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Abstract

In this paper, we consider Parisian ruin problem concerning excursion
below zero for a fixed consecutive duration of spectrally negative Lévy pro-
cess. The results are two folds. First, we derive joint Laplace transform of
ruin-time and ruin-position of the Lévy process killed at the first-passage
time above a level. Secondly, based on this Laplace transform, we de-
rive Parisian ruin and resolvent density of terminating the Lévy process
at the first-passage time. Parisian ruin density extends the recent result
of Baurdoux et al [1] to Parisian excursion with fixed duration, whereas
the resolvent density generalizes the result obtained by Suprun [25] and
Bertoin [2] for ruin problem under Parisian fixed delay. The results have
semi-explicit expressions in terms of the scale function of spectrally nega-
tive Lévy process. We show in the limit as excursion duration goes to zero
that the joint Laplace transform leads to Emery’s fluctuation identity [13]
whereas the resolvent density leads to the result given in [25] and [3].
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1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on filtered
probability space (Ω,F , {Ft : t ≥ 0},P). That is to say that X is a stochastic
process starting from zero, having stationary and independent increments with
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cádlág sample paths with no positive jumps. To avoid degenerate case we exclude
the case where X has monotone paths. As a strong Markov process, we shall en-
dow X with probabilities {Px, x ∈ R}, such that Px{X0 = x} = 1. Furthermore,
we denote by Ex expectation with respect to Px. Recall that P = P0 and E = E0.
The Lévy-Itô sample paths decomposition of the process is given by

Xt = µt+ σBt +

∫ t

0

∫
{x<−1}

xν(dx, ds)

+

∫ t

0

∫
{−1≤x<0}

x
(
ν(dx, ds)− Π(dx)ds

)
,

(1.1)

where µ ∈ R, σ ≥ 0 and (Bt)t≥0 is standard Brownian motion, whilst ν(dx, dt)
denotes the Poisson random measure associated with the jumps process ∆Xt :=
Xt−Xt− of X. This Poisson random measure has compensator given by Π(dx)dt,
where Π is the Lévy measure satisfying the integrability condition:∫ 0

−∞
(1 ∧ x2)Π(dx) <∞. (1.2)

We refer to Chapter 2 of [17] for more details on paths decomposition of X.
Due to the absence of positive jumps, it is therefore sensible to define

ψ(λ) =
1

t
logE

{
eλXt

}
= µλ+

1

2
σ2λ2 +

∫
(−∞,0)

(
eλy−1−λy1{y>−1}

)
Π(dy), (1.3)

which is analytic on (Im(λ) ≤ 0). It is easily shown that ψ is zero at the origin,
tends to infinity at infinity and is strictly convex. We denote by Φ : [0,∞) →
[0,∞) the right continuous inverse of ψ so that it satisfies the following:

Φ(θ) = sup{p > 0 : ψ(p) = θ} and ψ(Φ(λ)) = λ for all λ ≥ 0.

Note that due to the convexity of ψ, there exit at most two roots for a given
θ and precisely one root when θ > 0. The asymptotic behavior of X can de
determined from the sign of ψ′(0+), the right-derivative of ψ at zero. X drifts
to −∞, oscillates or drifts to +∞ according to whether ψ′(0+) is negative, zero
or positive. See for instance Kyprianou and Palmowski [18] for more details.

It is worth mentioning that under the Esscher transform Pν defined by

dPν

dP

∣∣∣
Ft

= eνXt−ψ(ν)t for all ν ≥ 0, (1.4)

the Lévy process (X,Pν) is still a spectrally negative Lévy process. The Laplace
exponent of X under the new measure Pν has changed to ψν(λ) given by

ψν(λ) = ψ(λ+ ν)− ψ(ν), for λ ≥ −ν. (1.5)
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To each ν ≥ 0, we will denote by Pνx the translation of Pν under which X0 = x.
Subsequently, we define by Φν(θ) the largest root of equation ψν(λ) = θ satisfying

Φν(θ) = Φ(θ + ψ(ν))− ν.

Our main object of interest in this paper is the quantity τr representing the
first time that the process X has spent r > 0 units of time consecutively below
zero before getting back up to zero again. This stopping time is defined by

τr = inf{t > r : (t− gt) ≥ r} with gt := sup{0 ≤ s ≤ t : Xs ≥ 0}, (1.6)

under Px, with the convention that inf ∅ =∞ and sup ∅ = 0. The stopping time
τr (1.6) was first introduced by Chesney et al. [8] in the context of pricing barrier
options in mathematical finance. It was later introduced in actuarial risk theory
by Dassios and Wu [10] under the classical surplus process and provided expres-
sion for the Parisian ruin probability Px{τr < ∞}. Czarna and Palmowski [9]
and Loeffen et al. [22] extended the result to spectrally negative Lévy processes.

In their another paper, Dassios and Wu [11] and [12] gave the law of finite-
time Parisian ruin probability Px{τr ≤ t} in terms of its Laplace transform
q−1Ex

{
e−qτr1{τr<∞}

}
under the classical surplus process and Brownian motion.

The results were extended to spectrally negative Lévy processes by Landriault et
al. [20]. These extensions were based on randomization of excursion duration r
under exponential and Erlang distribution. However, the results in [20] are avail-
able when the sample paths of the Lévy process have bounded variation. Based
on the perturbation method employed in [12], Baurdoux et al. [1] extended the
results in [20] to unbounded variation case by giving semi-explicit expression for
Parisian ruin density Ex

{
e−qτq ;−Xτq ∈ dy, τq < τ+

a

}
with exponential imple-

mentation of delays, i.e., τq = inf{t > 0 : (t − gt) > eq} and eq is independent
of X exponential random time, whilst τ+

a is first-passage above a > 0 stopping
time (3.1). Working with the stopping time (1.6), we consider ruin density

Ex
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a }, for q, r ≥ 0 (1.7)

for X when it starts from x ∈ [0, a] at time zero, and the resolvent density,

q−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a }, for q > 0, r ≥ 0. (1.8)

The ruin and resolvent density (1.7) and (1.8) are derived based on the joint
Laplace transform of τr and Xτr killed at first-passage time τ+

a , given by

Ex
{
e−qτr+λXτr1{τr<τ+

a }
}
, for q, λ ≥ 0. (1.9)

We will show in this paper that when duration of excursion r goes to zero,
our results for (1.8) and (1.9) coincides with the resolvent measure obtained by
Suprun [25] and Bertoin [3], and fluctuation identity given by Emery [13].

This paper is organized as follows. Section 1 discusses the motivation and
main objects of interest of this paper. The main results are presented in Section
2. Some preliminary results are given in Section 3. Section 4 discusses the proofs
of main results and the limiting results of joint Laplace transform and resolvent
density when duration of excursion of the Lévy process goes to zero.
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2 Main results

Our result for (1.9) is obtained by extending the approach used in [22]. The
results are expressed in terms of the q−scale function W (q)(x) of X:∫ ∞

0

e−λxW (q)(x)dx =
1

ψ(λ)− q
, for λ > Φ(q), (2.1)

with W (q)(x) = 0 for x < 0. We shall write for short W (0) = W and refer to W
(q)
ν

the scale function under Pν . Following (2.1), it is straightforward to check that

W (q)
ν (x) = e−νxW (q+ψ(ν))(x) for all ν ≥ 0 and q ≥ −ψ(ν). (2.2)

It is known following [7] that, for any q ≥ 0, the q−scale function W (q) is
C1(0,∞) if the Lévy measure Π does not have atoms and is C2(0,∞) if σ > 0.

