
Leveraging LLM in Genetic Programming
Hyper-Heuristics for Dynamic Microservice

Deployment

Zhengxin Fang1�, Hui Ma1, Gang Chen1, Sven Hartmann2, and Chen Wang3

1 Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington, New Zealand

{zhengxin.fang, hui.ma, aaron.chen}@ecs.vuw.ac.nz
2 Department of Informatics, Clausthal University of Technology, Germany

sven.hartmann@tu-clausthal.de
3 National Institute of Water and Atmospheric Research, New Zealand

chen.wang@niwa.co.nz

Abstract. Microservice deployment in cloud computing is a challeng-
ing combinatorial optimization problem due to the complex dependen-
cies among microservices and the intricate trade-offs among different
QoS requirements, e.g., minimizing Energy Consumption (EC) vs. mini-
mizing Communication Overhead (CO). Recently, some hyper-heuristics
methods, particularly Genetic Programming Hyper-Heuristics (GPHH),
have been proposed to automatically generate heuristics for solving dy-
namic microservice deployment problems. Meanwhile, Large Language
Models (LLMs) are becoming popular for solving various domain-specific
problems thanks to their strong ability to learn problem-related knowl-
edge. However, hybridizing GPHH with LLM by combining their abil-
ities in solving complex optimization problems remains unexplored. In
this paper, we propose an LLM-enhanced Genetic Programming Hyper-
Heuristic (LLM-GPHH) algorithm to evolve heuristics for the dynamic
deployment of applications composed of microservices, to jointly opti-
mize EC and CO. Our experiments on real-world datasets demonstrate
the effectiveness of the newly proposed LLM-GPHH.

Keywords: LLM · genetic programming · hyper-heuristics · dynamic
microservice deployment · cloud computing

1 Introduction

Recent years have witnessed an increasing number of applications being de-
veloped by composing microservices due to their advantages in terms of scal-
ability, maintainability and resilience [14]. A microservices application com-
prises multiple independent microservices, each responsible for a specific func-
tion and communicating with others via data transmission. Microservice appli-
cations deployed in container-based clouds become popular thanks to containers’

2 Z. Fang et al.

lightweight nature and scalability [14]. The deployment of microservice applica-
tions in container-based clouds requires deploying microservices to containers,
which are then allocated to virtual machines (VMs). Subsequently, VMs are
allocated to Physical Machines (PMs). The process of deploying microservices
applications in container-based clouds gives rise to the problem of Microservice
Deployment in Container-based clouds (called the MDC problem), which is NP-
hard [4, 16,17].

In real-world practices, microservice applications arrive dynamically in cloud
data centers in real-time. As a result, a VM selection heuristic is required to
either select existing VMs or create new VM instances for real-time microservice
applications deployment. Similarly, a suitable PM should be selected for newly
created VM instances to achieve more effective resource utilization through a PM
selection heuristic. Improper VM selection heuristic and PM selection heuristic
causes poor CPU and memory allocation, increasing the Energy Consumption
(EC) in cloud data centers [2]. In addition, improper deployment of microser-
vices increases the communication data volumes between different PMs through
the physical network, resulting in a large Communication Overhead (CO) in
cloud data centers, which affects the performance of microservice applications [1].
Therefore, in this paper, we aim to propose an effective method to automatically
generate VM selection heuristic and PM selection heuristic to minimize both EC
and CO in cloud data centers [4] for dynamic MDC problems.

Various heuristics have been proposed in the literature to solve MDC prob-
lems [7, 8, 11]. However, manually designed heuristics can lose effectiveness due
to the dynamic workload arriving in clouds [20]. Hyper-heuristics (HHs), in par-
ticular Genetic Programming Hyper-Heuristics (GPHHs), have been proposed
to learn heuristics automatically for many complex dynamic combinatorial opti-
mization problems [16,17,20]. Nevertheless, the randomness of genetic operators
(i.e., crossover and mutation) of GP do not explicitly exploit the patterns among
high-fitness individuals [9], leading to the high possibility of producing bad indi-
viduals during evolution. In recent years, the rapid rise of Large Language Models
(LLMs) has introduced new possibilities for the exploitation of GP. LLMs can
take a sequence of tokens as input and generate a new sequence of tokens, lever-
aging a large amount of semantic knowledge during training. This means that
LLMs have the potential to capture the complex patterns among tokens (i.e.
nodes of the GP tree) in high-fitness GP individuals, then output new promising
GP individuals by generating new tokens.

