
Comparison among five evolutionary-based optimization algorithms

Emad Elbeltagia,*, Tarek Hegazyb,1, Donald Griersonb,2

aDepartment of Structural Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
bDepartment of Civil Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Received 15 October 2004; revised 9 January 2005; accepted 19 January 2005

Abstract

Evolutionary algorithms (EAs) are stochastic search methods that mimic the natural biological evolution and/or the social behavior of

species. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional

mathematical techniques may fail. This paper compares the formulation and results of five recent evolutionary-based algorithms: genetic

algorithms, memetic algorithms, particle swarm, ant-colony systems, and shuffled frog leaping. A brief description of each algorithm is

presented along with a pseudocode to facilitate the implementation and use of such algorithms by researchers and practitioners. Benchmark

comparisons among the algorithms are presented for both continuous and discrete optimization problems, in terms of processing time,

convergence speed, and quality of the results. Based on this comparative analysis, the performance of EAs is discussed along with some

guidelines for determining the best operators for each algorithm. The study presents sophisticated ideas in a simplified form that should be

beneficial to both practitioners and researchers involved in solving optimization problems.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Evolutionary algorithms; Genetic algorithms; Memetic algorithms; Particle swarm; Ant colony; Shuffled frog leaping; Optimization
1. Introduction

The difficulties associated with using mathematical

optimization on large-scale engineering problems have

contributed to the development of alternative solutions.

Linear programming and dynamic programming tech-

niques, for example, often fail (or reach local optimum) in

solving NP-hard problems with large number of variables

and non-linear objective functions [1]. To overcome these

problems, researchers have proposed evolutionary-based

algorithms for searching near-optimum solutions to

problems.

Evolutionary algorithms (EAs) are stochastic search

methods that mimic the metaphor of natural biological

evolution and/or the social behavior of species. Examples

include how ants find the shortest route to a source of food
1474-0346/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.aei.2005.01.004

* Corresponding author. Tel.: C20 50 224 4105; fax: C20 50 224 4690.

E-mail addresses: eelbelta@mans.edu.eg (E. Elbeltagi), tarek@

uwaterloo.ca (T. Hegazy), grierson@uwaterloo.ca (D. Grierson).
1 Tel.: C1 519 888 4567x2174; fax: C1 519 888 6197.
2 Tel.: C1 519 888 4567x2412; fax: C1 519 888 6197.
and how birds find their destination during migration. The

behavior of such species is guided by learning, adaptation,

and evolution [1]. To mimic the efficient behavior of these

species, various researchers have developed computational

systems that seek fast and robust solutions to complex

optimization problems. The first evolutionary-based tech-

nique introduced in the literature was the genetic algorithms

(GAs) [2]. GAs were developed based on the Darwinian

principle of the ‘survival of the fittest’ and the natural

process of evolution through reproduction. Based on its

demonstrated ability to reach near-optimum solutions to

large problems, the GAs technique has been used in many

applications in science and engineering [3–5]. Despite their

benefits, GAs may require long processing time for a near-

optimum solution to evolve. Also, not all problems lend

themselves well to a solution with GAs [6].

In an attempt to reduce processing time and improve the

quality of solutions, particularly to avoid being trapped in

local optima, other EAs have been introduced during the

past 10 years. In addition to various GA improvements,

recent developments in EAs include four other techniques

inspired by different natural processes: memetic algorithms
Advanced Engineering Informatics 19 (2005) 43–53
www.elsevier.com/locate/aei

http://www.elsevier.com/locate/aei


Fig. 1. Schematic diagram of natural evolutionary systems.

E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–5344
(MAs) [7], particle swarm optimization (PSO) [8], ant-

colony systems [9], and shuffled frog leaping (SFL) [10]. A

schematic diagram of the natural processes that the five

algorithms mimic is shown in Fig. 1.

In this paper, the five EAs presented in Fig. 1 are

reviewed and a pseudocode for each algorithm is presented

to facilitate its implementation. Performance comparison

among the five algorithms is then presented. Guidelines are

then presented for determining the proper parameters to use

with each algorithm.
2. Five evolutionary algorithms

In general, EAs share a common approach for their

application to a given problem. The problem first requires

some representation to suit each method. Then, the

evolutionary search algorithm is applied iteratively to arrive

at a near-optimum solution. A brief description of the five

algorithms is presented in the following subsections.
2.1. Genetic algorithms

GAs are inspired by biological systems’ improved fitness

through evolution [2]. A solution to a given problem is
represented in the form of a string, called ‘chromosome’,

consisting of a set of elements, called ‘genes’, that hold a set

of values for the optimization variables [11].

GAs work with a random population of solutions

(chromosomes). The fitness of each chromosome is deter-

mined by evaluating it against an objective function. To

simulate the natural survival of the fittest process, best

chromosomes exchange information (through crossover or

mutation) to produce offspring chromosomes. The offspring

solutions are then evaluated and used to evolve the

population if they provide better solutions than weak

population members. Usually, the process is continued for

a large number of generations to obtain a best-fit (near-

optimum) solution. More details on the mechanism of GAs

can be found in Goldberg [11] and Al-Tabtabai and Alex [3].

A pseudocode for the GAs algorithm is shown in

Appendix A. Four main parameters affect the performance

of GAs: population size, number of generations, crossover

rate, and mutation rate. Larger population size (i.e. hundreds

of chromosomes) and large number of generations

(thousands) increase the likelihood of obtaining a global

optimum solution, but substantially increase processing

time.

