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Abstract. The workspace singularities of 3R regional manipulators have been much analyzed. The
presence of cusps in the singularity locus is known to admit singularity-avoiding posture change.
Cusps arise in singularity theory as second-order phenomena—specifically they are Σ 1,1 Thom–
Boardman singularities. The occurrence of such singularities requires that the kinematic mapping
be generic (in the sense of Pai and Leu [1]). Genericity and the occurrence of higher-order singu-
larities in families of regional manipulators are investigated using Lie-theoretic properties of the
Euclidean group.
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1 Introduction

A spatial serial 3-link manipulator is frequently termed a regional manipulator in
recognition of its use as the positioning component for the wrist-centre of a wrist-
partitioned 6-dof industrial manipulator. An example is illustrated in Figure 1. The
importance of such a design is that the inverse kinematics reduces to solving a de-
gree 4 polynomial [2]. Hsu and Kohli [3] used this to show that there are, for a
typical regional manipulator, surfaces in the joint space that divide it into regions
corresponding to different numbers of poses. These regions were also studied, in a
more general setting, by Burdick [4]. Taking a different perspective, Stanis̆ić and
Engelberth [5] demonstrated, using screw systems, that the wrist-positioning sub-
assembly gives rise to a singularity of the whole manipulator when the wrist centre
lies on a certain surface, dependent on the subassembly configuration. This was re-
ferred to as an instantaneous singular set in [6] and was subsequently used as the
basis for a singularity metric [7].

A number of researchers have used ideas from the mathematical theory of singu-
larities in the study of manipulators [1, 8, 9]. Pai and Leu examined the stratification
of the singularity locus by the corank of the singularity, that is, the instantaneous loss
of degrees of freedom (dofs). In particular, they introduced the concept of generic
manipulator, to describe one whose kinematic mapping has a nice singularity locus.
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Fig. 1 a) Ortho-parallel regional manipulator [10], b) Visualisation of cusp singularities.

In singularity theory, the term ’generic’ is used to describe a property that pertains
for a topologically large set (for example, open and dense, residual, or having com-
plement of measure zero) in a given parametrised family of mappings. In this setting,
the family could be the set of 3R manipulators, or it could be the set of wrist-centres
for a given manipulator, or the entire family with both the serial structure and wrist-
centre as parameters. Generic properties are typically realised via transversality to a
given family of manifolds—an intersection condition satisfied when certain vectors
span a given space. In this case, the given family of manifolds can be interpreted as
the sets Σ r of Jacobian matrices of fixed corank r.

In much of the literature on this subject, the term ‘generic’ is used to describe
a manipulator for which the transversality condition holds rather than the property
itself. A more accurate term is transverse-regular [11]. There is, as pointed out
by Tchoń [8], no certainty that the transversality condition will indeed hold for
most manipulators in a given class. Regardless of whether the condition holds for
most manipulators, whenever it does hold it guarantees that the singular loci Σ r f ,
corresponding to singularities of fixed rank, are themselves manifolds in the joint
space of the kinematic mapping f . On the other hand, the singular image in the
workspace can exhibit singularities, such as cusps. For further details of genericity
and concepts of singularity theory, see [11, 12, 13, 14, 15].

In the context of regional manipulators, algebraic conditions for genericity (i.e.
transversality) were obtained in [1, 9]. In particular, they showed that it is not pos-
sible to encounter Σ 2 transversely, so that rank 1 singularities are ruled out. Bur-
dick [16] gave an alternative geometric criterion to the algebraic equations of [3]:
when a 3R regional manipulator is in a singular configuration there exists a screw
of pitch zero whose axis passes through the wrist centre and intersects the axes of
each joint screw. He observed that for an open set of 3R regional manipulators,
there exist trajectories in joint space that do not intersect the singular locus, yet ef-
fect a change of posture. Such manipulators have been termed cuspidal and have
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been explored in detail by Wenger et al. [17, 18, 19]. Smith and Lipkin [20, 21]
showed that the inverse kinematics of a given wrist-centre for a 3R regional manip-
ulator can be encoded by a pencil of conics. Exceptional pencils in which the conics
possess some tangency correspond to singular configurations, while high-order tan-
gency (3rd or 4th order or paired) correspond to higher-order singularities, including
cusps. Recent classifications focus on specific classes of manipulator, for example
orthogonal [22], where a closed form expression for the Jacobian can be found, and
on workspace topologies [10].