Based on the above analysis, this paper proposes a LLM-enhance GPHH
(LLM-GPHH) for generating VM selection heuristics and PM selection heuris-
tics in dynamic MDC problems to jointly optimize CO and EC. The contribu-
tions of this paper are as follows.

– A novel LLM evolution is proposed in LLM-GPHH to capture the complex
relationship among tokens in high-fitness individuals of GPHH and generate
new promising individuals to improve the performance of GPHH in terms of
jointly optimizing CO and EC for dynamic MEC problems.

Leveraging LLM in GPHH for Dynamic Microservice Deployment 3

– We conduct an experimental evaluation of LLM-GPHH based real-world
cloud dataset. Our experiments demonstrate that the proposed LLM-GPHH
can effectively generate better heuristics than existing algorithms in most
scenarios.

– To the best of our knowledge, this is the first approach that combines LLM
with GPHH to automatically generate heuristics for dynamic MDC prob-
lems. Ablation studies are also conducted to show the effectiveness of LLM
evolution in some scenarios.

2 Related Work

Various heuristics have been proposed to solve microservice deployment prob-
lems as they are easy to understand and apply. For example, the Best-Fit [11]
heuristic deploys applications with the most suitable resource (i.e., VM or PM),
which has enough capacity (CPU and memory) to host the application. To mini-
mize the CO among PMs, the Min-cut [21] mechanism has been applied in [7] to
partition an application into several groups of microservices, which can then be
allocated to the same PMs. Resource utilization is enhanced by allocating groups
of microservices to the most-loaded machine. Similar to [7], groups of containers
are allocated in [8] using a concurrent container scheduling algorithm. Specifi-
cally, the process of microservice deployment in [8] is modelled as the minimum
cost flow problem (MCFP) in a weighted network, on which containers with de-
pendencies will be merged into an aggregator node to be subsequently allocated
to VMs. Although the approaches in [7, 8] can optimize both CO and EC, they
assume that workloads are known in advance. As a result, their methods can
lose effectiveness for handling MDC problems where microservice deployment
requests and workloads are arriving dynamically [17].

To automatically learn effective heuristics for dynamic microservice deploy-
ment, a hybrid GPHH based approach, named Hybrid-Evo, is proposed in [17].
This approach learns VM selection heuristics while combining the Best-Fit heuris-
tic with its learned PM selection heuristics. Specifically, Hybrid-Evo applies Best-
Fit to generate new PM instances. These two GPHH based approaches [16, 17]
only consider EC, without paying attention to microservices and inter-service
communication. However, existing GPHH methods do not explicitly exploit the
patterns among good individuals. LLM is a potential solution to enhance the
exploitation ability of GPHH. For example, Romera et al. [10] applied LLM for
mathematical discovery by capturing the complex patterns in the equations.

As summarized, GPHH is particularly suitable for handling dynamic MDC
problems, and LLMs can be used to enhance the exploitation ability of GPHH
due to LLM’s proficiency in capturing complex but promising patterns and se-
mantic relationships in good heuristics. In this paper, we will propose a novel
GPHH algorithm (i.e., LLM-GPHH) that applies LLM to enhance the abilities
of GPHH to automatically generate heuristics that can effectively solve dynamic
MDC problems.

4 Z. Fang et al.

3 Problem Definition

Microservice applications can be represented as Directed Acyclic Graphs (DAGs)
with weighted edges [13]. Specifically, an application is denoted by G(M,E) with
M as a set of nodes where each mi ∈ M represents a microservice. Meanwhile, E
stands for a set of directed edges with weights where each ei,j ∈ E represents di-
rect data flow between mi and mj with its weight quantifying the corresponding
communication data volume.