In the sequel below, we use the notation Λ(q)(x, r) defined by

Λ(q)(x, r) :=

∫ ∞
0

W (q)(x+ z)
z

r
P{Xr ∈ dz}. (2.3)

We shall write Λ = Λ(0) and refer to Λ
(q)
ν the role of Λ(q) under measure Pν , i.e.,

Λ(q)
ν (x, r) :=

∫ ∞
0

W (q)
ν (x+ z)

z

r
Pν{Xr ∈ dz}. (2.4)

Using Esscher transform of measure (1.4), we can rewrite it as

Λ(q)
ν (x, r) = e−νxe−ψ(ν)rΛ(q+ψ(ν))(x, r). (2.5)

For further details on spectrally negative Lévy process, we refer to Chapter VI
of Bertoin [2] and Chapter 8 of Kyprianou [17]. Some examples of Lévy processes
for which W (q) are available in explicit form are given by Kuznetzov et al. [15].
In any case, it can be computed by numerically inverting (2.1), see Surya [26].

To prevent the Parisian ruin occurs with probability one, we therefore impose
throughout the remaining of this paper that ψ′(0+) > 0 by which the Lévy
process X drifts to infinity at infinity. Our main results are given below.

Theorem 2.1 Given that X starts at 0 ≤ x ≤ a at time zero,

(i) for any y ∈ [0,∞) and q, r ≥ 0, the ruin density (1.7) is given by

Ex
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
= e−qr

[
q
(
W (q)(x− y)− Λ(q)(x, r)

Λ(q)(a, r)
W (q)(a− y)

)
1{y≥0} (2.6)

+1{x≤y≤a}

(∂yΛ(q)(y, r)

Λ(q)(a, r)
− qΛ(q)(x, r)

∫ r

0

∂yF
(q)
r (y, u)du

)]
dy,

where ∂y is partial derivative w.r.t y and F
(q)
r (y, u) is defined by

F (q)
r (y, u) =

Λ(q)(y, u)

Λ(q)(y, r)
with F (q)

r (0, u) = eq(u−r).
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(ii) and for q > 0 and r ≥ 0, the resolvent density (1.8) is given by

q−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a

}
=


e−qr

[
Λ(q)(x,r)

Λ(q)(a,r)
W (q)(a− y)−W (q)(x− y), y ∈ [0, a]

+1{y≥x}Λ
(q)(x, r)

∫ r
0
∂yF

(q)

r (y, u)du
]
dy,

0, y < 0

(2.7)

where ∂y is partial derivative w.r.t y and F
(q)

r (y, u) is defined by

F
(q)

r (y, u) =
(Λ(q)(y, u)− equ)

Λ(q)(y, r)
, with F

(q)

r (0, u) = 0.

Note that the ruin density (2.6) is different from the one given in [1], even
when we apply Laplace transform to (2.6) w.r.t duration r. Furthermore, we also
notice the presence of an additional term in the resolvent density (2.7). That is
to say, when duration of excursion is positive, there is an extra charge of measure
applied on interval [x, a]. However, when excursion duration r goes to zero, we
have the same result given in [25] and [3], and other results when a→∞.

Corollary 2.2 When duration r of excursion goes to zero,

(i) given 0 ≤ x ≤ a <∞, we have

(ia) for any y ∈ [0,∞) and q ≥ 0,

lim
r↓0

Ex
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
(2.8)

=
[
q
(
W (q)(x− y)− W (q)(x)

W (q)(a)
W (q)(a− y)

)
1{y≥0} +

W (q)′(y)

W (q)(a)
1{x≤y≤a}

]
dy.

(ib) for any q > 0,

lim
r↓0

q−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a

}
=

{[
W (q)(x)

W (q)(a)
W (q)(a− y)−W (q)(x− y)

]
dy, y ∈ [0, a]

0, y < 0

(2.9)

(ii) given x ≥ 0, we have as a→∞,

(iia) that for any q > 0 and r ≥ 0,

q−1Px
{
Xeq ∈ dy, eq < τr

}
=


e−qr

[
e−Φ(q)y Λ(q)(x,r)

Γ(q)(r)
−W (q)(x− y), y ≥ 0

+1{y≥x}Λ
(q)(x, r)

∫ r
0
∂yF

(q)

r (y, u)du
]
dy,

0, y < 0

(2.10)
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where we have defined

Γ(q)(r) =

∫ ∞
0

eΦ(q)z z

r
P{Xr ∈ dz}.

(iib) that for any q > 0,

lim
r↓0

q−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a

}
=

{[
e−Φ(q)yW (q)(x)−W (q)(x− y)

]
dy, y ≥ 0

0, y < 0.

(2.11)

Recall that the limiting measure (2.9) and (2.11) coincides with the
q−potential measure of a spectrally negative Lévy process killed on exiting [0, a]
and without killing given in [25] and [3], respectively. See Theorem 8.7 in [17].

The theorem below gives the Laplace transform of the density (2.6) and (2.7).

Theorem 2.3 For a given q, r, θ ≥ 0 with q > ψ(θ), for any x ≤ a

(i) the Laplace transform of (2.6) is give by

Ex
{
e−qτr+θXτr1{τr<τ+

a }
}

= e−qr
{
eθxeψ(θ)r + (q − ψ(θ))eψ(θ)r

∫ x

0

eθzW (q)(x− z)dz

+(q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(x, u)du− Λ(q)(x, r)

Λ(q)(a, r)

[
eθaeψ(θ)r (2.12)

+(q − ψ(θ))eψ(θ)r

∫ a

0

eθzW (q)(a− z)dz + (q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(a, u)du
]}
.

(ii) the Laplace transform of (2.7) is given by

Ex
{∫ τr∧τ+

a

0

e−qteθXtdt
}

=
Λ(q)(x, r)

(q − ψ(θ))

[ eθx

Λ(q)(x, r)
− eθa

Λ(q)(a, r)

](
1− e−qreψ(θ)r

)
−e−qr

[
eψ(θ)r

∫ x

0

eθzW (q)(x− z)dz +

∫ r

0

eψ(θ)(r−u)Λ(q)(x, u)du

−Λ(q)(x, r)

Λ(q)(a, r)

(
eψ(θ)r

∫ a

0

eθzW (q)(a− z)dz +

∫ r

0

eψ(θ)(r−u)Λ(q)(a, u)du
)]
. (2.13)

Corollary 2.4 When duration r goes to zero, τr has the same law as τ−0 .

Using density (2.6), we can calculate discounted penalty at Parisian ruin

Ex
{
e−qτrf(Xτr)1{τr<τ+

a }
}

=

∫ ∞
0

f(−y)Ex
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
, (2.14)
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for nonnegative Borel measurable penalty function f . However, when sending
a→∞ in (2.14), the ruin density (2.6) shall be used in the limit sense, i.e.,

Ex
{
e−qτrf(Xτr)1{τr<∞}

}
= lim

a→∞

∫ ∞
0

f(−y)Ex
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
.

For instance, we have following (2.6) and (2.12) the result below for f(x) = eθx.

