pred(tij)

{FTz} (5)

where FTz refer to the finish time of its predecessors. Eq. (5) implies that tij
is assigned immediately to a VM instance when all its predecessor tasks are
completed. Meanwhile, the ready time of the entry task is equal to the arrival
time of its workflow, i.e., RTi1=ATi.

Let ST k
ij be the time that the VM instance Vk starts to execute tij . The

waiting time period WT k
ij of tij and the finish time FT k

ij of tij on Vk are defined
as:

WT k
ij = ST k

ij −RTij (6)

FT k
ij = STij + ET k

ij (7)

Through processing all workflows, we aim to minimize the total cost incurred
for workflow execution, which consists of both VM rental fees and workflow
deadline penalties, as formulated below

TotalCost =
∑

k∈LVMS

RentFeek +
∑
i∈W

Penaltyi (8)

where LVMS is the set of leased VM instances. W is the set of all workflows to
be executed within a given period of time. RentFeek denotes the rental fee of
the VM instance Vk, and Penaltyi denotes the deadline violation penalty of the
workflow Wi, as defined below.
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1. RentFeek: We use the prevailing hourly-based cost model supported by the
global cloud market [1, 7, 18]. The cost of renting any VM instance Vk is
calculated by

RentFeek = PRICEk ×

⌈
FTtklast

− STtkfirst

3600

⌉
(9)

where tkfirst and tklast are the first task and the last task executed on Vk. Thus,
the numerator in eq. (9) gives the total time period measured in seconds
between the start time of tkfirst and the finish time of tklast. The denominator
and the ceiling function in eq. (9) together convert this time period into the
total number of leased hours.

2. Penaltyi: We first define the deadline of a workflow, denoted as Deadlinei,
below:

Deadlinei = ATi + ξ ×MinMakespani (10)

where ATi represents the arrival time of the workflow Wi, and ξ is a relax-
ation coefficient [1]. MinMakespani refers to the theoretical shortest com-
pletion time of workflow Wi by executing all of its tasks on the fastest VM
instances without any delay. Whenever Deadlinei is violated due to delay
in executing workflow Wi, penalties will be incurred as determined below:

Penaltyi = δmax {0, ATi +Makespani −Deadlinei} (11)

where δ is a penalty coefficient [23]. The smaller the value of δ, the greater
the tolerance for violating the deadline.

4 Algorithm

To enable GPHH to generate effective rules for the DCDWSC problems, in this
paper we propose two distinct sets of terminals to be utilized to design VMSRs
and TSRs, respectively (see Subsection 4.1 for an introduction of all terminals
used in these rules). Note that these sets are different from terminals that are
used by existing works [6, 20, 24], which only focus on building VMSRs, since
we include the features related to deadline constraint of workflows. Specifically,
we propose multiple new terminals for VMSR and a new set of terminals for
building TSRs. These terminals enable us to develop a new DTGP algorithm to
simultaneously evolve VMSRs and TSRs for DCDWSC.

In line with Algorithm 1, details regarding the solution representation, ini-
tialization, fitness evaluation of DTGP are presented below.

4.1 Representation

In DTGP, both VMSR and TSR are represented as GP trees. Different from
[20], a pair of GP trees, one for VMSR and one for TSR, jointly form a single
individual in this paper. As illustrated in the left of Fig. 2, each GP tree is
a syntax tree with one root node and multiple leaf nodes. The intermediate
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Algorithm 1: DTGP Algorithm for DCDWSC

Input: Training instances, parameter settings
Output: The best scheduling rule consisting of a VMSR and a TSR
// Representation

1 Determine the terminal set and the function set
// Initialization

2 while N < PopSize do
3 Randomly initialize an individual
4 end
5 gen← 0
6 while gen < MaxGen do

// Fitness Evaluation

7 for ind in Pop do
8 fitness(ind)← 0
9 for i = 1 to EvalNumber do

10 fitness(ind)← fitness(ind) + objective(ind)
11 end
12 fitness(ind)← fitness(ind)/EvalNumber

13 end
// Evolution

14 Generate new population by genetic operators
15 gen← gen+ 1

16 end
17 Return the best individual/heuristic/rule

nodes, such as +,−,×,÷, are called the function nodes. Every leaf node must
be a terminal that extracts problem-dependent features from the DCDWSC
problem, such as TS, NIQ and ET in Table 1.