Crossover among parent chromosomes is a common

natural process [12] and traditionally is given a rate that



Fig. 3. Applying local search using pair-wise interchange.

Fig. 2. Crossover operation to generate offspring.

E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–53 45
ranges from 0.6 to 1.0. In crossover, the exchange of

parents’ information produces an offspring, as shown in

Fig. 2. As opposed to crossover, mutation is a rare process

that resembles a sudden change to an offspring. This can be

done by randomly selecting one chromosome from the

population and then arbitrarily changing some of its

information. The benefit of mutation is that it randomly

introduces new genetic material to the evolutionary process,

perhaps thereby avoiding stagnation around local minima. A

small mutation rate less than 0.1 is usually used [11].

The GA used in this study is steady state (an offspring

replaces the worst chromosome only if is better than it) and

real coded (the variables are represented in real numbers).

The main parameters used in the GA procedure are

population size, number of generations, crossover rate and

mutation rate.
2.2. Memetic algorithms

MAs are inspired by Dawkins’ notion of a meme [13].

MAs are similar to GAs but the elements that form a

chromosome are called memes, not genes. The unique

aspect of the MAs algorithm is that all chromosomes and

offsprings are allowed to gain some experience, through a

local search, before being involved in the evolutionary

process [14]. As such, the term MAs is used to describe GAs

that heavily use local search [15]. A pseudocode for a MA

procedure is given in Appendix B.

Similar to the GAs, an initial population is created at

random. Afterwards, a local search is performed on each

population member to improve its experience and thus

obtain a population of local optimum solutions. Then,

crossover and mutation operators are applied, similar to

GAs, to produce offsprings. These offsprings are then

subjected to the local search so that local optimality is

always maintained.

Merz and Freisleben [14] proposed one approach to

perform local search through a pair-wise interchange

heuristic (Fig. 3). In this method, the local-search

neighborhood is defined as the set of all solutions that can

be reached from the current solution by swapping two

elements (memes) in the chromosome. For a chromosome

of length n, the neighborhood size for the local search i:

N Z 1=2!n!ðn K1Þ (1)
The number of swaps and consequently the size of the

neighborhood grow quadratically with the chromosome

length (problem variables). In order to reduce processing

time, Merz and Freisleben [14] suggested stopping the pair-

wise interchange after performing the first swap that

enhances the objective function of the current chromosome.

The local-search algorithm, however, can be designed to

suit the problem nature. For example, another local search

can be conducted by adding or subtracting an incremental

value from every gene and testing the chromosome’s

performance. The change is kept if the chromosome’s

performance improves; otherwise, the change is ignored. A

pseudocode of this modified local search is given in

Appendix C. As discussed, the parameters involved in

MAs are the same four parameters used in GAs: population

size, number of generations, crossover rate, and mutation

rate in addition to a local-search mechanism.
2.3. Particle swarm optimization

PSO was developed by Kennedy and Eberhart [8]. The

PSO is inspired by the social behavior of a flock of

migrating birds trying to reach an unknown destination. In

PSO, each solution is a ‘bird’ in the flock and is referred to

as a ‘particle’. A particle is analogous to a chromosome

(population member) in GAs. As opposed to GAs, the

evolutionary process in the PSO does not create new birds

from parent ones. Rather, the birds in the population only

evolve their social behavior and accordingly their move-

ment towards a destination [16].

Physically, this mimics a flock of birds that communicate

together as they fly. Each bird looks in a specific direction,

and then when communicating together, they identify the

bird that is in the best location. Accordingly, each bird

speeds towards the best bird using a velocity that depends on

its current position. Each bird, then, investigates the search

space from its new local position, and the process repeats

until the flock reaches a desired destination. It is important

to note that the process involves both social interaction and

intelligence so that birds learn from their own experience

(local search) and also from the experience of others around

them (global search).

The pseudocode for the PSO is shown in Appendix D.

The process is initialized with a group of random particles

(solutions), N. The ith particle is represented by its position

as a point in a S-dimensional space, where S is the number of

variables. Throughout the process, each particle i monitors



  

   

 

E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–5346
three values: its current position (Xi); the best position it

reached in previous cycles (Pi); its flying velocity (Vi).

These three values are represented as follows:

Current position Xi Z ðxi1; xi2;.; xiSÞ

Best previous position Pi Z ðpi1; pi2;.; piSÞ

Flying velocity Vi Z ðvi1; vi2;.; viSÞ

9>=
>; (2)

In each time interval (cycle), the position (Pg) of the best

particle (g) is calculated as the best fitness of all particles.

Accordingly, each particle updates its velocity Vi to catch up

with the best particle g, as follows [16]:

New Vi Z u!current Vi Cc1 !randð Þ!ðPi KXiÞ

Cc2 !Randð Þ!ðPg KXiÞ (3)

As such, using the new velocity Vi, the particle’s updated

position becomes:

New position Xi Z current position Xi CNew Vi;

Vmax RViRKVmax

(4)

where c1 and c2 are two positive constants named learning

factors (usually c1Zc2Z2); rand( ) and Rand( ) are two

random functions in the range [0, 1], Vmax is an upper limit

on the maximum change of particle velocity [8], and u is an

inertia weight employed as an improvement proposed by

Shi and Eberhart [16] to control the impact of the previous

history of velocities on the current velocity. The operator u

plays the role of balancing the global search and the local

search; and was proposed to decrease linearly with time

from a value of 1.4–0.5 [16]. As such, global search starts

with a large weight and then decreases with time to favor

local search over global search [17].

