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Abstract. As a key cloud management problem, Cost-aware Dynamic
Multi-Workflow Scheduling (CDMWS) aims to assign virtual machine
(VM) instances to execute tasks in workflows so as to minimize the total
costs, including both the penalties for violating Service Level Agreement
(SLA) and the VM rental fees. Powered by deep neural networks, Re-
inforcement Learning (RL) methods can construct effective scheduling
policies for solving CDMWS problems. Traditional policy networks in
RL often use basic feedforward architectures to separately determine
the suitability of assigning any VM instances, without considering all
VMs simultaneously to learn their global information. This paper pro-
poses a novel self-attention policy network for cloud workflow scheduling
(SPN-CWS) that captures global information from all VMs. We also de-
velop an Evolution Strategy-based RL (ERL) system to train SPN-CWS
reliably and effectively. The trained SPN-CWS can effectively process
all candidate VM instances simultaneously to identify the most suitable
VM instance to execute every workflow task. Comprehensive experiments
show that our method can noticeably outperform several state-of-the-art
algorithms on multiple benchmark CDMWS problems.

Keywords: Cloud Computing, Cloud Workflow Management, Dynamic
Multi-Workflow Scheduling, Self-Attention, Reinforcement Learning

1 Introduction

Numerous computationally intensive and resource-demanding applications (e.g.,
weather forecasting, tsunami detection) will be submitted daily as workflows to
a cloud broker for execution [5,7,14]. Each workflow comprises a collection of
interdependent tasks that must be efficiently processed by using multiple leased
virtual machine (VM) instances provided by major cloud providers, such as Ama-
zon EC2 [2,9]. As a primary challenge, the cloud broker must quickly determine
the type and number of VMs required to execute these tasks at the lowest pos-
sible cost. The broker then leases VM instances to process these workflows. This
challenge is widely known as the workflow scheduling (WS) problem [9]. Fig. 1
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illustrates how the broker schedules workflows on behalf of its users. Specifically,
users submit their workflows to the broker. Each workflow is associated with
user-defined Service Level Agreement (SLA) [19,24], requesting the broker to
meet the execution deadline to avoid any SLA violation penalties. Consequently,
the broker must dynamically maintain a desirable trade-off between VM rental
fee and SLA violation penalty, making the WS problem extremely difficult to
solve.
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Fig. 1: The diagram of the broker performing the workflow scheduling.

This study addresses the Cost-aware Dynamic Multi-Workflow Scheduling
(CDMWS) problem, where the broker handles multiple dynamically arriving
workflows and makes real-time scheduling decisions. Due to the dynamic and
combinatorial nature of the CDMWS problem, it is a well-known NP-hard prob-
lem [9]. To tackle this problem, the broker relies on a scheduling policy to make
real-time scheduling decisions and instantly respond to newly arriving workflows.
However, the suitability of using any scheduling policy may vary significantly
across different problem scenarios [3,21]. The broker may fail to achieve its per-
formance commitment and cost objectives upon using poorly designed policies
[22]. Designing scheduling policies is hence a major research issue for dynamic
multi-workflow scheduling.

Existing studies on scheduling policies can be classified into three categories:
manual approach, genetic programming hyper-heuristic (GPHH), and reinforce-
ment learning (RL) (see Section 2). However, most of those approaches use
priority rules to rank individual VMs, without considering the status of other
VMs. Further, most previously studied policy networks [3,9,10,26] adopt basic
feedforward architectures with fixed inputs and outputs. They prioritize each
candidate VM for task execution based solely on its own features, lacking the
ability to consider features across multiple VMs simultaneously, which is essen-
tial to accurately capture workflow status and VM relationships and crucial for
effective WS.

