
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Auto-Scaling Containerized Applications in
Geo-Distributed Clouds
Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann

Abstract—As a lightweight and flexible infrastructure solution, containers have increasingly been used for application deployment on a
global scale. By rapidly scaling containers at different locations, the deployed applications can handle dynamic workloads from the
worldwide user community. Existing studies usually focus on the (dynamic) container scaling within a single data center or the (static)
container deployment across geo-distributed data centers. This article studies an increasingly important container scaling problem for
application deployment in geo-distributed clouds. Reinforcement learning (RL) has been widely used in container scaling due to its high
adaptability and robustness. To handle high-dimensional state spaces in geo-distributed clouds, we propose a deep RL algorithm,
named DeepScale, to auto-scale containerized applications. DeepScale innovatively utilizes multi-step predicted future workloads to
train a holistic scaling policy. It features several newly designed algorithmic components, including a domain-tailored state constructor
and a heuristic-based action executor. These new algorithmic components are essential to meet the requirements of low deployment
costs and achieve desirable application performance. We conduct extensive simulation studies using real-world datasets. The results
show that DeepScale can significantly outperform an industry-leading scaling strategy and two state-of-the-art baselines in terms of
both cost-effectiveness and constraint satisfaction.

Index Terms—Auto-scaling, containerized application, geo-distributed clouds, workload management, safe reinforcement learning,
time series analysis.

✦

1 INTRODUCTION

ENTERPRISE application deployment demands for elasti-
cally acquiring and releasing resources to handle dy-

namic workloads from the worldwide user community
[1]. Currently, the elastic deployment and real-time man-
agement of applications increasingly rely on containers,
an industry-leading lightweight virtualization technology
[2], [3]. By bundling together an application with all its
dependencies (e.g., libraries and code), the containerized
application can realize fast deployment and migration in
clouds [4].

Containers lay the technical foundation for elastic ap-
plication deployment through horizontal scaling and vertical
scaling [5]. Particularly, the horizontal scaling changes the
number of containers for deployed application instances,
i.e., containerized applications1. The vertical scaling changes
the container configuration (i.e., the amount of provisioned
resources) for application instances.

Since the horizontal scaling can be performed on con-
tainers in different cloud data centers, it has the advantage
to address the workload changes across multiple geograph-

• Tao Shi is with the Science and Information College, Qingdao Agricultural
University, China.
E-mail: shitao@qau.edu.cn

• Hui Ma and Gang Chen are with the School of Engineering and Computer
Science, Victoria University of Wellington, Wellington, New Zealand.
E-mail: {hui.ma, aaron.chen}@ecs.vuw.ac.nz

• Sven Hartmann is with the Department of Informatics, Clausthal Univer-
sity of Technology, Germany.
E-mail: sven.hartmann@tu-clausthal.de

Manuscript received x x, x; revised x x, x.
1. In the remainder of this paper, we use application instances,

containerized applications, and containers interchangeably.

ical locations [6]. The vertical scaling can be realized with
practically no downtime [7]. Therefore, it is favored for the
localized workload variations [6].

Many recent efforts have been made in the literature for
container scaling within a single data center [5], [8], [9], [10],
[11]. To guarantee the application performance in terms of
the average response time of global user requests [12], [13],
[14], container scaling must work effectively across geo-
distributed data centers. Besides, the pricing of containers
in public clouds is based on the assigned resources, e.g.,
the number of vCPUs [15], [16]. Note that the prices of
resources assigned to containers in different regions can
vary substantially, as clearly evidenced in TABLE 1 for
Amazon Web Services (AWS) across different regions. For
example, the price of containers in Sao Paulo is $0.0696 per
hour, while the prices in N.Virginia, Oregon, and Dublin
are $0.04048 per hour. That is, the most expensive region
can fetch up to 1.7 times the price of the cheapest regions.
The significant impact of containers’ locations on both the
performance and cost of deployed applications must be
considered when performing container scaling.

In the articles [17], [18], the problem of application
deployment in geographically distributed data centers was
studied in a static scenario to find the most cost-effective
deployment while satisfying the performance requirement
on the average response time. However, the location-aware
application deployment problem does not consider the im-
pact of current deployment decisions on the future work-
load variations, which is important when we minimize the
cumulative cost for application deployment over a time
span such as a billing day in practice.

In this paper, we study the dynamic problem of location-
aware container scaling (LACS) in geo-distributed clouds from

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

TABLE 1
Unit cost (vCPU per hour) of containers at AWS across different regions

Continent Region Cost (USD)
US East (N.Virginia) $0.04048

North America US East (Oregon) $0.04048
Montreal $0.04456

South America Sao Paulo $0.0696
Singapore $0.05056

Tokyo $0.05056
Asia Mumbai $0.04256

Hong Kong $0.0556
Osaka $0.05056
Seoul $0.04656

Oceania Sydney $0.04856
Frankfurt $0.04656

Dublin $0.04048
Europe London $0.04656

Milan $0.0486
Paris $0.0486

Stockholm $0.0445
Africa Cape Town $0.0546

the perspective of application providers, to minimize the
cumulative application deployment cost while satisfying the
constraint on the average application response time.

In practice, enterprise application providers usually ap-
ply threshold-based rules to automate container scaling [19].
This strategy is efficient to make scaling decisions in real-
time. However, manually choosing appropriate thresholds
is difficult and often results in containers either over-utilized
that slow down the request processing speed or under-
utilized that waste money [20].

Reinforcement learning (RL) allows to express what an
application provider aims to obtain, instead of how it should
be obtained [5]. The nature of RL makes it very appealing
to auto-scale containers for applications with dynamically
changing and widely distributed workloads. For example, a
deep Q-network (DQN) can be trained to approach an opti-
mal policy for scaling containers in geo-distributed clouds to
minimize the cumulative cost in the long run [21], [22], [23].
However, it is challenging to achieve both cost-effectiveness
and constraint satisfaction by directly using DQN [24].
Therefore, new learning techniques must be developed to
effectively solve the LACS problem.

Predictive strategies such as time series analysis have
been used to improve the timeliness of container scaling
within a single data center, which is important to achieve
cost-effective application deployment [20]. In this paper,
we seek to utilize prediction models to provide essential
information on dynamic application workloads for DQN
to make well-informed scaling decisions in geo-distributed
clouds. Particularly, multi-step predicted future workloads
are collected by a domain-tailored state constructor to ensure
high cost-effectiveness.

The performance constraint of the LACS problem moti-
vates us to adopt safe RL, which aims to learn a policy that
maximizes the expected return while ensuring (or encour-
aging) the satisfaction of some safety constraints [25]. In this
paper, we propose two safe RL approaches to increase the
chance of satisfying the constraint on the average response
time. On the one hand, we introduce a penalty-based reward
function and a heuristic-based action executor to train poli-

cies towards the constraint-compliant scaling. On the other
hand, the heuristics designed in the action executor can pre-
vent scaling actions from prolonging the average response
time beyond the acceptable level during the learning process,
which has been verified in our experiments (Subsection 5.6).

In a nutshell, all the new algorithmic components jointly
form a holistic scaling policy for the LACS problem. In partic-
ular, we show experimentally in Section 5 that the proposed
domain-tailored state constructor and the heuristic-based
action executor, are essential to meet the requirements of
low deployment costs and achieve desirable application
performance. The main contributions of this paper are sum-
marized as follows.

Firstly, we identify and formulate the LACS problem to
minimize the total deployment cost subject to the constraint
on the average response time across widely distributed user
communities. To the best of our knowledge, this is the first
study in the literature on dynamic container scaling for
application deployment with a realistic consideration of the
location impact on both the performance and cost on the
global scale.

Secondly, we propose a novel deep reinforcement learn-
ing (DRL)-based algorithm, namely DeepScale, to solve the
LACS problem. DeepScale innovatively trains the holistic
scaling policy. It features several newly designed algorith-
mic components, including a domain-tailored state con-
structor and a heuristic-based action executor. Our proposed
multi-step predicted workloads, penalty-based reward func-
tion, and safety-aware heuristics are utilized by DeepScale to
minimize the cost and satisfy the performance constraint of
the LACS problem.

Finally, we evaluate the effectiveness of DeepScale
through extensive simulation studies using realistic con-
tainer pricing offered by AWS and workloads for cloud
applications, i.e., WikiBench [26] and NASA [27]. The results
show that DeepScale can consistently satisfy the constraint on
the average response time and achieve up to 39% savings
in terms of the deployment cost, compared to the Amazon
auto-scaling service [19] and two state-of-the-art baselines,
i.e., A-SARSA [10] and DQLCM [28].

The remainder of this paper is organized as follows.
Section 2 discusses the related work about containerized
application deployment in clouds and container scaling
with RL. Section 3 defines the LACS problem, including
the system architecture for containerized application de-
ployment in geo-distributed clouds. Section 4 presents the
details of the DeepScale algorithm. Section 5 describes the
design of simulation studies and analyses the evaluation
results. Section 6 discusses the scope and limitations of this
research. Section 7 concludes the paper.