Following many existing works [6,12,20], we consider {+,−,×,÷,max,min}
as function nodes in the GP trees. We introduce new VMSR terminals as well
as a new terminal set particularly designed for TSR. Table 1 summarizes the
two terminal sets for building VMSRs and TSRs. Depending on the feature
types captured by each terminal, all terminals are divided into task-related,
VM-related, workflow-related, and problem-specific terminals (see Table 1).

This paper considers five commonly used terminals for VMSR, i.e., TS, ET ,
CU , PRICE and LFT [5,20,24]. Apart from that, we introduce three new VM-
related terminals, TIQ, VMR, and NIQ. They enable VMSRs to evaluate the
priority of processing any task on a VM instance based on the instance’s current
workload and remaining capacity. Two additional terminals, NOC and NOR,
are also introduced to provide workflow-related information to VSMRs. RDL
allows VSMRs to assign near-expire tasks to fast VM instances.

Among all terminals for designing TSRs, RWT is a time-varying terminal
whose value can only be determined in the task selection phase instead of the
VM selection phase. It enables a task with a long waiting time to have relatively
high priority in the VM Queue. We also use two VM-related terminals TIQ
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Table 1. The terminal set of VMSR and TSR.

VMSR TSR

Terminal Definition Terminal Definition

task-related
TS The size of a task ET The execution time of a task

ET The execution time of a task RWT
The relative waiting time of
a task in a VM queue

VM-related

CU The compute unit of a VM TIQ
Total execution time of
all tasks in a VM queue

PRICE
Price of renting a VM for
one hour

NIQ
Number of tasks in a VM
queue

TIQ
Total execution time of
all tasks in a VM queue

VMR
The remaining available
time for a VM

LFT
The latest finish time of a
task on a VM

NIQ
Number of tasks in a VM
queue

workflow-related
NOC

Number of successor tasks
(children) of a task

NOC
Number of successor tasks
(children) of a task

NOR
Number of remaining tasks
in a workflow

NOR
Number of remaining tasks
in a workflow

problem-specific RDL
Remaining deadline time of
a workflow

RDL
Remaining deadline time of
a workflow

and NIQ to capture the competition level among all tasks in the VM queue.
NOC is expected to give high priority to those tasks with many successor tasks.
NOR helps to shorten the completion time of those workflows with less pending
tasks. RDL is important for satisfying deadline constraints. The usefulness of
all the newly introduced terminals will be further analyzed experimentally in
Subsection 5.6.

Candidate
VMs TS NIQ ET Selected

VM

2 0 1 1

2 7 2 7

2 3 0.5 4.5

-

+

TS NIQ

ET

+

÷

1 WT

×

RDL ET

VM Selection Rule
(VMR)

Task Selection Rule
(TSR)

An individual

GP trees :

expressions :
Candidate

Tasks WT RDL ET Selected
Task

4 1.6 1 1.85

2 5 2.5 13

1 2.8 0.5 2.4

A decision situation for selecting a VM for 

A decision situation for selecting a Task for 

Fig. 2. Examples of how to use an individual to make scheduling decisions.

4.2 Initialization

The initial population is randomly generated by the widely used Ramped half-
and-half approach [12] where half of the population is constructed by the grow
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method (e.g., VMSR in Fig. 2) and half by the full method (e.g., TSR in Fig.
2). In the grow method, a GP tree grows by adding randomly selected function
and terminal nodes to the tree until it reaches the initial depth limit (6 in our
experiments). The full method randomly adds function nodes to the tree until
it reaches the maximum tree depth.

4.3 Fitness Evaluation

Each evolved GP individual is evaluated on multiple problem instances (3 in
our experiments) to determine its average performance in terms of eq. (8) as
its fitness. Each problem instance involves a set of m heterogeneous workflows
randomly sampled from multiple different workflow patterns (see Subsection 5.2
for more details).