In line with existing research [4, 5, 15], each microservice can only run on
a single container at any time. We assume that we are given a list C of con-
tainers, a set V of VM types, and a set P of PM types in a container-based
cloud where containers are assigned to VM instances and VMs are assigned to
PMs. We represent a container ci by a pair (ζcpu(ci), ζ

mem(ci)) where the first
denotes the CPU requirement, and the second denotes the memory requirement
of the container. We represent a VM type γt by a tuple = (Ωcpu(γt), Ωmem(γt),
πcpu(γt), πmem(γt)), where the first two denote the CPU and memory capacity,
and the last two give the CPU and memory overhead of the VM type. Every VM
instance vi belongs to one VM type γt. We represent a PM type τt by a tuple
(Ωcpu(τt), Ω

mem(τt), E
idle(τt), E

full(τt)), where Ωcpu(τt), Ωmem(τt), Eidle(τt),
and Efull(τt) denote the CPU capacity, the memory capacity, the EC per time
unit for the idle state, and the EC per time unit for fully loaded state, respec-
tively. Every PM instance pi belongs to one PM type τt.

Following the non-linear energy model in [3], we use Eq. (1) to express the
EC of a PM instance pi.

E(pi) = Eidle(pi) + (Efull(pi)− Eidle(pi))× (2µcpu(pi)− (µcpu(pi))
1.4) (1)

where Eidle(pi) and Efull(pi) are the EC of the PM instance pi when it is idle
and fully loaded, respectively. µcpu(pi) is the CPU utilization level [3] of the PM
instance pi.

Assuming that nt PM instances are active at timestamp t, the EC at times-
tamp t is calculated as follows:

EC(t) =

nt∑
i=1

E(pi) (2)

To determine CO, we use a matrix to represent the deployment of microser-
vices to PMs. Let X denote a binary matrix, in which xi,j is 1 if microservice
mi is deployed on PM instance pj , and is 0 otherwise. Another matrix A is used
to quantify the communication data volume between each pair of microservices,
i.e., in A the value of ai,j indicates the communication data volume between
microservice mi and microservice mj .

Assuming that nt denotes the number of active PMs at timestamp t, and
mt stands for the number of microservices deployed at timestamp t, the CO at
timestamp t can be calculated through Eq. (3):

Leveraging LLM in GPHH for Dynamic Microservice Deployment 5

CO(t) =

nt∑
i=1

nt∑
j=1

ai,j · (1−
m∑

k=1

xi,k · xj,k) (3)

Note that the term (1−
∑m

k=1 xi,k ·xj,k) in Eq. (3) equals 1 if the microservices
mi and mj are on different PMs, and otherwise it is 0.

In this paper, for the joint optimization of CO and EC in the dynamic MDC
problem, the optimization objective (J) is defined over a time period T in Eq. (4):

J = ω ·
∫ T

0

Nor(CO(t))dt+ (1− ω) ·
∫ T

0

Nor(EC(t))dt (4)

where 0 < ω < 1 controls the importance of the CO, while 1 − ω controls the
importance of the EC. Since CO and EC are equally important, ω is set to 0.5
in this paper. Nor(CO(t)) and Nor(EC(t)) are normalized CO(t) and EC(t)
by using the common min-max normalization technique [6].

4 The proposed approach: LLM-GPHH

4.1 Overview

The flowchart of LLM-GPHH is shown in Fig. 1. LLM-GPHH starts with creat-
ing an initial population that consists of randomly generated individuals. Each
individual includes a VM selection heuristic and a PM selection heuristic. Both
heuristics are represented as trees. Individuals in every generation are evaluated
by the optimization objective.

