
Multi-Objective Location-Aware Service
Brokering in Multi-Cloud - A GPHH Approach

with Transfer Learning

Yuheng Chen1, Tao Shi2(B), Hui Ma1[0000−0002−6232−4436], and Gang
Chen1[0000−0002−9597−497X]

1 Victoria University of Wellington, New Zealand
{chenyuhe | hui.ma | aaron.chen}@ecs.vuw.ac.nz
2 Qingdao Agricultural University, Qingdao, China

shitao@qau.edu.cn

Abstract. With the increasing number of cloud services in multi-cloud,
it has been a challenging task to choose suitable cloud services in consid-
eration of multiple conflicting objectives. Multi-objective location-aware
service brokering in multi-cloud aims to find a set of trade-off solu-
tions that minimize both the cost and latency. To achieve this goal,
existing approaches either manually design brokering heuristics or auto-
matically generate heuristics via Genetic Programming Hyper-Heuristics
(GPHH) for each problem domain from scratch. However, manually de-
signing heuristics takes a long time and requires domain knowledge.
Also, knowledge learnt from one problem domain can be helpful for
solving another problem domain. To effectively and efficiently gener-
ate heuristics for any new problem domain, we propose three novel
GPHH-based approaches with transfer learning to automatically gen-
erate a group of Pareto-optimal heuristics. Experimental evaluations on
real-world datasets demonstrate that our proposed GPHH with transfer
learning approaches can outperform existing approaches.

Keywords: Multi-objective optimization · Multi-cloud · Service broker-
ing · Genetic programming · GPHH · Transfer learning.

1 Introduction

Service brokering in multi-cloud plays an important role in helping application
providers find services in multi-cloud to deploy their applications [22]. It has
become a challenging task in finding the suitable services, as there are numerous
data centers for application providers to select. As brokers, they have the prob-
lem to recommend a list of candidate services from different cloud providers to
meet practical requirements. On the one hand, cloud services in different regions
can have significantly varied prices. Take m6g.large from Amazon Web Service
(AWS) as an example, the price of the service in North Virginia is $0.077, while
the price of the same service provided in Sao Paulo is $0.1224. On the other hand,



2 Y. Chen et al.

the network latency between consumers and data centers may affect the perfor-
mance of cloud applications. In order to provide cloud services with low latency,
cloud providers set up their data centers across different locations. Therefore,
we need to consider the balance between the performance in terms of network
latency and the cost of cloud services. In this paper, we study the problem of
multi-objective location-aware service brokering (MOLSB) in multi-cloud that
simultaneously consider both cost and performance of services.

There are many existing works on multi-cloud service brokering problems.
Most of them assume that all the requests are assigned at the same time, which
is static problem [8, 18, 19, 24]. A genetic algorithm (GA) approach was pro-
posed in [19], merging the two objectives, i.e., the cost and network latency, by
a weighted sum function. Other works assume that the requests are assigned
dynamically once they arrived. In [4], a multi-objective genetic programming
hyper-heuristic (GPHH) approach, named GPHH-MOLSB, was proposed to gen-
erate automatically designed non-dominating rules for assigning requests. The
rules designed by GPHH-MOLSB are effective in solving problem instances of
the same problem domain. However, new rules need to be evolved by GPHH-
MOLSB from scratch for new problem domains, ignoring the fact that the knowl-
edge learned from other problem domains can be used. Therefore, it is desirable
to design effective transfer learning methods to effectively transfer the knowledge
learned from previous domains while designing new rules. Some transfer learn-
ing methods have been proposed for single-objective combinatorial optimisation
problems, e.g., [1] for arc routing problems, [9] for workflow scheduling problems.
However, to the best of our knowledge, there is no transfer learning method pro-
posed for GPHH in solving multi-objective combinatorial optimisation problems,
in particular for the MOLSB probem.

The aim of this paper is to develop new GPHH approaches with transfer
learning techniques that can automatically design heuristics for the MOLSB
problem. To achieve this, we will

1. Propose three multi-objective GPHH approaches with different transfer learn-
ing techniques. Each of the approach can generate a Pareto Front of heuris-
tics;

2. Evaluate the proposed approaches and compare their performance with an
existing GPHH based approach, using datasets collected from the real world;

3. Analyse the results of the experiments in terms of Hypervolume (HV) and
Inverted Generational Distance (IGD).

The remaining sections of this paper are organised as follows. In Section
2, we review the related existing work in this area. The problem is described
and modeled in section 3. In section 4, we present the GPHH approaches with
transfer learning techniques to solve the dynamic MOLSB problem. Section 5
discusses the design of the experiments and analyses the experimental results.
Section 6 concludes the paper.



