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For a pair (X, Y ), suppose that P{Y ∈ · | X} = P1{·} if X is outside certain region G ⊂ Rd

and P{Y ∈ · | X} = P2{·} if X ∈ G. We call this region a change-set and it could also be called

an “image”. Consider a Maximum estimator (M -estimator) Ĝ of G based on n independent pairs
(Xi, Yi)

n
i=1 under assumption that G belongs to a totally bounded class C of measurable subsets

of Rd with the distance d(G, G′) = F (G4G′) induced by the distribution F of the Xi’s. The
classical characteristic of complexity of C is its covering number. However this characteristic is
often not enough and one needs a more delicate characteristic of “local complexity”. This is
the local covering number, which is considered in Section 2 of the paper. Using it we derive an

inequality for P{d(Ĝ, G) > ε} and obtain the rate of convergence εn of d(Ĝ, G). Then we show

that under broad conditions the deviations of d(Ĝ, G) from εn are of order 1/n regardless of what
the rate εn is. We also study local covering numbers in the important case where C is formed
by subgraphs of non-decreasing functions on [0, 1]. The results obtained for fixed P1 and P2 are
carried over to the case when the “change” from P1 to P2 becomes asymptotically small as n →∞.
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1. Introduction
There are several possible formulations of a spatial change-point problem, which

we prefer to call a change-set problem. We choose here the one which seems to us
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the most basic and transparent. Namely, following, e.g., the pattern of Mammen
and Tsybakov ([1], Section 3), we consider a sequence {(Xi, Yi)}n

1 of independent
pairs of random variables, where the Xi’s take values in the d-dimensional Euclidean
space Rd, d ≥ 1, and are commonly referred to as “locations”, while the Yi’s take
values in some measurable space {E, E} and are called the corresponding “marks”.
In other words, {(Xi, Yi)}n

1 is a marked point process in Rd. Concerning the Xi’s
we assume that they are identically distributed with some distribution F . Strictly
speaking, the requirements that locations are random or i.i.d. are not necessary for
what follows, but will make the presentation more transparent. As to the marks,
they can be of very diverse nature.

For instance, suppose at each location Xi we may observe only whether or not
pollution is present, in which case Yi will be simply a {0, 1}-random variable (this
case was studied in Mammen and Tsybakov [1]). In other cases at each location we
may record the wind speed or the concentration of a chemical, or we can measure
the energy of an earthquake at hypocentre Xi. In all of these cases, the Yi’s are
presumably continuous random variables. It also may be that at each location we
measure the concentration of several chemicals or measure these concentrations as
functions of depth in a drill bore, in which case Yi is a random vector or a vector-
valued random function (of depth), and {E, E} should be a properly selected space
of trajectories of this random function. In the example with earthquakes Yi can be
an energy spectrum of an earthquake, which is a random function of a relatively
complex behavior and in which case {E, E} must be again a functional space, and
so on.

In the present context, however, we do not need to know much about {E, E}
assuming only that there are two different distributions P1 and P2 on E and a
measurable set G ⊂ Rd such that the conditional distribution of Yi given Xi is

(1.1) P{· | Xi} = P1{·}I{Xi 6∈G} + P2{·}I{Xi∈G} = (P1{·})I{Xi 6∈G} (P2{·})I{Xi∈G} .

In other words, we assume in (1.1) that there is a set G such that for all Xi outside
G the corresponding mark has some “grey level” distribution P1, while it has a
different distribution P2 if Xi is in G. The existence of a singular component
of P2 with respect to P1 and vice versa will only simplify the statistical inference
concerning G, and we assume that P1 and P2 are equivalent (mutually absolutely
continuous). The set G in (1.1) will be called the change-set and this set is our
parameter of interest. Note that G can also be called an image and the change-set
problem can also be viewed as an image reconstruction problem. We will consider
M -estimators Ĝ of this set, see (1.2), and will determine the rate of convergence of
Ĝ to G including the constants.

The likelihood of the pair (Xi, Yi) with respect to the reference measure F × P1

is [dP2/dP1(Yi)]I{Xi∈G} and the log-likelihood of {(Xi, Yi)}n
1 is

Ln(G) =
n∑
1

I{Xi∈G} log
dP2

dP1
(Yi).

Therefore the logarithm of the likelihood ratio is

Ln(G)− Ln(G0) =
n∑
1

[
I{Xi∈G} − I{Xi∈G0}

]
log

dP2

dP1
(Yi),
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where G0 stands for the true change-set. This suggests a slightly more general form
of the processes in G which we will use here: choose some “score function” ξ(y) on
{E, E} and consider

Ln(G,G0) :=
n∑
1

[
I{Xi∈G} − I{Xi∈G0}

]
ξ(Yi).

We define an estimator Ĝn of G0 as

(1.2) Ĝn = Ĝn(δ) := arg max
G∈Nδ

Ln(G,G0),

with δ = δn → 0 as n → ∞. Then we study asymptotics of d(Ĝn, G0) as n → ∞,
where d(G,G′) = F (G4G′).

To say something fruitful about the rate of convergence one needs to assume
apriori that G belongs to a certain relatively poor class of sets. Namely, let B be
the Borel σ-algebra of subsets of Rd endowed with the pseudo-distance d(G,G′) and
let C be a totally bounded subclass of the metric space {B, d}. Denote by Nδ the
minimal δ-net of C. Its cardinality, Nδ = card{Nδ}, is called the covering number
of C and the function Hδ = log Nδ is called the metric entropy of C. From now on
we will assume that our unknown change-set G is an element of C.