2 RELATED WORK

This section introduces the related works about container-
ized application deployment in clouds and container scaling
with RL. The main challenges that need to be addressed in
this paper are also highlighted.

2.1 Containerized Application Deployment in Clouds
Currently, the deployment and real-time management of
applications increasingly rely on containers, an industry-

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

leading lightweight virtualization technology [4], [6]. Signif-
icant efforts have been made for containerized application
deployment in clouds. Commercial container management
platforms, e.g., Rancher [29] and OpenShift [30], facili-
tate container deployment in public clouds. In addition to
cloud management and visibility, they empower application
providers with the ability to easily adapt the deployment
of containers across data centers through a unified user
interface or API. However, these platforms do not support
auto-scaling containers for applications to quickly respond
to workload fluctuations, which are essential for application
providers to achieve low deployment cost and satisfactory
application performance [17].

The problem of containerized application deployment
in clouds has been studied at different resource levels:
container deployment [5], [8], [31], cluster deployment [32],
[9], or both [33]. These works considered horizontal scaling
[8], [9], [32], vertical scaling [31], or both [5] depending on
different elasticity dimensions. However, they all focus on
auto-scaling techniques within a single data center to han-
dle workload variations of applications in a cost-effective
manner. That is, these solutions neglect container locations,
which can have a significant impact on both the deployment
cost and the network latency of applications.

Predictive auto-scaling utilizes a workload forecast to
derive scaling actions. Google uses Autopilot, as a vertical
and horizontal auto-scaler, to reduce resource waste and
increase reliability [34]. Focusing on vertical scaling, self-
adaptive resource sharing was investigated in the article
[35] for co-located applications in saturated containerized
clouds. In the article [36], a hybrid auto-scaling mecha-
nism, called Chameleon, combining proactive methods with
a reactive fallback mechanism was proposed to deploy
business applications. In the article [37], several predictive-
based auto-scaling policies were designed for microservice
applications both on VMs and containers level. However,
they also focus on auto-scaling techniques within a single
data center to handle workload variations of applications.
Considering the locations of containers, latency-aware auto-
scalers, i.e., Voilà [38] and Hona [39], were proposed for
application replica placement in fog computing platforms.
In the article [6], ge-kube was proposed as an extension
of Kubernetes to introduce self-adaptation and network-
aware scheduling capabilities among 4 different regions.
A multi-level elastic deployment model for containerized
applications was proposed in the article [7]. The model
was evaluated in a simulated geo-distributed environments
through uniformly distributing network delay. To support
container scaling globally, the existing algorithms such as
the meta-heuristics in the article [17] were proposed to
make deployment decisions based on the current workload.
However, these algorithms suffer from the high computa-
tional cost. Moreover, the current deployment may not work
well in the future due to the dynamic nature of application
workloads.

2.2 Container Scaling with RL

Existing research showed that RL is effective at scaling
virtual machines (VMs) to handle dynamic application
workloads [21], [40], [41], [42]. Due to the large difference

between containers and VMs in terms of start-up, shut-
down, and migration times, these RL-based algorithms that
perform well in VM scaling cannot be effectively applied to
container scaling with high demand for timeliness and ac-
curacy [10]. Recently, some RL-based algorithms have been
proposed for scaling containers for application deployment.
For example, Rossi et al. [5] proposed a model-based RL
method to control the horizontal and vertical elasticity of
containers. Because the future trend of workload is not con-
sidered, these approaches fail to deal with highly dynamic
application workloads, which causes resource wastage or
compromised quality of service (QoS) [10].

As a prediction technique, time series analysis has been
applied to handle dynamic application workloads [43]. The
resulting workload prediction models can be further utilized
by RL methods to ensure the timeliness and accuracy of scal-
ing actions, such as A-SARSA [10]. Note that A-SARSA only
considers one-step prediction, which may not be sufficient
for RL to make well-informed scaling decisions as shown
experimentally in Subsection 5.5. Besides, A-SARSA focuses
on auto-scaling containers within a single data center. Due
to its use of the Q-table, A-SARSA cannot scale well to
large LACS problems involving many geo-distributed data
centers.

In recent years, deep Q-network (DQN) was applied to
resource allocation problems with high-dimensional state
spaces [21], [23], [28]. In the article [21], a DQN-based
resource provisioning and task scheduling system was
proposed to minimize the energy cost for cloud service
providers. Further considering the thermal effect of job
allocation, Yi et al. [23] applied DQN to allocate compute-
intensive jobs within the boundary of a single data center.
Tang et al. [28] proposed a DQN-based container migration
algorithm, i.e., DQLCM, to support mobility tasks with vari-
ous application requirements, including the communication
delay, power consumption, and migration cost.

Traditional DRL methods assume that agents are free
to any policy for exploration [44], [45], [46], [47], [48]. For
the location-aware container scaling (LACS) problem, it
is unacceptable to give an agent complete freedom. For
example, some scaling actions may cause containers to be
heavily utilized. In that case, the application performance
will drastically deteriorate such that the constraint on the
average response time cannot be satisfied. Therefore, safe
exploration, i.e., to control the damage caused by explo-
ration [49], is important for solving the LACS problem.
To guarantee constraint satisfaction, some policy-search-
based DRL algorithms were proposed recently. For example,
constrained policy optimization (CPO) was proposed to
train neural network policies for robotic control tasks [50].
However, CPO may not be suitable for the LACS problem
because it requires the learning process to start from a feasi-
ble policy. It is difficult to manually identify such a feasible
stochastic policy modeled as a deep neural network2 for any
LACS problem instance. Moreover, DQN is often shown to
be more effective than the policy-search-based method [46],
[48].

2. A stochastic policy must assign a probability to perform each
individual action, i.e., the outputs of the neural network are probability
values.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

TABLE 2
Mathematical notations

Notation Definition
t The tth time period
u The uth user center

γu(t) Application request rate from u during t
ω(t) The application workload during t
n(t) Total number of containers during t
d The dth data center

Ad(t) The application instance deployed in d during t
UCd The unit cost of vCPUs for containers in d
xd(t) Number of vCPUs provisioned to Ad(t) during t

CPU(t) Deployment of application instances during t
DC(t) Application deployment cost during t
Tarp
d (t) Average request processing time of Ad(t)
λd(t) Workload of Ad(t) during t
µd(t) Capacity of Ad(t) during t

T rtd
u,d

Round-trip delay between user region u and data
center d

ART (t) Average response time of application during t
m Maximum acceptable average response time

σu,d(t) Percentage of requests from u to Ad during t
u(t) Average CPU utilization rate of containers during t

ANL(t)
Average network latency between user regions and
application instances during t

The review above motivates us to develop a DQN-
based algorithm to address the LACS problem. Moreover,
to satisfy the constraint on the average response time, safe
RL techniques, i.e., safe exploration, should be investigated.

3 PROBLEM DESCRIPTION

The aim of the location-aware container scaling (LACS)
problem is to scale containers globally for an application in
response to a dynamically changing and widely distributed
workload to minimize the total deployment cost (TDC)
over a time span subject to the constraint on the average re-
sponse time (ART). The response time is measured from the
moment a user makes an application request to the moment
when this user receives the corresponding response, taking
into account both request processing time and round-trip delay
(RTD) between the user and an application instance. The
important notations for problem modeling are summarized
in TABLE 2.

We consider container scaling for application deploy-
ment with three layers: container manager layer, application
layer, and user layer, as shown in Fig. 1. In practice, an
application involves a potentially large and dynamically
changing number of requests from widely distributed users
in global user regions U . Suppose that the entire time
span, e.g., a billing day, is divided into fixed-size execution
periods. During time period t, we represent the workload
from user region u (u ∈ U) in terms of application request
rate as γu(t).

Multiple application instances can be deployed in par-
allel and each application instance independently processes
a subset of the incoming requests [6]. Following [51], [52],
the average resource consumption per request over a long
sequence of requests is highly stable. Therefore, for an
application instance, the variation of workload depends on
the fluctuation of request rates from the corresponding user
regions. Let n(t) denote the number of application instances
during time period t. Similar to [6], we adopt a hierarchical

User

Container ized
Applications

Container
Manager

Fig. 1. A simplified system architecture of container scaling for applica-
tion deployment in geo-distributed clouds based on [6].

architecture to manage all application instances scalably,
following the master-workers pattern [53].