GPHH with Transfer Learning for MOLSB 3

2 Related Works

Various heuristic and meta-heuristic approaches have been proposed to solve the
static MOLSB problem. In [12], a greedy algorithm was proposed to solve the
problem. Since the greedy algorithm only allows requests arriving at the same
time, it will get stuck in local optima. To improve the algorithm proposed in [12],
a genetic algorithm (GA) approach was proposed to optimise the static MOLSB
problem in [19]. These approaches assume all the application deployment re-
quests are known and arrive at the same time.

Hyper-heuristic methods are used to automatically generate heuristic rules
to solve dynamic combinatorial optimisation problems. Genetic programming
(GP), as an evolutionary computation technique, aims to evolve and generate
rules to solve a specific task. In each GP generation, genetic operators, including
selection, crossover and mutation, are applied to evolve GP rules [16]. Through
many generations of evolution, a final rule will be selected by the algorithm.
Hyper-heuristic algorithms aim to explore in heuristic space, rather than the
solution space [3]. For dynamic optimisation problem, GPHH has been applied
in many areas [28, 29] for single-objective problems. To solve dynamic multi-
objective multi-cloud brokering problem, [4] proposed a GPHH approach, named
GPHH-MOLSB, with a newly designed terminal set, to automatically generate a
set of trade-off heuristics for users to choose according to their QoS preferences.
The rules generated by GPHH-MOLSB significantly outperformed the heuristics
that were human-designed.

Transfer learning is a technique that can solve novel tasks by using the knowl-
edge learned from previous tasks [6]. With the help of transfer learning tech-
niques, evolutionary algorithms may obtain a better initial performance, reduce
computational time and achieve better results in the target domain, compared
to the algorithms without transfer learning [9,26]. In [6], the authors listed three
main transfer approaches in genetic programming in solving symbolic regression
problems, including transferring the full tree from the final generation of the
source domain, transferring selected sub-trees with high fitness from the final
generation of the source domain and transferring the best individuals at each
generation of evolution performed in the source domain. In [9], a new transfer
learning approach of GPHH was proposed for dynamic multi-workflow schedul-
ing problem. In order to reduce the computational cost on target domain, a
randomly initialized population is trained on a simpler source domain for a pre-
defined number of generations. Then the population is evolved further in the
tougher target domain for another predefined number of generations. The trans-
fer learning approach saves the overall computation time by reducing the number
of generations to be performed in the target domain. In [1], the authors proposed
a novel genetic programming approach with knowledge transferring to solve the
uncertain capacitated arc routing problem. The author compared the proposed
method with several existing transfer learning approach, including DDGP [2],
FullTree [6], GATL [15], SubTree [6] and TLGPC [13].

Most of the existing transfer learning approaches for GPHH as summarized
above were proposed for solving single objective problems. In multi-objective



4 Y. Chen et al.

problems, existing approaches are not applicable or effective. For example, the
TLGPC approach selects the subtrees of the individuals which are better than
the mean value of the fitness in the final generation. This approach cannot be
applied to multi-objective problems since the final generation provides a Pareto
Front of individuals, and each of them is non-dominated. To satisfy the re-
quirement for application deployment with different QoS preferences, we need
to generate a set of trade-off solutions for users to choose. Therefore, we need
to design GPHH approaches with transfer learning that can be applied to solve
multi-objective problems.

3 Problem Definition

The MOLSB problem aims to allocate dynamically arriving applications to suit-
able cloud resources, i.e., VM instances in data centers, so as to minimize both
the application deployment cost and the network latency. In this section, we
present a formal model of the MOLSB problem. Constrains and assumptions
of this problem are also formulated. The key notations to be used for problem
definition are listed in Table 1.