To tackle this research issue, we have the goal to propose a novel Self-
attention Policy Network for Cloud Workflow Scheduling (SPN-CWS) to solve
the CDMWS problem. In particular, for a given task to be scheduled, infor-
mation regarding all candidate VMs are fed together into SPN-CWS, which
then processes the global information using the self-attention mechanism. Sub-
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sequently, SPN-CWS outputs the priority value with respect to each VM based
on the global information and task-specific features. The VM with the highest
priority is then selected to execute the task. Additionally, we develop an Evo-
lution strategies-based RL [15] (ERL) system to train SPN-CWS. Compared to
gradient-based RL algorithms, ERL is more robust to varied hyperparameter set-
tings and can effectively cope with delayed or sparse rewards [10]. Furthermore,
ERL can expedite the training process through parallelization. The contributions
of our study are summarized below:

– We design a new SPN-CWS policy network that can effectively utilize global
information across all candidate VMs to make informed task scheduling de-
cisions. We adopt the first time in literature the self-attention mechanism in
SPN-CWS to scalably handle global relationships among all candidate VMs.

– We develop an ERL system based on our cloud simulator to reliably train
SPN-CWS. The trained SPN-CWS is subsequently employed by the broker
to execute workflows that arrive dynamically over time.

– We conduct comprehensive experiments to thoroughly examine the perfor-
mance of SPN-CWS and the accompanying ERL system. Experimental re-
sults show that the SPN-CWS trained by ERL can notably outperform mul-
tiple state-of-the-art approaches for dynamic WS.

The remaining of this paper is organized as follows: Section 2 and Section 3
give the related works and problem definitions of the CDMWS. Sections 4 and
5 describe the proposed SPN-CWS and its training method. Section 6 analysis
the experiment results and the conclusions of this paper are given in Section 7.

2 Related Work

Research on dynamic WS is gaining increasing attention, driven by their substan-
tial practical importance in diverse applications [9,21,23]. Dynamic WS presents
a significant challenge, as it requires making real-time scheduling decisions tai-
lored to the current cloud environment where no prior knowledge exists regard-
ing workflows arriving in the future. While previous studies of dynamic WS
[4,13] primarily focused on minimizing VM rental costs, a critical aspect often
neglected was the trade-off between VM rental expenses and potential SLA vio-
lation penalties [7,20]. In fact, it may prove economically prudent to incur SLA
penalties since meeting SLA deadlines often demand for leasing fast but expen-
sive VMs [9,21,23]. Drawing inspiration from several recent studies [8,9,23], this
paper embarks on an investigation into the CDMWS problem, aiming to learn
scheduling policy to jointly optimize the VM rental fees and the SLA violation
penalties.

There are three main categories of algorithms for learning scheduling policies
for dynamic WS in cloud: manual approach, GPHH and RL. Manual approach
[2,7,20] relies on domain experts to design scheduling policies by leveraging their
problem-specific knowledge and empirical experiences. However, the designed
policies are typically applied to simplified and static problems [9,16].

GPHH can automatically design WS policies that are highly adaptive to
dynamic WS problems. For example, [23] introduced a novel dual-tree policy
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representation for GPHH. The performance of GPHH is further enhanced with
an adaptive mutation operator in [22]. A multi-tree GPHH method is also pro-
posed in [21] to solve dynamic WS problems in fog computing environments.
However, policies learned by GPHH focus solely on local information, consid-
ering each VM’s features individually. Without explicitly processing the global
information among all VMs (i.e., the operating status of all VMs managed by the
broker and the relationships among these VMs), the learned policy may fail to
identify suitable VMs for executing some workflow tasks, resulting in increased
total cost.

In addition to GPHH, recent studies show promise of using RL methods to
design policies for dynamic WS [5,10,12]. For instance, [10] developed an RL sys-
tem to optimize the utilization of green energy while executing workflow tasks.
An approach based on deep Q-networks was introduced by [18] with the objective
of optimizing both workflow makespan and user costs. In [3], a RL-based collab-
orative scheduling method is proposed to achieve heterogeneous WS in cloud,
aiming to improve overall service quality. However, most of the existing policy
networks trained by RL adopt simple feedforward architectures with fixed inputs
and outputs. Similar to GPHH, they were designed to process features related
to each VM separately, lacking the capability of processing global information
across all candidate VMs.

To address this issue, we design the first time in literature a new policy
network (SPN-CWS) to simultaneously process global information among an
arbitrary number of candidate VMs. Meanwhile, to ensure that the training
of SPN-CWS is robust to hyperparameter settings and reward functions, we
develop an ERL system to train SPN-CWS using simulated WS problems.