Although there are several relatively early papers devoted to statistical prob-
lems of set estimation, like, for example, Ripley and Rasson [2] or Moore [3], these
problems attracted more interest in the last 10–15 years. Some papers, for exam-
ple, Carlstein and Krishnamoorthy [4], Ferger [5], Müller and Song [6], Rudemo
and Stryhn [7], and others, treat estimation of a set as the estimation problem of
its boundary. Then the smoothness assumptions or other structural assumptions
on the boundary, as in Korostelev et al. [8] or Puri and Ryumgaart [9], though
very natural and clear in the context, are equivalent to the total boundedness as-
sumption on the class C. Many papers, like, e.g., already mentioned Mammen and
Tsybakov [1] and Ferger [5], use the notion of the covering number (but not of the
local covering number) explicitly.

Although Nδ as a function of δ is a very important characteristic of richness
and complexity of the class C, we will realize below that to determine the true
rate of convergence in some practically important cases and to obtain more refined
statements, see, e.g., Theorems 2.4 and 2.5 below, Nδ is not enough and we need a
more delicate characteristic of the “local” richness of the class, which is the covering
number of a neighborhood of a given element of the class. Namely, for each G ∈ C
let O(t, G) be the neighborhood of G in B of radius t and let

(1.3) Nδ(t, G) = cardNδ ∩ O(t, G).

Then we need to study the local covering number Nδ(t, G) as t and δ tend to 0
simultaneously. This allows us to obtain the correct rate of convergence, in many
cases unattainable otherwise.

The local covering number was introduced and studied, in connection with the
change-set problem, in Khmaladze et al. [10]. However this concept was considered
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and used earlier: Le Cam [11] considered Nδ(t) for the neighborhood of a point in Rd

when t = const ·δ (see also reference in Section 3), while Birgé [12, 13] considered
log Nδ(t)/ log(t/δ) for the neighborhood of a function also for t = const ·δ. For
further references and material on the now well established method to study the
rate of convergence one can refer, e.g., to the recent fundamental paper of Birgé [14],
as well as the papers by van de Geer [15], Shen and Wong [16], and Yang and
Barron [17], and to the monograph van de Geer [18]. A concise presentation is
available in Section 3 of van der Vaart and Wellner [19].

However, this method involves relatively complicated chaining technique and
uses conditions, which cannot be met by some practically useful classes. In partic-
ular, Birgé’s condition (Birgé [12] and also Condition 4 of Yang and Barron [17],
cf. also p. 290 of van der Vaart and Wellner [19]), requires that the supremum of
[log Nδ(t)/ log(t/δ)] in a neighborhood of δ be a positive bounded function U(δ) of δ
with nδ2 ≥ U(δ). Similar conditions are proposed in van de Geer [18] for different
models. Namely, the function U(δ) is defined there as

U(δ) =
∫ δ

δ2/c1

[
log Nu(δ)

]1/2
du,

and the corresponding rate has to satisfy the condition
√

nδ2 ≥ cU(δ). Although
these conditions proved to be useful in many cases, they cannot be met in the
change-set problem by any Vapnik–Červonenkis class (VČ-class), where δ of in-
terest is of order 1/n (see Khmaladze et al. [20]). It is also not satisfied for some
Dudley classes, like, for example, the class of sub-graphs of bounded non-decreasing
functions on [0, 1], see Section 3 below.

We believe the approach of this paper is simpler. At the root of it lies the
fact that we estimate G by an element of a finite approximating class. Indeed, we
cannot think of any situation where one would not estimate the unknown set G by
a representative of one or another approximating class. This allows us to stay with
only relatively simple inequality (2.3), which we modify then to the form (2.8). If,
for fixed n, we were obliged to consider δ → 0, these inequalities would become
useless, because the number of summands would increase unboundedly, and we
would be obliged to use the chaining argument. However, this is not necessary:
for a given n, there exists a finite “resolution level” δn, see Theorem 2.2, and it is
unreasonable to use δ smaller than δn. This leaves us with one geometric object to
study, the distribution function (2.6), and thus provides a tool uniformly applicable
to all classes C.

In (2.11) we introduce the upper bound εn on the rate of convergence using
inequality (2.8). We compare it with the sequence zn, see (2.12), which is natural
to consider as an upper bound on the rate of d(Ĝn, G0) if one does not use the local
covering number. For some classes, εn is o(zn), but for other classes they may be of
the same order of magnitude. However, under natural conditions, see Theorem 2.4,
the sequence zn is worse then εn in the sense that

P
{
d(Ĝn, G0) > zn

} → 0.

And finally, still in Section 2, we show that, no matter what the rate of εn is, the
deviations of d(Ĝn, G0) from εn are “typically” on the scale of 1/n in the sense
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that P{d(Ĝn, G0) > εn + L/n} can be kept smaller than any given p ∈ (0, 1) for
sufficiently large constant L (see Theorem 2.5). Consequently, if 1/n = o(εn), then
εn has also the correct constant.

In Section 3 we consider two examples, one of which has been considered in Puri
and Ryumgaart [9] and is of independent interest. While in Sections 2 and 3 we
assume that P1 and P2 are fixed, in Section 4 we will see that most statements can
be carried over to the case of converging P1 and P2 with sample size n replaced by
the “effective” sample size.

The Local Covering Number and Inequalities for P{d(Ĝn, G0) > ε}
Throughout the paper we denote d(G, G0) = F (G4G0). Let us introduce some

notation for the first two moments of ξ(Yi) and Ln(G, G0). As a score function ξ
one can choose any bounded function such that

α2 :=
∫

ξ(y) dP2(y) >

∫
ξ(y) dP1(y) := α1.