For dynamically arriving application deployment requests S, a broker selects
VMs at different locations from multiple cloud providers. Let R denotes the set
of different region of data centres. In each region r ∈ R, different types of VM
instances are provided by cloud providers, denoted by V . Each VM type v ∈ V
has different price Cv,r in different region r ∈ Rv. We use Gv and Mv to denote
the capacities of CPU and memory that are provided by a VM type v. The set
of all regions that provide VM type v is denoted as Rv

During a time period T (e.g., one day), a broker receives a sequence of re-
quests. We use N to denote the total number of received requests. Each request
i from user location ui has two types of resource requirements, i.e., CPU gi and
memory mi, and the time period ti it will use the VM instance for. Once a new
request i arrives at time Ti, the broker will assign it to an instance of VM type
v in region r. Here, Li,r denotes the network latency between user location ui

and data center region r.

Following [12], we have the following assumptions about VM instances in this
paper.

– The price of a VM instance can be affected by different service providers,
different VM types, and different regions of data centers.

– The configuration of a VM instance cannot be modified if the VM instance
has a request assigned to.

– Any single VM instance of type v ∈ V can only have one request assigned
to it at a time.

– Each request i must be assigned to exactly one VM instance of any type
v ∈ V .



GPHH with Transfer Learning for MOLSB 5

Table 1: Mathematical notations

Notation Definition

V Set of VM types
R Set of regions that multi-cloud data centers span
Gv CPU capacity of VM type v
Mv memory capacity of VM type v
Rv Set of available regions of VM type v
Cv,r The unit price of VM type v in region r
T Time span of an application deployment
N Total number of requests during time span T
Ti arrival time of Request i
ui user location of Request i
gi CPU requirement of Request i
mi memory requirement of Request i
ti VM usage time for request i
Li,r Network latency between request i and region r

xi,v,r
Binary variable indicating whether request i is assigned
to VM type v in region r

TC Total cost of the selected VMs
ANL Average network latency of the selected VMs

The following constraints should be satisfied if a request i is assigned to a
VM instance v.

gi ⩽ Gv,

mi ⩽ Mv.
(1)

Eq. (1) implies that the VM instance must satisfy the resource requirement
of the assigned request. A VM type is capacity-feasible to a request i, if the
capacity of CPU is greater than or equal to gi and the capacity of memory is
greater than or equal to mi.

The total cost of VM instances (TC) and the average network latency be-
tween users and data centres (ANL) can be calculated as follows:

TC =

N∑
i=1

∑
v∈V

∑
r∈Rv

Cv,rtixi,v,r

ANL =
1

N

N∑
i=1

∑
v∈V

∑
r∈Rv

Li,rxi,v,r,

(2)

where xi,v,r ∈ {0, 1} determines whether request i is assigned to an instance of
VM type v ∈ V in region r ∈ Rv.

Therefore, for application deployment requests MOLSB aims to find best
resources available from multiple cloud with two objectives, minimizing TC and



6 Y. Chen et al.

minimizing ANL, as defined in eq. (3):

min TC,

min ANL.
(3)

4 GPHH with transfer learning for MOLSB

To effectively evolve brokering rules for MOLSB, we propose a GPHH algorithm
with three different transfer learning approaches.

An overview of the GPHH with transfer learning approaches is shown in Fig.
1. The transfer learning approaches initialise a population of brokering rules from
the previously trained rules in a source domain. In each generation, these rules
are evolved by genetic operators, and evaluated by a set of training instances
generated from the target domain. After a predefined number of iterations, a set
of brokering rules are generated to solve the dynamic MOLSB problem on the
target domain.

Fig. 1: The training progress of GPHH transfer learning approaches



GPHH with Transfer Learning for MOLSB 7

4.1 Representation and Terminal Set

We use trees to represent the mathematical expressions of brokering rules, where
the leaves are terminals and intermediate nodes are functions. To evolve broker-
ing rules for MOLSB, we need a set of problem related features for terminal
nodes as well as a set of arithmetic functions for internal nodes. We use the
same set of features for terminals as in [4], since they are important features
of the problem. The terminal set and function set are summarized in Table 2.
Note that we use the same terminal and function set for both source and target
domains.

Table 2: Terminal Set And Function Set

Terminal Symbol Definition

CPU gi Request i’s CPU requirement
Memory mi Request i’s memory requirement
Time ti VM usage time for request i

Latency Li,r
The latency of request i from the data center

in region r to the user

BestPrice min(Cv,r)
The minimum price of VM type v in region r

that satisfies the constraints in eq. (1).

Function set
+, -, ×, protected division, maximum, minimum, cosine

and sine

An example of multi-cloud brokering rule represented as a GP tree using the
terminal and function set is shown in Fig. 2.