Fig. 2 illustrates how to use a GP individual with a pair of VMSR and TSR
to schedule workflow execution in the cloud. Specifically, it shows a decision
situation that needs to select the optimal VM instance for task4 from three
candidate VM instances {VM1, V M2, V M3}. We use VMSR to calculate the
corresponding priority values of the three VM instances, i.e., {(2 + 0 − 1), (2 +
7− 2), (2 + 3− 0.5)}. Then, task4 is allocated to the VM Queue of VM1 which
has the lowest priority value. Similarly, the priority values of all pending tasks
on VM3 are first calculated by TSR. task1 with the lowest priority value is then
selected for execution.

Parent 1

Parent 2

Offspring 1

Offspring 2

Fig. 3. Crossover operator.

Parent 1 Offspring 1

Fig. 4. Mutation operator.

4.4 Evolution

The evolution process relies on crossover and mutation, as demonstrated in
Fig. 3 and Fig. 4. We use single-point crossover to process any two parent GP
individuals, each represented as a rule pair. Specifically, crossover is applied
to either the VMSRs or TSRs of the two individuals (or rule pairs) with a
probability of 0.5. Similar to crossover, mutation is also applied to one randomly
selected tree/rule of a GP individual. For the chosen tree/rule (either VSMR or
TR), its sub-tree rooted at a randomly selected mutation point is replaced by a
randomly generated new sub-tree.
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5 Experiments

We conduct experimental evaluations to demonstrate the effectiveness of our pro-
posed GPHH approach in generating high quality of heuristics for DCDWSC.
This section begins by describing the parameter setting of GP and the simula-
tion configuration. The effectiveness of the proposed approach is then verified
experimentally, followed by terminal analysis and rule analysis.

5.1 Parameter Setting

Following [12], we set the population size of DTGP to 1024, the number of
generations to 51, and the tournament size to 7. Crossover, mutation, and re-
production rates are 85%, 10%, and 5%, respectively. We also limit the initial
depth of a GP tree to between 2 and 6, and its maximum depth to 10.

5.2 Simulation Configuration

A simulated cloud environment with five key components below is used to experi-
mentally compare the performance of DTGP against several baseline approaches.

VM Types: The simulated cloud data center is equipped with 6 different
VM types according to Amazon EC21, as summarized in Table 2. The number
of instances of each VM type is unlimited.

Table 2. Configurations of 6 VM instances based on Amazon EC2

Instance name vCPU Memory On-Demand hourly rate

m5.large 2 8 GiB $0.096
m5.xlarge 4 16 GiB $0.192
m5.2xlarge 8 32 GiB $0.384
m5.4xlarge 16 64 GiB $0.768
m5.8xlarge 32 128 GiB $1.536
m5.12xlarge 48 192 GiB $2.304

Workflow Set: Four popular workflow patterns2 (i.e., CyberShake, Inspiral,
Montage, and SIPHT) are employed for our experiments. Each is available with
three different sizes (i.e., number of tasks in a workflow), including 30, 50, and
100. Using these workflows patterns, three scenarios (Mix Small, Mix Medium
and Mix Large) are created in Table 3.

Training scenario: The Mix Large in Table 3 is utilized for training in GP-
based approaches. Each GP individual will be evaluated on 3 problem instances
randomly created from this scenario to calculate its fitness. Consequently, it
takes 51× 3 problem instances to run a GP-based algorithm till completion.

Testing scenario: All generated heuristics are tested on three testing sce-
narios, i.e., Mix Small, Mix Medium and Mix Large, each containing 30 problem
instances.
1 https://aws.amazon.com/ec2/pricing/on-demand/
2 https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflow+Generator
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Table 3. Workflow patterns contained in three workflow sets.

Scenario Workflow set # of Workflows

Mix Small CyberShake 30, Inspiral 30, Montage 25, Sipht 30 30

Mix Medium
CyberShake 30, Inspiral 30, Montage 25, Sipht 30 ,
CyberShake 50, Inspiral 50, Montage 50, Sipht 60

30

Mix Large
CyberShake 30, Inspiral 30, Montage 25, Sipht 30 ,
CyberShake 50, Inspiral 50, Montage 50, Sipht 60,
CyberShake 100, Inspiral 100, Montage 100, Sipht 100

30

Request generation:Workflow requests arrive at the cloud data center over
time following a Poisson distribution with λ = 0.01 [10]. The penalty coefficient
in eq. (11) is δ = $0.24/h according to [23]. Moreover, the deadline relaxation
coefficient in eq. (10) is set to ξ ∈ {1, 12, 24, 36}, where a larger ξ implies more
relaxed deadline which can be fulfilled by using relatively cheaper VMs.