Selig [23] analysed the kinematics and singularities of 3R manipulators using
product-of-exponentials formulation for the kinematics and results of Lie theory. It
is this approach that we pursue. A cusp arises as a singular point of the restriction
of the kinematic mapping to the singular locus: in the notation of Thom–Boardman
singularities [24] it is Σ 1,1. Our aim is to develop the singularity analysis of regional
manipulators in a reasonably broad context, provisionally allowing for 1-dof joints
of any sort, and deriving local descriptions of singular loci using methods of Lie
groups and Lie algebras. In this setting the two different aspects of the singular-
ity problem for regional manipulators—choice of the underlying serial manipulator
structure and of the wrist centre—can be developed together.

2 The kinematic mapping

The motion associated with each 1-dof joint of a manipulator can be represented
by a non-zero twist X—an element of the Lie algebra se(3) of the group SE(3)
of Euclidean isometries. The motion itself is given by the exponential exp(qX),
a path in the group of transformations, where q is the joint variable. The twist is
relative to a given choice of coordinates in the link and the ambient space; under a
change of coordinates represented by an isometry g ∈ SE(3), the twist transforms
by conjugacy and this is the adjoint action of the Lie group on its Lie algebra:

X 7→ Ad (g)(X) = gXg−1, (1)

where the elements of the group and twists can be written in matrix form. In a given
coordinate frame, the twist may be replaced by any non-zero multiple, a twist of the
same pitch, the joint variable being scaled by the inverse of the multiple. In other
words the joint is really represented by a screw. The kinematic mapping of a serial
manipulator with k 1-dof joints can then be written as a product of exponentials

f (q1, . . . ,qk) = exp(q1X1) · · ·exp(qkXk), (2)

where Xi, i = 1, . . . ,k, is the twist representing the ith joint, in a chosen home con-
figuration with respect to given space (or base) coordinates, and qi ∈ R is the joint
variable. Again, exponentials can be evaluated as matrices via the standard series
formula. The image of each exponential map is the one-parameter subgroup of Eu-
clidean transformations in SE(3), parametrised by the joint variable. The twists Xi
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can be equivalently represented by either: a 6-vector (ωωω i,vi) comprised of two 3-
vectors corresponding to infinitesimal rotation and translation, or a 4× 4 matrix
partitioned as (

ω̃ v

0t 0

)
, (3)

where the identification of ωωω ∈ R3 and the 3 skew-symmetric matrix ω̃ proceeds
with

ωωω =

ω1
ω2
ω3

↔ ω̃ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . (4)

If the joint Xi is revolute then ωωω i ·vi = 0, while if it is prismatic then ωωω i = 0. A priori,
there is no need to assume that the joints are either of these types, that is, they may
have pitch ωωω i ·vi/ωωω i ·ωωω i 6= 0,∞. While the exponential map is defined independent
of the representation used for the Lie algebra, in the matrix form it can be computed
by the usual exponential series.

For a regional manipulator k = 3, and there is a choice of wrist-centre c ∈ R3 (in
body coordinates for the third link). The kinematic mapping for the wrist centre is
the function

fc : R3→ R3; fc(q1,q2,q3) = exp(q1X1)exp(q2X2)exp(q3X3) · c. (5)

The ‘evaluation’ map εc : SE(3)→ R3 is given by the action of the group on the
wrist-centre c, that is for g ∈ SE(3), εc(g) = g · c. Then fc is the composition of εc
with the manipulator kinematic mapping f in (2).

3 Jacobian Matrices

A kinematic mapping f has a singularity at q when the rank of its derivative D f (q)
drops below its maximum possible value, which is the minimum of the dimensions
of the joint-space and the configuration space. The derivative is represented by the
(analytic) Jacobian matrix of partial derivatives. This represents a linear mapping
into the tangent space at the image f (q) ∈ SE(3) rather than into the Lie algebra, so
that the columns are not themselves, in general, twists. However the group structure
can be used to ‘pull back’ the tangent space to the identity by either left multiplica-
tion (corresponding to body coordinates) or right translation (space coordinates) to
give a more familiar geometric Jacobian. For the manipulator mapping f in (2) with
k = 3 the matrix is therefore 6× 3. To find an explicit form requires the derivative
of an exponential:

d
dq

exp(qX) = X · exp(qX) = exp(qX) ·X , (6)
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where the operations between the transformation exp(qX) and the twist X can be
realised by matrix multiplication. Following [23], if g∈ SE(3) can be written as g =
(R, t) ∈ SO(3)×s R3 (where ×s denotes semi-direct product), then g is represented
by the 6×6 partitioned matrix (