It is noted that the second term in Eq. (3) represents

cognition, or the private thinking of the particle when

comparing its current position to its own best. The third term

in Eq. (3), on the other hand, represents the social

collaboration among the particles, which compares

a particle’s current position to that of the best particle

[18]. Also, to control the change of particles’ velocities,

upper and lower bounds for velocity change is limited to a

user-specified value of Vmax. Once the new position of a

particle is calculated using Eq. (4), the particle, then, flies

towards it [16]. As such, the main parameters used in the

PSO technique are: the population size (number of birds);

number of generation cycles; the maximum change of a

particle velocity Vmax; and u.
  

  

  

  

   

  

Fig. 4. Ant representation.
2.4. Ant-colony optimization

Similar to PSO, ant-colony optimization (ACO) algor-

ithms evolve not in their genetics but in their social

behavior. ACO was developed by Dorigo et al. [9] based on

the fact that ants are able to find the shortest route between

their nest and a source of food. This is done using
pheromone trails, which ants deposit whenever they travel,

as a form of indirect communication.

As shown in Fig. 1d, when ants leave their nest to search

for a food source, they randomly rotate around an obstacle,

and initially the pheromone deposits will be the same for the

right and left directions. When the ants in the shorter

direction find a food source, they carry the food and start

returning back, following their pheromone trails, and still

depositing more pheromone. As indicated in Fig. 1d, an ant

will most likely choose the shortest path when returning back

to the nest with food as this path will have the most deposited

pheromone. For the same reason, new ants that later starts out

from the nest to find food will also choose the shortest path.

Over time, this positive feedback (autocatalytic) process

prompts all ants to choose the shorter path [19].

Implementing the ACO for a certain problem requires a

representation of S variables for each ant, with each variable

i has a set of ni options with their values lij, and

their associated pheromone concentrations {tij}; where

iZ1, 2, ., S, and jZ1, 2, ., ni. As such, an ant is consisted

of S values that describe the path chosen by the ant as shown

in Fig. 4 [20]. A pseudocode for the ACO is shown in

Appendix E. Other researchers use a variation of this

general algorithm, incorporating a local search to improve

the solution [21].

In the ACO, the process starts by generating m random

ants (solutions). An ant k (kZ1, 2,., m) represents a

solution string, with a selected value for each variable. Each

ant is then evaluated according to an objective function.

Accordingly, pheromone concentration associated with

each possible route (variable value) is changed in a way to

reinforce good solutions, as follows [9]:

tijðtÞ Z rtijðt K1ÞCDtij; t Z 1; 2;.;T (5)

where T is the number of iterations (generation cycles); tij(t)

is the revised concentration of pheromone associated with

option lij at iteration t, tij(tK1) is the concentration of

pheromone at the previous iteration (tK1); DtijZchange in

pheromone concentration; and rZpheromone evaporation

rate (0–1). The reason for allowing pheromone evaporation is

to avoid too strong influence of the old pheromone to avoid

premature solution stagnation [22]. In Eq. (5), the change in



E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–53 47
pheromone concentration Dtij is calculated as [9]:

Dtij Z
Xm

kZ1

R=fitnessk if option lij is chosen by ant k

0 otherwise

(

(6)

where R is a constant called the pheromone reward factor;

and fitnessk is the value of the objective function (solution

performance) calculated for ant k. It is noted that the amount

of pheromone gets higher as the solution improves. There-

fore, for minimization problems, Eq. (6) shows

the pheromone change as proportional to the inverse of the

fitness. In maximization problems, on the other hand, the

fitness value itself can be directly used.

Once the pheromone is updated after an iteration, the

next iteration starts by changing the ants’ paths (i.e.

associated variable values) in a manner that respects

pheromone concentration and also some heuristic prefer-

ence. As such, an ant k at iteration t will change the value for

each variable according to the following probability [9]:

Pijðk; tÞ Z
½tijðtÞ�

a !½hij�
bP

lij
½tijðtÞ�

a !½hij�
b

(7)

where Pij(k, t)Zprobability that option lij is chosen by ant k

for variable i at iteration t; tij(t)Zpheromone concentration

associated with option lij at iteration t; hijZheuristic factor

for preferring among available options and is an indicator of

how good it is for ant k to select option lij (this heuristic factor

is generated by some problem characteristics and its value is

fixed for each option lij); and a and b are exponent parameters

that control the relative importance of pheromone concen-

tration versus the heuristic factor [20]. Both a and b can take

values greater than zero and can be determined by trial and

error. Based on the previous discussion, the main parameters

involved in ACO are: number of ants m; number of iterations

t; exponents a and b; pheromone evaporation rate r; and

pheromone reward factor R.
2.5. Shuffled frog leaping algorithm

The SFL algorithm, in essence, combines the benefits of

the genetic-based MAs and the social behavior-based PSO

algorithms. In the SFL, the population consists of a set of

frogs (solutions) that is partitioned into subsets referred to as

memeplexes. The different memeplexes are considered as

different cultures of frogs, each performing a local search.