3 Problem Definition

In this section, we formally describe the Cost-aware Dynamic Multi-Workflow
Scheduling problem (CDMWS) as illustrated in Fig. 2. This problem is centered
around a broker that is responsible for dynamically scheduling workflow execu-
tion using leased VMs in cloud to minimize the total cost, including both the
VM Rental fees and the SLA violation penalties.

Workflow model: In CDMWS, we assume that a sequence of workflows are
dynamically submitted by users during T : W (T ) = {wi|i = 1, 2, ...}. Each work-
flow wi contains a set of tasks connected by a Directed Acyclic Graph (DAG).
A workflow w can be specifically formulated as follows:

w = [DAG(w), AT (w), DL(w), β(w)|w ∈ W (T )] (1)

where β(w) is the user specified SLA penalty rate [25] (see Eq. (9)). AT (w) is the
arrival time of w, and DL(w) is the user specified SLA deadline (see Eq. (10)).
DAG(w) provides a directed acyclic graph of tasks, representing all the tasks to
be executed as part of w as nodes and showing how these tasks are connected
together through the directed edges in DAG(w). DAG(w) can be formulated as
below:

DAG(w) = [Task(w), Edge(w)] (2)
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Fig. 2: The diagram of the scheduling of CDMWS.

where Task(w) gives the set of tasks in workflow w. Each task t ∈ Task(w) has
its size determined as Size(t) that quantifies the total amount of computation
required for executing it. Each direct edge (t, t′) ∈ Edge(w) connects one task
t ∈ Task(w) to another task t′ ∈ Task(w), indicating that t is a predecessor
task of t′ and t′ is a successor task of t. Specifically, any task t ∈ Task(w) will
become ready for execution only when all of its predecessor tasks are completed
or no predecessor tasks exist.

Cloud environment: the cloud environment contains a set of VMs with
varied VM types. In this study, the types of VM are limited, but the quantity
available for each type is unlimited, meaning that the broker can lease an arbi-
trary number of VM instances of any type on demand. A VM instance denoted
as v in the cloud can be characterized as follows:

v = [Type(v), Capacity(v), P rice(v)] (3)

where Type(v) indicates the VM type; Capacity(v) gives the computation ca-
pability per time unit of v [7] ; Price(v) is the rental fee per hour incurred as a
result of using/leasing v. According to several existing works [7,9,23], the rental
time for a fraction of an hour is charged as one hour.

Execution time: Let the VM instance chosen by policy π to execute task
t ∈ Task(w) of workflow w be denoted as vt,w,π. The required execution time of
t, i.e., EXT (t, w, π), is determined as:

EXT (t, w, π) =
Size(t)

Capacity(vt,w,π)
(4)

We further denote AVM(v|t, w, π) as the set of all candidate VM instances
that can be used to execute task t ∈ Task(w) of workflow w, including all the
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currently rented VMs as well as VMs that can be newly leased from the cloud.
Clearly vt,w,π ∈ AVM(v|t, w, π).

In this study, workflows arrive at the broker dynamically across time, de-
manding π to make its scheduling decisions in real time. In order to reduce the
VM rental fees and the SLA penalty, every ready task must be scheduled for ex-
ecution immediately whenever it becomes ready [9]. The following formulation
captures the completion time of a ready task t ∈ Task(w) of workflow w:

CT (t, w, π) = ST (t, w, π) + EXT (t, w, π) (5)

where CT (t, w, π) and ST (t, w, π) are the completion time and start time of
t ∈ Task(w) upon using π, respectively. Hence, the completion time of workflow
w under policy π is:

WCT (w, π) = max
t∈Task(w)

CT (t, w, π) (6)

VM rental fees: CDMWS focuses on processing multiple dynamically arriv-
ing workflows, each consisting of a collection of tasks to be executed on multiple
VMs. When all workflows are completed, the total rental fees of all leased VMs
will be calculated. We use T to represent the full operation period associated
with a CDMWS problem. This time period starts from time ts and ends at time
te. The duration of T depends on the scheduling policy π used to execute all
workflow tasks. During T , each VM instance v is used for a certain time period,
as defined below:

RP (v, π, T ) = [ts(v, π, T ), te(v, π, T )] (7)

where ts(v, π, T ) ≥ ts is the start time for using v, and te(v, k, π, T ) ≤ te is the
time at which v is no longer used. Thus, the total rental fees of all VMs under
the scheduling policy π during T can be calculated as follows:

VMFee(π, T ) =
∑

v∈Set(π,T )

(
Price(v)×

⌈
te(v, π, T )− ts(v, π, T )

3600

⌉)
(8)

where Set(π, T ) refers to the set of all VM instances leased to execute workflow
tasks during T . The ceiling function in Eq. (8) converts the time period that a
VM instance v is used to its corresponding renting time in integer hours.