We consider a set of geo-distributed data centers D. In
data center d ∈ D, a collection of resources can be allocated
to containers for application deployment. There are usually
four main kinds of resources for containers in public clouds:
CPU, memory, storage, and bandwidth [28]. Since the com-
puting resource is the main factor, we assume that there
is sufficient memory, storage and network capacity for the
containerized application [54], [55]. During time period t
we use xd(t) (xd(t) ∈ N) to denote the provisioned CPU,
e.g., the number of vCPUs, to the container in data center
d for application instance Ad(t). Note that if there is not an
application instance to be deployed in d, then xd(t) = 0
holds. When an application instance is deployed in a single-
vCPU container in d, then xd(t) = 1 holds. The application
deployment during t can be completely captured by the
vCPU provision vector CPU(t) = [xd(t)]d∈D, including the
numbers of vCPUs provisioned in all cloud data centers.

Let UCd denote the unit cost of vCPUs for containers
in data center d. Based on the application deployment
during t, i.e., CPU(t), the deployment cost of all application
instances during t can be calculated by:

DC(t) =
∑
d∈D

xd(t)UCd. (1)

We use σu,d(t) ∈ [0, 1] to denote the percentage of
requests from user region u to application instance Ad(t)
during time period t. The workload of application instance
Ad(t) during t can be calculated by:

λd(t) =
∑
u∈U

γu(t)σu,d(t), (2)

where
∑

d∈D σu,d(t) = 1 guarantees that all application re-
quests from user regions will be processed. The aggregated
application workload from all user regions during t can be
determined as:

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

ω(t) =
∑
u∈U

γu(t). (3)

Let µd(t) denote the capacity of Ad(t), i.e., the maximum
amount of requests processable by Ad(t) per time unit. Fol-
lowing [56], we model each individual application instance
as an M/M/1 queue. According to Little’s Law [57], the
average request processing time of Ad(t) depends on both
µd(t) and λd(t):

T arp
d (t) =

1

µd(t)− λd(t)
, (4)

where µd(t) > λd(t) guarantees that the capacity of Ad(t) is
greater than its workload.

Let T rtd
u,d denote RTD between user region u and data

center d, we can calculate the average response time for all
the user requests during time period t by:

ART (t) =

∑
d∈D

∑
u∈U γu(t)σu,d(t)(T

rtd
u,d + T arp

d (t))

ω(t)
. (5)

With the goal to minimize TDC, i.e., the cumulative
deployment cost over the time span involving T consecutive
periods, i.e., t ∈ {1, ..., T}, the LACS problem can be
formulated as follows:

min TDC =
T∑

t=1

DC(t), (6)

subject to:

ART (t) ⩽ m ∀t ∈ {1, ..., T}. (7)

Constraint (7) guarantees that ART at any period over
the entire time span does not exceed the acceptable thresh-
old m set by the application provider. In the next section,
we introduce our DeepScale algorithm to solve the LACS
problem.

4 DeepScale FOR LACS
Our proposed algorithm DeepScale solves the location-aware
container scaling (LACS) problem through auto-scaling con-
tainers both horizontally and vertically for application de-
ployment in geo-distributed clouds. In this section, we start
with a high-level overview of DeepScale and then describe
the details on how DeepScale realizes container scaling by a
deep reinforcement learning (DRL)-based policy.

4.1 Overview of DeepScale
To improve the effectiveness of the scaling actions, we
include a workload prediction model in DeepScale to accu-
rately predict future workloads of cloud applications [20].
DeepScale realizes container scaling by a DRL-based policy.
Taking the predicted workloads and monitored container
status as input, the scaling policy decides when and what
scaling actions are performed to minimize the total deploy-
ment cost (TDC) subject to the constraint on the average
response time (ART). Fig. 2 illustrates the workflow of
DeepScale.

Observation(3) Execution
Workload
Prediction

Model

(1) Train

Container
Scaling

Environment

Action

Action

DRL-based
Scaling
Policy

(2) DRL training

Historical
Workload

Traces

Observation

Fig. 2. Workflow of DeepScale.

Concretely, DeepScale first trains the workload prediction
model based on historical workload traces. Different time
series prediction methods, e.g., long short-term memory
(LSTM) [58], can be used to built the workload prediction
model. Afterwards, a DRL-based scaling policy is trained by
utilizing the predicted future workloads. Finally, the trained
prediction model and scaling policy can be commissioned to
scale containers for serving incoming application requests.
Before each time period, DeepScale first predicts the future
application workloads using the prediction model. Based
on the predicted workloads and the container status (e.g.,
resource utilization [6]), DeepScale makes container scaling
decisions using the scaling policy.

Because different containers may have largely different
capacities in terms of vCPU numbers, DeepScale applies
capacity-based weighted Round-Robin (CWRR) [59] to dis-
patch requests among all application instances. CWRR can
be implemented in the load balancing modules offered by
cloud providers, e.g., AWS3. With CWRR, the percentage of
requests from user region u to application instance Ad(t),
i.e., σu,d(t), is determined by:

σu,d(t) =
xd(t)∑

d∈D xd(t)
. (8)

The rationale of CWRR-based request dispatching is
two-fold. On the one hand, CWRR is commonly used in
practice due to its simplicity and low computational cost
[60]. On the other hand, CWRR can achieve effective load
balancing by dispatching more user requests to the appli-
cation instances with larger capacities [59]. Thus it can pre-
vent any application instance from being heavily utilized,
thereby reducing the risk of long queuing time. Next, we
describe the details on how DeepScale trains the DRL-based
scaling policy.

We define a DRL-based scaling system for the LACS
problem as follows.

• Observation: The agent observation includes the in-
formation about the current containers for applica-
tion deployment and future application workloads.

• Action: To perform scaling actions, i.e., to adjust the
number of containers among data centers (horizontal

3. https://aws.amazon.com/elasticloadbalancing/application-load-
balancer. Accessed: May. 24, 2023.

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Workload
Prediction

Model

Observation

Application
Deployment
Environment

State
Constructor
(Multi-step
predicted

workloads)

DQN
(Penalty-

based
reward

function)

Action
Executor
(Domain-
tailored

heuristics)

Low-level
decision

High-level
decisions(t)

DRL-based Scaling Policy

Reward

Fig. 3. Training DRL-based Scaling Policy.

scaling) and/or the number of vCPUs provisioned to
current containers (vertical scaling).

The DRL design challenge is to effectively minimize
TDC while handling constraint (7). Firstly, we introduce
a State Constructor to collect multi-step future workloads
using the workload prediction model. The essential infor-
mation can help deep Q-network (DQN) to make well-
informed scaling decisions. Secondly, the predicted work-
load is explicitly used by a heuristic-based Action Executor
to ensure that any scaling decisions made by DQN will not
prolong ART beyond the acceptable level. Finally, we pro-
pose a penalty-based reward function to guide constraint-
aware Q-learning. The DRL-based scaling policy is shown in
Fig. 3, which is composed of three components, i.e., a State
Constructor, a DQN, and an Action Executor. In the following,
we provide a detailed description of each component.

4.2 State Constructor
Three types of observation information are collected by the
State Constructor.

The current deployment of application instances: We
consider the current vCPU provision for application in-
stances, i.e., CPU(t), as the state feature because it decides
the deployment cost during t, i.e., DC(t), by eq. (1) and sig-
nificantly affects application average response time ART (t)
by eq. (4), eq. (8), and eq. (5).

The current resource utilization: The current containers’
CPU utilization rate is considered because it has a major
impact on the application average response time [18]. With
the help of geo-kube [6] for geo-distributed and elastic
deployment of containers in Kubernetes, we can periodi-
cally monitor the CPU utilization rate of containers through
RESTful APIs, e.g., the Metrics API in Kubernetes4. Because
the CWRR-based request dispatching can approach the load
balancing among all containers, we use the average utiliza-
tion rate u(t) as the state feature:

u(t) =

∑
d∈{i|xi(t)>0} ud(t)

n(t)
, (9)

where ud(t) is the monitored average CPU utilization rate
of application instance Ad(t) during t.

The multi-step future workloads: To make well-
informed scaling decisions in terms of cost-effectiveness, the

4. https://kubernetes.io/docs/tasks/debug-application-
cluster/resource-metrics-pipeline. Accessed: May. 24, 2023.

State Constructor considers multi-step future workloads. Par-
ticularly, the State Constructor utilizes the trained workload
prediction model to acquire the multi-step future workloads
by a recursive strategy [20]. That is, the predicted workload
is recursively used to predict the next workload. For exam-
ple, after w(t + 1) is predicted, it is considered as input of
the workload prediction model to predict the next workload
w(t+ 2). Similarly, w(t+ 2) is used to predict w(t+ 3), etc.
We consider the difference between the predicted workloads
in the future f time periods and the current workload, i.e.,
∆w(t) = [w(t+1)−w(t), w(t+2)−w(t), ..., w(t+f)−w(t)],
as the state feature. Here, we use the workload variations
based on the aggregated request rate rather than the request
rate from each user region since this is more relevant for
the DQN to learn to make high-level scaling decisions, e.g.,
change the total number of vCPUs provisioned to containers.
We will detail the high-level scaling decisions in the next
subsection.