Fig. 2: An example of the tree-based representation

4.2 Transfer Approaches

To investigate using transfer learning in GPHH for solving the Multi-Objective
Location-aware Service Brokering (MOLSB) problem, we propose three different
transfer approaches in this paper, including BestGen, Half-Transfer and Full-
Transfer. In Fig. 3, the training process of GPHH with three different approaches



8 Y. Chen et al.

on the source domain is presented. The training process on the target domain
of the three transfer approaches is further summarized in Algorithm 1.

(a) BestGen: Transfer the
best individuals from the
Pareto Front of each gen-
eration

(b) Full-Transfer: Trans-
fer the First and the Sec-
ond Pareto Front

(c) Half-Transfer: Trans-
fer the Pareto Front of the
last generation with ran-
dom trees

Fig. 3: The training process of three different approaches on source domain

BestGen BestGen in Algorithm 1 is a transfer learning approach that transfers
some best individuals from the source domain to the target domain. It is different
from the approach in [6] which was proposed for the single-objective optimisation
problem. The transfer learning approach in [6] collects from 10% to 20% of the
best individuals in each generation on the source domain, which cannot be used



GPHH with Transfer Learning for MOLSB 9

Algorithm 1 Training process of GPHH with transfer learning

Input: a list of training instance on source domain S1, a list of training instance on
target domain S2,

Output: a set of non-dominating heuristics on target domain
1: Randomly initialize the population P1

2: while max generation not reached do
3: Evolve offspring through selection, crossover and mutation
4: Evaluate the fitness of all evolved offspring on source domain
5: end while
6: Identify the set of individuals I to transfer from source domain to target domain

I =


Best of k individuals in each generation, BestGen

50% from First Front + 50% from Second Front, Full-Transfer

50% from First Front rules, Half-Transfer
7: Initialize the population P2 using a combination of I and randomly generated rules
8: while max generation not reached do
9: Evolve offspring through selection, crossover and mutation
10: Evaluate the fitness of all evolved offspring on target domain
11: end while
12: Return the Pareto Front of the last evolved population

to solve our multi-objective optimisation problem. In this paper we propose
to select a pre-defined number of individuals from the Pareto Front of each
generation. Since the number of individuals in the Pareto Front can be very
large, the crowding distance [5] is applied to ensure our selected individuals keep
most of the diversity of the Pareto Front. The selected individuals are then used
to generate the initial population of the the target domain. The training process
starts from a population with knowledge collected from the source domain.

Full-Transfer Full-Transfer approach in Algorithm 1 randomly selects half of
the first Pareto Front and half of the second Pareto Front over one single run on
source domain. The second Pareto Front refers to the evolved rules that are only
dominated by the rules in the first Pareto Front and are not dominated by other
rules in the second Pareto Front. In the training process on the source domain,
we keep the individuals in the first Pareto Front and the second Pareto Front.
The archive is updated by each generation. After the training process on the
source domain, the initial population is generated from the archive that consists
of the First and Second Pareto Front of the training process.

Half-Transfer Half-Transfer in Algorithm 1 is to transfer half of the final popu-
lation from the source domain to the target domain. To solve our multi-objective
problem we design an approach to selectively choose the solutions on the front
from the final generation evolved in the source domain. The Half-Transfer ap-
proach selects the Pareto Front over one single run on source domain. The ap-
proach then randomly selects half of evolved brokering rules from the Pareto



10 Y. Chen et al.

Front obtained on the source domain to create the initial population for evolu-
tion on the target domain. The other half of the initial population is randomly
generated to maintain the diversity.

Note that Full-Transfer approach uses the second Pareto Front to keep the
diversity. Compared to the Half-Transfer approach, it transfers more knowledge
from the source domain, since the second Pareto Front is significantly better
than the randomly generated rules.

4.3 Crossover and Mutation

Three genetic operators, crossover, mutation, and selection, are applied in our
transfer learning methods. In the crossover process, each parent individual is
cut-off by a randomly selected point. Then the offspring can be generated by
swapping the two parts starting from the cut-off points from their parents. To
maintain the diversity, the mutation operation randomly generates a new branch
at the mutation point of the parent individuals.

4.4 Fitness Evaluation

We use fitness values to evaluate each individual. Each pair of fitness values is
computed based on eq. (3). Each individual can be represented as a mathematical
function. Given the arrived requests, we can apply the function of each individual
to sort the priority of candidate regions list and select the VM in the region that
has the highest priority in the region list (see [4] for more details). After all
requests are assigned, we calculate the sum of the cost TC and the average
latency ANL as the fitness values for this individual.