SLA penalty: Apart from VM rental fees, the SLA penalty presents a major
source of cost to be minimized in CDMWS. According to [9,19,23], the SLA
penalty of a workflow w can be calculated by the following:

SLAPenalty(w, π) = β(w)×max{0, [WCT (w, π)−DL(w)]} (9)

In Eq. (9), the SLA deadline specified by users, i.e., DL(w), is determined as:

DL(w) = AT (w) + γ ×MinMakespan(w) (10)

where MinMakespan(w) is the theoretical shortest time duration required for
processing w, achievable by using the fastest VM to process all tasks of workflow
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w without any delay. γ is the relaxation coefficient. Increasing γ results in more
relaxed deadline for w.

In CDMWS, we aim to find an effective (optimal) scheduling policy π to
minimize the total cost, as formulated below:

argmin
π

TotalCost(π) = argmin
π

VMFee(π, T ) +
∑

w∈W (T )

SLAPenalty(w, π)


(11)

4 Self-Attention Policy Network for Cloud Workflow
Scheduling (SPN-CWS)

4.1 State information

The scheduling policy plays a critical role for CDMWS. Whenever a task (i.e., rt)
of any workflow (i.e., wrt) becomes ready for execution at time t, π is utilized to
process the state information obtained from the CDMWS problem as its input,
and then produces a VM selected to execute rt as its action output. Therefore, we
first introduce the state representation in association with the CDMWS problem
being solved, which will serve as the input of SPN-CWS.

In line with [9,23], we design the state representation by considering
both the task-info of the ready task rt and the VM-info of all the VMs in
AVM(v|rt, wrt, π) that can be utilized for executing rt. We specifically list all
the features employed to build the state input with respect to task-info and VM-
info in Table 1. Whenever there is a task rt ready to be processed, the task-info
of rt and the VM-info of all VM instances in AVM(v|rt, wrt, π) jointly form the
representation of the current state as the input of SPN-CWS.

Table 1: Task information (task-info) and VM information (VM-info).

task-info

Number of
Successors

It gives the number of tasks that depend on rt in wrt, i.e.,
|Suc(wrt, rt)|, where | · | stands for the set cardinality.

Completion
ratio

It calculates the workflow completion ratio of wrt through
Comtasks/Totaltasks, where Comtasks is the number of completed
tasks in wrt and Totaltasks is the total number of tasks in wrt.

Arrival rate
It estimates the workflow arrival rate for future workflows according
to the current execution situation of wrt [9].

VM-info

Task
deadline

It indicates whether using the VM can meet the task deadline of rt.
The task deadline is calculated using the method in [20]. Depending
on the task size, the workflow deadline is assigned to each task. Large
size task will be assigned a larger task deadline.

Incurred
cost

It calculates the corresponding VM rental fee and Task deadline
violation penalty to be incurred upon using the VM to execute rt.

Remaining
time

It counts the remaining VM rental time after executing rt on this VM.

Fittest VM
It indicates whether the VM being considered for executing rt has the
lowest Incurred cost among all candidate VMs while meeting the
Task deadline.
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4.2 Architecture Design of SPN-CWS

To process global information across all VMs in AVM(v|rt, wrt, π) for effective
scheduling of the ready task rt, we design a novel SPN-CWS deep model for the
scheduling policy π in CDMWS, as shown in Fig. 3. Specifically, we introduce the
time-tested Multi-Head Self-Attention mechanism (MHSA) [17], as highlighted
in the Global information learning component of Fig. 3, to enhance the
capability for policy π to process global VM information effectively and scalably
(see the detailed experiments in Section 6.2). SPN-CWS mainly consists of five
key components as described below.
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Fig. 3: The structure of SPN-CWS.