The reader will notice below that, although the larger α2−α1 the better constants
we will have, the rates as such will not be affected. To simplify the notation, we
assume that ξ is shifted by (α2 + α1)/2 and hence

α =
∫ {

ξ(y)− α2 + α1

2

}
dP2(y) > 0 >

∫ {
ξ(y)− α2 + α1

2

}
dP1(y) = −α.

Then one obtains

(2.1) µ(G,G0) := E
[
(I{Xi∈G} − I{Xi∈G0})ξ(Yi)

]
= −α d(G,G0).

For the variance, with βi =
∫

ξ2(y) dPi(y), i = 1, 2, and β = max(β1, β2), one
obtains

β(X) := E[ξ2(Y ) | X] = β2I{X∈G0} + β1I{X 6∈G0}

and

σ2(G,G0) := Var([I{Xi∈G} − I{Xi∈G0}]ξ(Yi)) ≤
∫

G4G0

β(x) dF (x),

so that

(2.2) σ2(G,G0) ≤ β d(G,G0).

Let δ < ε. Denote G′ = {G ∈ Nδ : d(G,G0) ≥ ε} and let G′′ ∈ Nδ be such that
d(G′′, G0) ≤ δ. We have

(2.3) P{d(Ĝn, G0) ≥ ε} ≤
∑

G′∈G′
P{Ln(G′, G0) > Ln(G′′, G0)}.

We will estimate each probability in the sum using Bennett’s exponential inequality
(see, e.g., Shorack and Wellner [21], p. 852, (d)) and this will lead us to an inequality
for P{d(Ĝn, G0) ≥ ε} which we propose and study in this section.
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Denote

sup
y
|ξ(y)| = b and λ =

α2

β
.

Lemma 2.1. (i) If ε > 3
2δ, then

(2.4) P{Ln(G′, G0) > Ln(G′′, G0)} ≤ exp[−nλc{d(G′, G0)− δ}],

where c = 0.1ψ(γ) with γ = 0.2bα/β and

ψ(γ) =
2
γ2

∫ γ

0

log(1 + y) dy.

(ii) If ε > δ + c̄/n and nδ →∞, then

(2.5) P{Ln(G′, G0) > Ln(G′′, G0)} ≤ exp
[
− λ

c̄

4δ
{d(G′, G0)− δ}(1 + o(1))

]
.

Remark 2.1. Using Hoeffding’s inequality (see, e.g., Shorack and Wellner [21],
p. 855) one could obtain the following inequality

P{Ln(G′, G0) > Ln(G′′, G0)} ≤ exp
[
− nα

2b
{d(G′, G0)− δ}2

]
.

Since d(G,G0) ≤ 1, this inequality gives in our situation a much less accurate
bound.

Proof of Lemma 2.1. Let us abbreviate

L′n0 = Ln(G′, G0)− ELn(G′, G0) and µ′ = µ(G′, G0)

and define L′′n0 and µ′′ likewise. Then

P{Ln(G′, G0) > Ln(G′′, G0)} = P{L′n0 − L′′n0 > −n(µ′ − µ′′)}.

Apply Bennett’s inequality to this probability:

P
{
L′n0 − L′′n0 > −n(µ′ − µ′′)

} ≤ exp
{
− n(µ′ − µ′′)2

2σ2
ψ

(b|µ′ − µ′′|
σ2

)}
,

where σ2 denotes the variance of one summand of the sum L′n0−L′′n0. Now use (2.1)
and (2.2) to bound the exponent from above. We have µ′−µ′′ ≥ α{d(G′, G0)− δ},
σ2 ≤ β{d(G′, G0) + δ}. Since xψ(x) is an increasing function, we can substitute
these bounds in the previous inequality, which gives

P
{
Ln(G′, G0) > Ln(G′′, G0)

} ≤ exp
[
− nλ

2
{d(G′, G0)− δ}2

d(G′, G0) + δ
ψ(γ′)

]
,
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where

γ′ =
bα

β

{d(G′, G0)− δ}
{d(G′, G0) + δ} .

Since (z − δ)/(z + δ) is also an increasing function, we can simplify the exponent
further: for ε ≥ (3/2)δ we have

c ≤ d(G′, G0)− δ

2{d(G′, G0) + δ}ψ(γ′),

which, after substitution into the previous inequality, gives (2.4), while for ε ≥
δ + c̄/n we have

c̄

2nδ + c̄
ψ

(
bα

β

c̄

2nδ + c̄

)
≤ d(G′, G0)− δ

2{d(G′, G0) + δ}ψ(γ′).

As nδ → ∞ the left-hand side becomes c̄/2nδ(1 + o(1)), which leads to inequal-
ity (2.5). ¤

Using the local covering number (1.3), let us introduce now

(2.6) Vδ(t, G0) = Vδ(t) =
Nδ(t, G0)

Nδ
.

Clearly Vδ is a discrete distribution function with a finite number of jumps, and
this number increases as δ → 0. As a result of (2.3) and (2.4) we obtain that, for
ε > 3

2δ > 0,

(2.7) P
{
d(Ĝn, G0) > ε

} ≤ Nδ

∫ 1

ε

e−nλc(t−δ) Vδ(dt).

In certain cases n1 = nλ becomes a natural quantity (see Section 4). For the
present, however, it is better to keep n. Besides, denote c1 = λc.