Corollary 2.5 For any x ∈ R and q, θ ≥ 0 with q > ψ(θ),

Ex
{
e−qτr+θXτr1{τr<∞}

}
= e−qr

{
eθxeψ(θ)r + (q − ψ(θ))eψ(θ)r

∫ x

0

eθzW (q)(x− z)dz

+(q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(x, u)du− Λ(q)(x, r)

Γ(q)(r)

[ (q − ψ(θ))

(Φ(q)− θ)
eψ(θ)r

+(q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Γ(q)(u)du
]}
.(2.15)

Furthermore, using density (2.7), we can evaluate aggregate payoff

Ex
{∫ τr∧τ+

a

0

e−qtg(Xt)dt
}

= q−1

∫ ∞
0

g(y)Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a

}
. (2.16)

for nonnegative Borel measurable function g. To sum up, using the ruin and re-
solvent density (2.6) and (2.7), we can evaluate total discounted penalty function

Ex
{∫ τr∧τ+

a

0

e−qtg(Xt)dt
}

+ Ex
{
e−q(τr∧τ

+
a )f(Xτr∧τ+

a
)
}
.

This quantity concerning total discounted payoff appears in some places in fi-
nance, especially in the capital structure problem. We refer, among others, to
Kyprianou and Surya [16], Francois and Morellec [14] and Broadie et al. [6].

3 Preliminaries

Before we prove the main results, we devote this section to some preliminary
results required to establish (2.6)-(2.15); in particular, to prove Theorem 2.3 on
getting the expression for joint Laplace transform of τr and Xτr on the events
τr < τ+

a . Then, we show that this expression coincides with the Laplace transform
of (2.6) and (2.7). To begin with, we define for a ∈ R two stopping times:

τ+
a = inf{t > 0 : Xt > a} and τ−a = inf{t > 0 : Xt < a}. (3.1)

Due to the absence of positive jumps, we have by the strong Markov property
of X that τ+

a can equivalently be rewritten as τ+
a = inf{t > 0 : Xt ≥ a}.

It is known that W (q)(x) is continuously differentiable on (0,∞) whenever
X has paths of unbounded variation or the Lévy measure Π has no atoms for
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bounded variation, see Lambert [19] and Chan et al. [7]. We denote its derivative
by W (q)′(x). Furthermore, it is also known that W (q)(0) = 0 and W (q)(0) = 1/d
when X has paths of unbounded and bounded variation, respectively. See Lemma
8.6 in [17] and Lemma 4.4. in Kyprianou and Surya [16]. Also, due to the absence
of positive jumps in the sample paths, the Laplace transform of τ+

a is given by

Ex
{
e−qτ

+
a
}

= eΦ(q)(x−a), x ≤ a, q ≥ 0. (3.2)

see Section 8.1 in [17]. In the derivation of the main results (2.12)-(2.11), we
will also frequently use Kendall’s identity (Corollary VII.3 in [2]), which relates
the distribution P{Xt ∈ dx} of a spectrally negative Lévy process X to the
distribution P{τ+

x ∈ dt} of its first passage time τ+
x . This identity is given by

tP{τ+
x ∈ dt}dx = xP{Xt ∈ dx}dt, (3.3)

To establish our main results, we need to recall the following identities.

Lemma 3.1 For any x ≤ a and q, θ ≥ 0,

Ex
{
e
−qτ−0 +θX

τ−0 1{τ−0 <τ
+
a }
}

= 1 +
(
q − ψ(θ)

) ∫ x

0

e−θzW (q)(z)dz

− e−θ(x−a)W
(q)(x)

W (q)(a)

(
1 +

(
q − ψ(θ

)) ∫ x

0

e−θzW (q)(z)dz
)
.

(3.4)

Proof To establish the above, we need to recall the following result borrowed
from Theorem 8.1 in [17], which holds for any x ≤ a and q ≥ 0,

Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }
}

= 1+q

∫ x

0

W (q)(x−z)dz−W
(q)(x)

W (q)(a)

[
1+q

∫ a

0

W (q)(a−z)dz
]
.

Let p = q − ψ(θ). As {τ−0 < τ+
a } ∈ Fτ−0 , we arrive at (3.4) by strong Markov

property and applying Esscher transform of measure after rewriting (3.4) as

Ex
{
e
−qτ−0 +θX

τ−0 1{τ−0 <τ
+
a }
}

= eθxEθx
{
e−pτ

−
0 1{τ−0 <τ

+
a }
}
. �

Corollary 3.2 For any x ≤ a and θ, q ≥ 0 with q > θ,

Ex
{
e
−qτ−0 +Φ(θ)X

τ−0 1{τ−0 <τ
+
a }

}
=

(θ − q)
Φ(θ)

∫ ∞
0

e−Φ(θ)zW (q)′(x+ z)dz

− (θ − q)
Φ(θ)

W (q)(x)

W (q)(a)

∫ ∞
0

e−Φ(θ)zW (q)′(a+ z)dz.

(3.5)

Proof The proof follows from applying the fluctuation identity (3.4) from which
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we obtain after a change of variables and integration by parts that

Ex
{
e
−qτ−0 +Φ(θ)X

τ−0 1{τ−0 <τ
+
a }

}
=eΦ(θ)x

(
1 + (q − θ)

∫ x

0

e−Φ(θ)zW (q)(z)dz
)

− eΦ(θ)aW
(q)(x)

W (q)(a)

(
1 + (q − θ)

∫ a

0

e−Φ(θ)zW (q)(z)dz
)

=(θ − q)eΦ(θ)x

∫ ∞
x

e−Φ(θ)zW (q)(z)dz

− (θ − q)eΦ(θ)aW
(q)(x)

W (q)(a)

∫ ∞
a

e−Φ(θ)zW (q)(z)dz

=
(θ − q)
Φ(θ)

(
W (q)(x) +

∫ ∞
0

e−Φ(θ)zW (q)′(x+ z)dz
)

− (θ − q)
Φ(θ)

W (q)(x)

W (q)(a)

(
W (q)(a) +

∫ ∞
0

e−Φ(θ)zW (q)′(a+ z)dz
)
,

from which we arrive at the result in (3.5) and indeed establishes our claim. �

Along with Lemma 3.2, the two results below are used when applying inverse
Laplace transforms to get the main results presented in Section 2.

Lemma 3.3 For y > 0 and θ > 0 such that 0 ≤ α < Φ(θ),∫ ∞
0

e−θre−αy
∫ ∞
y

eαz
z

r
P{Xr ∈ dz}dr =

e−Φ(θ)y(
Φ(θ)− α

) , (3.6)∫ ∞
0

e−θre−αy
∫ ∞
y

eαzP{τ+
z ≤ r}dzdr =

e−Φ(θ)y

θ
(
Φ(θ)− α

) . (3.7)

Proof On recalling (3.2), Kendall’s identity (3.3) and Tonelly, we have∫ ∞
0

e−θre−αy
∫ ∞
y

eαz
z

r
P{Xr ∈ dz}dr =e−αy

∫ ∞
0

e−θr
∫ ∞
y

eαzP{τ+
z ∈ dr}dz

=e−αy
∫ ∞
y

eαz
∫ ∞

0

e−θrP{τ+
z ∈ dr}dz

=e−αy
∫ ∞
y

e(α−Φ(θ))zdz

=
e−Φ(θ)y

(Φ(θ)− α)
.