Global information learning : This component aims to learn global
information among VMs. Firstly, we combine the VM-info of all VMs in
AVM(v|rt, wrt, π) to construct the VM-INFO indicated in Fig. 3. Then, we
employ a linear layer to map VM-INFO from the original Rn×m space to a
high-dimensional Rn×M space (M > m and n = |AVM(v|rt, wrt, π)|, i.e., the
total number of VM instances in AVM(v|rt, wrt, π)). Then, the Transformer
layer processes the projected VM features to learn the relationships among all
VMs. In more details, first we use MHSA to compute a weighted sum of all
VM features, where the weights are determined by the similarity between every
pair of VMs. The weighted features are further processed by Add & Norm and
Feed-Forward Networks (FFN) to learn more complex feature representations.
MHSA allows features of each VM instance to attend to features of other VM
instances, effectively capturing inter-VM relationships and allowing SPN-CWS
to focus on the most relevant VM instances.

Task feature enhancement : This component processes and transforms
task features. In this component, a FFN is used to map task-info from the R1×q

space to a high-dimensional R1×Q space (Q > q) to build high-level feature rep-
resentations of the ready task rt being scheduled. FFN refines the task features,
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ensuring that the task representation captures important information that is
essential for the subsequent concatenation with VM features.

Feature concatenation : This component concatenates task features of the
ready task with the features from each VM instance. In order to perform priority
mapping on every VM instance, in this component, the processed task-info is
concatenated separately with the VM-INFO associated with each candidate VM
instance.

Priority mapping : This component maps concatenated task and VM fea-
tures to priority values that dictate the importance of using any specific VM
instance to execute the ready task. For example, using the VM-INFO features
with respect to v1 and the features in the task-info, the priority value of VM
instance v1 is determined through a FFN included in this component, as shown
in Fig. 3.

VM Selection : This component selects the VM instance with the highest
priority value to execute the ready task rt.

5 Training SPN-CWS via ERL

The performance of gradient-based RL can be highly sensitive to its hyperpa-
rameter settings as well as the design of the reward function. ERL can alleviate
these issues and achieve robust learning performance [1,11,15]. Therefore, in this
study, we develop an ERL system based on our cloud simulator to train SPN-
CWS designed above for CDMWS, which is denoted as πsc. The pseudo-code
of the training algorithm is presented in Algorithm 1. Specifically, the training
process of πsc using ERL is described as follows:

1. Let θ̂ denote the current policy parameter of πsc. During each generation
(i.e., each iteration of the ERL), ERL samples a population of N individ-
uals, where each individual (θi|i = 1, 2, ...N) is sampled from an isotropic

multivariate Gaussian distribution with θ̂ as its mean vector and σ2I as its
co-variance matrix. Hence, θi ∼ N (θ̂, σ2I), which is equivalent to θi = θ̂+σϵi
with ϵi ∼ N (0, I). θi indicates the parameters of πi.

2. The fitness value of θi (i.e., F (θi)) equals the total cost (as described in
Section 3) achieved by using πi to solve any CDMWS problem used for
training. Since ERL aims to learn the policy parameters that minimize the
total cost, we define the fitness function as follows:

F (θi) = F (θ̂ + σϵi) = −TotalCost(πi) (12)

3. With Eq. (12) as the objective function, ERL updates θ̂ to maximize the
expected value of the objective function (i.e., Eθi∼N (θ̂,σ2I)F (θi)), thereby

minimizing the total costs. Specifically, ERL updates θ̂ using policy gradients
estimated below [15]:

∇θ̂Eθi∼N (θ̂,σ2I)F (θi) = ∇θ̂Eϵi∼N (0,I)F (θ̂ + σϵi) (13)

=
1

σ
Eϵi∼N (0,I){F (θ̂ + σϵi)ϵi}
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Algorithm 1: ERL for training SPN-CWS (πsc)

Input : Population size: N , max number of generation: Gen, initial
parameters of πsc: θ̂, initial learning rate: α, and the Gaussian
standard noise deviation: σ

Output: Scheduling policy: πsc (the trained SPN-CWS)

1 While the current number of generation <= Gen: do
2 Randomly generate a CDMWS training problem from our simulator: Pro
3 For each individual (i=1,2,...) in N : do
4 Sample a ϵi ∼ N (0, I)