The probability P{d(Ĝn, G0) > ε} and its upper bound depend on δ, and it is
natural to make this upper bound as small in δ as we can for every ε. One can
argue that unlike Nδ the distribution function Vδ is “stable” in δ. With this in
mind we summarize the construction in the following statement.

Theorem 2.2. For ε > 3
2δ > 0

(2.8) min
δ
P{d(Ĝn, G0) > ε} ≤ Nδnenc1δn

∫ 1

ε

e−nc1t Vδn(dt),

where

(2.9) δn := arg min
δ

Nδe
nc1δ.

The proof follows from (2.3) and (2.4) and the definition of δn. The choice of δn

as (2.9) could be interpreted as a (quasi-) optimal resolution level. It is uniform in ε,
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which is quite convenient. The choice of δ as a solution of the equation nδ = log Nδ

is very closely related to (2.9) and was systematically used, e.g., in Yang and Barron
[17]. We now state some asymptotic properties of δn, n ≥ 1.

Lemma 2.3. (i) δn → 0 and Nδn
enc1δn = o(enc1∆) for any ∆ > 0, n →∞;

(ii) if Nδ →∞ as δ → 0, then Nδnenc1δn →∞ as n →∞;
(iii) nδn → η, 0 < η < ∞, as n →∞ iff the metric entropy Hδ = log Nδ satisfies

the condition: there is a constant µ, which may depend on H, but not on δ, such
that

(2.10) Hδ − µ

δ
x ≤ Hδ+x, −δ ≤ x ≤ 1− δ.

Proof. (i) Let δ′n be such that

Nδ′n = enc1δ′n .

Then δ′n → 0 as n → ∞, because if for some subsequence δ′n′ → ∆ > 0, then
exp(nc1δ

′
n′) → ∞, while Nδ′

n′
→ N∆ < ∞, which contradicts the definition of δ′n.

Then for δn we obtain

Nδnenc1δn ≤ Nδ′nenc1δ′n = e2nc1δ′n = o(enc1∆)

for any ∆ > 0 and δn → 0.
(ii) Follows from the fact that δn → 0 and the condition that Nδ →∞ as δ → 0.
(iii) Suppose (2.10) is satisfied. Take δn = µ(nc1)

−1. Then

Hδn − nc1(δ − δn) ≤ Hδ, 0 ≤ δ ≤ 1,

or
Hδn + nc1δn ≤ Hδ + nc1δ, 0 ≤ δ ≤ 1,

which is equivalent to (2.9). Now suppose the last inequality is satisfied and
nδn → η. Then

Hδn − nc1δn
δ − δn

δn
≤ Hδ or Hδn −

ηc1

δn
x ≤ Hδn+x. ¤

We introduce now two sequences, which will be systematically used in this paper.
Let εn(p), n ≥ 1, be a sequence such that

(2.11) lim
n→∞

Nδn

∫ 1

εn(p)

e−nc1(t−δn)Vδn(dt) = p, 0 < p ≤ 1,

and let zn(p), n ≥ 1, be a sequence such that

(2.12) lim
n→∞

Nδne−nc1{zn(p)−δn} = p, p ≤ 1.
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A frequently used bound for the sum in (2.3) would be

Nδ max
G′
P
{
Ln(G′, G0) > Ln(G′′, G0)

}
,

which would lead to the inequality

(2.13) P
{
d(Ĝn, G0) > ε

} ≤ Nδe
−nλc(ε−δ).

Therefore, as follows from (2.13), zn(p), n ≥ 1, would provide the upper bound for
the rate of convergence of d(Ĝn, G0) to 0, if we do not exploit the local covering
number. If we do, the upper bound will be given by εn(p).

From Lemma 2.3 (i), (ii) one can deduce that if Nδ →∞ as δ → 0, then

(2.14) zn(p) → 0 but nzn(p) →∞
for any p > 0. From (2.14) we see that in no case can zn(p) be of order 1/n. We will
find later that in some cases εn(p) = o(zn(p)), n →∞. However, more interesting
is that even if εn(p) and zn(p) are of the same order of magnitude, the inequalities
(2.8) and (2.13) lead to entirely different bounds.

Theorem 2.4. Assume δn → 0. If either Vδn(z) → 0 for z → 0 or Vδn(z +
T/n)−Vδn(z) → 0 for any T > 0 and all sufficiently small z, then for any 0 < p ≤ 1

P{d(Ĝn, G0) > zn(p)} → 0.

Remark 2.3. The condition of Theorem 2.4 requires that either Vδn(t) does
not concentrate around G0 or the increment of Vδn(t) is small on 1/n scale. In
Example 3.1 one can see that this is still true even in the extreme case of classes C
having only one limit point.

Proof of Theorem 2.4. Since zn(p) ≥ zn(1), it is sufficient to consider zn(1).
First use integration by parts for the integral in the right-hand side of (2.8). With
ε = zn(1) we obtain

e−nc1 [1− Vδn(zn(1))] + nc1

∫ 1

zn(1)

e−nc1t
[
Vδn(t)− Vδn(zn(1))

]
dt.

According to (2.14) the first summand here is o(e−nc1zn(1)). Moreover,

nc1

∫ 1

zn(1)+T/nc1

e−nc1t
[
Vδn(t)− Vδn(zn(1))

]
dt ≤ e−nc1zn(1)−T .

At the same time

nc1

∫ zn(1)+T/nc1

zn(1)

e−nc1t
[
Vδn(t)− Vδn(zn(1))

]
dt

≤
[
Vδn

(
zn(1) +

T

n

)
− Vδn(zn(1))

]
e−nc1zn(1) = o(e−nc1zn(1)).