Within each memeplex, the individual frogs hold ideas, that

can be influenced by the ideas of other frogs, and evolve

through a process of memetic evolution. After a defined

number of memetic evolution steps, ideas are passed among

memeplexes in a shuffling process [23]. The local search

and the shuffling processes continue until defined conver-

gence criteria are satisfied [10].

As described in the pseudocode of Appendix F, an

initial population of P frogs is created randomly.
For S-dimensional problems (S variables), a frog i is

represented as XiZ(xi1, xi2,., xiS). Afterwards, the frogs are

sorted in a descending order according to their fitness. Then,

the entire population is divided into m memeplexes, each

containing n frogs (i.e. PZm!n). In this process, the first

frog goes to the first memeplex, the second frog goes to the

second memeplex, frog m goes to the mth memeplex, and

frog mC1 goes back to the first memeplex, etc.

Within each memeplex, the frogs with the best and the

worst fitnesses are identified as Xb and Xw, respectively.

Also, the frog with the global best fitness is identified as Xg.

Then, a process similar to PSO is applied to improve only

the frog with the worst fitness (not all frogs) in each cycle.

Accordingly, the position of the frog with the worst fitness is

adjusted as follows:

Change in frog position ðDiÞ Z randð Þ!ðXb KXwÞ (8)

New position Xw

Z current position Xw CDi; DmaxRDiRKDmax (9)

where rand( ) is a random number between 0 and 1; and

Dmax is the maximum allowed change in a frog’s position.

If this process produces a better solution, it replaces the

worst frog. Otherwise, the calculations in Eqs. (8) and (9)

are repeated but with respect to the global best frog (i.e.

Xg replaces Xb). If no improvement becomes possible in

this case, then a new solution is randomly generated to

replace that frog. The calculations then continue for a

specific number of iterations [10]. Accordingly, the main

parameters of SFL are: number of frogs P; number of

memeplexes; number of generation for each memeplex

before shuffling; number of shuffling iterations; and

maximum step size.
3. Comparison among evolutionary algorithms’ results

All the EAs described earlier have been coded using the

Visual Basic programming language and all experiments

took place on a 1.8 GHz AMD Laptop machine. The

performance of the five EAs is compared using two

benchmark problems for continuous optimization and a

third problem for discrete optimization. A description of

these test problems is given in the following.

3.1. Continuous optimization

Two well-known continuous optimization problems

are used to test four of the EAs: F8 (Griewank’s) function

and the F10 function. Details of these functions are as

follows.

3.1.1. F8 (Griewank’s function)

The objective function to be optimized is a scalable, non-

linear, and non-separable function that may take any



E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–5348
number of variables (xis), i.e.

f ðxijiZ1;NÞ Z 1 C
XN

iZ1

x2
i

4000
K
YN
iZ1

ðcosðxi=
ffiffi
i

p
ÞÞ (10)

The summation term of the F8 function (Eq. (10))

includes a parabolic shape while the cosine function in the

product term creates waves over the parabolic surface.

These waves create local optima over the solution space

[24]. The F8 function can be scaled to any number of

variables N. The values of each variable are constrained to a

range (K512 to 511). The global optimum (minimum)

solution for this function is known to be zero when all N

variables equal zero.
3.1.2. F10 function

This function is non-linear, non-separable, and involves

two variables x and y, i.e.

f 10ðx; yÞ Z ðx2 Cy2Þ0:25½sin2ð50ðx2 Cy2Þ0:1ÞC1� (11)

To scale this function (Eq. (11)) to any number of

variables, an extended EF10 function is created using the

following relation, [24],

EFðxijiZNÞ Z
XN

jZ1

XN

iZ1

Fðxi; xjÞ (12)

Accordingly, the extended F10 function is:

EF10ðxijiZ1;NÞ

Z
XNK1

iZ1

ðx2
i Cx2

iC1Þ
0:25½sin2ð50ðx2

i Cx2
iC1Þ

0:1ÞC1� (13)
Table 1

Test problem for discrete optimization

Activity

no.

Depends

on

Option 1 Option 2 O

Duration

(days)

Cost ($) Duration

(days)

Cost ($) D

(d

1 – 14 2400 15 2150 16

2 – 15 3000 18 2400 20

3 – 15 4500 22 4000 33

4 – 12 45,000 16 35,000 20

5 1 22 20,000 24 17,500 28

6 1 14 40,000 18 32,000 24

7 5 9 30,000 15 24,000 18

8 6 14 220 15 215 16

9 6 15 300 18 240 20

10 2, 6 15 450 22 400 33

11 7, 8 12 450 16 350 20

12 5, 9, 10 22 2000 24 1750 28

13 3 14 4000 18 3200 24

14 4, 10 9 3000 15 2400 18

15 12 12 4500 16 3500 –

16 13, 14 20 3000 22 2000 24

17 11, 14, 15 14 4000 18 3200 24

18 16, 17 9 3000 15 2400 18
Similar to the F8 function, the global optimum solution

for this function is known to be zero when all N variables

equal zero, for the variable values ranging from K100

to 100.
3.2. Discrete optimization

In this section, a time-cost trade-off (TCT) construction

management problem is used to compare among the five

EAs with respect to their ability to solve discrete

optimization problems. The problem relates to an 18-

activity construction project that was described in Ref. [25].