The equation (3.6) follows from applying Tonelli and Laplace inversion on ac-
count that both sides of the equation are right-continuous in r. �
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To establish the equation (3.7), we need to recall from (3.2) that∫ ∞
0

e−θrE
{
e−qτ

+
z 1{τ+

z ≤r}
}
dr =

∫ ∞
0

e−θr
∫ r

0

e−qyP{τ+
z ∈ dy}dr

=

∫ ∞
0

∫ ∞
y

e−θrdre−qyP{τ+
z ∈ dy}

=

∫ ∞
0

1

θ
e−(θ+q)yP{τ+

z ∈ dy}

=
1

θ
e−Φ(θ+q)z.

(3.8)

Again the equation follows after applying Tonelli and Laplace inversion for the
same reason as before. Using similar arguments for the proof of (3.6) and (3.8),∫ ∞

0

e−θre−αy
∫ ∞
y

eαzP{τ+
z ≤ r}dzdr =e−αy

∫ ∞
y

eαz
∫ ∞

0

e−θrP{τ+
z ≤ r}drdz

=e−αy
∫ ∞
y

eαz
1

θ
e−Φ(θ)zdz

=
e−Φ(θ)y

θ
(
Φ(θ)− α

) .
We deduce (3.7) by Tonelli and Laplace inversion (right-continuity in r). �

Lemma 3.4 Given q ≥ 0, then for any x ≤ 0 and r ≥ 0,

Λ(x, r) = Λ(q)(x, r)− q
∫ r

0

Λ(q)(x, u)du. (3.9)

Proof Following the right-continuity in r of the expressions on both side of the
equality, the proof follows from showing that the Laplace transform of the left-
hand side is equal to that of the other. By Kendall’s identity (3.3) and Tonelly,∫ ∞

0

dre−θrΛ(q)(x, r) =

∫ ∞
0

e−θr
∫ ∞

0

W (q)(x+ z)
z

r
P{Xr ∈ dz}dr

=

∫ ∞
0

e−θr
∫ ∞

0

W (q)(x+ z)P{τ+
z ∈ dr}dz

=

∫ ∞
0

dzW (q)(x+ z)

∫ ∞
0

e−θrP{τ+
z ∈ dr}

=

∫ ∞
0

dze−Φ(θ)zW (q)(x+ z)

= eΦ(θ)x

∫ ∞
x

e−Φ(θ)zW (q)(z)dz

=
eΦ(θ)x

(θ − q)
, (3.10)
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where the last equality is due to x ≤ 0. By Kendall’s identity (3.3) and Tonelly,
we have

∫ r
0

Λ(q)(x, u)du =
∫∞

0
dzW (q)(x+ z)P{τ+

z ≤ r}. By Tonelly and (3.2),

q

∫ ∞
0

dre−θr
∫ r

0

Λ(q)(x, u)du =
q

θ

∫ ∞
0

e−Φ(θ)zW (q)(x+ z)dz

=
qeΦ(θ)x

θ(θ − q)
.

Following (3.10),
∫∞

0
dre−θrΛ(x, r) = eΦ(θ)x

θ
= eΦ(θ)x

(θ−q) −
qeΦ(θ)x

θ(θ−q) proving (3.9). �

Lemma 3.5 For any x ≤ 0, q, r, θ ≥ 0 with q > ψ(θ) and ε ≥ 0,

Ex
{
e−qτ

+
ε 1{τ+

ε ≤r}
}

= e−qrΛ(q)(x− ε, r), (3.11)

Ex
{
e−qr+θXr1{τ+

ε ≤r}
}

= e−qreθε
(

Λ(q)(x− ε, r) (3.12)

−(q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(x− ε, u)du
)
.

Proof The proof follows from applying Laplace inversion approach in similar
fashion used before. To start with, recall following identity (3.2) that∫ ∞

0

dre−θrEx
{
e−qτ

+
ε 1{τ+

ε ≤r}
}

= θ−1eΦ(θ+q)(x−ε).

Then, based on (2.1) and the fact that x ≤ 0, we can rewrite the above as:

θ−1eΦ(θ+q)(x−ε) = eΦ(θ+q)(x−ε)
∫ ∞
x

W (q)(z)e−Φ(θ+q)zdz

= eΦ(θ+q)(x−ε)
∫ ∞
ε

W (q)(x+ z − ε)e−Φ(θ+q)(x+z−ε)dz

=

∫ ∞
ε

W (q)(x+ z − ε)e−Φ(θ+q)zdz

=

∫ ∞
ε

W (q)(x+ z − ε)
∫ ∞

0

e−θre−qrP{τ+
z ∈ dr}dz

=

∫ ∞
ε

W (q)(x+ z − ε)
∫ ∞

0

dre−θre−qr
z

r
P{Xr ∈ dz}

=

∫ ∞
0

dre−θre−qr
∫ ∞
ε

W (q)(x+ z − ε)z
r
P{Xr ∈ dz}.

Since x ≤ 0 and W (q)(x) = 0 for x < 0, we arrive at our claim in (3.11) by
recalling that for any ε ≥ 0 we have

∫ ε
0
W (q)(x+ z − ε) z

r
P{Xr ∈ dz} = 0. �

Applying Esscher transform of measure to (3.12), we have by (3.11)

Ex
{
e−qr+θXr1{τ+

ε ≤r}
}

= eθxe−qreψ(θ)rΛθ(x− ε, r),
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where Λθ(x, r) is equal to Λ(x, r) under measure Pθx. Furthermore, since Lemma
3.4 is applicable for any q ≥ 0 we have by replacing q → p := q − ψ(θ), i.e.,

Λθ(x− ε, r) = Λ
(p)
θ (x− ε, r)− p

∫ r

0

Λ
(p)
θ (x− ε, u)du.

Our proof is complete by recalling that Λ
(p)
θ (x, r) = e−θxe−ψ(θ)rΛ(q)(x, r). �

We are now in the position of having necessary tools to establish our main
results presented in Section 2, which the next section is concerned with.

4 Proof of main results

4.1 Proof of Theorem 2.3 (i)

The proof is established for the case where X has paths of bounded and un-
bounded variation. To deal with unbounded variation case, we will use a limit-
ing argument similar to the one employed in [22] and adjust the ruin time (1.6)
accordingly. For this reason, we introduce for ε ≥ 0 the stopping time τ εr

τ εr = inf{t > r :
(
t− gεt

)
≥ r} with gεt := sup{s < t : Xs ≥ ε}.

This stopping time represents the first time that the process X has spent a
certain r > 0 units of time consecutively below zero ending before X gets back
up again to a level ε ≥ 0. Note that τr = τ 0

r . Due to the absence of positive
jumps and strong Markov property of X, we have for any x < 0 that

Ex
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}

=Ex
{
e−qr+θXr

}
− Ex

{
e−qr+θXr1{τ+

ε ≤r}
}

+ Ex
{
e−qτ

+
ε 1{τ+

ε ≤r}
}
Eε
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}
.

(4.1)

Using the above for x ≥ 0 and applying the strong Markov property, we have

Ex
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}

= Ex
{
Ex
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
∣∣Fτ−0 }}

= Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}}
. (4.2)

Incorporating the result (4.1) in (4.2), we arrive at the following.

Ex
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}

= Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−qr+θXr

}
−Ex

{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−qr+θXr1{τ+

ε ≤r}
}}

(4.3)

+Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−qτ

+
ε 1{τ+

ε ≤r}
}}

Eε
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}
.