5 The parameters of πi represented by individual i: θi = θ̂ + σϵi
6 Evaluate the fitness value of F (θi) using Eq. (12) based on Pro
7 End for
8 Estimate the policy gradient ∇θ̂Eθi∼N (θ̂,σ2I)F (θi) using Eq. (13)

9 Update parameters of πsc: θ̂ ← θ̂ + α∇θ̂Eθi∼N (θ̂,σ2I)F (θi)

10 End while

6 Experiments

6.1 Simulation Environment Configuration

In this section, we present the CDMWS simulation environment for training
SPN-CWS using ERL as well as all the competing algorithms. The simulation
environment is specifically described as follows.

VM types and workflow patterns: We configure the VMs used in
CDMWS based on Amazon EC21. In line with existing studies [9,22,23], we
use six types of VMs with their respective configurations summarized in Table
2. Following [9,22], each type of VM can be leased on demand with unlimited
number of instances. As summarized in Table 3, the workflows experimented con-
sist of four popular patterns (i.e., CyberShake, Montage, Inspiral and SIPHT)
that are commonly used in recent studies [9,21,22]. Workflows of the same pat-
tern become more complex and difficult to solve as the number of tasks in the
workflows increases. Based on the workflow size (i.e., number of workflow tasks),
workflows are grouped into three categories: Small, Medium, and Large.

Table 2: All VM types used in this study.

VM name vCPU Memory (GB) Cost ($ per hour)

m5.large 2 8 0.096

m5.xlarge 4 16 0.192

m5.2xlarge 8 32 0.384

m5.4xlarge 16 64 0.768

m5.8xlarge 32 128 1.536

m5.12xlarge 48 192 2.304

CDMWS problem instance: Following [9,22], each CDMWS problem in-
stance consists of 30 randomly sampled workflows corresponding to all the four

1https://aws.amazon.com/ec2/pricing/on-demand/
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workflow patterns in Table 3. All workflows in this study are dynamically gen-
erated according to a Poisson distribution with λ = 0.01 to simulate workflows
submitted by users across time. We set the SLA deadline coefficient2 in Eq. (10)
as: γ ∈ {1.00, 1.25, 1.50, 1.75, 2.00, 2.25}. SLA deadlines become more relaxed as
γ increases, enabling the broker to rent cheaper VMs to execute newly arrived
workflows. β(w) in Eqs. (1) and (9) is set to $0.24/hour according to [9,22].

Table 3: The three workflow sets used in this study.

Workflow set Name of pattern(number of task)

Small CyberShake(30) Montage(25) Inspiral(30) SIPHT(30)

Medium CyberShake(50) Montage(50) Inspiral(50) SIPHT(60)

Large CyberShake(100) Montage(100) Inspiral(100) SIPHT(100)

CDMWS problem scenarios: Small-scenario CDMWS problem instances
are generated from small workflow set. Meanwhile, medium- and large-scenario
CDMWS problem instances are generated from Medium and Large workflow
sets, respectively. For each generation of Algorithm 1, we sample a small-scenario
CDMWS problem instance for fitness evaluation. During testing, we use 30 small-
scenario, 30 medium-scenario, and 30 large-scenario CDMWS instances to jointly
evaluate the performance of the trained SPN-CWS. Notably, the medium- and
large-scenario CDMWS problems instances are not used during training for com-
putation efficiency reasons. They are only employed to assess the generalization
capability of SPN-CWS during testing. In each test scenario, the scheduling pol-
icy’s performance is calculated based on the average of 30 CDMWS problem
instances.

Baseline algorithms: Four competing methods are included in our experi-
ments. Among them, ProLis [20] and GRP-HEFT [7] are two popular heuris-
tic methods designed manually by domain experts and are frequently studied
in existing works [5,21,22]. DSGP [6] is a GPHH-based approach that learns
a heuristic rule as scheduling policy through evolutionary search in the hyper-
heuristic space. ES-RL [9] adopts an RL-based algorithm designed by OpenAI3

to train a scheduling policy modeled as a feedforward neural network.