To sum up, the output of the State Constructor is s(t) =
[CPU(t), u(t),∆w(t)], which describes the current vCPU
provision, average CPU utilization rate, and the predicted
workload variations.

4.3 DRL for Training DQN

When performing both vertical and horizontal scaling in
geo-distributed clouds, the number of potential scaling ac-
tions is indeterminate. For example, the possible actions
for horizontal scaling depend on the locations of current
application instances, not to mention the combination with
vertical scaling. Therefore, it is infeasible to design a fixed-
size action space in advance. We apply a novel method to
let the DQN make high-level scaling decisions, i.e., change
the total number of vCPUs provisioned to containers, and
introduce a heuristic-based Action Executor to make low-level
scaling decisions for concrete horizontal and vertical scaling
actions. Formally, we define the action space of the high-
level scaling decisions as A = {↑, ↓,→}, where ↑, ↓, and
→ represent to increase (scale-up), decrease (scale-down), or
maintain vCPU provision respectively.

We apply double Q-learning to learn the optimal Q-
function. The DRL-based scaling policy applies the DQN
in Fig. 3 as the function approximator. Following many
existing research works [23], [61], we use experience replay
[46] to stabilize Q-learning. To guide DRL to minimize TDC
over the time span subject to the constraint on ART , we
design a new reward function for DRL as follow:

r(s(t), a(t)) = −DC(t)−max(0, ρ(ART (t)−m)), (10)

where ρ is a penalty parameter for the scaling actions that
cannot satisfy the performance requirement.

The detailed procedures for training the DQN are shown
in Algorithm 1. At each time period t of an execution
episode, based on the current s(t), the DRL agent uses ϵ-
greedy policy to choose an action randomly with probability
ϵ and select the action with the maximum Q-value with
probability 1 − ϵ (step 4). The chosen action, i.e., a(t), is
performed through the Action Executor (step 5). At the next
time period t+ 1, the DRL agent obtains s(t+ 1), calculates
the reward r(s(t), a(t)) defined in eq. (10) (step 6), and

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Algorithm 1 Training the DQN.
Initialize: Experience replay memory D
Output: DQN parameters

1: for episode = 1 to Max Episode do
2: for t = 1 to T do
3: Obtain s(t) from the State Constructor
4: With probability ϵ select a random action, otherwise

select an action with the maximum Q-value
5: Perform container scaling using the chosen action

a(t) through the Action Executor
6: Obtain s(t + 1), calculate r(s(t), a(t)) based on eq.

(10)
7: Store transition (s(t), a(t), r(s(t), a(t)), s(t + 1)) in

D;
8: Update Q-value
9: end for

10: Update DQN parameters using new Q-value esti-
mates

11: end for

subsequently updates the Q-value (step 8). At the end of the
execution episode, the DRL agent trains all the connection
weight parameters of the DQN. The trained DQN will be
utilized in the next execution episode (step 10).

4.4 Action Executor

Obeying the high-level scaling decisions from the DQN, i.e.,
to scale-up, scale-down, or maintain the total vCPU number,
we design an Action Executor to make low-level scaling
decisions. For example, if a(t) = ↑ is made by the DQN,
the proposed Action Executor may add additional units of
vCPU to existing containers and/or launch new containers
in appropriate data centers. To closely follow large work-
load changes, three safety-aware heuristics are proposed
to quickly change the deployed capacity of application
instances. Note that the predicted application workload is
also considered by the Action Executor to ensure that any
low-level scaling decisions will not prolong the average
response time beyond the acceptable level.

4.4.1 Scale-up
When a high-level decision of scale-up is made, i.e., a(t) = ↑,
the Action Executor will iteratively choose the data center
with the highest scale-up benefit to increase one vCPU unit.
Particularly, the benefit of data center d in terms of perfor-
mance improvement and cost-saving is estimated by:

benefit+d =
ANL(t)−ANL+

d (t)

DC+
d (t)−DC(t)

, (11)

where ANL+
d (t) and DC+

d (t) are the new average network
latency and deployment cost provided that one vCPU unit
is added in d. Concretely, the average network latency can
be calculated by:

ANL(t) =

∑
d∈D

∑
u∈U γu(t)σu,d(t)T

rtd
u,d

ω(t)
. (12)

Note that if there exists a container in data center d,
the benefit of d is estimated provided that one vCPU unit

Algorithm 2 Action Executor performs scale-up.
Input: High-level decisions to scale-up vCPUs.
Output: Low-level scaling actions.

1: Termination← False
2: while Termination = False do
3: Decide the data center d with the highest benefit+d

evaluated by eq. (11) provided that one vCPU unit is
added to the container or launch a new container with
one vCPU unit

4: Evaluate the new average CPU utilization rate u′(t)
based on eq. (13)

5: if u′(t) < 1 then
6: Termination← True
7: end if
8: end while
9: Re-dispatch requests based on CWRR

is added to this container (vertical scaling). Otherwise, the
benefit is estimated provided that a new container with one
vCPU unit is launched in d (horizontal scaling). Next, we
introduce a safety-aware mechanism to allocate a sufficient
number of vCPUs in one scaling action. After increasing
one vCPU unit, the new average CPU utilization rate can be
estimated by:

u′(t) =
w(t+ 1)∑

d∈{i|xi(t)>0} µ
′
d(t)

, (13)

where w(t+ 1) is the workload during the next time period
predicted by the workload prediction model and µ′

d(t) de-
notes the new capacity of Ad(t). If u′(t) ⩾ 1, one more vCPU
unit is added following the above process. Otherwise, the
Action Executor stops scaling up vCPUs. The safety-aware
mechanism aims to handle the situation when there is a
surge in workload. Finally, user requests are re-dispatched
based on VWRR for load balancing. Algorithm 2 describes
the overall procedure of scale-up vCPUs by the proposed
Action Executor.

4.4.2 Scale-down

When a high-level decision of scale-down is made, i.e.,
a(t) = ↓, the Action Executor will attempt to reduce one
vCPU unit from the existing container. Note that in order
to modify the CPU resources assigned to containers, Kuber-
netes recreates the corresponding Pod (in one-container-per-
Pod model). In practice, connection draining can be applied to
ensure that all the requests are served. Through connection
draining, the existing connection to application instances
can be kept alive to complete in-flight requests during the
process of starting up new containers. The mechanism is
offered by many cloud providers, e.g., AWS [62]. Here,
we introduce another safety-aware mechanism to avoid the
potential deterioration of application performance. Partic-
ularly, the Action Executor first estimates the average CPU
utilization rate u′(t) after reducing one vCPU unit from the
current containers defined eq. (13). If u′(t) < 1, the Action
Executor reduces the vCPU unit from the existing container

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Algorithm 3 Action Executor performs scale-down.
Input: High-level decisions to scale-down vCPUs.
Output: Low-level scaling actions.

1: Termination← False
2: while Termination = False do
3: Evaluate the new average CPU utilization rate u′(t) if

one vCPU unit is reduced based on eq. (13)
4: if u′(t) < 1 then
5: Decide the data center d with the highest benefit−d

evaluated by eq. (14) provided that one vCPU unit
is reduced from the container

6: else
7: Termination← True
8: end if
9: end while

10: Re-dispatch requests based on CWRR

in the data center c with the largest scale-down benefit, which
is estimated by:

benefit−d =
DC(t)−DC−

d (t)

ANL−
d (t)−ANL(t)

, (14)

where ANL−
d (t) and DC−

d (t) are the new average network
latency and deployment cost after decreasing one vCPU
unit in d. In case that u′(t) ⩾ 1, the Action Executor
aborts decreasing vCPUs to prevent containers from being
heavily utilized and potentially resulting in a substantially
prolonged response delay. Algorithm 3 presents the overall
process to scale-down vCPUs by our proposed Action Ex-
ecutor.

4.4.3 Maintain
When a maintain decision is made, i.e., a(t) = →, the
Action Executor will attempt to reduce deployment cost
and improve application performance by reconfiguring the
current containers. Particularly, the Action Executor first
determines the data center with the largest benefit+d de-
fined in eq. (11) for increasing one vCPU unit. Then the
Action Executor determines the data center with the largest
benefit−d defined in eq. (14) for decreasing one vCPU unit.
Let ANL′(t) and DC ′(t) denote the new average network
latency and deployment cost after the reconfiguration. In
many cases, we have ANL′(t) < ANL(t) ∧ DC ′(t) >
DC(t) or DC ′(t) < DC(t) ∧ ANL′(t) > ANL(t). The
Action Executor only performs the low-level scaling when
ANL′(t) < ANL(t) ∧ DC ′(t) < DC(t) to avoid reconfig-
uring the current containers too frequently.

In summary, as shown in Fig. 3 our newly designed
multi-step predicted workloads, penalty-based reward func-
tion, and safety-aware heuristics are integrated into the
three components of the DRL-based scaling policy to realize
both the cost minimization and constraint satisfaction of the
LACS problem.