The first expectation in the last equality of (4.3) can be worked out in terms of
the q−scale function W (q)(x) using the fluctuation identity (3.4), whereas the
other two expectations are given by the following propositions.
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Proposition 4.1 For any q ≥ 0 and r > 0, we have for all x ≤ a,

Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }

(
e−qrΛ(q)(Xτ−0

− ε, r)
)}

(4.4)

= e−qr
∫ ∞
ε

[
W (q)(x+ z − ε)− W (q)(x)

W (q)(a)
W (q)(a+ z − ε)

]z
r
P{Xr ∈ dz}.

Proof On recalling (3.11) and (3.8), we have by Tonelly and Lemma 3.2 that∫ ∞
0

dre−θrEx
{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−qτ

+
ε 1{τ+

ε ≤r}
}}

= θ−1Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }EXτ−0

{
e−(q+θ)τ+

ε
}}

= θ−1e−Φ(θ+q)εEx
{
e
−qτ−0 +Φ(θ+q)X

τ−0 1{τ−0 <τ
+
a }

}
.

=

∫ ∞
0

( 1

Φ(θ + q)
e−Φ(θ+q)(z+ε)

)
W (q)′(x+ z)dz

− W (q)(x)

W (q)(a)

∫ ∞
0

( 1

Φ(θ + q)
e−Φ(θ+q)(z+ε)

)
W (q)′(a+ z)dz.

On account of Lemma 3.3, Tonelli and applying Laplace inversion (noting that
both sides of the equation are right-continuous in r), we then deduce (4.4). �

Corollary 4.2 For any q ≥ 0 and r > 0, we have for all x ≤ a

Ex
{
e−qτ

−
0 1{τ−0 <τ

+
a }Λ

(q)(Xτ−0
, r)
}

= Λ(q)(x, r)− W (q)(x)

W (q)(a)
Λ(q)(a, r). (4.5)

Proof The proof of (i) follows from taking ε = 0 in (4.4). �

Next, we want to find a simplified expression for (4.3) for x = ε in terms of
W (q)(x) and the law P{Xt ∈ dx}. For this purpose, let us show that

Proposition 4.3 For any q ≥ 0 and r > 0, we have that∫ ∞
0

W (q)(z)
z

r
P{Xr ∈ dz} = eqr. (4.6)

Proof Using again the Kendall’s identity (3.3) and (3.8), we have∫ ∞
0

e−θr
∫ ∞

0

W (q)(z)
z

r
P{Xr ∈ dz}dr =

∫ ∞
0

e−θr
∫ ∞

0

W (q)(z)P{τ+
z ∈ dr}dz

=

∫ ∞
0

e−Φ(θ)zW (q)(z)dz

=
1

(θ − q)
,
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which indeed establish our claim. �

From the above proposition, it follows that for any q, ε ≥ 0 and a, r > 0 that∫ ∞
ε

(
W (q)(z)− W (q)(ε)

W (q)(a)
W (q)(a+ z − ε)

)z
r
P{Xr ∈ dz} (4.7)

= eqr −
∫ ε

0

W (q)(z)
z

r
P{Xr ∈ dz} −

W (q)(ε)

W (q)(a)

∫ ∞
ε

W (q)(a+ z − ε)z
r
P{Xr ∈ dz}.

We will take x = ε in (4.3) and then apply (3.11)-(3.12) and (4.4) in the first
step and (4.7) in the second step along with the identity (3.4), we have that

Eε
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }

}
=e−qreψ(θ)reθε

[
1 + (q − ψ(θ))

∫ ε

0

e−θzW (q)(z)dz

− e−θ(ε−a)W
(q)(ε)

W (q)(a)

(
1 + (q − ψ(θ))

∫ a

0

e−θzW (q)(z)dz
)]

− e−qreθε
[
eqr −

∫ ε

0

W (q)(z)
z

r
P{Xr ∈ dz}

− W (q)(ε)

W (q)(a)

∫ ∞
ε

W (q)(a+ z − ε)z
r
P{Xr ∈ dz}

]
+ e−qreθε(q − ψ(θ))

∫ r

0

dueψ(θ)(r−u)
[
equ −

∫ ε

0

W (q)(z)
z

u
P{Xu ∈ dz}

− W (q)(ε)

W (q)(a)

∫ ∞
ε

W (q)(a+ z − ε)z
u
P{Xu ∈ dz}

]
+
[
e−qr

(
eqr −

∫ ε

0

W (q)(z)
z

r
P{Xr ∈ dz}

− W (q)(ε)

W (q)(a)

∫ ∞
ε

W (q)(a+ z − ε)z
r
P{Xr ∈ dz}

)]
× Eε

{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }

}
,

from which we obtain after further simplification that

Eε
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }

}
=

{
(q − ψ(θ))eθεeψ(θ)r

∫ ε

0

e−θz
W (q)(z)

W (q)(ε)
dz

−e
θaeψ(θ)r

W (q)(a)

(
1 + (q − ψ(θ))

∫ a

0

e−θzW (q)(z)dz
)

+ eθε
∫ ε

0

W (q)(z)

W (q)(ε)

z

r
P{Xr ∈ dz}

+
eθε

W (q)(a)

∫ ∞
ε

W (q)(a+ z − ε)z
r
P{Xr ∈ dz} − eθε(q − ψ(θ))

∫ r

0

dueψ(θ)(r−u)

×
[ ∫ ε

0

W (q)(z)

W (q)(ε)

z

u
P{Xu ∈ dz}+

∫ ∞
ε

W (q)(a+ z − ε)
W (q)(a)

z

u
P{Xu ∈ dz}

]}
(4.8)

×
{∫ ε

0

W (q)(z)

W (q)(ε)

z

r
P{Xr ∈ dz}+

∫ ∞
ε

W (q)(a+ z − ε)
W (q)(a)

z

r
P{Xr ∈ dz}

}−1

.
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We now want to compute the limit as ε ↓ 0 to (4.8) proving (2.12) for x = 0.
For this purpose, we introduce for ε > 0 the following stopping time

τ̃ εr = inf{t > r : (t− gt) ≥ r,Xt−r < −ε} with gt := sup{0 ≤ s ≤ t : Xs ≥ 0}.

We see following the above that for 0 < ε′ < ε, {τ̃ εr < ∞} ⊂ {τ̃ ε
′
r < ∞} and

∪ε>0{τ̃ εr <∞} = {τr <∞}. Hence, by spatial homogeneity, we have that

lim
ε↓0

Eε
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }
}

= lim
ε↓0

E
{
e−qτ̃

ε
r+θXτ̃εr1{τ̃εr<τ+

a }
}

= E
{
e−qτr+θXτr1{τr<τ+

a }
}
.

We consider two cases: W (q)(0) > 0 (X has paths of bounded variation) and
W (q)(0) = 0 (X has unbounded variation). For the case W (q)(0) > 0 we have

E
{
e−qτr+θXτr1{τr<τ+

a }
}

= 1− 1

Λ(q)(a, r)

[
eθaeψ(θ)r

(
1 + (q − ψ(θ))

∫ a

0

e−θzW (q)(z)dz
)

+(q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(a, u)du
]
. (4.9)

For the case W (q)(0) = 0, we have by integration by parts and l’Hôpital that

lim
ε↓0

∫ ε

0

W (q)(z)

W (q)(ε)

z

r
P{Xr ∈ dz} = lim

ε↓0

(∫ ε

0

y

r
P{Xr ∈ dy} −

∫ ε

0

W (q)′(z)

W (q)(ε)

∫ z

0

y

r
P{Xr ∈ dy}dz

)
=0− lim

ε↓0

W (q)′(ε)
∫ ε

0
y
r
P{Xr ∈ dy}

W (q)′(ε)
= 0.