5 Experiments

In this section, the experimental design is introduced. We perform the exper-
iments to simulate the cloud environment in the real world. We also present
our evaluation results on the generated rules using Hypervolume (HV) [27] and
Inverted Global Distance (IGD) [14].

In our experiments, hypervolume (HV) describes the area that covers all area
dominated by our proposed rules and the reference point (1,1) [10]. A higher
value of HV represents a better diversity of our proposed solutions.

IGD describes the average distance from our proposed rules to the true Pareto
Front. The true Pareto Front in this problem can be approximated by obtaining
the Pareto Front from all non-dominated solutions over 30 independent runs. A
lower value of IGD indicates a better diversity and convergence of our proposed
solutions [17].



GPHH with Transfer Learning for MOLSB 11

5.1 Simulation and Datasets

We use the simulator developed in [23] for multi-cloud service brokering to eval-
uate our proposed transfer learning approaches.

The simulator has the following features:

– For each VM type, the number of VM instances available is infinite.
– Requests arrive sequentially in a fixed timespan (one day).
– Once a request arrived, the request will be assigned immediately.
– All requests are equally important.
– Multiple VM types and multiple datacenters are available in the simulator.

The dataset that we used for training and testing are real world data, as
used in [4]. 15 different VM types are included in our experiments, 5 from each
service provider, Alibaba Elastic Compute Service (ECS), Amazon Web Services
(AWS) and Microsoft Azure. As in [20, 21], we adopt 82 user locations in the
Sprint IP Network3 to simulate the global user community. To determine the
network latency between users and assigned VM instances, we collect real-world
observations of network latency from Sprint IP backbone network databases4.

The source domain of the MOLSB problem with 8 different data centers,
including Dublin, Singapore, Sydney, North Virginia, Mumbai, Tokyo, North
California and Sao Paulo. Following [7], User requests arrive at the data centers
with 1% arrival rate of the Microsoft Azure dataset. The target problem do-
main is the MOLSB problem with 15 different data centers, with 7 more regions
including Frankfurt, Hong Kong, London, Paris, Seoul, Stockholm and Montreal.

To evaluate our proposed GPHH with transfer learning, we created 5 test
cases of the target domain. Each test case contains one test set, which is unseen in
training process. The performance of each test cases and the average performance
of 5 test sets are calculated.

5.2 Baseline Algorithm

As mentioned in Section 1, there is no transfer learning method proposed for the
MOLSB problem. To evaluate our proposed GPHH with three transfer learning
approaches, namely BestGen, Half-Transfer, and Full-Transfer, we compare the
transfer learning approaches with GPHH-MOLSB [4]. GPHH-MOLSB is trained
on target domain directly without any knowledge transferred from the source
domain.

5.3 Parameter Settings

In our experiments, we follow the GPHH parameters settings in the existing
work [4] and [25]. In both the source and target domain, the population size is
1024 and the generation size is 100. The crossover rate and the mutation rate

3 https://www.sprint.net
4 https://www.sprint.net/tools/ip-network-performance



12 Y. Chen et al.

are 90% and 10%. The maximum depth is 7. In order to approximate the true
Pareto Front, we train 30 independent runs with different random seeds. All
transfer learning approaches are implemented using DEAP [11].

5.4 Results

Table 3 and Table 4 show the average HV and IGD results of GPHH with differ-
ent transfer techniques and the baseline method without knowledge transferred,
i.e., GPHH-MOLSB.

Table 3: Average HV result of 5 test cases

Test Case GPHH-MOLSB [4] BestGen Half-Transfer Full-Transfer

1 0.9800±0.0005 0.9809±0.0003 0.9810±0.0003 0.9811±0.0002

2 0.9798±0.0006 0.9802±0.0004 0.9803±0.0003 0.9805±0.0003

3 0.9796±0.0005 0.9801±0.0004 0.9803±0.0002 0.9804±0.0002

4 0.9779±0.0008 0.9787±0.0005 0.9788±0.0003 0.9790±0.0002

5 0.9786±0.0006 0.9794±0.0003 0.9795±0.0003 0.9796±0.0002

Average 0.9791±0.0006 0.9798±0.0004 0.9800±0.0003 0.9801±0.0002

As can be seen from Table 3, all three transfer techniques have better HV
results than GPHH-MOLSB. For example, in test case 1, GPHH-MOLSB has a
HV result of 0.9800. The HV results of BestGen, Half Transfer and Full Transfer
approaches are 0.9809, 0.9810 and 0.9811. Similarly, in Table 4, the average
IGD results of BestGen, Half Transfer and Full Transfer approaches are 0.00069,
0.00069 and 0.00065, while the average IGD of GPHH-MOLSB is 0.00112. In
Table 3, the Full Transfer approach achieves the highest HV in all 5 test cases,
while the BestGen approach has the lowest HV result.