5.3 Baseline Algorithms

This paper compares three baseline algorithms listed below, including two GP-
based algorithms [20,22] and one well-known heuristic approach [3,15]. All GP-
based algorithms will run independently for 30 times using the same set of
problem instances. The final performance of any GP-based algorithm is then
calculated as the average total cost achieved by the 30 best scheduling heuristics
obtained from each of the 30 runs on all testing scenarios.

- HEFT-FCFS [3,15] uses HEFT for VM selection and FCFS for task selection.
- SGP [5] is a GPHH approach that can evolve VMSRs for DWS.
- CCGP [20] is a cooperative coevolution GPHH approach that evolves a com-
bination of one VMSR and one TSR via two evolutionary sub-populations.

5.4 Performance Comparison

The test performance of all algorithms on three scenarios (see Table 3) with
four deadline relaxation coefficients (ξ = 1, 12, 24, 36) is summarized in Table
4, which records the best and mean total costs in (8) across 30 independent
runs. To identify whether there is a statistically significant difference among
all competing algorithms, a Wilcoxon test with a significance level of 0.05 is
performed between each pair of algorithms. All statistically significant results
are indicated as “+”, “−” or “=” in Table 4. The optimal value in each row is
also bolded.

Compared to other baselines, DTGP achieved the lowest overall costs on
most of the testing scenarios and performed effectively under both tight (ξ = 1)
and loose (ξ = 24, 36) deadlines because it can prioritize tasks with high overdue
risks through reordering all pending tasks in the VM queues. Furthermore, for
GP-based algorithms, the total cost decreases upon increasing ξ since they allow
workflows with loose deadlines to be processed on cheaper VM instances.

Interestingly, SGP outperforms CCGP and DTGP when ξ = 12. We notice
that when the deadline is at a moderate level, tasks are normally processed in
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Table 4. The best and mean(standard deviation) objective values of 4 algorithms on
12 testing scenarios across 30 independent runs.

Scenarios
HEFT-FCFS SGP CCGP DTGP

best mean(std.) best mean(std.) best mean(std.) best mean(std.)

ξ = 1

S 87.55 103.58(9.12) 58.12 60.84(2.25)(+) 57.51 60.94(3.07)(+)(=) 57.26 59.65(1.68)(+)(+)(+)

M 145.15 164.20(10.07) 70.02 73.72(3.31)(+) 69.64 73.48(3.17)(+)(=) 69.01 71.74(2.03)(+)(+)(+)

L 246.53 283.93(17.98) 86.36 91.10(4.45)(+) 85.04 91.20(4.8)(+)(=) 84.65 88.76(3.45)(+)(+)(+)

ξ = 12

S 91.39 101.50(6.57) 26.34 31.91(3.59)(+) 27.41 34.27(3.62)(+)(-) 27.24 33.71(4.70)(+)(-)(+)

M 152.06 167.94(11.34) 39.01 45.26(4.23)(+) 39.08 49.51(5.4)(+)(-) 39.06 48.50(7.05)(+)(-)(+)

L 248.06 283.47(22.43) 54.91 65.30(5.84)(+) 56.74 70.4(7.85)(+)(-) 57.29 69.30(10.63)(+)(-)(+)

ξ = 24

S 89.86 104.68(8.78) 25.74 28.49(1.53)(+) 24.34 29.27(1.96)(+)(-) 23.62 26.16(1.79)(+)(+)(+)

M 139.78 167.14(13.28) 37.23 42.13(2.98)(+) 35.34 44.01(3.08)(+)(-) 34.91 38.46(2.72)(+)(+)(+)

L 243.46 272.54(20.32) 52.84 62.51(4.93)(+) 51.8 65.60(4.84)(+)(-) 50.76 57.05(5.34)(+)(+)(+)

ξ = 36

S 90.62 103.45(6.93) 24.65 62.51(4.93)(+) 23.36 25.97(2.26)(+)(+) 23.09 23.76(0.53)(+)(+)(+)