5 PERFORMANCE EVALUATION

In the absence of a publicly available global cloud testbed,
we conduct a series of simulation studies to examine the

(a) WikiBench (b) NASA HTTP

Fig. 4. Application worklaod

performance of DeepScale using the real-world datasets. By
using realistic container pricing and workloads for cloud
applications, we compare the performance of DeepScale with
several state-of-the-art baselines. The highlights are:

• DeepScale can consistently satisfy the constraint on
the average response time (ART), while some base-
lines cannot in some problem instances.

• For different problem instances in terms of applica-
tion types and workloads, DeepScale achieves up to
39% savings in terms of the total deployment cost
(TDC).

5.1 Datasets
We collect the real container pricing schemes in April 2023
from AWS [15]. 18 major Amazon data centers (see TABLE
1) have been included in the experiments. Referring to [14],
we adopt 82 user regions from 35 countries on 6 continents
in the Sprint IP Network5 to simulate the global user com-
munity. To evaluate the network latency between users and
deployed services, we use the observation information in
the Sprint6 IP backbone network databases [18].

We use real traces of user requests based on the public
benchmark WikiBench [26] and NASA HTTP [27] to create
workloads for our experiments. WikiBench is a Web hosting
benchmark allowing the stress-test of systems designed
to host Web applications. Following [63], our experimen-
tal workload contains 1% of all user requests issued to
Wikipedia (in all languages). NASA HTTP contains HTTP
requests to the NASA Kennedy Space Center WWW server
in Florida. Refer to [6], the request rate of NASA HTTP
is increased by 180 times to replay millions of requests
daily. Referring to [64], [65], we apply Facebook subscribers
statistics7 to simulate the distribution of application requests
among different user regions.

We randomly extract one day’s workload from Wik-
iBench and NASA HTTP for training and use the workload
on the following day for testing. The duration of each time
period, i.e., the time interval for making scaling decisions,
is set to 3 minutes as in the articles [5], [6]. Fig. 4 depicts
the request rate (i.e., number of requests per second) during
the two days. That is, the left 480 time periods are used for

5. https://www.sprint.net/tools/network-maps. Accessed: May. 24,
2023.

6. https://www.sprint.net/tools/ip-network-performance.
Accessed: May. 24, 2023.

7. https://worldpopulationreview.com/country-
rankings/facebook-users-by-country. Accessed: May. 24, 2023.

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

training and the right 480 time periods are used for testing.
From Fig. 4, we can observe that the historical workloads
variations match well with future workloads changes on
the WikiBench dataset. As a result, the prediction model
can predict future workloads with high accuracy. In com-
parison, on the NASA HTTP dataset, future workload trend
deviates significantly from the historical track, making this
dataset much harder to handle by the prediction model.
We are tasked to deploy 3 applications reported in the
article [18]. We follow [14] closely to calibrate the queuing
model, particularly the request rate distribution based on
real-world business web applications reported in the article
[66], in term of resource demands for the individual appli-
cations. The application processing time for a single request
is approximately 10ms (application 1), 15ms (application 2),
and 20ms (application 3), running on the container with one
vCPU unit. To sum up, six problem instances are included
in our experiments. For convenience, we denote them as
Wiki app-1, Wiki app-2, Wiki app-3, NASA app-1, NASA app-
2, NASA app-3, respectively.

5.2 Algorithm Implementation
We implement DeepScale using PyTorch [67] and build
a novel simulator using openAI‘s gym environment
[68]. Following the basic principles for cloud experi-
ment reproducibility in the article [69], we have made
the representative code and data publicly available at:
https://zenodo.org/record/8166602. For the workload pre-
diction model, we apply a long short-term memory (LSTM)
neural network because it can accurately predict cloud
application workloads in many existing research works and
production systems [20], [70]. We adopt the same parameter
settings as [20] for the LSTM-based prediction model: a
hidden layer with 20 LSTM units and the number of future
time periods to be predicted f = 5. We use root-mean-
square error (RMSE) as the loss function and Adam [71] as
the optimizer for training the LSTM neural network. In our
experiments, the LSTM neural network can converge within
100 episodes and provide good performance in predicting
future workloads (see Subsection 5.6).

In our implementation, the DQN has two fully-
connected hidden layers, each with 64 nodes. The input
and hidden layers use rectified linear units (ReLUs). We also
apply Adam as the optimizer. The initial and minimum ϵ,
i.e., the probability that DRL randomly chooses an action (in
step 4 of Algorithm 1), are set as 0.2 and 0.01, respectively
[23]. Following [23], other algorithm settings of the DQN
include: learning rate α is 0.001, and the mini-batch size is
32. The DQN is trained for 200 episodes because it always
converges within 200 episodes. Refer to [12], the acceptable
threshold of ART , i.e., m in constraint (7), is set to 150
ms, since a latency up to 200ms will deteriorate the user
experience significantly [72].

5.3 Baselines
To evaluate the performance of DeepScale, we further imple-
ment an industry scaling strategy and two state-of-the-art
baselines in our experiments.

Amazon auto-scaling service [19] provides many con-
tainer scaling methods to handle the increasing or decreas-
ing workload of an application. Referring to [73], we apply

Fig. 5. ART of problem instances.

the rule-based auto-scaling method by setting an upper
threshold (0.8) and a lower threshold (0.6) on the CPU
utilization rate of containers. For convenience, we denote
this baseline algorithm as AWS-Scale. Concretely, if the CPU
utilization rate is above the upper threshold, AWS-Scale will
scale-up the system. In case the CPU utilization rate is below
the lower threshold, AWS-Scale will scale-down the system.
To realize the location-aware container scaling, Algorithm 2
and Algorithm 3 are used in AWS-Scale to make low-level
scaling decisions according to the threshold-based scale-up
and scale-down decisions.

A-SARSA [10] is a recently proposed RL algorithm for
auto-scaling containers. A-SARSA first combines ARIMA
and a feedforward neural network to predict the CPU uti-
lization rate and response time. Then the two predicted val-
ues are respectively discretized into different levels. Finally,
a Q-table is trained by SARSA to make scaling decisions. For
a fair comparison, we have fine-tuned the ARIMA model to
achieve highly competitive accuracy for workload predic-
tion with our LSTM-based model. Concretely, the RMSE of
the predicted workload w(t+ 1) on the testing day are 1.86
and 2.02 requests/s respectively (1.78 and 2.05 requests/s
for our LSTM-based model detailed in Subsection 5.6). To
control the constraint on the response time, A-SARSA ap-
plies a penalty-based reward function. Because A-SARSA
only considers the container scaling within a single cloud
data center, we also allow A-SARSA to use low-level scaling
decisions made by our Action Executor.

The deep Q-learning container migration algorithm
(DQLCM) [28] is proposed for delay-sensitive applications
in fog computing. To select an appropriate action, DQLCM
introduces problem-specific strategies for container migra-
tion. Particularly, two thresholds of CPU utilization rate, i.e.,
thunder and thover, are predefined to classify fog nodes into
different groups, i.e., under-utilized nodes and over-utilized
nodes. For the nodes in different groups, different heuristics
are proposed to determine the migrated containers and their
destination. The action set of DQLCM is determined as
optional container placement generated by these heuristics.
To apply DQLCM to the LACS problem, we treat container
migration as container scaling and fog nodes as application
instances at different locations. thunder and thover are set
as 0.5 and 0.9 respectively because the combination of

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

Fig. 6. TDC of constraint-compliant problem instances.

parameters demonstrates the best performance in terms of
both the cost minimization and constraint satisfaction in our
experiments.

5.4 Constraint Compliance
To compare algorithm performance, we run each exper-
iment 30 times. Fig. 5 shows ART of different problem
instances over the testing day achieved by DeepScale and
the three baselines. The red line in Fig. 5 is the predefined
constraint m, i.e., 150 ms.

For the WikiBench workload, ART of app-3 by AWS-
Scale is slightly over m. The three RL-based algorithms are
capable of meeting the constraint on ART . Particularly, A-
SARSA always has the lowest ART . Note that the LACS
problem aims to minimize TDC subject to the constraint on
ART . The lower ART obtained by A-SARSA is undesirable
due to its high TDC (see Subsection 5.5). For DQLCM, ART
is longer than DeepScale for app-1 and app-3, while shorter
than DeepScale for app-2.

For the NASA HTTP workload, the two threshold-based
algorithms, i.e., AWS-Scale and DQLCM, significantly exceed
the predefined constraint m for all applications. This indi-
cates that using two fixed thresholds for container scaling is
insufficient to satisfy the performance constraint. With the
help of the penalty-based reward function and safety-aware
heuristics, A-SARSA and DeepScale can satisfy constraints
for all applications.

5.5 TDC Comparison
In this subsection, we compare DeepScale with the baselines
for the constraint-compliant problem instances in terms of
TDC as reported in Fig. 6.