R O

t̃R R

)
(7)

with the skew-symmetric matrix t̃ defined in (4). Note that the exponential mapping
commutes with its defining twist. However, it does not commute with a general twist
and we require:

Y exp(qX) = exp(qX)exp(−qX)Y exp(qX) = exp(qX)Ad (exp(−qX))(Y ). (8)

Differentiating Ad as in (1) with respect to g ∈ SE(3) gives the adjoint representa-
tion of the Lie algebra se(3) on itself. This also determines the Lie bracket operation
in the Lie algebra:

ad (Y )(X) = [Y,X ] (9)

In matrix terms [Y,X ] = Y X−XY , while in screw coordinates

[(ωωω1,v1),(ωωω2,v2)] = (ωωω1×ωωω2,ωωω1×v2 +v1×ωωω2) . (10)

It is a theorem of matrix Lie groups that

Ad (exp(qX)) = Exp(q ad (X)) =
∞

∑
n=0

qn

n!
( ad X)n, (11)

where the exponential Exp is an operator on the Lie algebra. We obtain the analytic
Jacobian of f as follows (where vertical dots separate column vectors):

J f (q) =
(

exp(q1X1)X1 exp(q2X2)exp(q3X3)
... exp(q1X1)exp(q2X2)X2 exp(q3X3)

...

exp(q1X1)exp(q2X2)exp(q3X3)X3

)
(12a)

=
(

f (q1,q2,q3) ·Exp(−q3 ad X3)Exp(−q2 ad X2)X1
...

f (q1,q2,q3) ·Exp(−q3 ad X3)X2
... f (q1,q2,q3) ·X3

)
. (12b)

The second expression is obtained by applying (8) and the effect of f (q1,q2,q3) on
each term is to translate the twists in the tangent space at the identity (the Lie algebra
se(3)) to the tangent space at the given configuration. The corresponding geometric
Jacobian, consisting of the instantaneous joint screws in end-effector coordinates, is
therefore:

Jgeom =
(

X ′1
... X ′2

... X ′3
)

(13)

where X ′1 := Exp(−q3 ad X3)Exp(−q2 ad X2)X1, X ′2 := Exp(−q3 ad X3)X2, X ′3 := X3.
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An important object for establishing transversality of the kinematic mapping at
a given configuration is the Lie subalgebra generated by the joint screws Xi since it
contains the the subspace spanned by Xi at any configuration. Assuming that we are
interested in the configuration q = 0 then (12b) reduces to (13). Expanding (13) as
a series in q1,q2,q3 by means of (11) gives:

X ′1 = X1 +q2[X1,X2]+q3[X1,X3]+O(2)
= (ωωω1,v1)+q2(ωωω1×ωωω2,r12)+q3(ωωω1×ωωω3,r13)+O(2) (14a)

X ′2 = X2 +q3[X2,X3]+O(2)
= (ωωω2,v2)+q3(ωωω2×ωωω3,r23) (14b)

X ′3 = X3 = (ωωω3,v3), (14c)

where ri j = ωωω i×v j +vi×ωωω j.

4 The Singular Locus

For the wrist-centre kinematic mapping fc in (5), the Jacobian is 3×3. Its columns
are the result of applying the columns of (12b), considered as elements of SE(3),
to c. However, recalling that fc = εc ◦ f = f · c, and applying the chain rule to get
D fc = Dεc ◦D f , it is clear that the rank of the derivative of fc is less than 3, i.e. fc
has a singularity, if and only if one of the following occurs [6]:

i. f itself has a singularity;
ii. the kernel of the derivative of the evaluation map εc has non-trivial intersection

with the image of the derivative of f .