There are two ways to generate new individuals for the next generation pop-
ulation. On the one hand, selection is used to select a subset of individuals, and
traditional evolutionary operators, i.e., crossover, mutation and reproduction,
are applied to this subset of individuals to generate new individuals. On the
other hand, in our newly proposed LLM evolution, high-fitness individuals will
be stored in an archive based on an archive update strategy. Subsequently, LLM
is leveraged to capture the implicit knowledge among high-fitness individuals in
the archive, to generate improved new VM selection heuristics and PM selection
heuristics. The details of the LLM-GPHH are described as follows. In Fig. 1, the
main contributions of this paper are highlighted in blue.

4.2 Representation

LLM-GPHH adopts a tree structure to represent the VM selection heuristic and
the PM selection heuristic, as commonly used in GPHH [18]. Examples of the
VM selection heuristic and PM selection heuristic are shown in Fig. 2. Each tree
in Fig. 2 has one root, multiple non-leaf nodes and leaf nodes. The non-leaf nodes
include elementary functions, e.g., +, /,−,×. Each leaf node, named terminal,
represents one of the problem-dependent features of the MDC problem.

6 Z. Fang et al.

Initialization

Evaluation

Start

Parent selection

Crossover

Mutation

Reproduction

Update achive

Prompt generation

LLM individual
generation

Traditional GP evolution LLM evolution

Achive

No YesTermination?

Best individual

PM selection
heuristic

VM selection
heuristic

Fig. 1: The overall process of LLM-GPHH

To capture the features of dynamic MDC problems, we elaborately design
a set of terminals, which are shown in Table 1. Specifically, the VM selec-
tion heuristic uses VM-specific terminals. The PM selection heuristic uses PM-
specific terminals. Besides the terminals already used in existing research [16,17],
we designed four new terminals (highlighted in red). The main idea of these newly
designed terminals is to capture the features of 1) communication data volume
within VMs, or PMs (i.e., VIC or PIC) and 2) external communication data
volume of VMs or PMs (i.e., VOC or POC), which are important for optimizing
the CO during the evolution.

4.3 Fitness Evaluation

To evaluate the performance of individuals, the VM selection heuristic and PM
selection heuristic of each individual are used to select VMs and PMs for mi-
croservice applications. Firstly, the min-cut heuristic [4, 7] is utilized to divide
the microservice application into different partitions, such that the communica-
tion data volumes across each partitions are minimal. Then, microservices in the
same partitions are deployed together to the same VM.

Fig. 2 illustrates how to use examples of a VM selection heuristic (i.e, CC
LV C −

(LVM + COV)) and a PM selection heuristic (i.e., (VMC + VMM) + PMC)
for MDC problems. According to the table in Fig. 2, the priority values of VM1,
VM2 and VM3 in Fig. 2 are calculated by the VM selection heuristic, i.e, 21

10 −
(0.7+ 1.2) = 0.8, 14

11 − (0.9+ 0.2) = 0.17 and 15
1.8 − (3.1+ 4.4) = 0.83. Therefore,

VM3 is selected for the microservices deployment as it has the highest priority

Leveraging LLM in GPHH for Dynamic Microservice Deployment 7

Table 1: Terminals used by LLM-GPHH. The newly designed terminals are high-
lighted in blue

VM-related Description
CC CPU requirement of a container
CM Memory requirement of a container
LVC Lefting CPU of a VM instance
LVM Lefting memory of a VM instance
COV The CPU overhead of a VM instance
MOV The Memory overhead of a VM instance
VOC communication data volume transfer externally by the PM that a VM is located
VIC communication data volume within the PM that a VM is located
PM-related Description
VMC The CPU capacity of a VM instance
VMM The memory capacity of a VM instance
LPC Lefting CPU of a PM
LPM Lefting memory of a PM
PMC The CPU capacity of a PM
PMM The memory capacity of a PM
PCore The number of cores of a PM
POC communication data volume transfers externally of a PM
POC communication data volume within a PM

value. Similarly, for each newly created VM instance, PM1 is selected based
on the PM selection heuristic shown in Fig. 2. After the deployment of newly
arrived microservices and newly created VMs into the selected VMs and PMs,
the fitness value of an individual is calculated by Eq. (4).