TABLE 4
Performance of workload prediction model in terms of RMSE

(requests/s)

w(t+ 1) w(t+ 2) w(t+ 3) w(t+ 4) w(t+ 5)
WikiBench 1.78 2.76 3.60 4.35 5.08

NASA HTTP 2.05 3.38 4.51 5.44 6.34

DeepScale saves cost by 22% for app-1 and 21% for app-2
compared to AWS-Scale for the WikiBench workload. This
shows that the industry-leading threshold-based methods
may not be suitable for scaling cloud applications with
dynamically changing and widely distributed workloads.
The bad performance on the deployment cost in our exper-
iments is consistent with previous observations reported in
the article [73].

A-SARSA spends 21% more TDC for the WikiBench
workload and 39% more TDC for the NASA HTTP work-
load than DeepScale on average over different applications.
Through our newly proposed multi-step workload predic-
tion, the scaling decisions made by DeepScale is more cost-
effective. Beside, DeepScale can handle high-dimensional
state space more effectively by using DQN comparing with
the discretization technique adopted in A-SARSA.

DeepScale achieves on average 8% less TDC than
DQLCM for the WikiBench workload, which also demon-
strates the effectiveness of the workload prediction model.

The observed performance differences between Deep-
Scale and all baselines are all verified through a statistical
test (Wilcoxon Rank-Sum test) with a significance level of
0.05. From the above results, we can conclude that Deep-
Scale can achieve the lowest TDC and highly likely satisfy
constraints on ART . The mean and standard deviation of
ART and TDC are presented in TABLE 3. The results are
presented in italic for the problem instances on which the
baseline algorithms cannot satisfy the constraint on ART .
From TABLE 3 we observe that ART and TDC achieved by
DeepScale has a small standard deviation over 30 repeated
experiments, confirming its stability and reliability for the
LACS problem.

5.6 Further Analysis
To verify the reliability of the workload prediction model
used by DeepScale, we evaluate the performance of long
short-term memory (LSTM)-based workload prediction
model in terms of root-mean-square error (RMSE). The
RMSE of the predicted workloads in future f time periods
on the testing day are shown in TABLE 4. From TABLE 4,
we can see the RMSE ranges from 1.78 to 5.08 requests/s for

TABLE 3
Algorithm performance comparison for the LACS problem with different problem instances (ART in ms, TDC per year in USD, the best is

highlighted).

Problem AWS-Scale A-SARSA DQLCM DeepScale
Instance ART TDC ART TDC ART TDC ART TDC

Wiki app1 147.34±0 1646.15±0 137.88±1.44 1602.35±94.9 147.61±1.27 1361.45±65.7 146.24±0.97 1284.8±58.4
Wiki app2 149±0 2310.45±0 138.45±0.91 2208.25±80.3 146.43±0.63 1985.6±54.75 146.85±0.84 1814.05±18.25
Wiki app3 150.98±0 3095.2±0 139.2±1.64 2828.75±237.25 148.81±1.14 2642.6±262.8 146.63±1.06 2401.7±69.35

NASA app1 381.76±0 865.05.2±0 130.77±1.56 1660.75±146 242.26±0.44 824.9±160.6 147.37±1.08 1124.2±80.3
NASA app2 359.13±0 1178.95±0 132.22±3.06 2273.95±266.45 248.26±0.57 1084.05±208.05 147.8±0.92 1580.45±127.75
NASA app3 334.08±0 1543.95±0 132.26±2.03 2595.15±182.5 237.7±0.77 1715.5±281.05 146.83±1.34 2069.55±164.25

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Fig. 7. TDC of NASA app-3 on the testing day.

the WikiBench workload and from 2.05 to 6.34 requests/s for
the NASA HTTP workload. We can calculate a normalized
RMSE by:

NRMSE =
RMSE

ymax − ymin
, (15)

where ymax and ymin are the maximum and minimum
workloads on the testing day. By calculation, the NRMSE of
the workload prediction model for predicting the WikiBench
workload and the NASA HTTP workload in the next time
period are 0.95% and 1.36% respectively. The results are
reliable for DeepScale to make scaling decisions [20].

Next, we depict the change of TDC and ART obtained
by DeepScale on the testing day across all learning episodes
in Fig. 7 and Fig. 8. For the ablation study, the performance
of DeepScale with single-step predicted workload (DeepScale
with single-step prediction for short) and DeepScale without
using predicted workloads (DeepScale without prediction for
short) are also included in Fig. 7 and Fig. 8. Concretely, the
State Constructor of DeepScale with single-step prediction only
utilizes w(t+1) as the prediction information. Also, w(t+1)
is used by Action Executor to generate constraint-compliant
scaling decisions. For DeepScale without prediction, the State
Constructor does not collect the information of predicted
workloads. Meanwhile, the Action Executor makes low-level
scaling decisions based on the current CPU utilization rate.
We only present the results with respect to the problem
instance of NASA app-3 while a similar trend has been
observed for other problem instances. Fig. 7 shows that
TDC of the three algorithms becomes flattened after about
50 episodes. By utilizing multi-step future workloads from
the workload prediction model, TDC of DeepScale is 3%
less than DeepScale with single-step prediction and 5% less
than DeepScale without prediction, confirming the importance
of considering future workloads on cost-saving. In Fig. 8,
we can observe that ART of DeepScale and DeepScale with
single-step prediction falls strictly under m (red line) after
about 100 episodes, while DeepScale without prediction cannot
effectively learn constraint-compliant policies. The results
show that using the predicted workload in Action Executor
is very helpful to reduce ART for meeting the performance
constraint.

After training, A-SARSA, DQLCM, and DeepScale can
scale containerized applications for incoming requests with

Fig. 8. ART of NASA app-3 on the testing day.

TABLE 5
Performance comparison with different m (ART in ms, TDC per year

in USD.
Problem 140ms 160ms
Instance ART TDC ART TDC

Wiki app-1 138.42±0.28 1910.82±44.9 157.26±1.48 1255.25±45.28
Wiki app-2 138.96±0.45 2636.93±56.21 158.02±0.89 1795.01±66.29
Wiki app-3 139.19±0.74 3420.37±74.12 158.41±0.72 2334.77±50.37

NASA app-1 137.96±0.89 1255.95±65.92 158.83±0.49 999.45±71.24
NASA app-2 138.24±0.67 1709.69±83.65 157.72±0.84 1404.92±56.77
NASA app-3 138.55±0.98 2291.99±52.7 158.49±0.66 1837.4±99.23

trivial computational overhead. Particularly, the total time
required to make a high-level scaling decision using DQN
and a low-level scaling decision through our heuristic-based
Action Executor is within 1 ms. The training time of Deep-
Scale is within 30 minutes, which includes the training of
the LSTM-based workload prediction model and the DRL-
based scaling policy. Periodical use of DeepScale every day is
highly feasible in practice. The training time of A-SARSA is
similar to DeepScale. The training of DQLCM takes a longer
time due to a more complex action space (about 5 hours).

Finally, we apply DeepScale to solve the LACS problem
with a more stringent threshold, i.e., m = 140ms and a more
lax threshold, i.e., m = 160ms. The mean and standard
deviation of ART and TDC are presented in TABLE 5.
From TABLE, 5 we observe that DeepScale still can satisfy
constraints on ART for all problem instances. A smaller m
results in larger TDC while a larger m contributes to cost
saving.

6 DISCUSSION

From the experimental results, we can see the effectiveness
of DeepScale for solving the LACS problem. The following
issues deserve further investigations.

Scope. As confirmed by many existing studies [74], it is a
common practice for modern applications to be architected
as stateless as possible for container-level scalability, e.g.,
search engines and social media [75]. In line with this
trending architectural style, we focus on scaling the stateless
applications in the paper. Besides, we assume that each
application instance, as a separate service, is deployed to
one container. This is a common assumption in the literature
[76], [77] and widely exercised in the industry for easier
auto-scaling [78]. The proposed algorithm is inapplicable to
the scenario where two or more applications running within
the same container.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

0 50 100 150 200 250 300 350 400
Bounds of response time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pe

rc
en

til
es

Wiki app-1
NASA app-1

Fig. 9. Percentiles under the response time bounds for app-1.

In this paper, we focus on the application performance in
terms of the response time. The response time is measured
from the moment a user makes an application request to
the moment when this user receives the corresponding re-
sponse, taking into account both the request processing time
and round-trip delay between the user and an application
instance. Referring to [28], [54], [55], we assume that there
is sufficient memory for the applications to support the
temporary storage and fast access. Therefore, the request
processing time is significantly affected by the CPU utiliza-
tion of containers. That is, the experimental results may not
apply directly to some memory-bound applications.