The activities, their predecessors, and durations are

presented in Table 1 along with five optional methods of

construction that vary from cheap and slow (option 5) to fast

and expensive (option 1). The 18 activities were input to a

project management software (Microsoft Project) with

activity durations being set to those of option 5 (least

costs and longest durations among the five options). The

total direct cost of the project in this case is $99,740 (sum of

all activities’ costs for option 5) with the project duration

being 169 days (respecting the precedence relations in

Table 1). The indirect cost of $500/day was then added to

obtain a total project cost of $184,240.

With the initial schedule exceeding a desired deadline

of 110-days, it is required to search for the optimum set of

construction options that meet the deadline at minimum

total cost. In this problem, the decision variables are the

different methods of construction possible for each

activity (i.e. five discrete options, 1–5, with associated

durations and costs). The objective function is to minimize

the total project cost (direct and indirect) and is formulated
ption 3 Option 4 Option 5

uration

ays)

Cost ($) Duration

(days)

Cost ($) Duration

(days)

Cost ($)

1900 21 1500 24 1200

1800 23 1500 25 1000

3200 – – – –

30,000 – – – –

15,000 30 10,000 – –

18,000 – – – –

22,000 – – – –

200 21 208 24 120

180 23 150 25 100

320 – – – –

300 – – – –

1500 30 1000 – –

1800 – – – –

2200 – – – –

– – – – –

1750 28 1500 30 1000

1800 – – – –

2200 – – – –



E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–53 49
as follows:

Min T !I C
Xn

iZ1

Cij

 !
(14)

where nZnumber of activities; CijZdirect cost of activity i

using its method of construction j; TZtotal project

duration; and IZdaily indirect cost. To facilitate the

optimization using the different EAs, macro programs of

the 5 EAs were written using the VBA language that comes

with the Microsoft Project software. The data in Table 1

were stored in one of the tables associated with the

software. When any one of the EA routines is activated, the

evolutionary process selects one of the five construction

options to set the activities’ durations and costs. Accord-

ingly, the project’s total cost (objective function) and

duration changes. The evolutionary process then continues

to attempt to optimize the objective function.
3.3. Parameter settings for evolutionary algorithms

As discussed earlier, each algorithm has its own

parameters that affect its performance in terms of solution

quality and processing time. To obtain the most suitable

parameter values that suit the test problems, a large number

of experiments were conducted. For each algorithm, an

initial setting of the parameters was established using values

previously reported in the literature [4,8,10,16,20]. Then,

the parameter values were changed one by one and the

results were monitored in terms of the solution quality and

speed. The final parameter values adopted for each of the

five EAs are given in the following.
3.3.1. Genetic algorithms

The crossover probability (CP) and the mutation

probability (MP) were set to 0.8 and 0.08, respectively.

The population size was set at 200 and 500 offsprings. The

evolutionary process was kept running until no improve-

ments were made in the objective function for 10

consecutive generation cycles (i.e. 500!10 offsprings) or

the objective function reached its known target value,

whichever comes first.
3.3.2. Memetic algorithms

MAs are similar to GAs but apply local search on

chromosomes and offsprings. The standard pair-wise

interchange search does not suit the continuous functions

F8 and F10, and the local-search procedure in Appendix C

is used instead. For the discrete problem, on the other hand,

the pair-wise interchange was used. The same values of

CPZ0.8 and MPZ0.08 that were used for the GAs are

applied to the MAs. After experimenting with various

values, a population size of 100 chromosomes was used for

the MAs.
3.3.3. Particle swarm optimization

Upon experimentation, the suitable numbers of particles

and generations were found to be 40 and 10,000,

respectively. Also, the maximum velocity was set as 20

for the continuous problems and 2 for the discrete problem.

The inertia weight factor u was also set as a time-variant

linear function decreasing with the increase of number of

generations where, at any generation i,

u Z 0:4 C0:8!ðnumber of generations K iÞ=

ðnumber of generations K1Þ ð15Þ

such that uZ1.2 and 0.4 at the first and last generation,

respectively.

3.3.4. Ant-colony optimization

As the ACO algorithm is suited to discrete problems

alone, no experiments were done using it for the F8 and F10

test functions. However, the TCT discrete problem was used

for experimentation with the ACO. After extensive

experimentation, 30 ants and 100 iterations were found

suitable. Also, the other parameters were set as follows: aZ
0.5; bZ2.5; r (pheromone evaporation rate)Z0.4; and R

(reward factor depends on problem nature)Z10.

3.3.5. Shuffled frog leaping

Different settings were experimented with to determine

suitable values for parameters to solve the test problems

using the SFL algorithm. A population of 200 frogs, 20

memeplexes, and 10 iterations per memeplex were found

suitable to obtain good solutions.

3.4. Results and discussions

The results found from solving the three test problems

using the five EAs, which represents a fairly wide class of

problems, are summarized in Tables 2 and 3, and Fig. 5 (the

Y axis of Fig. 5 is a log scale to show long computer run

times). It is noted that the processing time for solving the

EF10 function was similar to that of the F8 function and

follows the same trend as shown in Fig. 5.

Twenty trial runs were performed for each problem. The

performance of the different algorithms was compared using

three criteria: (1) the percentage of success, as represented by

the number of trials required for the objective function to

reach its known target value; (2) the average value of the

solution obtained in all trials; (3) the processing time to reach

the optimum target value. The processing time, and not the

number of generation cycles, was used to measure the speed

of each EA, because the number of generations in each

evolutionary cycle is different from one algorithm to another.