M 148.22 167.45(10.44) 36.63 38.95(1.70)(+) 33.95 38.35(3.55)(+)(+) 32.98 34.53(0.96)(+)(+)(+)

L 246.53 270.85(17.29) 52.33 56.85(2.44)(+) 50.12 58.03(7.51)(+)(-) 48.88 51.27(1.84)(+)(+)(+)

* (+), (-) or (=) indicates that the matching result is significantly better, worse,
or equivalent to its counterpart.

a FCFS order on any VM instances [3,22]. Hence, without evolving TSRs, SGP
can concentrate fully on evolving more effective VMSRs with a much smaller
search space than that of CCGP and DTGP. Comparing CCGP and DTGP,
the results in Table 4 clearly indicate that simultaneously evolving VMSR and
TSR as a dual-tree is more effective than evolving them separately in two sub-
populations. By using the best GP tree in one sub-population (e.g., the best
VMSR) to evaluate the fitness of all GP trees in another sub-population (e.g.,
TSRs), CCGP does not explore all potentially useful combinations of VMSRs
and TSRs from both sub-populations.

5.5 Ablation Study

To demonstrate the necessity and effectiveness of jointly using both VSMR and
TSR, we compare the performance of a rule pair designed by DTGP with the
performance achieved by using only VMSR in the same rule pair on 12 test-
ing scenarios. The observed performance difference is captured by a percentage
metric defined in eq. (12).

fitness(VMSR)− fitness(VMSR, TSR)

fitness(VMSR, TSR)
× 100% (12)

Table 5. Percentage increase in total cost when using VMSRs alone.

Mix Small Mix Medium Mix Large

ξ = 1 6.31% 6.96% 6.96%
ξ = 12 53.00% 43.45% 32.47%
ξ = 24 87.10% 75.12% 59.18%
ξ = 36 123.40% 103.16% 80.35%
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Table 5 shows the percentage increase in total costs when using the VMSR
of a rule pair evolved by DTGP alone. The results demonstrate that using two
rules to schedule workflows is substantially better than using VMSR only on all
testing scenarios. TSR therefore plays an essential role in solving the DCDWSC
problem.

5.6 Terminal Analysis

We further analyze the distribution of terminal nodes among the best 30 rule
pairs generated by DTGP in 30 runs to verify whether the newly proposed
terminals in Subsection 4.1 are effective. Specifically, VMR,NIQ,NOC,NOR
and RDL are newly developed terminals for designing VMSRs. We calculate the
percentage of the number of each terminal with respect to the total number of
terminals in a rule, and report the average percentage among the 30 rules in Fig.
5 and Fig. 6.
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Fig. 5. Terminal statistic of VMSRs.
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Fig. 6. Terminal statistic of TSRs.

In Fig. 5, the top three terminal types used in VMSRs are VMR,LFT and
NIQ. They capture the real-time information of the VM. This is because VM-
related information has a significant impact on the performance of VMSRs. Fig.
6 shows that ET,NOR and RDL are the top three terminal types in TSRs.
Clearly, with tight deadlines (i.e., ξ = 1), the number of unassigned tasks re-
maining in a workflow (NOR) has a strong influence on the TSR. The remaining
time before the deadline of a workflow (RDL) also affects strongly the processing
order of those tasks waiting at a VM queue.
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6 Conclusions

In this paper, we investigated the DCDWSC problem where a series of hetero-
geneous workflows can arrive dynamically over time with varied deadline con-
straints. To address this problem, we proposed the DTGP algorithm to jointly
design a pair of VMSR and TSR. Both VMSR and TSR are supported by newly
developed terminals. As far as we know, TSR has never been used in previ-
ous studies. Experimental results confirm that DTGP can outperform several
competing algorithms under both tight and loose deadlines. Moreover, we found
experimentally that better performance can be achieved by using both VSMR
and TSR, instead of using VMSR alone. Evolving VSMRs and TSRs in the form
of dual-trees was proved to be more effective than evolving them in separate
sub-populations.

In the future, effective recombination methods can be further developed to
improve the performance of DTGP. The influence of deadline penalty factor on
the formation of the two rules can also be analyzed.
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