Case (i) corresponds to Burdick’s ‘extra branch singularities’ [16]. Here, the defin-
ing screws X1,X2,X3 are linearly dependent in the Lie algebra. We assume none are
zero and no two adjacent joint screws are permanently linearly dependent (since
then the manipulator effectively only has 2 dof). In particular the screws must span
a 2-dimensional subspace so correspond to a Σ 1 singularity. It follows from Theo-
rem 3.1 in [13] that the singularity occurs transversely so long as the the subspace is
not a subalgebra (i.e. closed under the Lie bracket), in which case that manipulator
would have 2 dof only. The 2-dimensional subalgebras are the algebra of cylindrical
motion and pure 2 dof translations.

In case (ii), the kernel of the derivative of εc at the identity is precisely the set of
pitch-zero twists whose axes pass through c: in the terminology of the Klein quadric,
this is an α-plane. This provides the principle for determining the instantaneous
singular sets in terms of the screw system in [5, 6]: a singularity can be detected
when the determinant of the 6×6 matrix, whose columns are 3 twists spanning the
α-plane and 3 from the Jacobian of f , vanishes.

This can be exploited by choosing coordinates in the end-effector so that c is the
origin. Then the twists spanning the α-plane can be taken as infinitesimal rotations
about the coordinate axes and the Jacobian has the partitioned form
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I Jωωω f (q)

O Jv f (q)

)
, (15)

where Jωωω f (q),Jv f (q) denote the projections of the Jacobian J f (q) onto the sub-
spaces of infinitesimal rotations about the origin and infinitesimal translations, re-
spectively. The determinant is simply equal to that of the lower right 3× 3 block
coming from the ‘translational’ part of f . Expanding this as a triple scalar product
of its columns and using (14) gives the following expression for detJv f (q):

h(q) := v1 · (v2×v3)+q2v2 · (v3× r12)+q3v3 · (v1× r23 +v2× r13)+O(2) (16)

The condition v1 · (v2×v3) = 0 (equivalently, v1,v2,v3 linearly dependent) affirms
that q = 0 itself is a singular point of fc. Indeed, if v lie in the orthogonal com-
plement to the subspace spanned by v1,v2,v3 then the twist (v,0) passes through
the wrist centre and is clearly reciprocal to each joint. In particular, if the joints are
revolute then the line intersects their axes [25], giving Burdick’s geometric criterion
mentioned in Section 1.

The form (16) gives an equation h(q) = 0 for the singularity locus in a neigh-
bourhood of q = 0. By the Implicit Function Theorem, if either of the coefficients
of the qi, i = 2,3 in (16) is non-zero, then the singular locus is a 2-dimensional
submanifold of the joint space in a neighbourhood of 0. Since each coefficient is
a polynomial in the screw coordinates of the three joints, their zero sets are closed
subspaces (affine varieties) and so there is an open set of 3 dof (not necessarily 3R)
manipulators for which a given wrist centre has a smooth singular locus. In other
words, this family is generic with respect to transverse regularity.

5 Cusps

The defining equation for the singular locus enables us to deduce a criterion for the
wrist centre to be a cusp point in the case that the locus is a manifold. In the notation
of the Thom–Boardman singularities [24, 26] a cusp point is a point of Σ 1,1 fc; that
is, a point in the joint space at which the restriction of the kinematic mapping fc to its
singular locus itself has a corank 1 singularity. Computationally, this is similar to a
Lagrange multiplier problem—find the singular points of a function constrained to a
given submanifold. In Section 4 we have not produced a closed form expression for
the singular locus—it is only known as a series expansion up to first-order, though in
principle more terms can be calculated and indeed there are closed form expressions
for exp(q ad X) [27]. However this is sufficient for the criterion we seek.

The required condition is that the derivative (or Jacobian matrix) for the aug-
mented map ( fc,h) : R3→ R4 should have corank 1, in addition to the underlying
requirement that D fc(q) itself has corank 1. Since we have only expanded the sin-
gular locus about q = 0, it is only possible to apply this criterion at that point, where
we have enough information to determine the Jacobian of ( fc,h). The 4×3 matrix
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arising from differentiating (5) and (16) is:
v11 v21 v31
v12 v22 v32
v13 v23 v33
0 v2 · (v3× r12) v3 · (v1× r23 +v2× r31)

 (17)

where vi = (vi1,vi2,vi3)T for i = 1,2,3, and a sufficient condition for this to have
rank 2 is that all 3×3 submatrices have determinant zero. Taking the first three rows
automatically ensures that q = 0 ∈ Σ 1 fc. While there are three further submatrices,
only one condition is algebraically independent: if the kinematic mapping is well
behaved (satisfies an appropriate transversality condition) then Σ 1,1 fc will be a 1-
dimensional submanifold (curve) in joint space.