Tail response time. In this paper, we consider the con-
straint on the average response time with respect to widely
distributed user requests, because it seriously affects the
user satisfaction with applications [12], [13]. In the industry,
tail response time is also considered to provide deep insights
into the performance of some cloud applications under high
load [79]. We measured the distribution of the response time
achieved by DeepScale on the testing day. Subject to the
constraint on the average response time, i.e., 150ms in our
experiments, 99% of requests are served within 300ms for
all the problem instances. For example, Fig. 9 demonstrates
the percentiles under the response time bounds ranged from
0ms to 400ms for app-1. In Fig. 9, we can observe that 99% of
user requests can be served within 285ms for the WikiBench
workload and 292ms for the NASA workload. Several stud-
ies have proven that the performance is accepted by many
applications [80], [81].

Limitations. In practice, workload contention may occur
when an application imposes heavy workload on system
resources [82]. In this paper, we apply the proactive strategy
to ensure that the workload will not exceed to the critical
level of the container capacity. In our experiments, the
CPU utilization of containers is consistently below 80%, the
previous study showed that the level of contention will not
significantly affect the average request processing time [83].

Except for the number of allocated vCPUs, the capacity
of an application instance is also impacted by the appli-
cation caching, hyper-threading architecture, and potential
contention. Even so, the number of vCPU is still an im-

portant measure of capacity for containerized applications
[7], [33]. We will take the other effects on the capacity of
application instances into account in our future work.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed an effective deep reinforcement
learning algorithm, DeepScale, to auto-scale containerized
applications in geo-distributed clouds. We first formulated
the location-aware container scaling (LACS) problem to
minimize the total cost over a time span under the constraint
on the average response time for containerized application
deployment. By training the newly designed holistic scaling
policy with newly designed algorithmic components, Deep-
Scale can achieve both cost-effectiveness and constraint sat-
isfaction. Finally, we evaluated the effectiveness of DeepScale
through conducting extensive simulation studies on real-
world datasets. The experiments with realistic application
workloads showed that DeepScale can effectively satisfy the
constraint on the average response time for a variety of
applications under significantly different workloads. In the
meantime, DeepScale can significantly reduce the deploy-
ment cost of applications compared with the state-of-the-
art baselines, including Amazon auto-scaling service and
recently proposed RL-based algorithms.

In this paper, we consider the constraint on the av-
erage response time because it seriously affects the user
satisfaction of applications [12], [13]. We believe it is a
promising future direction to simultaneously consider other
constraints, such as service availability among different
cloud data centers and data sovereignty. Designing novel
safe RL algorithms for solving the LACS problem with mul-
tiple potentially conflicting constraints will be an interesting
research topic. Furthermore, we will evaluate DeepScale on
real-world geo-distributed cloud platforms.

REFERENCES

[1] R. Xu, Y. Wang, H. Luo, F. Wang et al., “A sufficient and necessary
temporal violation handling point selection strategy in cloud
workflow,” Future Generation Computer Systems, 2018.

[2] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microser-
vice applications in clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, pp. 98–115, 2020.

[3] T. Shi, H. Ma, and G. Chen, “Energy-aware container consolidation
based on pso in cloud data centers,” in IEEE Congress on Evolution-
ary Computation (CEC), 2018, pp. 1–8.

[4] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling
live migration of containerized applications across clouds,” in
IEEE Conference on Computer Communications (INFOCOM), 2020,
pp. 2529–2538.

[5] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical
scaling of container-based applications using reinforcement learn-
ing,” in IEEE International Conference on Cloud Computing (CLOUD),
2019, pp. 329–338.

[6] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-
distributed efficient deployment of containers with kubernetes,”
Computer Communications, vol. 159, pp. 161–174, 2020.

[7] M. Nardelli, V. Cardellini, and E. Casalicchio, “Multi-level elastic
deployment of containerized applications in geo-distributed en-
vironments,” in IEEE International Conference on Future Internet of
Things and Cloud (FiCloud), 2018, pp. 1–8.

[8] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Adaptive AI-
based auto-scaling for kubernetes,” in IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2020,
pp. 599–608.

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

[9] Z. Zhong and R. Buyya, “A cost-efficient container orchestra-
tion strategy in kubernetes-based cloud computing infrastructures
with heterogeneous resources,” ACM Transactions on Internet Tech-
nology (TOIT), vol. 20, pp. 1–24, 2020.

[10] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, “A-SARSA: A pre-
dictive container auto-scaling algorithm based on reinforcement
learning,” in IEEE International Conference on Web Services (ICWS),
2020, pp. 489–497.

[11] B. Tan, H. Ma, and Y. Mei, “A hybrid genetic programming
hyper-heuristic approach for online two-level resource allocation
in container-based clouds,” in IEEE Congress on Evolutionary Com-
putation (CEC), 2019, pp. 2681–2688.

[12] Y. Wu, C. Wu, B. Li, L. Zhang et al., “Scaling social media appli-
cations into geo-distributed clouds,” IEEE/ACM Transactions On
Networking, vol. 23, pp. 689–702, 2014.

[13] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization for
dynamic replication and migration of data in cloud data centers,”
IEEE Transactions on Cloud Computing, vol. 7, pp. 705–718, 2017.

[14] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and
budget-constrained service deployment for composite applica-
tions in multi-cloud environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, pp. 1954–1969, 2020.

[15] Amazon. (2022) AWS fargate pricing. [Online]. Available:
https://aws.amazon.com/fargate/pricing/

[16] Azure. (2022) Azure container instances pricing. [Online].
Available: https://azure.microsoft.com/en-us/pricing/details/
container-instances/

[17] Y. Aldwyan, R. O. Sinnott, and G. T. Jayaputera, “Elastic deploy-
ment of container clusters across geographically distributed cloud
data centers for web applications,” Concurrency and Computation:
Practice and Experience, p. e6436.

[18] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Cost-effective web
application replication and deployment in multi-cloud environ-
ment,” IEEE Transactions on Parallel and Distributed Systems, 2021.

[19] Amazon. (2022) AWS auto scaling. [Online]. Available: https:
//aws.amazon.com/autoscaling/

[20] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine
learning-based auto-scaling for containerized applications,” Neu-
ral Computing and Applications, vol. 32, pp. 9745–9760, 2020.

[21] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforce-
ment learning-based resource provisioning and task scheduling
for cloud service providers,” in Asia and South Pacific Design
Automation Conference. IEEE, 2018, pp. 129–134.

[22] N. Liu, Z. Li, J. Xu, Z. Xu et al., “A hierarchical framework of
cloud resource allocation and power management using deep rein-
forcement learning,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 372–382.

[23] D. Yi, X. Zhou, Y. Wen, and R. Tan, “Efficient compute-intensive
job allocation in data centers via deep reinforcement learning,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, pp.
1474–1485, 2020.

[24] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and
budget-constrained service brokering in multi-cloud via deep rein-
forcement learning,” in International Conference on Service-Oriented
Computing. Springer, 2021, pp. 756–764.

[25] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-
critical continuous control tasks,” in AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3387–3395.

[26] E.-J. van Baaren, “Wikibench: A distributed, wikipedia based web
application benchmark,” Master’s thesis, VU Amsterdam, 2009.

[27] Lawrence Berkeley National Laboratory. (2022) Traces available
in the internet traffic archive. [Online]. Available: http:
//ita.ee.lbl.gov/html/traces.html

[28] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, pp. 712–725, 2018.

[29] RANCHER. (2021) Hybrid cloud and multi cloud. [Online].
Available: https://rancher.com

[30] R. Hat. (2021) Red hat openshift container platform. [Online].
Available: https://www.openshift.com/products/container-pla
tform

[31] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic
vertical elasticity of docker containers with elasticdocker,” in IEEE
International Conference on Cloud Computing (CLOUD), 2017, pp.
472–479.

[32] C. de Alfonso, A. Calatrava, and G. Moltó, “Container-based
virtual elastic clusters,” Journal of Systems and Software, vol. 127,
pp. 1–11, 2017.

[33] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment
using containers with auto-scaling for microservices in cloud
environment,” Journal of Network and Computer Applications, vol.
160, p. 102629, 2020.

[34] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych et al., “Autopilot:
workload autoscaling at google,” in Fifteenth European Conference
on Computer Systems, 2020, pp. 1–16.

[35] V. Podolskiy, M. Mayo, A. Koay, M. Gerndt, and P. Patros, “Main-
taining slos of cloud-native applications via self-adaptive resource
sharing,” in IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 2019, pp. 72–81.

[36] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A hybrid, proactive auto-scaling mechanism on a
level-playing field,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, pp. 800–813, 2018.

[37] Y. M. Ramirez, V. Podolskiy, and M. Gerndt, “Capacity-driven
scaling schedules derivation for coordinated elasticity of con-
tainers and virtual machines,” in IEEE International Conference on
Autonomic Computing (ICAC), 2019, pp. 177–186.