4.4 Traditional GP Evolution.

The traditional evolutionary operators of LLM-GPHH include crossover, muta-
tion, and reproduction. Crossover exchanges a sub-tree of one heuristic (i.e., VM
selection heuristic or PM selection heuristic) in the parent individual with a sub-
tree of the same heuristic type in the second parent individual. The mutation is
applied to an individual by replacing a sub-tree of a heuristic with a randomly
generated sub-tree. The process of reproduction is straightforward and directly
preserves selected individuals to the next generation.

4.5 LLM Evolution

The process of LLM evolution is shown in Algorithm 1. The inputs of LLM
evolution include an archive, the best individual in current generation indbest,
the number of heuristics chosen for prompt prompt_size, and the number of
heuristics generated by LLM num. Then LLM evolution outputs new individuals.

Firstly, an archive update strategy is designed in this paper (line 1). Specifi-
cally, when there is no individual in the archive that is identical to the indbest in
the tree structure, heuristics in indbest will be stored in the archive; otherwise,
the indbest will not be stored to maintain the diversity in the archive [18]. When

8 Z. Fang et al.

VM selection heuristic

-

/

CC LVC LVM COV

+

+

+

PM selection heuristic

VMC VMM

PMC

Candidates CC LVC LVM COV Selected VM
21 10 0.7 1.2 0.8
14 11 0.9 0.2 0.17
15 1.8 3.1 4.4 0.83

Candidates VMC VMM PMC Selected PM
1.1 2 28 31.1
8.8 5.4 15 29.2
12 4.4 7.8 24.2

Fig. 2: Example of using VM selection heuristic and PM selection heuristic for
the microservice deployment

the archive reaches a fixed capacity (e.g., 5), the earliest stored individual within
the archive is removed due to the earliest individual lacks several generations of
evolution, which is most likely to perform poorly. Then, a prompt is generated
by sampling promising individuals in the archive (lines 3-4). An example of a
generated prompt is shown in Fig. 3, which includes three parts: task descrip-
tion, promising heuristics and output format. To be specific, the task description
part gives details of the problem to be solved (i.e., resource allocation problem
in container-based cloud for microservice applications). Meanwhile, the format
of promising heuristics and the expected outputs from LLMs are detailed and
described in the task description. In the promising heuristics part, prompt_size
promising individuals from the achive are sampled with an equal probability for
each individual (line 3).

The response of LLM includes num new heuristics (Line 5). A response with
three new heuristics is presented in Fig. 3 (b). Then, new heuristics will be
checked for their validity (Line 6). For example, LVM −COV+ is not a correct
heuristic since the absence of the second operand of +. Correct heuristics will
be converted into tree-represented individuals (Line 7). Individuals generated by
LLM evolution are combined with the individuals generated by traditional GP
evolution as a new population for the next generation.

5 Experimental Evaluation

We compare LLM-GPHH with two heuristic algorithms, i.e., KP_HP [7], and
ECSched [8], as well as one state-of-the-art hyper-heuristic algorithm, Hybrid-
Evo [17]. The average performance results obtained under 30 independent runs
are verified and compared based on the Wilcoxon rank-sum test with a signifi-
cance level of 0.05.

Leveraging LLM in GPHH for Dynamic Microservice Deployment 9

Algorithm 1 The process of LLM evolution
Input: An archive; the best individual in current generation: indbest; the number of

heuristics chosen for prompt: prompt_size; the number of heuristics generated by
LLM: num;

Output: new individuals generated by LLM;
1: archive ← update_archive(indbest)
2: new_indivdiuals← []
3: heuristics← sample(archive, prompt_size)
4: prompt← generate_prompt(prompt_size, num, heuristics)
5: new_heuristics← LLM(prompt)
6: valid_heuristics← Check(new_heuristics)
7: new_individuals.add(Generate(valid_heuristics))

Task: Your task is to generate heuristic to solve dynamic resource allocation
problem in container-based cloud for application deployment effectively. The
heuristic is in format of "{'vm': ..., 'pm': ...}", which are used to calculate the priority
of candidate VMs and PMs respectively.