Since e−nc1zn(1) = (Nδnenc1δn)−1, this completes the proof. ¤
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Under the conditions of this theorem the behavior of the δ-net beyond shrinking
the zn(1)-neighborhood of G0 has no influence on d(Ĝn, G0).

In the next theorem we consider how far can εn(p) lie from ε(1).

Theorem 2.5. With δn defined in (2.9), let εn(1), n ≥ 1, be a sequence defined
in (2.11). If the sequence of distributions

(2.15) dṼn(τ) =
e−τdVδn

(
τ

nc1
+ εn(1)

)
∫∞
0

e−τdVδn

(
τ

nc1
+ εn(1)

) , τ ≥ 0,

is weakly compact, then for any p ∈ (0, 1) there is a constant L = L(p) such that

P
{

d(Ĝn, G0) > εn(1) +
L(p)
nc1

}
≤ p.

In particular, if εn(1) ≥ const /nc1, then d(Ĝn, G0) = OP (εn(1)).

Proof. According to the definition of εn(1) = εn, n ≥ 1,

Nδn
enc1(δn−εn)ωn(εn) → 1, n →∞,

where

ωn(εn) =
∫ 1

εn

e−nc1(t−εn) dVδn(t).

The weak compactness condition of Ṽn, n ≥ 1, implies that for ε′n = εn + L/nc1

P{d(Ĝn, G0) > ε′n} ≤ Nδnenc1(δn−ε′n)ωn(ε′n) ∼ e−nc1(ε
′
n−εn) ωn(ε′n)

ωn(εn)

=
∫ 1

ε′n

e−nc1(t−εn)Vn(dt)
ωn(εn)

=
∫ ∞

L

e−τdVn

(
τ

nc1
+ εn

)

ωn(εn)

and the right-hand side can be made arbitrarily small. ¤
Observe that the sequence εn(p), n ≥ 1, required by definition (2.11) does not

always exist as well as the weak compactness condition for the sequence of distri-
butions (2.15) is not always satisfied as the following lemma shows. However, the
situations when this occurs are rather exceptional.

Lemma 2.6. If G0 is an isolated element of C, that is, if

inf
G 6=G0

d(G,G0) = t0 > 0,

then

(2.16) P{d(Ĝn, G0) > 0} ≤ Nδnenc1(δn−t0) = o(e−nt), n →∞,

for any t < t0.
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Proof. For any εn such that t0 > εn > (3/2)δn the inequality

P{d(Ĝn, G0) > εn} ≤ Nδn
enc1(δn−t0), n →∞,

follows from (2.7). Its right-hand side is o(e−nt) as follows from Lemma 2.3 (i).
However, since G0 is an isolated point, it is clear that P{d(Ĝn, G0) > εn} =
P{d(Ĝn, G0) > 0}. ¤

Theorem 2.5 shows that under a mild assumption d(Ĝn, G0) can exceed εn(1)
only by a quantity of order 1/nc1. However, it is very interesting to learn how far
can εn(1) itself lie from δn. The next theorem describes conditions for εn(1) also to
be not further than const /nc1 from (3/2)δn. In practice one usually obtains upper
bounds for Nδ(t), and therefore the conditions of the next theorem are given in
terms of Nδ(t) rather than of Nδ(dt).

Theorem 2.7. Let bn := zn(1)− δn = (nc1)
−1 log Nδn . If

lim sup
n→∞

nc1

∫ bn

0

e−nc1t
[
Nδn

(t + qn)−Nδn
(qn)

]
dt ≤ ϕ(L),(2.17)

qn =
3
2
δn +

L

nc1
,

for every L > 0 and ϕ(L)e−L → 0 as L → ∞, then for any p ∈ (0, 1] there exists
L = L(p) such that

P{d(Ĝn, G0) > δn + L(p)/nc1} ≤ p{1 + o(1)}, n →∞,

and if there exists εn(p), n ≥ 1, satisfying (2.11), then

εn(p) ≤ max
(
δn + L(p)/nc1 ( 3

2 )δn

)
.

Conversely, if there exists a constant L such that εn(p) ≤ δn + L/nc1, then
ϕ(L) < ∞ for this L.

Remark 2.4. Examples show that if ϕ(L) exists, then the requirement

e−Lϕ(L) → 0 as L →∞

is not strong one. In many cases ϕ(L) remains simply bounded. However, in
Khmaladze et al. [20] one can see that the upper limit in (2.17) can be infinity (see,
e.g., Corollary 2.1 (ii) and Example 3 in that paper) and the difference εn(1) − δn

is indeed larger than 1/n.

Proof. Remark first that for the given choice of bn,

nc1

∫ 1

bn

e−nc1t
[
Nδn(t + cδn + L/nc1)−Nδn(cδn + L/nc1)

]
dt

≤ Nδnnc1

∫ 1

bn

e−nc1t dt ≤ Nδne−nc1bn = 1.
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In inequality (2.7) put ε = qn and choose L = L(p) such that e−L{ϕ(L)+1} = p ≤ 1.
Then integration by parts yields

Nδe
−nc1(qn−δn)

∫ 1

qn

e−nc1(t−qn)Vδn(dt)

= e−Lnc1

∫ 1−qn

0

e−nc1t
[
Nδn

(t + qn)−Nδn
(qn)

]
dt

≤ e−L{ϕ(L) + 1}+ o(1) = p + o(1), n →∞.