In all experiments, the solution stopped when one of two

following criteria was satisfied: (1) the F8 and EF10

objective functions reached a target value of 0.05 or less

(i.e. to within an acceptable tolerance of the known

optimum value of zero), or 110 days for the TCT problem;



1

10

100

1000

10000

0 20 40 60 80 100 120

Number of Variables

 
 

 

GA 

MA 

PSO

SFL

T
im

e 
to

 r
ea

ch
 o

pt
im

um
 s

ol
ut

io
n

(S
ec

on
ds

, L
og

 S
ca

le
)

Fig. 5. Processing time to reach the optimum for F8 function.

Table 3

Results of the discrete optimization problem

Algorithm Minimum project

duration (days)

Average project

duration (days)

Minimum

cost ($)

Average

cost ($)

% Success

rate

Processing

time (s)

GAs 113 120 162,270 164,772 0 16

MAs 110 114 161,270 162,495 20 21

PSO 110 112 161,270 161,940 60 15

ACO 110 122 161,270 166,675 20 10

SFL 112 123 162,020 166,045 0 15

Table 2

Results of the continuous optimization problems

Comparison

criteria

Algorithm Number of variables

F8 EF10

10 20 50 100 10 20 50

% Success GAs (Evolver) 50 30 10 0 20 0 0

MAs 90 100 100 100 100 70 0

PSO 30 80 100 100 100 80 60

ACO – – – – – – –

SFL 50 70 90 100 80 20 0

Mean solution GAs (Evolver) 0.06 0.097 0.161 0.432 0.455 1.128 5.951

MAs 0.014 0.013 0.011 0.009 0.014 0.068 0.552

PSO 0.093 0.081 0.011 0.011 0.009 0.075 2.895

ACO – – – – – – –

SFL 0.08 0.063 0.049 0.019 0.058 2.252 6.469

E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–5350
or (2) the objective function value did not improve in ten

consecutive generations. To experiment with different

problem sizes, the F8 test function in Eq. (10) was solved

using 10, 20, 50, and 100 variables, while the EF10 test

function in Eq. (13) was solved using 10, 20, and 50 variables

(it becomes too complex for larger numbers of variables).

Surprisingly, the GA performed more poorly than all the

other four algorithms. In fact, it was found to perform more

poorly than even that reported in Whitley et al. [24] and

Raphael and Smith [26] when using the CHC and Genitor

GAs, while it performed better than the ESGAT GA version.

A commercial GA package, Evolver [27], was used to verify

the results. Evolver is an add-in program to Microsoft Excel,

where the objective function, variables (adjustable cells),

and the constraints are readily specified by highlighting the

corresponding spreadsheet cells. Evolver performed almost

the same way as the VB code with slight improvement. The

results of using Evolver are reported in Table 2. The

difference in GA results than those reported in Refs. [24,26]

may in part be because the GA utilized in this paper uses

real rather than binary coding.

As shown in Table 2 for the F8 function, the GA was able

to reach the target for 50% of the trials with 10 variables, and

the number of successes decreased as the number of variables

increased. Despite its inability to reach the optimum value of

zero with the larger number of 100 variables, the GA was able

to achieve a solution close to the optimum (0.432 for the F8

function with 100 variables). Also, it is noticed from Fig. 5

that as the number of variables increased, the processing time

to reach the target also increased (from 5 min:12 s with 10
variables to 40 min:27 s with 50 variables). As shown in

Table 2 for the EF10 test function, the GA was only able to

achieve 20% success using 10 variables, and that the solution

quality decreased as the number of variables increased (e.g.

the objective functionZ5.951 using 50 variables). Using the

GA to solve the TCT problem, the minimum solution

obtained was 113 days with a minimum total cost of

$162,270 and the success rate for reaching the optimum

solution was zero, as shown in Table 3.

Upon applying the MA, the results improved significantly

compared to those obtained using the GA, in terms of both the

success rate (Table 2) and the processing time (Fig. 5).

Solving the F8 function using 100 variables, for example,



E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–53 51
the success rate was 100% with a processing time of

7 min:08 s. Even for the trials with less success rate, as shown

in Table 2, the solutions were very close to the optimum. That

is to say, the local search of the MA improved upon the

performance of the GA. When applying the MA to the TCT

problem, it was able to reach the optimum project duration of

110 days and a total cost of $161,270, with a 20% success rate

and an average cost that improved upon that of the GA

(Table 3). It is to be noted that the local-search module

presented in Appendix C was applied for the F8 and EF8

functions, while the pair-wise interchange local-search

module was applied to the TCT problem.

The PSO algorithm outperformed the GA and the MA in

solving the EF10 function in terms of the success rate

(Table 2), the processing time (Fig. 5), while it was less

successful than the MA in solving the F8 function. Also, the

PSO algorithm outperformed all other algorithms when used

to solve the TCT problem, with a success rate of 60% and

average total cost of $161,940, as shown in Table 3.

The ACO algorithm was applied only to the TCT discrete

optimization problem. While it was able to achieve the same

success rate as the GA (20%), the average total cost of

the 20 runs was greater than that of all other algorithms

(Table 3). This is due to the scattered nature of the obtained

results (minimum duration of 110 days, and maximum

duration of 139 days) caused by premature convergence that

happened in some runs. To avoid premature convergence,

the pair-wise interchange local-search module was applied

and the results obtained were greatly improved with a

success rate of 100%, but the average processing time

increased from 10 to 48 s.