Below are N promising heuristics.Please rewrite K new heuristics after capturing
implicit knowledge of given heuristics.

heuristic0 = {"vm": LVM + COV; "pm": VMC+ VVM - PMC}
...
...
heuristicN = {"vm": CC + CM / LVC; "pm": VMC - PMC}

Newly generated heuristics MUST be different from given heuristics.
Only new heuristics are included in your response.
Format each new heuristic as "heuristic = ...\n"

Task description

Promising heuristics

Output format

(a) Example of prompt

heuristc0 = {"vm": LVM / COV + CC; "pm": VMC - PMC + VVM}
heuristic1 = {"vm": CC + COV; "pm": VMC / PMC + VVM}
heuristic1 = {"vm": MOV + COV - CM; "pm": VMC + VVM}

(b) Example of response

Fig. 3: Examples of prompt and the response of LLM

Simulation. We simulate the state of a cloud data center by using a real-
world dataset [12,17] that records the arrivals of a large number of applications
in cloud data centers during a long time period. Each application belongs to one
of the popular application structures studied in [13]. Six scenarios are used to
simulate different workload patterns of new arrival applications and the number
of different OS types, following [17].

Parameter Settings. The parameter settings of GPHH are based on the
existing state-of-the-art GPHH methods [16,17]. Specifically, the population size
is 512. The tournament selection size is 7. The rates of crossover, mutation and
reproduction are 0.8, 0.1 and 0.1, respectively. The archive size of LLM-GPHH
is 10, while the prompt_size is 5. The number of LLM generated individuals is
1. GPT-3.5-turbo-0613 4 API is used in this paper under the consideration of
cost and performance.

Experiment Results. Table 2 compares the test performance results across
all scenarios. We can observe from Table 2 that LLM-GPHH significantly out-
performs the other three algorithms (i.e., KP-HP, ECSched and Hybrid-Evo) in

4 https://openai.com/pricing

10 Z. Fang et al.

terms of CO in all six scenarios. As for EC, LLM-GPHH consumes less EC in
most scenarios when compared to KP-HP, ECSched and Hybrid-Evo.

Table 2: The comparison results of test instances in 6 scenarios in terms of mean
and standard deviation of EC (kWh) and CO (Mbps). (Notice that smaller values
in the table mean better performance; “+”, “-” and “=” indicate significantly
better, significantly worse and no significant difference respectively)

Scenarios Objectives KP-HP [7] ECSched [8] Hybrid-Evo [17] LLM-GPHH

W1OS3 EC 86123.45 ± 352.58 119882.72 ± 423.55 87849.80 ± 8610.68 83392.60 ± 3443.20 (+)(+)(+)
CO 152102.27 ± 2302.83 181091.05 ± 3993.89 895782.48 ± 132158.76 84528.65 ± 9254.59 (+)(+)(+)

W1OS4 EC 79900.73 ± 536.62 119128.81 ± 384.50 85797.29 ± 9164.63 80519.16 ± 9230.01 (=)(+)(+)
CO 140231.02 ± 2487.36 161973.62 ± 3545.41 688004.95 ± 235592.43 73013.34 ± 8491.053 (+)(+)(+)

W1OS5 EC 74794.61 ± 1140.74 113037.15 ± 343.56 78659.62 ± 7192.01 74105.31 ± 3926.38 (=)(+)(=)
CO 127200.59 ± 2544.78 155613.84 ± 3663.14 664116.27 ± 225881.42 74340.36 ± 11513.97 (+)(+)(+)

W2OS3 EC 77425.84 ± 768.97 132472.29 ± 528.86 90405.21 ± 12136.97 79318.25 ± 13292.66 (+)(+)(+)
CO 130645.07 ± 1926.53 171362.58 ± 3361.51 668220.39 ± 204766.39 84928.44 ± 6608.78 (+)(+)(+)

W2OS4 EC 75623.89 ± 863.04 125253.16 ± 550.92 85107.43 ± 48059.55 77736.15 ± 22240.93 (+)(=)(+)
CO 121785.46 ± 2618.48 159210.25 ± 4696.93 929877.51 ± 140681.28 78142.90 ± 9769.10 (+)(+)(+)