Since the right-hand side of (2.7) is a decreasing function of ε, then if there exists
a sequence εn(p), n ≥ 1, satisfying (2.11), it must be such that εn(p) ≤ max

(
δn +

L(p)/nc1 1.5δn

)
for all sufficiently large n. Now suppose the last requirement on

εn = εn(p), n ≥ 1, is true. Then

e−Lnc1

∫ bn

0

e−nc1t
[
Nδn

(t + qn)−Nδn
(qn)

]
dt

≤ e−Lnc1

∫ 1−qn

0

e−nc1t
[
Nδn(t + qn)−Nδn(qn)

]
dt

= Nδne−nc1(qn−δn)

∫ 1

qn

e−nc1(t−qn)Vδn(dt)

≤ Nδne−nc1(εn−δn)

∫ 1

εn

e−nc1(t−εn)Vδn(dt)

because of monotonicity in ε. The last expression converges to p by definition of
εn(p), n ≥ 1. Hence

nc1

∫ bn

0

e−nc1t
[
Nδn(t + qn)−Nδn(qn)

]
dt ≤ eL + o(1), n →∞. ¤

3. Two Examples
We start with an example, which may look artificial and which indeed carries no

practical importance. However, it illustrates a point of some theoretic value.
One can think that the difference between the application of local covering num-

ber and of the covering number will be unimportant at least for the classes which
are “highly concentrated” around few elements. One can argue that in such classes
everything is already so very much “local” that the use of local covering number
will hardly bring anything better. We will see, however, that this is not generally
true.

Example 3.1. Consider the situation when for arbitrarily small but fixed t

Nδ(t)/Nδ → 1 as δ → 0.

Namely, suppose C is a closed monotone sequence, C = {Gk, k ≥ 1, G0}, and either
G1 ⊃ G2 ⊃ . . . , G0 =

⋂∞
k=1 Gk, or G1 ⊂ G2 ⊂ . . . , G0 =

⋃∞
k=1 Gk. Denote

xk = d(Gk, G0). Then the problem reduces to estimation of Nδ and Nδ(t) for
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a positive sequence xk → 0. Denote yk = xk − xk+1 and to avoid unnecessary
complications suppose that yk form a monotone sequence. For any δ > 0 let

k(δ) = inf{k : yi ≤ δ for all i ≥ k}

and take

Nδ = k(δ) +
[
xk(δ)

2δ

]
+ 1,

where [z] stands for the integer part of z. This Nδ corresponds to the δ-net con-
structed as follows: include in Nδ all elements with xi ≥ xk(δ) and for the rest
of the sequence, starting from xk(δ), take the δ-net of uniformly spaced G’s, not
necessarily in C, located at distance δ from each other. There will be no more than
[xk(δ)/2δ] + 1 of such G’s. Below we neglect the difference between [xk(δ)/2δ] + 1
and xk(δ)/2δ for simplicity of notation.

Denote x−1(t) = inf{k : xk ≤ t}. Then for Nδ(t) we obtain

Nδ(t) =
{

k(δ)− x−1(t) + xk(δ)/2δ, t ≥ xk(δ),

t/2δ, t ≤ xk(δ).

It is more interesting to consider “quickly” converging sequences. Let xk = ak,
0 < a < 1, form a geometrically converging sequence. Then, yk = (1 − a)ak = δ
leads to k(δ) = log(δ/(1− a))/ log a and xk(δ) = δ/(1− a). Hence

Nδ =
log δ − log(1− a)

log a
+

1
2(1− a)

,

so that it increases quite slowly with δ → 0. The optimal δn of (2.9), the upper
bound zn(1), and the bound bn of Theorem 2.7 are

δn =
1

nc1 log nc1
+ O

( log log nc1

nc1 log2 nc1

)
, zn(1) ∼ bn =

log nc1

nc1
+ O

( log log nc1

nc1

)
.

We have qn = δn + L/nc1 > xkδn
, while x−1(t) = log t/ log a and the integrability

condition (2.17) of

Nδn(t + qn)−Nδn(qn) =
1

log a
log

[
1 +

t

δn + L/nc1

]

for all L > 0 becomes apparent:

lim
n→∞

nc1

∫ bn

0

e−nc1t log
[
1 +

t

δn + L/nc1

]
dt ≤ L

∫ ∞

0

e−τL log(1 + τ) dτ = ϕ(L),

which actually is a decreasing function in L. Consequently if e−L{ϕ(L) + 1} = 1,
then

P
{

d(Ĝn, G0) >
3

2n log n
+

L′

nc1

}
≤ e−(L′−L){1 + o(1)}, n →∞.
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Figure 1. Depicts G3 of the sequence.

One possible example of {Gk, k ≥ 1, G0} forming a geometrically converging se-
quence is illustrated by the Serpinski star (Figure 1).

Here a = 4/9 and for k ≥ 2 we have d(Gk, Gk+1) = (3
√

3/4)4k+1(a/3k+1)2. The
figure clearly shows that the “regularity” of the boundary of the change set per se
is irrelevant to our problem.

Many formulations of the classical change-point problem are connected with
change-sets forming VČ-classes. We consider this situation in more detail in Khmal-
adze et al. [20]. As our next example in this section consider the class of subgraphs
of bounded monotone functions on a compact set. The change-set problem for this
class was studied earlier by Puri and Ryumgaart [9]. The covering number of this
class, shown in Lemma 3.1, is essentially larger than any power of δ (cf. (3.2)).

Example 3.2. Let C′ = {f : [0, 1] → [0, 1], ↗} and let

C = {fsub, f ∈ C′} with fsub = {(x, y) ∈ [0, 1]2 : f(x) ≥ y}.