When solving the F8 and EF10 test functions using the

SFL algorithm, it was found that the success rate (Table 2)

was better than the GA and similar to that for PSO. However,

it performed less well when used to solve the EF10 function.

As shown in Fig. 5, the SFL processing times were the least

among all algorithms. Interestingly, it is noticed from Table 2

that as the number of variables increased for the F8 function,

the success rates for SFL, MA and PSO all increased. This is

because the F8 function becomes smoother as its dimensions

increase [24]. As opposed to this trend, the success rate

decreased for the GA as the number of variables increased.

The same trend for the GA was also reported in Refs. [24,26]

when used to solve the F8 function. Also, using the SFL

algorithm to solve the TCT problem, the minimum duration

obtained was 112 days with minimum total cost of $162,020

(Table 3). While the success rate for the SFL was zero, its

performance was better than the GA.

It is interesting to observe that the behavior of each

optimization algorithm in all test problems (continuous and

discrete) was consistent. In particular, the PSO algorithm

generally outperformed all other algorithms in solving all

the test problems in terms of solution quality (except for the

F8 function with 10 and 50 variables). Accordingly, it can

be concluded that the PSO is a promising optimization tool,

in part due to the effect of the inertia weight factor u. In fact,
to take advantage of the fast speed of the SFL algorithm, the

authors suggest using a weight factor in Eq. (3) for SFL that

is similar to that used for PSO (some preliminary

experiments conducted by the authors in this regard have

shown good results).
4. Conclusions

In this paper, five evolutionary-based search methods

were presented. These include: GA, MA, PSO, ACO, and

SFL. A brief description of each method is presented along

with a pseudocode to facilitate their implementation. Visual

Basic programs were written to implement each algorithm.

Two benchmark continuous optimization test problems

were solved using all but the ACO algorithm, and the

comparative results were presented. Also presented were the

comparative results found when a discrete optimization test

problem was solved using all five algorithms. The PSO

method was generally found to perform better than other

algorithms in terms of success rate and solution quality,

while being second best in terms of processing time.
Appendix A. Pseudocode for a GA procedure
Begin;

Generate random population of P solutions

(chromosomes);

For each individual i2P: calculate fitness (i);

For iZ1 to number of generations;

Randomly select an operation (crossover or

mutation);

If crossover;

Select two parents at random ia and ib;

Generate on offspring icZcrossover (ia and ib);

Else If mutation;

Select one chromosome i at random;

Generate an offspring icZmutate (i);

End if;

Calculate the fitness of the offspring ic;

If ic is better than the worst chromosome then

replace the worst chromosome by ic;

Next i;

Check if terminationZtrue;
End;
Appendix B. Pseudocode for a MA procedure
Begin;

Generate random population of P solutions

(chromosomes);

For each individual i2P: calculate fitness (i);

For each individual i2P: do local-search (i);



E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–5352
For iZ1 to number of generations;

Randomly select an operation (crossover or

mutation);

If crossover;

Select two parents at random ia and ib;

Generate on offspring icZcrossover (ia and ib);

icZlocal-search (ic);

Else If mutation;

Select one chromosome i at random;

Generate an offspring icZmutate (i);

icZlocal-search (ic);

End if;

Calculate the fitness of the offspring;

If ic is better than the worst chromosome then

replace the worst chromosome by ic;

Next i;

Check if terminationZtrue;
End;
Appendix C. Pseudocode for the memetic local search
Begin;

Select an incremental value dZa*Rand( ), where a is

a constant that suits the variable values;

For a given chromosome i2P: calculate fitness (i);

For jZ1 to number of variables in chromosome i;

Value (j)Zvalue (j)Cd;

If chromosome fitness not improved then value

(j)Zvalue (j)Kd;

If chromosome fitness not improved then retain the

original value (j);

Next j;
End;
Appendix D. Pseudocode for a PSO procedure
Begin;

Generate random population of N solutions

(particles);

For each individual i2N: calculate fitness (i);

Initialize the value of the weight factor, u;

For each particle;

Set pBest as the best position of particle i;

If fitness (i) is better than pBest;

pBest(i)Zfitness (i);

End;

Set gBest as the best fitness of all particles;

For each particle;

Calculate particle velocity according to Eq. (3);

Update particle position according to Eq. (4);

End;

Update the value of the weight factor, u;

Check if terminationZtrue;
End;
Appendix E. Pseudocode for an ACO procedure
Begin;

Initialize the pheromone trails and parameters;

Generate population of m solutions (ants);

For each individual ant k2m: calculate fitness (k);

For each ant determine its best position;

Determine the best global ant;

Update the pheromone trail;

Check if terminationZtrue;
End;
Appendix F. Pseudocode for a SFL procedure
Begin;

Generate random population of P solutions (frogs);

For each individual i2P: calculate fitness (i);

Sort the population P in descending order of their

fitness;

Divide P into m memeplexes;

For each memeplex;

Determine the best and worst frogs;

Improve the worst frog position using Eqs. (4)

or (5);

Repeat for a specific number of iterations;

End;

Combine the evolved memeplexes;

Sort the population P in descending order of their

fitness;

Check if terminationZtrue;
End;
References

[1] Lovbjerg M. Improving particle swarm optimization by hybridization

of stochastic search heuristics and self-organized criticality. Masters

Thesis, Aarhus Universitet, Denmark; 2002.

[2] Holland J. Adaptation in natural and artificial systems. Ann Arbor,

MI: University of Michigan Press; 1975.