Table 4: Average IGD result of 5 test cases

Test Case GPHH-MOLSB [4] BestGen Half-Transfer Full-Transfer

1 10.2223±2.4358e−4 6.2131±0.5317e−4 6.2117±0.4607e−4 5.8971±0.5317e−4

2 11.5345±3.0194e−4 6.7907±0.4728e−4 6.8737±0.4598e−4 6.3855±0.5289e−4

3 11.2997±2.8345e−4 6.8132±0.6295e−4 6.8763±0.5525e−4 6.4603±0.5971e−4

4 11.1337±3.2152e−4 7.0447±0.5916e−4 7.1584±0.5642e−4 6.6599±0.4936e−4

5 12.0743±3.3086e−4 7.5021±0.4838e−4 7.4144±0.4997e−4 7.2684±0.5037e−4

Average 11.2475±2.9627e−4 6.8727±0.5419e−4 6.9069±0.5074e−4 6.5342±0.5310e−4

In Table 4, the Full-Transfer approach has the lowest IGD in all 5 test
cases, BestGen has the highest IGD in most of the test cases except test case



GPHH with Transfer Learning for MOLSB 13

4. All three transfer learning approaches have achieved better performance than
GPHH-MOLSB. This demonstrates that the three transfer learning methods are
able to keep the diversity of the population, which is important for evolutionary
processes.

The results in Table 3 and Table 4 show that the heuristics generated by three
transfer learning approaches outperform the GPHH-MOLSB without transfer
knowledge in terms of the IGD and HV results.

Fig. 4: Convergence curve of HV for test case 1 on 15 data centers

Fig. 5: Convergence curve of IGD for test case 1 on 15 data centers

To further investigate the effectiveness of the three transfer learning ap-
proaches during the training process of the source domain, we analyze the conver-
gence curves of the three approaches. Fig. 4 and Fig. 5 present the convergence
curves regarding the average HV and IGD obtained by three transfer learning



14 Y. Chen et al.

approaches on the test case 1 with 15 data centers. As seen in the two figures, all
three approaches start with a high HV and a low IGD results. The HV results
of all three transfer approaches increase rapidly, and the IGD results decrease
significantly from the first generation to the 40-th generation. From the 80th
generation to the last generation, the HV and IGD results change slightly with
fluctuation in all three transfer approaches.

As seen in Fig.4 and Fig.5, among the three transfer learning methods, GPHH
with Full-Transfer method performs the best through all the generations. The
results demonstrate that knowledge obtained from the source domain can help
GPHH to generate high quality rules in the target domain.

6 Conclusion

In this paper, we propose three multi-objective GPHH approaches with different
transfer learning techniques, including Full-Transfer, Half-Transfer and Best-
Gen, to solve the dynamic MOLSB problem. Our experimental evaluation using
datasets collected from real world demonstrates that all the three approaches
of GPHH with transfer learning outperform an existing approach without us-
ing transfer learning. All the three transfer learning approaches generate better
heuristics with higher HV and lower IGD than the existing GPHH method.

References

1. Ardeh, M.A., Mei, Y., Zhang, M.: Genetic programming with knowledge transfer
and guided search for uncertain capacitated arc routing problem. IEEE Transac-
tions on Evolutionary Computation (2021)

2. Ardeh, M.A., Mei, Y., Zhangz, M.: Diversity-driven knowledge transfer for GPHH
to solve uncertain capacitated arc routing problem. In: 2020 IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 2407–2414. IEEE (2020)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society 64(12), 1695–1724 (2013)

4. Chen, Y., Shi, T., Ma, H., Chen, G.: Automatically design heuristics for multi-
objective location-aware service brokering in multi-cloud. In: 2022 IEEE Interna-
tional Conference on Services Computing (SCC). pp. 206–214. IEEE (2022)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6(2),
182–197 (2002)