Let Λ2 denote the Lebesgue measure on [0, 1]2 and take

(3.1) d(fsub, gsub) = Λ2(fsub4gsub) =
∫
|f(x)− g(x)| dx.

Hence C′ with L1-distance is isometric to C with the distance Λ2(fsub4gsub).
Below we present asymptotics for the covering number and local covering num-

bers at two different elements of C. As a corollary, this will show that the conditions
of Theorem 2.4 are satisfied for this case. It will also reveal (Theorem 3.2) that
the behavior of local covering numbers is uneven in f : different f have Nδ(t, f) of
different rate in t and δ.

First consider a δ-net of C. Assume m = 1/δ an integer number for simplicity of
notation and let xj = j/m, yk = k/m, j = 0, . . . , m, k = 0, . . . , m. Let

Nδ = {fδ : fδ ∈ {yk}m
0 , fδ is constant on each [xj , xj+1), ↗}.
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Lemma 3.1. (i) Nδ is a δ-net for C.
(ii) With m = 1/δ

(3.2) Nδ =
(2m)!
(m!)2

∼ 22m 1√
πm

, m →∞,

while

δn ∼
√

2 log 2√
nc1

and zn(1) ∼ 2
√

2 log 2√
nc1

, n →∞.

The proof of (i) is left to reader, while the proof of (ii) can be obtained in a way
similar to the proof of (i) in Theorem 3.2 below.

We see that the rate of convergence for this class is at least 1/
√

nc1. As far as we
understand it, the rate of convergence shown in Puri and Ryumgaart [9] depended
on the way the bounding function was estimated and was slower than 1/

√
nc1.

We also see that the difference between δn and zn(1) ∼ 2δn is what can be called
“practically unimportant”. However, there is certain refinement of the “rate of
convergence” statement if we realize that actually P{d(Ĝn, G0) > zn(1)} → 0.

To show this we need to consider Nδ(t). First consider the sup-metric on C
instead of L1-metric, and denote Nδ,u(t) := Nδ,u(t, f) the number of elements of
Nδ satisfying the inequality

sup
0≤x≤1

|fδ(x)− f(x)| ≤ t.

Denote

(3.3) ϕk(l) =
(l + 1) · · · (l + k)

k!
, l = 0, 1, . . . , m,

and let ϕ0 = 1 be the m + 1-dimensional vector with all coordinates equal to 1.

Theorem 3.2. Let t = Lδ and assume L is an integer.
(i) Let f1(x) = const, with t < const < 1− t. Then

Nδ,u(t, f1) =
(2L + m)!
(2L)!m!

and for L = O(
√

m)

Nδ,u(t, f1) ∼ m2Le2L2/m

(2L)!
, m →∞.

(ii) Let f2(x) = x, 0 ≤ x ≤ 1. Then

ϕm+1(2L) +
2L∑

j=1

(
m

j

)
ϕm−j(2L)− ϕL(L)

≤ Nδ,u(t, f2) ≤
2L∑

j=0

(
m

j

)
ϕm−j+1(2L) + ϕL(L)
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and for L = O(
√

m)

Nδ,u(t, f2) ∼
(

m

2L

)
ϕm−2L(2L) ∼

(
m2L

(2L)!

)2

.

Proof. (i) Direct counting shows that

Nδ,u(t, f1) =
2L∑

im=0

· · ·
i2∑

i1=0

i1∑

i0=0

1.

This can be rewritten as

Nδ,u(t, f1) = 〈1L, Sm−1
L 1L〉,

where 1L = (1, . . . , 1)T ∈ R2L+1 and the operator SL has (2L+1)×(2L+1) matrix
of the form

SL =




1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
. . . . . . . . . . . . . . . .
1 1 1 · · · 1


 .

For the factorial moments ϕk defined by (3.3) and restricted to 1, 2, . . . , 2L + 1 we
have (cf., e.g., Gelfond [23], p. 31) that SLϕk = ϕk+1. Therefore

Nδ,u(t, f1) = 〈1L, ϕm−1〉 = ϕm(2L) =
(2L + 1) · · · (2L + m)

m!
.

The asymptotics of Nδ,u(t, f1) can now be obtained by the Stirling formula.
(ii) It can also be seen that the number N ′

δ,u(t, f2) of step-functions fδ in the
uniform Lδ-neighborhood of f2 which are allowed to start at x = 0 from a value
≥ −Lδ and finish at x = 1 at a value 1 + Lδ differs from Nδ,u(t, f2), for fixed L,
only by a quantity depending on L but not on m:

0 < N ′
δ,u(t, f2)−Nδ,u(t, f2) <

1
2
ϕL(L),

while N ′
δ,u(t, f2) itself is equal to

N ′
δ,u(t, f2) =

2L∑

jm=0

· · ·
j2∧2L∑

j1=0

j1∧2L∑

j0=0

1.

The expression on the right-hand side can be rewritten as

N ′
δ,u(t, f2) = 〈1L,Mm−11L〉, 1L = (1, . . . , 1)T ∈ RL+1,
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where M is the operator with the (2L + 1)× (2L + 1)-matrix

M =




1 1 0 · · · 0
1 1 1 · · · 0
1 1 1 · · · 0
. . . . . . . . . . . . . . . .
1 1 1 · · · 1
1 1 1 · · · 1




.

Let us represent M as the sum M = SL + N , where the operator N is, obviousely,
nilpotent: N2L+1 = 0 (see, e.g., Glazman and Ljubič [24], p. 123, or Hirsch and
Smale [25], p. 116). As a consequence, we have

〈1L,Mm−11L〉 =
2L∑

j=0

(
m− 1

j

)
〈1L, Sm−j−1

L N j1L〉.