[38] A. J. Fahs, G. Pierre, and E. Elmroth, “Voilà: Tail-latency-aware
fog application replicas autoscaler,” in International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS). IEEE, 2020, pp. 1–8.

[39] A. J. Fahs and G. Pierre, “Tail-latency-aware fog application replica
placement,” in International Conference on Service-Oriented Comput-
ing (ICSOC). Springer, 2020, pp. 508–524.

[40] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A compar-
ison of reinforcement learning techniques for fuzzy cloud auto-
scaling,” in IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2017, pp. 64–73.

[41] J. B. Benifa and D. Dejey, “RLPAS: Reinforcement learning-based
proactive auto-scaler for resource provisioning in cloud environ-
ment,” Mobile Networks and Applications, vol. 24, pp. 1348–1363,
2019.

[42] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad et al., “Fuzzy self-
learning controllers for elasticity management in dynamic cloud
architectures,” in International ACM SIGSOFT Conference on Quality
of Software Architectures (QoSA), 2016, pp. 70–79.

[43] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using ARIMA model and its impact on cloud appli-
cations’ QoS,” IEEE Transactions on Cloud Computing, vol. 3, pp.
449–458, 2014.

[44] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, pp. 1334–1373, 2016.

[45] V. Mnih, A. P. Badia, M. Mirza, A. Graves et al., “Asynchronous
methods for deep reinforcement learning,” in International Confer-
ence on Machine Learning, 2016, pp. 1928–1937.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu et al., “Human-
level control through deep reinforcement learning,” Nature, vol.
518, p. 529, 2015.

[47] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[48] D. Silver, A. Huang, C. J. Maddison, A. Guez et al., “Mastering the
game of go with deep neural networks and tree search,” Nature,
vol. 529, p. 484, 2016.

[49] J. Garcia and F. Fernández, “Safe exploration of state and action
spaces in reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 45, pp. 515–564, 2012.

[50] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained pol-
icy optimization,” in International Conference on Machine Learning.
PMLR, 2017, pp. 22–31.

[51] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in ACM Symposium on Cloud Computing, 2012, pp. 1–13.

[52] K.-C. Huang and B.-J. Shen, “Service deployment strategies for
efficient execution of composite saas applications on cloud plat-
form,” Journal of Systems and Software, vol. 107, pp. 127–141, 2015.

[53] D. Weyns, B. Schmerl, V. Grassi, S. Malek et al., “On patterns
for decentralized control in self-adaptive systems,” in Software
Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 76–
107.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[54] Z. Han, H. Tan, G. Chen, R. Wang et al., “Dynamic virtual machine
management via approximate markov decision process,” in IEEE
International Conference on Computer Communications (INFOCOM),
2016, pp. 1–9.

[55] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient man-
agement of data center resources for cloud computing: A vision,
architectural elements, and open challenges,” Eprint Arxiv, vol. 12,
pp. 6–17, 2010.

[56] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo et al., “A queuing theory
model for cloud computing,” The Journal of Supercomputing, vol. 69,
pp. 492–507, 2014.

[57] J. D. Little and S. C. Graves, “Little’s law,” in Building intuition.
Springer, 2008, pp. 81–100.

[58] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, pp. 1735–1780, 1997.

[59] V. Huang, G. Chen, P. Zhang, H. Li et al., “A scalable approach
to sdn control plane management: High utilization comes with
low latency,” IEEE Transactions on Network and Service Management,
vol. 17, pp. 682–695, 2020.

[60] I. Saidu, S. Subramaniam, A. Jaafar, and Z. A. Zukarnain, “A load-
aware weighted round-robin algorithm for IEEE 802.16 networks,”
EURASIP Journal on Wireless Communications and Networking, vol.
2014, pp. 1–12, 2014.

[61] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao,
“ADRL: A hybrid anomaly-aware deep reinforcement learning-
based resource scaling in clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp. 514–526, 2020.

[62] Amazon. (2023) Configure connection draining for your classic
load balancer. [Online]. Available: https://docs.aws.amazon.co
m/elasticloadbalancing/latest/classic/config-conn-drain.html

[63] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-
aware geographical load balancing of web applications for sus-
tainable data centers,” Journal of Network and Computer Applications,
vol. 83, pp. 155–168, 2017.

[64] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst:
A cloudsim-based visual modeller for analysing cloud computing
environments and applications,” in IEEE International Conference
on Advanced Information Networking and Applications (AINA), 2010,
pp. 446–452.

[65] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and
budget-constrained application replication and deployment in
multi-cloud environment,” in IEEE International Conference on Web
Services (ICWS), 2020, pp. 110–117.

[66] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in ACM SIGCOMM Conference
on Internet Measurement, 2010, pp. 267–280.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer et al., “Pytorch: An imper-
ative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[68] G. Brockman, V. Cheung, L. Pettersson, J. Schneider et al., “OpenAI
Gym,” arXiv preprint arXiv:1606.01540, 2016.

[69] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst et al.,
“Methodological principles for reproducible performance evalu-
ation in cloud computing,” IEEE Transactions on Software Engineer-
ing, vol. 47, pp. 1528–1543, 2019.

[70] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison
of arima and lstm in forecasting time series,” in IEEE International
Conference on Machine Learning and Applications (ICMLA), 2018, pp.
1394–1401.

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[72] R. Kuschnig, I. Kofler, and H. Hellwagner, “Improving inter-
net video streaming performance by parallel tcp-based request-
response streams,” in IEEE Consumer Communications and Network-
ing Conference, 2010, pp. 1–5.

[73] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo et al., “Autonomic
decentralized elasticity based on a reinforcement learning con-
troller for cloud applications,” Future Generation Computer Systems,
vol. 94, pp. 765–780, 2019.

[74] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” ACM SIGCOMM Computer
Communication Review, vol. 41, pp. 45–52, 2011.

[75] N. S. Gill. (2023) Stateful and stateless applications and its best
practices. [Online]. Available: https://www.xenonstack.com/ins
ights/stateful-and-stateless-applications

[76] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: a state-of-the-art review,” IEEE Transactions on Cloud
Computing, vol. 7, pp. 677–692, 2017.

[77] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, “Application de-
ployment using microservice and docker containers: Framework
and optimization,” Journal of Network and Computer Applications,
vol. 119, pp. 97–109, 2018.

[78] Kubernetes. (2023) Pods. [Online]. Available: https://kubernetes
.io/docs/concepts/workloads/pods/

[79] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, pp. 74–80, 2013.

[80] Amazon. (2023) The state of online retail performance. [Online].
Available: https://s3.amazonaws.com/sofist-marketing/State
+of+Online+Retail+Performance+Spring+2017+-+Akamai+and+S
OASTA+2017.pdf

[81] Enterspeed. (2023) How fast should your website be in 2022?
[Online]. Available: https://www.enterspeed.com/blog/how-fas
t-should-your-website-be

[82] A. Samir and C. Pahl, “Detecting and predicting anomalies for
edge cluster environments using hidden markov models,” in
International Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, 2019, pp. 21–28.

[83] N. Tsikoudis, A. Papadogiannakis, and E. P. Markatos, “LEoNIDS:
A low-latency and energy-efficient network-level intrusion detec-
tion system,” IEEE Transactions on Emerging Topics in Computing,
vol. 4, pp. 142–155, 2014.

Tao Shi received his Ph.D degree from Victoria
University of Wellington, New Zealand. He is
currently a Lecturer with the Science and Infor-
mation College, Qingdao Agricultural University,
China. His main research interests include cloud
computing and distributed system. His research
focuses on resource management and combina-
torial optimization in clouds.

Hui Ma received her B.E. degree from Tongji
University and her B.S. (Hons.), M.S. and Ph.D
degrees from Massey University. She is cur-
rently an Associate Professor at Victoria Univer-
sity of Wellington. Her research interests include
service computing, database systems, and re-
source allocation in clouds. She has served as a
PC member for more than 80 international con-
ferences, including seven times as a PC chair for
conferences and twice of a local co-chair.

Gang Chen received the Ph.D degree from
Nanyang Technological University (NTU), Singa-
pore. He is currently a Senior Lecturer with the
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand.
His research interests include reinforcement
learning, evolutionary computation and their ap-
plication to optimization and scheduling prob-
lems, resource management and load balancing
in networked systems.

Sven Hartmann received his Ph.D. in 1996 and
his D.Sc. in 2001, both from the University of Ro-
stock (Germany). From 2002 to 2007 he worked
first as an associate professor, then full profes-
sor for information systems at Massey University
(New Zealand). Since 2008 he is a full professor
of computer science and chair for databases and
information systems at Clausthal University of
Technology (Germany). There he is also serving
as academic dean at the Faculty of Mathematics,
Informatics and Mechanical Engineering. Sven

has more than 150 publications. He served as a PC member for more
than 80 conferences, including 10 times as PC chair. His research
interests include database systems, big data management, conceptual
modelling, and combinatorial optimization.