We therefore have the limit as ε ↓ 0 of (4.8) is given by (4.9). Next, taking (4.3),
(3.11)-(3.12), Proposition 4.1 and (4.9), we have by dominated convergence that

Ex
{
e−qτr+θXτr1{τr<τ+

a }

}
= lim

ε↓0
Ex
{
e−qτ

ε
r+θXτεr1{τεr<τ+

a }

}
=e−qr

{
eθxeψ(θ)r + (q − ψ(θ))eψ(θ)r

∫ x

0

eθzW (q)(x− z)dz

− W (q)(x)

W (q)(a)

(
eθaeψ(θ)r + (q − ψ(θ))eψ(θ)r

∫ a

0

eθzW (q)(a− z)dz
)

−
(

Λ(q)(x, r)− W (q)(x)

W (q)(a)
Λ(q)(a, r)

)
+ (q − ψ(θ))

∫ r

0

dueψ(θ)(r−u)

×
(

Λ(q)(x, u)− W (q)(x)

W (q)(a)
Λ(q)(a, u)

)
+
(

Λ(q)(x, r)− W (q)(x)

W (q)(a)
Λ(q)(a, r)

)
×

(
1− 1

Λ(q)(a, r)

[
eθaeψ(θ)r

(
1 + (q − ψ(θ))

∫ a

0

e−θzW (q)(z)dz
)

+ (q − ψ(θ))

∫ r

0

eψ(θ)(r−u)Λ(q)(a, u)du
])}

,

which after further simplifications we finally arrive at our claim (2.12). �
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4.2 Proof of Theorem 2.3 (ii)

Denote by eq independent exponential random time with mean 1/q. Recall,

Ex{eθXeq} =
qeθx

(q − ψ(θ))
.

By applying strong Markov property we have

Ex
{∫ τr∧τ+

a

0

e−qteθXtdt
}

=Ex
{∫ ∞

0

e−qteθXtdt
}
− Ex

{∫ ∞
τr∧τ+

a

e−qteθXtdt
}

=q−1Ex
{
eθXeq

}
− q−1Ex

{
e−q(τr∧τ

+
a )EX

τr∧τ+
a

{
eθXeq

}}
=

eθx

(q − ψ(θ))
− 1

(q − ψ(θ))
Ex
{
e
−q(τr∧τ+

a )+θX
τr∧τ+

a

}
.

To deal with the expectation on the last equality, recall following (2.12) that

PΦ(q)
x {τ+

a < τr} =
ΛΦ(q)(x,r)

ΛΦ(q)(a,r)
, where ΛΦ(q)(x, r) plays the role of Λ(x, r) under mea-

sure PΦ(q), i.e., ΛΦ(q)(x, r) = e−Φ(q)xe−qrΛ(q)(x, r), see (2.5). By Esscher trans-

form, we have Ex{e−qτ
+
a 1{τ+

a <τr}} = e−Φ(q)(a−x)PΦ(q)
x {τ+

a < τr}. Using the former,

we have Ex{e−qτ
+
a 1{τ+

a <τr}} = Λ(q)(x,r)

Λ(q)(a,r)
which by (2.12) we arrive at (2.13). �

4.3 Proof of Corollary 2.4

The goal is to show that the limiting result of (2.12) as a → ∞ and r → 0
coincides with Emery’s identity on the joint Laplace transform of τ−0 and Xτ−0

,

lim
a↑∞

lim
r↓0

Ex
{
e−qτr+θXτr1{τr<τ+

a }
}

= Ex
{
e
−qτ−0 +θX

τ−0 1{τ−0 <∞}
}

= eθx − (q − ψ(θ))

(Φ(q)− θ)
W (q)(x) + (q − ψ(θ))eθx

∫ x

0

e−θyW (q)(y)dy. (4.10)

The limiting result is the same whether we take limr↓0 lima↑∞. In both cases, it
is necessary to show that for a given q ≥ 0, we have for any x ∈ R and a > 0

lim
r↓0

Λ(q)(x, r)

Λ(q)(a, r)
= lim

r↓0

∫∞
0
W (q)(x+ z)zP{Xr ∈ dz}∫∞

0
W (q)(a+ z)zP{Xr ∈ dz}

=
W (q)(x)

W (q)(a)
, (4.11)

used when taking lima↑∞ limr↓0 in (2.12), whilst for limr↓0 lima↑∞ we need

lim
r↓0

Λ(q)(x, r)

Γ(q)(r)
= lim

r↓0

∫∞
0
W (q)(x+ z)zP{Xr ∈ dz}∫∞
0
eΦ(q)zzP{Xr ∈ dz}

= W (q)(x). (4.12)

By continuity of the function z → W (q)(x + z)z, we have by the first mean
value theorem for integration that there exists, for a given δ > 0, zδ ∈ [0, δ]
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such that
∫ δ

0
W (q)(x + z)zP{Xr ∈ dz} = W (q)(x + zδ)zδP{Xr ∈ [0, δ]}. By the

L1−integrability of z → W (q)(x+ z)z w.r.t P{Xr ∈ dz}, we have that∫ ∞
0

W (q)(x+ z)zP{Xr ∈ dz} =W (q)(x+ zδ)zδP{Xr ∈ [0, δ]}

+

∫ ∞
δ

W (q)(x+ z)zP{Xr ∈ dz}.

As limr↓0 P{Xr ∈ dz} = δ0(dz), we have from the above that

lim
r↓0

∫ ∞
0

W (q)(x+ z)zP{Xr ∈ dz} = W (q)(x+ zδ)zδ. (4.13)

As δ is arbitrary, the proof of (4.11) follows after sending δ → 0 on account
of the continuity of W (q). As for a given x ∈ R+ the function f1 : z → eΦ(q)zz has
the same limiting behaviour towards z → 0 as f2 : z → W (q)(x+z)z, i.e., f2(z) =

O(f1(z)) as z → 0, we could argue the same as before that
∫ δ

0
eΦ(q)zzP{Xr ∈

dz} = eΦ(q)zδzδP{Xr ∈ [0, δ]} for a relatively small δ > 0. By doing so, we have∫ ∞
0

eΦ(q)zzP{Xr ∈ dz} = eΦ(q)zδzδP{Xr ∈ [0, δ]}+

∫ ∞
δ

eΦ(q)zzP{Xr ∈ dz},

which in turn gives that

lim
r↓0

∫ ∞
0

eΦ(q)zzP{Xr ∈ dz} = eΦ(q)zδzδ. (4.14)

Since δ is arbitrary, the proof of (4.12) follows from (4.13) and (4.14) on
account of continuity of W (q). For taking the second limit lima↑∞, we write
W (q)(a) = eΦ(q)aWΦ(q)(a). Recall that lima↑∞WΦ(q)(a) = 1

ψ′(Φ(q))
, or equivalently,

lima↑∞W
′
Φ(q)(a) = 0. Since q > ψ(θ), we have lima↑∞

eθa

W (q)(a)
= 0 and by change

of variable and L’Hôpital’s rule that lima↑∞

∫ a
0 eθzW (q)(a−z)dz

W (q)(a)
= 1

(Φ(q)−θ) . Follow-

ing (4.21), we have 0 ≤
∫ r

0
eψ(θ)(r−u)Λ(q)(x, u)du ≤ eψ(θ)r

∫ r
0

Λ(q)(x, u)du which
vanishes as r → 0. By similar approach, limr↓ lima↑∞ gives the same result. �

4.4 Proof of Theorem 2.1 (i)

The proof is to show that the Laplace transform of (2.6) is given by (2.12), i.e.,∫ ∞
0

e−θyEx
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
= eθx

∫ ∞
0

Ex
{
e−pτreθ(Xτr−x)−ψ(θ)τr ;−Xτr ∈ dy, τr < τ+

a

}
= eθx

∫ ∞
0

Eθx
{
e−pτr ;−Xτr ∈ dy, τr < τ+

a

}
,
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with p = q − ψ(θ), whilst Eθx is the expectation operator associated with Pθx,

Eθx
{
e−pτr ;−Xτr ∈ dy, τr < τ+

a

}
= e−pr

[
p
(
W

(p)
θ (x− y)− Λ

(p)
θ (x, r)

Λ
(p)
θ (a, r)

W
(p)
θ (a− y)

)
1{y≥0}

+
(∂yΛ(p)

θ (y, r)

Λ
(p)
θ (a, r)

− pΛ(p)
θ (x, r)

∫ r

0

∂yF̃
(p)
r (y, u)du

)
1{x≤y≤a}

]
dy, (4.15)

where F̃
(p)
r (y, u) =

Λ
(p)
θ (y,u)

Λ
(p)
θ (y,r)

with Λ
(p)
θ (x, r) playing the role of Λ(p)(x, r) under Pθ.

On account that
∫ a
x

∂yΛ
(p)
θ (y,r)

Λ
(p)
θ (a,r)

dy = 1− Λ
(p)
θ (x,r)

Λ
(p)
θ (a,r)

and by Fubini’s theorem we have∫ a

x

∫ r

0

∂yF̃
(p)
r (y, u)dudy =

∫ r

0

∫ a

x

∂yF̃
(p)
r (y, u)dydu

=

∫ r

0

(Λ
(p)
θ (a, u)

Λ
(p)
θ (a, r)

− Λ
(p)
θ (x, u)

Λ
(p)
θ (x, r)

)
du.

As x ≤ a and W (q)(x) = 0 for x < 0, we have after integrating out (4.15) that∫ ∞
0

e−θyEx
{
e−qτr ;−Xτr ∈ dy, τr < τ+

a

}
= eθx

∫ ∞
0

Eθx
{
e−pτr ;−Xτr ∈ dy, τr < τ+

a

}
= eθxe−prp

∫ ∞
0

(
W

(p)
θ (x− y)− Λ

(p)
θ (x, r)

Λ
(p)
θ (a, r)

W
(p)
θ (a− y)

)
dy

+

∫ a

x

(∂yΛ(p)
θ (y, r)

Λ
(p)
θ (a, r)

− pΛ(p)
θ (x, r)

∫ r

0

∂yF̃
(p)
r (y, u)du

)
dy

= eθxe−pr
[
1 + p

∫ x

0

W
(p)
θ (x− y)dy + p

∫ r

0

Λ
(p)
θ (x, u)du

−Λ
(p)
θ (x, r)

Λ
(p)
θ (a, r)

(
1 + p

∫ a

0

W
(p)
θ (a− y)dy + p

∫ r

0

Λ
(p)
θ (a, u)du

)]
= eθxe−qreψ(θ)r

[
1 + (q − ψ(θ))

∫ x

0

e−θ(x−y)W (q)(x− y)dy

+(q − ψ(θ))

∫ r

0

e−θxe−ψ(θ)uΛ(q)(x, u)du− e−θ(x−a) Λ(q)(x, r)

Λ(q)(a, r)

×
(

1 + (q − ψ(θ))

∫ a

0

e−θ(a−y)W (q)(a− y)dy

+(q − ψ(θ))

∫ r

0

e−θae−ψ(θ)uΛ(q)(a, u)du
)]
,

which after further simplifications we arrive at our claim in (2.12). �
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4.5 Proof of Theorem 2.1 (ii)

Recall that we can rewrite (2.13) as the Laplace transform of (2.7), i.e.,

Ex
{∫ τr∧τ+

a

0

e−qteθXtdt
}

=

∫ ∞
0

eθyq−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a }

Define p = q − ψ(θ). Since the event {t < τ+
a } is Ft−adapted, we deduce that

{t < τr ∧ τ+
a } ∈ Ft. Therefore, by Esscher transform of measure we have

∫ ∞
0

eθyq−1Px
{
Xeq ∈ dy, eq < τr ∧ τ+

a }

=

∫ ∞
0

∫ ∞
0

dte−qteθyPx
{
Xt ∈ dy, t < τr ∧ τ+

a }

= p−1eθx
∫ ∞

0

∫ ∞
0

dtpe−pteθ(Xt−x)−ψ(θ)tPx
{
Xt ∈ dy, t < τr ∧ τ+

a }

= p−1eθx
∫ ∞

0

∫ ∞
0

dtpe−ptPθx
{
Xt ∈ dy, t < τr ∧ τ+

a }

= eθx
∫ ∞

0

p−1Pθx
{
Xep ∈ dy, ep < τr ∧ τ+

a }

= eθx
[ ∫ a

0

dye−pr
(Λ

(p)
θ (x, r)

Λ
(p)
θ (a, r)

W
(p)
θ (a− y)−W (p)

θ (x− y)
)

+ e−prΛ
(p)
θ (x, r)

∫ r

0

du

∫ a

x

dy∂yF
(θ,p)

r (y, u)
]

= eθx
[ ∫ a

0

dye−pr
(Λ

(p)
θ (x, r)

Λ
(p)
θ (a, r)

W
(p)
θ (a− y)−W (p)

θ (x− y)
)

+ e−prΛ
(p)
θ (x, r)

∫ r

0

du
((Λ

(p)
θ (a, u)− epu)

Λ
(p)
θ (a, r)

− (Λ
(p)
θ (x, u)− epu)

Λ
(p)
θ (x, r)

)]
,

where we have defined F
(θ,p)

r (y, u) =
Λ

(p)
θ (y,u)−epu

Λ
(p)
θ (y,r)

with Λ
(p)
θ (y, r) defined in (2.5).

Following (2.2), we have W
(p)
θ (x) = e−θxW (q)(x). By inserting all of these facts

above, we arrive after some algebra and calculations at our claim in (2.13). �

Next, we want to show that q−1Px{Xeq ∈ dy, eq < τr ∧ τ+
a } = 0 for any y < 0

for a given q > 0, r ≥ 0 and x ≤ a. For this purpose, we need the q−potential
measure P{Xeq ∈ dy} without killing given following Corollary 8.9 in [17] by

Px{Xeq ∈ dy} =
(
qΦ′(q)e−Φ(q)(y−x) − qW (q)(x− y)

)
dy, x, y ∈ R.
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Using this resolvent measure without killing, we have

Px{Xeq ∈ dy, eq < τr ∧ τ+
a } =Px{Xeq ∈ dy} − Ex

{
e−q(τr∧τ

+
a )PX

τr∧τ+
a
{Xeq ∈ dy}

}
=
(
qΦ′(q)e−Φ(q)(y−x) − qW (q)(x− y)

)
dy

−
(
qΦ′(q)e−Φ(q)(y−x)Ex

{
e
−q(τr∧τ+

a )+Φ(q)(X
τr∧τ+

a
−x)}

− qEx
{
e−q(τr∧τ

+
a )W (q)(Xτr∧τ+

a
− y)

})
dy

=
(
qEx
{
e−q(τr∧τ

+
a )W (q)(Xτr∧τ+

a
− y)

}
− qW (q)(x− y)

)
dy.