Since N j1L = (1, . . . , 1, 0, . . . , 0)T is a vector with the last j coordinates equal to
zero, we obtain e1 = (1, 0, . . . , 0)T ≤ N j1L ≤ 1L. Therefore

Sm−j−1
L e1 ≤ Sm−j−1

L N j1L ≤ Sm−j−1
L 1L.

Note also that Sm−j−1
L e1 = Sm−j−2

L 1L and 〈1L, Sm−j−1
L 1L〉 = ϕm−j(2L). Thus

ϕm−j(2L) ≤ 〈1L, Sm−j
L N j1L〉 ≤ ϕm−j+1(2L).

Therefore

ϕm(2L) +
2L∑

j=1

(
m

j

)
ϕm−j−1(2L)− ϕL(L)

≤ Nδ,u(t, f2) ≤
2L∑

j=0

(
m

j

)
ϕm−j(2L).

Using the asymptotic relation

ϕk(2L) ∼ k2L

(2L)!
e

4L2
k , k →∞,

we find that the summands with j = 2L on both sides of the inequalities are the
leading terms and are both of the same order. Hence

Nδ,u(t, f2) ∼
(

m

2L

)
ϕm−2L(2L) ∼

(
m2L

(2L)!

)2

. ¤

Hence we see that due to the geometry of our compact set C the neighborhood
of the same width t = Lδ of the increasing function f2 is much richer than that of
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the constant function f1. However, both neighborhoods are just VČ-classes, while
the whole compact set is a Dudley class.

Let us turn back to the metric (3.1) and consider Nδ(t, f). Since

sup
0≤x≤1

|f(x)− g(x)| ≤ t ⇒
∫
|f(x)− g(x)| dx ≤ t

⇒ sup
0≤x≤1

|f(x)− g(x)| ≤
√

2t,

it follows that
Nδ,u(t, f) ≤ Nδ(t, f) ≤ Nδ,u(

√
2t, f).

If we choose now t = L′δ with constant L′, we get
√

2t =
√

L′δ and the asymptotic
expressions of Theorem 3.2 can be used. Therefore we immediately obtain that

Nδ(t, f)/Nδ → 0 for both f = f1 and f = f2

and the condition of Theorem 2.4 is satisfied.

4. On Asymptotically Small Changes
In this section we consider what happens if the possible change of distribution

of marks on G0 is getting smaller as the sample size n increases, that is, if P2

and P1 converge to each other as n → ∞. This question of clear practical as well
as theoretical importance was in special situations considered earlier. For instance,
the case of converging P1 and P2 in the change-point problem on the real line (with
one change-point) was considered in Dümbgen [26].

The basic observation is that nothing essentially changes in the framework of
previous sections apart from the fact that the sample size n should be replaced by
smaller “effective” sample size n1 = nλ as soon as n1 → ∞. What we need to
clarify is the asymptotic behavior of the constants α, βj , j = 1, 2, involved in the
basic inequality (2.8), which will now vary with n.

Suppose the distribution P2 of the marks on the change-set converges to P1:

[
dP2

dP1
(y)

]1/2

= 1 +
1

2
√

m
hm(y),

∫
h2

m(y)dP1(y) → 1,

m = m(n) →∞ as n →∞,

and suppose there is no “complete mismatch” between the score function ξ and the
“direction” hm(y) along which P2 tend to P1:

lim inf
∫

ξ(y)hm(y) dP1(y) = α0 > 0.

Theorem 4.1. If n/m → ∞, then under the above conditions all previous
statements remain valid with n replaced by n1 = nλ ∼ n/m.

Remark 4.1. For n1 →∞ we need that m = o(n) rather than

m = o(n/(log log n)2)

as can be found in the literature.
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Proof. Under the assumptions above

α =
1
2

∫
ξ(y)

[{
1 +

1
2
√

m
hm(y)

}2

− 1
]

dP1(y)

=
1

2
√

m

∫
ξ(y)hm(y) dP1(y) + O

( 1
m

)
,

while β1 =
∫

ξ2(y)dP1(y) remains constant. Since the score function ξ is bounded
and P2 converges to P1, we get β2 → β1. Therefore

1
4
≥ lim sup mλ ≥ lim inf mλ ≥ α2

0

4β1
,

while the parameter γ → 0 and c → 0.1. Inequality (2.5) is then still true. The
rest of the proof follows from the formulations of the statements above since we
everywhere indicated the rates in terms of nc1 rather than just n. ¤

Example 4.1. Mammen and Tsybakov [1] consider the MLE and the score
function ξ chosen as ξ = log(dP2/dP1), while the marks Yi, i = 1, . . . , n, are
Bernoulli random variables with P2{Yi = 1} = p2 and P1{Yi = 1} = p1. The
authors assume in addition that p1 = 1

2 − p and p2 = 1
2 + p, p < 1/2, which leads

to the equality −α1 = α2.
According to Theorem 4.1 this equality is asymptotically true, i.e., −α1/α2 → 1,

whenever p2, p1 → p0, 0 < p0 < 1. The “effective” sample size is of order n|p1−p2|2.
In the other interesting case when p1 → 0 and p2 = ρp1, ρ = const, the limit for
−α1/α2 is different from 1,

α1 ∼ p1(log ρ + 1− ρ), α2 ∼ p1(ρ log ρ + 1− ρ),

and α1/α2 can converge to any number depending on ρ. The “effective” sample
size in this case is clearly of order p1n.
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