W2OS5 EC 66919.23 ± 1006.71 117324.06 ± 452.58 69191.39 ± 8164.00 73121.75 ± 10912.93 (-)(+)(=)
CO 108456.06 ± 2543.06 146288.07 ± 3167.12 760304.42 ± 229171.43 76007.46 ± 2219.03 (+)(+)(+)

Number of active VMs and PMs. We see from Fig. 4 that LLM-GPHH
requires more active VMs compared to other algorithms, but it minimizes the
number of active PMs in W1OS5. Meanwhile, both the active VMs and PMs
of LLM-GPHH are minimized in W2OS3. As a result, LLM-GPHH can save
computational resources by reducing the overhead of VMs and PMs [19].

W1OS5 W2OS3
Scenarios

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f a
ct

iv
e

VM
s

KP-HP
ECSched
Evo/Hybrid-Evo
LLM-GPHH

(a) Number of VMs

W1OS5 W2OS3
Scenarios

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f a
ct

iv
e

PM
s

KP-HP
ECSched
Evo/Hybrid-Evo
LLM-GPHH

(b) Number of PMs

Fig. 4: The number of active VMs and PMs

Effectiveness of LLM evolution. We compare LLM-GPHH with the GPHH
algorithm designed in this paper but without the assistance of LLM (GPHH-
noLLM) in two scenarios. The results in Table 3 show the effectiveness of LLM
evolution as LLM-GPHH outperforms GPHH-noLLM in terms of EC in both
W1OS3 and W2OS3. Meanwhile, LLM-GPHH consumes less CO than GPHH-
noLLM in W2OS3, while has no significant difference with GPHH-noLLM in
W1OS3. The results show the effectiveness of LLM evolution in some scenarios.
We also test different settings of LLM evolution, e.g., the number of promising
heuristics in the prompt and the number of response heuristics, the most effective
settings are described in the parameters setting part.

Leveraging LLM in GPHH for Dynamic Microservice Deployment 11

Table 3: The comparison results of ablation studies. (Notice that smaller values
in the table mean better performance; “+”, “-” and “=” indicate significantly
better, significantly worse and no significant difference respectively)

Scenarios Objectives GPHH-noLLM LLM-GPHH

W1OS3 EC 88235.35 ± 9292.04 83392.60 ± 3443.20 (+)
CO 80215.42 ± 10028.89 84528.65 ± 9254.59 (=)

W2OS3 EC 85933.33 ± 10005.24 79318.25 ± 13292.66 (+)
CO 88168.45 ± 3303.04 84928.44 ± 6608.78 (+)

6 Conclusions and Future Work

In this paper, to solve the dynamic MDC problems, we proposed LLM evolu-
tion to enhance the ability of GPHH to generate effective heuristics. Exper-
imental results showed that LLM-GPHH outperforms existing heuristics and
hyper-heuristics methods in terms of minimizing energy consumption and com-
munication overhead. Meanwhile, ablation studies also showed the effectiveness
of LLM evolution. This suggests that LLM indeed has the potential to enhance
GPHH’s capabilities in searching effective heuristics. In the future, we will con-
tinue to explore the ability of LLM and try to further improve the capability of
LLM in addressing complex real-world problems.

References

1. Alzahrani, A., Tang, M.: A microservice-based saas deployment in a data center
considering computational server and network energy consumption. In: 2023 IEEE
16th International Conference on Cloud Computing (CLOUD). pp. 505–515. IEEE
(2023)

2. Buyya, R., Ilager, S., Arroba, P.: Energy-efficiency and sustainability in new gener-
ation cloud computing: A vision and directions for integrated management of data
centre resources and workloads. Software: Practice and Experience 54(1), 24–38
(2024)

3. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: A
survey. IEEE Communications surveys & tutorials 18(1), 732–794 (2015)