Our proof is complete once we show that the following equation holds:

Ex
{
e−q(τr∧τ

+
a )W (q)(Xτr∧τ+

a
− y)

}
= W (q)(x− y). (4.16)

This turns out to be the case as {e−qtW (q)(Xt) : t ≥ 0} is Px−martingale.
The proof is based on Theorem 28 and 33 in [23] or Theorem 4.3 in [17]). By
smoothness of W (q) (see [7]), we have Lévy-Itô decomposition

e−qtW (q)(Xt− y) = W (q)(x− y) +

∫ t

0

e−qs
(
L− q

)
W (q)(Xs− y)ds+My

t , (4.17)

where {My
t ; t ≥ 0} is the sum of three stochastic integrals given by

My
t =

∫ t

0

∫
{−1≤y<0}

e−qs
(
W (q)(Xs− − y + z)−W (q)(Xs− − y)

)
ν̃(dz, ds)

+

∫ t

0

∫
{z<−1}

e−qs
(
W (q)(Xs − y + z)−W (q)(Xs − y)

)
ν̃(dz, ds)

+σ

∫ t

0

e−qsW (q)′(Xs− − y)dBs, (4.18)

whilst ν̃(dz, ds) = ν(dz, ds) − Π(dz)ds and L is the infinitesimal generator of
X. It is known that W (q) ∈ C2(R) or W (q) ∈ C1(R) when X has paths of un-
bounded variation with σ > 0 or when it has paths of bounded variation with
no atoms on the Lévy measure. See [7]. Furthermore, following [17] and [4] we
have (L− q)W (q)(x) = 0 for all x ∈ R+. Recall that the stochastic integrals with
respect to standard Brownian motion (Bt : t ≥ 0) and the process (My

t : t ≥ 0)
are local martingales. Thus, by Doob’s optional stopping theorem we have (4.16).

Furthermore, as Ex
{
e−qτ

+
a 1{τ+

a <τr}W
(q)(Xτ+

a
− y)

}
= W (q)(a− y)Λ(q)(x,r)

Λ(q)(a,r)
, we de-

duce from the above that q−1Px{Xeq ∈ dy, eq < τr ∧ τ+
a } = 0 for any y < 0. �

4.6 Proof of Corollary 2.2

The proof for the case r = 0 goes as follows. By similar arguments for the proof

of Corollary 2.4, we can show that limr↓0
∂yΛ(q)(y,r)

Λ(q)(x,r)
= W (q)′(y)

W (q)(x)
. The integral term
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in (2.6) vanishes r → 0. To see this, recall that as Λ(q)(x, r) ≥ 0 for all x ∈ R,

0 ≤ λ

∫ ∞
0

dre−λr
∫ r

0

duΛ(q)(x, u) =

∫ ∞
0

e−Φ(λ)zW (q)(x+ z)dz

= eΦ(q)x

∫ ∞
0

e−(Φ(λ)−Φ(q))zWΦ(q)(x+ z)dz

≤ eΦ(q)x

ψ′(Φ(q))

∫ ∞
0

e−(Φ(λ)−Φ(q))zdz (4.19)

=
eΦ(q)x

ψ′(Φ(q))
(
Φ(λ)− Φ(q)

) .
Furthermore, as Λ(q)(•, r) is an increasing function, we have

0 ≤ λ

∫ ∞
0

dre−λr
∫ r

0

du∂yΛ
(q)(x, u) =

∫ ∞
0

e−Φ(λ)zW (q)′(x+ z)dz

= Φ(q)eΦ(q)x

∫ ∞
0

e−(Φ(λ)−Φ(q))zWΦ(q)(x+ z)dz

+eΦ(q)x

∫ ∞
0

e−(Φ(λ)−Φ(q))zW ′
Φ(q)(x+ z)dz

≤ Φ(q)eΦ(q)x

ψ′(Φ(q))

∫ ∞
0

e−(Φ(λ)−Φ(q))zdz (4.20)

+eΦ(q)xW ′
Φ(q)(x)

∫ ∞
0

e−(Φ(λ)−Φ(q))zdz

=
eΦ(q)x(

Φ(λ)− Φ(q)
)( Φ(q)

ψ′(Φ(q))
+W ′

Φ(q)(x)
)
,

where in the last equality we used the fact that WΦ(q) is a decreasing function.
In the two inequalities, we have taken that λ > q and the fact that Φ(•) is an
increasing function. By taking limλ→∞ in (4.19) and (4.20), we conclude that

lim
r↓0

∫ r

0

Λ(q)(x, u)du = 0 and lim
r↓0

∫ r

0

∂xΛ
(q)(x, u)du = 0 (4.21)

Based on the limiting results (4.21), we arrive at our claim by rewriting

Λ(q)(x, r)

∫ r

0

∂yF
(q)
r (y, u)du =

Λ(q)(x, r)

Λ(q)(y, r)

∫ r

0

∂yΛ
(q)(y, u)du

−Λ(q)(x, r)

Λ(q)(y, r)

∂yΛ
(q)(y, r)

Λ(q)(y, r)

∫ r

0

Λ(q)(y, u)du.

Remark 4.4 Employing the same steps of proof and arguments, one can show

lim
r↓0

Λ(q)(x, r)

∫ r

0

∂yF
(q)

r (y, u)du = 0, (4.22)

where the function F
(q)

r (y, u) is specified in the Theorem 2.1.

The limiting results for r → 0 is complete on account of (4.11) and (4.12). �
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4.7 Proof of Corollary 2.5

The proof is complete once we establish the following limits:

lim
a→∞

eθa

Λ(q)(a, r)
=0, for q > ψ(θ)

lim
a→∞

∫∞
0
eθzW (q)(a− z)dz

Λ(q)(a, r)
=

1

Γ(q)(r)(Φ(q)− θ)
,

lim
a→∞

Λ(q)(a, u)

Λ(q)(a, r)
=

Γ(q)(u)

Γ(q)(r)
.

To prove these limits, we use the representation of W (q) under PΦ(q),
i.e., W (q)(x) = eΦ(q)xWΦ(q)(x), by which we can write Λ(q)(a, r) =
eΦ(q)a

∫∞
0
eΦ(q)zWΦ(q)(a + z) z

r
P{Xr ∈ dz}. Therefore, since q > ψ(θ), or equiva-

lently, Φ(q) > θ, the first limit follows. Under such representation for W (q),∫∞
0
eθzW (q)(a− z)dz

Λ(q)(a, r)
=

∫∞
0
e−(Φ(q)−θ)zWΦ(q)(a− z)dz∫∞

0
eΦ(q)zWΦ(q)(a+ z) z

r
P{Xr ∈ dz}

,

Λ(q)(a, u)

Λ(q)(a, r)
=

∫∞
0
eΦ(q)zWΦ(q)(a+ z) z

u
P{Xu ∈ dz}∫∞

0
eΦ(q)zWΦ(q)(a+ z) z

r
P{Xr ∈ dz}

.

The proof is complete on account that limx→∞WΦ(q)(x) = 1/ψ′(Φ(q)). �
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processes. J. Appl. Probab., Vol. 45, p. 135-149.