Parameter settings: The parameter settings of all competing algorithms
strictly follow their original papers. For Algorithm 1, N , Gen, α, and σ are
set to 40, 3000, 0.01, and 0.05, respectively, which are identical to the settings
adopted in [9] for a fair comparison. According to Table 1, m and q of Fig. 3 are
4 and 3, respectively, while M and Q are set to 16 in this study. In SPN-CWS,
the size of feedforward hidden layers in the Global information learning, Task
feature enhancement, and Priority mapping components are set to 64, 32, and
32, respectively, with ReLU as the activation function.

2ES-RL and SPN-CWS are trained with γ = 5 and tested with γ ∈ {1.00, 1.25, 1.50,
1.75, 2.00, 2.25} to evaluate their performance under tight SLA deadline coefficients.

3https://github.com/openai
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6.2 Main Results

The performance of all competing algorithms are summarized in Table 4, which
clearly indicates that SPN-CWS significantly outperforms ProLis and GRP-
HEFT across all scenarios, confirming the importance of designing scheduling
policies automatically. Furthermore, compared to DSGP and ES-RL, thanks to
its capability of processing global information among all candidate VMs, SPN-
CWS achieved significantly better overall performance. Particularly, on majority
of medium and large scenarios, SPN-CWS significantly outperforms DSGP and
ES-RL, with scenario ⟨2.00,M⟩ as the only exception. This shows that SPN-
CWS, while being trained on small problems, can achieve reliable generalization
performance on large problems.

Meanwhile, we have bolded the best performance results in Table 4, which
have been thoroughly verified through the Wilcoxon ranked sum test. The cor-
responding p-values associated with the bolded results are consistently less than
0.05. For example, on the scenario ⟨1.50,M⟩, SPN-CWS can manage to reduce
the total costs by 5.29% and 56.9% respectively, compared to the total costs
realized by DSGP and ES-RL.

Moreover, Table 4 reveals that, upon increasing γ, the total costs achieved by
SPN-CWS consistently exhibit a downward trend across all test scenarios. This
suggests that a more relaxed SLA deadline coefficient encourages SPN-CWS to
utilize cheaper VM instances, thereby effectively lowering the total costs.

Table 4: Average (standard deviation) total cost of each algorithm over 30 inde-
pendent runs.

Scenarios ProLis [20] GRP-HEFT [7] DSGP [6] ES-RL [9] SPN-CWS (our)

⟨1.00, S⟩ 773.69 1685.01(-) 142.88(16.35)(+)(+) 215.83(50.34)(+)(+)(-) 145.53(14.96)(+)(+)(≈)(+)

⟨1.00,M⟩ 1829.25 2867.64(-) 244.14(66.39)(+)(+) 456.87(125.70)(+)(+)(-) 238.68(51.38)(+)(+)(+)(+)

⟨1.00, L⟩ 3641.79 5873.20(-) 422.49(96.27)(+)(+) 1199.20(264.65)(+)(+)(-) 348.19(87.92)(+)(+)(+)(+)

⟨1.25, S⟩ 923.15 1967.31(-) 128.24(11.12)(+)(+) 301.46(77.59)(+)(+)(-) 131.05(12.67)(+)(+)(-)(+)

⟨1.25,M⟩ 2068.78 3578.04(-) 232.34(57.15)(+)(+) 568.56(173.47)(+)(+)(-) 212.72(35.50)(+)(+)(+)(+)

⟨1.25, L⟩ 4213.29 6868.22(-) 438.23(80.27)(+)(+) 1278.11(287.33)(+)(+)(-) 348.33(83.90)(+)(+)(+)(+)

⟨1.50, S⟩ 901.40 1963.39(-) 126.12(14.49)(+)(+) 249.40(54.74)(+)(+)(-) 127.76(12.18)(+)(+)(≈)(+)

⟨1.50,M⟩ 2035.52 3567.97(-) 224.21(47.68)(+)(+) 492.13(164.01)(+)(+)(-) 212.34(34.98)(+)(+)(+)(+)

⟨1.50, L⟩ 4066.84 6863.62(-) 405.98(94.18)(+)(+) 913.00(265.89)(+)(+)(-) 343.76(83.37) (+)(+)(+)(+)