[3] Al-Tabtabai H, Alex PA. Using genetic algorithms to solve

optimization problems in construction. Eng Constr Archit Manage

1999;6(2):121–32.

[4] Hegazy T. Optimization of construction time-cost trade-off

analysis using genetic algorithms. Can J Civil Eng 1999;26:

685–97.

[5] Grierson DE, Khajehpour S. Method for conceptual design applied to

office buildings. J Comput Civil Eng 2002;16(2):83–103.

[6] Joglekar A, Tungare M. Genetic algorithms and their use in the

design of evolvable hardware. http://www.manastungare.com/

articles/genetic/genetic-algorithms.pdf; 2003, accessed on May 20,

2004, 15 p.

http://www.manastungare.com/articles/genetic/genetic-algorithms.pdf
http://www.manastungare.com/articles/genetic/genetic-algorithms.pdf


E. Elbeltagi et al. / Advanced Engineering Informatics 19 (2005) 43–53 53
[7] Moscato P. On evolution, search, optimization, genetic algorithms and

martial arts: towards memetic algorithms. Technical Report Caltech

Concurrent Computation Program, Report 826, California Institute of

Technology, Pasadena, CA; 1989.

[8] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of

the IEEE international conference on neural networks (Perth,

Australia), 1942–1948. Piscataway, NJ: IEEE Service Center; 1995.

[9] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony

of cooperating agents. IEEE Trans Syst Man Cybern 1996;26(1):29–41.

[10] Eusuff MM, Lansey KE. Optimization of water distribution network

design using the shuffled frog leaping algorithm. J Water Resour Plan

Manage 2003;129(3):210–25.

[11] Goldberg DE. Genetic algorithms in search, optimization and machine

learning. Reading, MA: Addison-Wesley Publishing Co; 1989.

[12] Caudill M. Evolutionary neural networks. AI Expert 1991;March:

28–33.

[13] Dawkins R. The selfish gene. Oxford: Oxford University Press; 1976.

[14] Merz P, Freisleben B. A genetic local search approach to the quadratic

assignment problem. In: Bäck CT, editor. Proceedings of the 7th

international conference on genetic algorithms. San Diego, CA:

Morgan Kaufmann; 1997. p. 465–72.

[15] Moscato P, Norman MG. A memetic approach for the traveling

salesman problem—implementation of a computational ecology for

combinatorial optimization on message-passing systems. In:

Valero M, Onate E, Jane M, Larriba JL, Suarez B, editors.

International conference on parallel computing and transputer

application. Amsterdam, Holland: IOS Press; 1992. p. 177–86.

[16] Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings

of the IEEE international conference on evolutionary computation.

Piscataway, NJ: IEEE Press; 1998. p. 69–73.
[17] Eberhart R, Shi Y. Comparison between genetic algorithms and particle

swarm optimization. Proceedings of the 7th annual conference on

evolutionary programming. Berlin: Springer; 1998. p. 611–8.

[18] Kennedy J. The particle swarm: social adaptation of knowledge.

Proceedings of the IEEE international conference on evolutionary

computation (Indianapolis, Indiana). Piscataway, NJ: IEEE Service

Center; 1997. p. 303–8.

[19] Dorigo M, Gambardella LM. Ant colonies for the traveling salesman

problem. Biosystems, Elsevier Sci 1997;43(2):73–81.

[20] Maier HR, Simpson AR, Zecchin AC, Foong WK, Phang KY, Seah HY,

et al. Ant colony optimization for design of water distribution systems.

J Water Resour Plan Manage 2003;129(3):200–9.

[21] Rajendran C, Ziegler H. Ant-colony algorithms for permutation

flowshop scheduling to minimize makespan/total flowtime of Jobs.

Eur J Oper Res 2004;155(2):426–38.

[22] Merkle D, Middendorf M, Schmeck H. Ant colony optimization for

resource-constrained project scheduling. Proceedings of the genetic

and evolutionary computation conference (GECCO-2000); 2000.

p. 893–900.

[23] Liong S-Y, Atiquzzaman Md. Optimal design of water distribution

network using shuffled complex evolution. J Inst Eng, Singapore

2004;44(1):93–107.

[24] Whitley D, Beveridge R, Graves C, Mathias K. Test driving three

genetic algorithms: new test functions and geometric matching.

J Heurist 1995;1:77–104.

[25] Feng C, Liu L, Burns S. Using genetic algorithms to solve

construction time-cost trade-off problems. J Comput Civil Eng

1997;11(3):184–9.

[26] Raphael B, Smith IFC. A direct stochastic algorithm for global search.

J Appl Math Comput 2003;146(2/3):729–58.

[27] Evolver, Evolver Version 4.0.2, Palisade Corporation; 1998.


	Comparison among five evolutionary-based optimization algorithms
	Introduction
	Five evolutionary algorithms
	Genetic algorithms
	Memetic algorithms
	Particle swarm optimization
	Ant-colony optimization
	Shuffled frog leaping algorithm

	Comparison among evolutionary algorithms results
	Continuous optimization
	Discrete optimization
	Parameter settings for evolutionary algorithms
	Results and discussions

	Conclusions
	Pseudocode for a GA procedure
	Pseudocode for a MA procedure
	Pseudocode for the memetic local search
	Pseudocode for a PSO procedure
	Pseudocode for an ACO procedure
	Pseudocode for a SFL procedure
	References