6 Example: ortho-parallel manipulator

For an ortho-parallel manipulator, take as home configuration the one shown in Fig-
ure 1, where the parallel joints and the wrist centre all lie in a plane orthogonal to
the axis of the first joint. Then with the wrist-centre as origin of coordinates and
suitable choice of axes, the kinematics (5) can be defined using the following screw
coordinates (ωωω i,vi), i = 1,2,3 for the joints:

X1 = (0,0,1,−(a1 +a2 +a3),d2 +d3,0)
X2 = (1,0,0,0,0,a2 +a3)
X3 = (1,0,0,0,0,a3), (18)

where the ai,di are DH parameters (see, for example, [10]). In the home configu-
ration the joints are linearly independent. However v1 · (v2× v3) = 0 so this is a
singular configuration. Locally, the singular locus is defined by

h(q) =−a2a3(a1 +a2 +a3)q3 +O(2) (19)

Thus, the singular locus is locally a surface for non-trivial DH parameters unless
a1 +a2 +a3 = 0. The condition for a cusp is that the matrix

−(a1 +a2 +a3) 0 0
d2 +d3 0 0

0 a2 +a3 a3
0 0 −a2a3(a1 +a2 +a3)

 (20)

has rank 2, which is clearly not the case provided the conditions above hold. Notice
that for the manipulator in Figure 1 we have a1 = d2 = 0. While it is of limited
practical value, such a local singularity analysis remains straightforward for general
screw joints of non-zero pitch.
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It is also possible to analyse the effect of varying the wrist centre to a point c =
(c1,c2,c3)T . One way to do this is to transform coordinates by means of a translation
so that the wrist centre remains the origin. The joint twist Xi = (ωωω i,vi) transforms
to Xi = (ωωω i,−ωωω i×i c+vi). The linear part of the equation for the singularity locus
of an ortho-parallel manipulator becomes:

(a1 +a2+a3− c2)c3a2 + c2
3a2q2

−
[
(a2 +a3− c2)c2

3− (a3− c2)((a1 +a2 +a3− c2)a2 + c2
3)
]

q3. (21)

In particular, a shift of wrist centre parallel to the base axis (c3-direction) moves the
wrist centre off the singular locus.

7 Conclusions

Traditionally kinematic singularities of robotic manipulators have mostly been stud-
ied as a first order phenomenon in the sense of the Thom–Boardman singularity the-
ory. It was realized that a 3R regional manipulator can change its posture without
meeting a singularity if it exhibits cusp singularities (a second-order phenomena).
Therefore, and because the 3 dof manipulator kinematics is accessible to symbolic
manipulations, cusp singularities of 3R regional manipulators have been the subject
of extensive studies. Today much is known in the most important cases employed in
industrial manipulators, in particular for orthogonal and, to some extent, for ortho-
parallel manipulators. The significance of higher order singularities of general ma-
nipulators remains an open question. Here we have revisited the general problem
for regional manipulators in terms of the manipulator screw system using the ad-
joint action of the Euclidean group and the Thom–Boardman singularity theory.
This provides the basis for exploring genericity conditions of regional manipula-
tors without resorting to DH parameters. With the approach taken here it shall be
possible to derive geometrically interpretable second order genericity conditions for
regional manipulators with general screw joints (ensuring that Σ 1,1 is a manifold).
Eventually we shall be able to determine second order genericity of general manip-
ulators.

References

1. Pai, D. K. and Leu, M. C.: Genericity and singularities of robot manipulators, IEEE Trans.
Robotics and Automation, 8, 545–559 (1992)

2. Pieper, D. and Roth, B.: The kinematics of manipulators under computer control. In: Proc.
2nd World Congress on the Theory of Machines and Mechanisms, Zakopane, Poland, Vol. 2,
pp159–169. (1969)

3. Hsu, M.-S. and Kohli, D.: Boundary surfaces and accessibility regions for regional structures
of manipulators, Mech. Machine Theory, 22, 277–289 (1987)



10 P. Donelan1 and A. Müller2

4. Burdick, J. W.: PhD thesis, Department of Mechanical Engineering, Stanford University
(1988)
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