6. Dinh, T.T.H., Chu, T.H., Nguyen, Q.U.: Transfer learning in genetic programming.
In: 2015 IEEE Congress on Evolutionary Computation (CEC). pp. 1145–1151.
IEEE (2015)

7. Du, B., Wu, C., Huang, Z.: Learning resource allocation and pricing for cloud profit
maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 33, pp. 7570–7577 (2019)

8. Durillo, J.J., Fard, H.M., Prodan, R.: Moheft: A multi-objective list-based method
for workflow scheduling. In: 4th IEEE International Conference on Cloud Comput-
ing Technology and Science Proceedings. pp. 185–192. IEEE (2012)



GPHH with Transfer Learning for MOLSB 15

9. Escott, K.R., Ma, H., Chen, G.: Transfer learning assisted GPHH for dynamic
multi-workflow scheduling in cloud computing. In: Australasian Joint Conference
on Artificial Intelligence. pp. 440–451. Springer (2022)

10. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: 2006 IEEE international conference on
evolutionary computation. pp. 1157–1163. IEEE (2006)

11. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: Deap:
Evolutionary algorithms made easy. The Journal of Machine Learning Research
13(1), 2171–2175 (2012)

12. Heilig, L., Buyya, R., Voß, S.: Location-aware brokering for consumers in multi-
cloud computing environments. Journal of Network and Computer Applications
95, 79–93 (2017)

13. Iqbal, M., Xue, B., Al-Sahaf, H., Zhang, M.: Cross-domain reuse of extracted
knowledge in genetic programming for image classification. IEEE Transactions on
Evolutionary Computation 21(4), 569–587 (2017)

14. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: International con-
ference on evolutionary multi-criterion optimization. pp. 110–125. Springer (2015)

15. Koçer, B., Arslan, A.: Genetic transfer learning. Expert Systems with Applications
37(10), 6997–7002 (2010)

16. Koza, J.R., Poli, R.: Genetic programming. In: Search methodologies, pp. 127–164.
Springer (2005)

17. Ma, H., da Silva, A.S., Kuang, W.: NSGA-II with local search for multi-objective
application deployment in multi-cloud. In: 2019 IEEE Congress on Evolutionary
Computation (CEC). pp. 2800–2807. IEEE (2019)

18. Mansouri, Y., Toosi, A.N., Buyya, R.: Brokering algorithms for optimizing the
availability and cost of cloud storage services. In: 2013 IEEE 5th International Con-
ference on Cloud Computing Technology and Science. vol. 1, pp. 581–589 (2013)

19. Shi, T., Ma, H., Chen, G.: A genetic-based approach to location-aware cloud service
brokering in multi-cloud environment. In: 2019 IEEE International Conference on
Services Computing (SCC). pp. 146–153. IEEE (2019)

20. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
application replication and deployment in multi-cloud environment. In: 2020 IEEE
International Conference on Web Services (ICWS). pp. 110–117. IEEE (2020)

21. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
service deployment for composite applications in multi-cloud environment. IEEE
Transactions on Parallel and Distributed Systems 31(8), 1954–1969 (2020)

22. Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application replication
and deployment in multi-cloud environment. IEEE Transactions on Parallel and
Distributed Systems 33(8), 1982–1995 (2021)

23. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
service brokering in multi-cloud via deep reinforcement learning. In: International
Conference on Service-Oriented Computing. pp. 756–764. Springer (2021)

24. Simarro, J.L.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic
placement of virtual machines for cost optimization in multi-cloud environments.
In: International Conference on High Performance Computing Simulation. pp. 1–7
(2011)

25. Tan, B., Ma, H., Mei, Y.: A hybrid genetic programming hyper-heuristic approach
for online two-level resource allocation in container-based clouds. In: 2019 IEEE
Congress on Evolutionary Computation (CEC). pp. 2681–2688. IEEE (2019)



16 Y. Chen et al.

26. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal
of Big data 3(1), 1–40 (2016)

27. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating
hypervolume. IEEE transactions on evolutionary computation 10(1), 29–38 (2006)

28. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via ge-
netic programming with feature selection in dynamic flexible job-shop scheduling.
ieee transactions on cybernetics 51(4), 1797–1811 (2020)

29. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolu-
tionary multitask genetic programming for dynamic flexible job shop scheduling.
IEEE Transactions on Evolutionary Computation 25(4), 651–665 (2021)