⟨1.75, S⟩ 804.33 1959.71(-) 123.14(13.49)(+)(+) 227.23(46.17)(+)(+)(-) 122.58(10.14)(+)(+)(≈)(+)

⟨1.75,M⟩ 1977.10 3560.22(-) 210.46(37.68)(+)(+) 455.73(136.39)(+)(+)(-) 209.54(33.87)(+)(+)(+)(+)

⟨1.75, L⟩ 3898.42 6854.40(-) 398.29(84.18)(+)(+) 818.91(259.21)(+)(+)(-) 348.22(80.40)(+)(+)(+)(+)

⟨2.00, S⟩ 789.71 1957.25(-) 120.74(12.47)(+)(+) 206.94(39.40)(+)(+)(-) 119.17(9.73)(+)(+)(≈)(+)

⟨2.00,M⟩ 1921.42 3554.07(-) 204.36(37.68)(+)(+) 409.84(135.83)(+)(+)(-) 205.62(32.80)(+)(+)(≈)(+)

⟨2.00, L⟩ 4024.03 6847.49(-) 388.64(104.18)(+)(+) 748.58(246.18)(+)(+)(-) 349.51(95.20)(+)(+)(+)(+)

⟨2.25, S⟩ 710.18 1954.71(-) 115.28(13.13)(+)(+) 184.78(31.46)(+)(+)(-) 116.93(10.61)(+)(+)(≈)(+)

⟨2.25,M⟩ 1924.27 3551.31(-) 197.96(35.28)(+)(+) 362.83(144.59)(+)(+)(-) 194.06(27.23)(+)(+)(+)(+)

⟨2.25, L⟩ 3957.08 6842.88(-) 373.35(94.76)(+)(+) 611.03(218.16)(+)(+)(-) 343.97(78.32)(+)(+)(+)(+)

* ⟨1.00, S⟩ denotes that γ = 1.00 and algorithms are tested on the small-scenario CDMWS instance.
* ProLis and GRP-HEFT are deterministic heuristics, therefore have no standard deviation.
* (+), (-) or (≈) indicates that the result is significantly better, worse or equivalent to the corresponding

algorithm based on Wilcoxon test with a significance level of 0.05.

Fig. 4 presents the VM fees and SLA penalties for each algorithm. We can
see that GRP-HEFT tends to treat the SLA deadline as a hard constraint (the
SLA penalty is 0), leading to excessively high VM rental fees. Similarly, ProLis,
DSGP, and ES-RL also tend to produce excessively high VM rental fees. In con-
trast, SPN-CWS can better balance the trade-off between VM rental fees and
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SLA penalties, thanks to its capability of using global information to select suit-
able VM instances. SPN-CWS incurs higher SLA penalties compared to DSGP
and ES-RL, but it can significantly reduce the total costs by using cheap VMs,
especially on medium and large CDMWS problem scenarios.
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Fig. 4: The average of VM fees and SLA penalties of all algorithms.

6.3 Convergence Analysis

Since both ES-RL and SPN-CWS are RL-based algorithms, we compare the
convergence behaviors of ES-RL and SPN-CWS during training and testing in
Fig. 5. As demonstrated in this figure, SPN-CWS achieves lower total costs
compared to ES-RL during training and testing. Notably, despite of using com-
plex network architectures, SPN-CWS achieved competitive convergence speed
as that of ES-RL. It also showed faster convergence speed than ES-RL on the
testing problems. Furthermore, compared to ES-RL, SPN-CWS enjoys clearly
smaller confidence intervals during both training and testing, suggesting that
the trained SPN-CWS can perform more consistently and reliably.
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Fig. 5: The convergence on small-scenario CDMWS instance with γ = 5.
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7 Conclusions

This paper introduced a Self-Attention Policy Network (SPN-CWS) for cloud
workflow scheduling, capable of capturing global information across all VMs.
We developed an ERL system with a cloud simulator to train SPN-CWS effi-
ciently. The trained SPN-CWS selects the most suitable VM for each workflow
task by processing all candidate VMs as input. Experimental results demon-
strated that our approach significantly outperforms state-of-the-art algorithms
in CDMWS and exhibits good convergence speed and stability. Future work
will explore online reinforcement learning to enhance adaptability to dynamic
workflow changes.
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