4. Fang, Z., Ma, H., Chen, G., Hartmann, S.: Energy-efficient and communication-
aware resource allocation in container-based cloud with group genetic algo-
rithm. In: International Conference on Service-Oriented Computing. pp. 212–226.
Springer (2023)

5. Fang, Z., Ma, H., Chen, G., Hartmann, S.: A group genetic algorithm for energy-
efficient resource allocation in container-based clouds with heterogeneous physical
machines. In: Australasian Joint Conference on Artificial Intelligence. pp. 453–465.
Springer (2023)

6. Gajera, V., Gupta, R., Jana, P.K., et al.: An effective multi-objective task schedul-
ing algorithm using min-max normalization in cloud computing. In: 2016 2nd Inter-
national Conference on Applied and Theoretical Computing and Communication
Technology (iCATccT). pp. 812–816. IEEE (2016)

12 Z. Fang et al.

7. Hu, Y., de Laat, C., Zhao, Z.: Optimizing service placement for microservice ar-
chitecture in clouds. Applied Sciences 9(21), 4663 (2019)

8. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on het-
erogeneous clusters with multi-resource constraints. Future Generation Computer
Systems 102, 562–573 (2020)

9. Meyerson, E., Nelson, M.J., Bradley, H., Gaier, A., Moradi, A., Hoover, A.K.,
Lehman, J.: Language model crossover: Variation through few-shot prompting.
arXiv preprint arXiv:2302.12170 (2023)

10. Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M.P.,
Dupont, E., Ruiz, F.J., Ellenberg, J.S., Wang, P., Fawzi, O., et al.: Mathematical
discoveries from program search with large language models. Nature 625(7995),
468–475 (2024)

11. Sharma, H.C., Bisht, M.: Best fit resource allocation in cloud computing. Inter-
national Journal of Computer Sciences and Engineering, E-ISSN pp. 2347–2693
(2019)

12. Shen, S., Van Beek, V., Iosup, A.: Statistical characterization of business-critical
workloads hosted in cloud datacenters. In: 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing. pp. 465–474. IEEE (2015)

13. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained
application replication and deployment in multi-cloud environment. In: 2020 IEEE
International Conference on Web Services (ICWS). pp. 110–117. IEEE (2020)

14. Sorgalla, J., Sachweh, S., Zündorf, A.: Exploring the microservice development
process in small and medium-sized organizations. In: Product-Focused Software
Process Improvement: 21st International Conference, PROFES 2020, Turin, Italy,
November 25–27, 2020, Proceedings 21. pp. 453–460. Springer (2020)

15. Tan, B., Ma, H., Mei, Y.: A NSGA-II-based approach for multi-objective micro-
service allocation in container-based clouds. In: 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). pp. 282–
289. IEEE (2020)

16. Tan, B., Ma, H., Mei, Y., Zhang, M.: A cooperative coevolution genetic program-
ming hyper-heuristics approach for on-line resource allocation in container-based
clouds. IEEE Transactions on Cloud Computing 10(3), 1500–1514 (2020)

17. Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-aware
dynamic resource allocation in container-based clouds via cooperative coevolution
genetic programming. In: International Conference on the Applications of Evolu-
tionary Computation (Part of EvoStar). pp. 539–555. Springer (2023)

18. Wang, S., Mei, Y., Zhang, M.: Explaining genetic programming-evolved routing
policies for uncertain capacitated arc routing problems. IEEE Transactions on
Evolutionary Computation (2023)

19. Xu, F., Liu, F., Jin, H., Vasilakos, A.V.: Managing performance overhead of virtual
machines in cloud computing: A survey, state of the art, and future directions.
Proceedings of the IEEE 102(1), 11–31 (2013)

20. Yang, Y., Chen, G., Ma, H., Zhang, M.: Dual-tree genetic programming for
deadline-constrained dynamic workflow scheduling in cloud. In: International Con-
ference on Service-Oriented Computing. pp. 433–448. Springer (2022)

21. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut ap-
proaches. In: 2010 ieee computer society conference on computer vision and pattern
recognition. pp. 2217–2224. IEEE (2010)

