SourceVis: Collaborative Software Visualization for
Co-located Environments

Craig Anslow, Stuart Marshall, James Noble

School of Engineering and Computer Science
Victoria University of Wellington
Wellington, New Zealand
Email: {craig,stuart,kjx } @ecs.vuw.ac.nz

Abstract—Most software development tools and applications
are designed from a single-user perspective and are bound to the
desktop and Integrated Development Environments (IDEs). These
tools and applications make it hard for developers to analyse
and interact with software artifacts collaboratively. We present
SourceVis — a multi-user collaborative software visualization
application for use on large multi-touch tables. We describe the
design and visualization features of SourceVis, present findings
from a user study, and discuss the implications for building
collaborative software visualization applications.

Index Terms—Collaborative Software Visualization; Multi-
touch Tables; Multi-user; Co-located Environments

I. INTRODUCTION

Understanding software for maintenance is often a social
activity and involves pairs of developers working within co-
located environments (same room and time). Developers typ-
ically work in pairs within a larger team to carry out tasks
including: programming, code reviews, refactoring, and visu-
alization of work flow. Most software development tools and
applications that support these tasks often involve analysis and
visualization features. We focus on three design considerations
for building collaborative software visualization applications
in co-located environments [11].

1) Design for multiple users: most tools are designed
from a single-user perspective and are bound to the desktop
and IDEs (e.g. Eclipse). These tools make it hard for users
to analyse and interact with software artifacts collaboratively
using the same tool. For example, in pair programming there
is only one keyboard and mouse for input which is controlled
by the driver. When the observer wants to interact with the
tool they have to either swap positions or obtain the keyboard
and mouse from the driver.

2) Support multiple visualization types: most analysis
applications contain a small range of visualization techniques.
If applications supported multiple visualizations then this
would allow developers to visualize aspects of systems from
different views and reduce the overload for installing lots of
applications. For example, in code reviews developers often
have to use different applications to explore test coverage,
class dependencies, and class diagrams.

3) Display visualizations on large shared interactive
surfaces: most applications are viewed on vertical computer
displays. Developers quite often have dual vertical displays

Robert Biddle
Department of Computer Science
Carleton University
Ottawa, Canada
Email: robert_biddle @carleton.ca

(a) System dependency visualization displayed at full screen.

W el

(b) Different visualizations displayed in separate windows at opposite ends
of the table.

Fig. 1. SourceVis - multi-user collaborative software visualization.

with a large number of pixels, but when working in co-located
teams it is hard to interact and collaborate with information
across digital and physical devices. For example, in visualizing
work flows many teams use white boards and physical artifacts
like post-it notes. Since whiteboards are vertical it makes it
hard for developers to orient the information to where they are
standing. Instead they have to physically move to manipulate
the notes and draw at certain positions on the white board.

In this paper we present SourceVis — a collaborative software
visualization application for use on large multi-touch tables
within co-located environments based on these design con-
siderations. We describe the features of SourceVis (§II) and
present findings from a user study (§III). Figure 1 illustrates
users interacting with a visualization at full screen and differ-
ent visualizations in separate windows with users interacting
at opposite ends of the table.



Visualizing the Structure and Evolution of Software

System Explorer

Metrics Explorer

Exploration

Structure

w
2
s,
1]
7]
= .
£1
)
!.

Vocabula JavaDoc

Help: Toxicity Chart

The Toxicity Chart displays classes from a system
that are toxic i.e. classes that are above a
certain threshold for the different metrics.

Threshold - Description

500 - File Length, check for long source files

30 - Coupling, # of other classes a class relies on
50 - LCOM, lack of cohesion of methods in a class
3 - DIT, the depth of the inheritance tree

System Evolution Package Evolution

Evolution

Class Evolution 3

30 - Method Length, check for long methods
10 - Cyclomatic, check for cyclomatic complexity
- Nesting, check for nested if-else, try-catch

Fig. 2. SourceVis startup screen. Selecting load displays available systems. Visualizations are grouped into three categories: exploration, structure, and
evolution. Tapping an icon displays a new visualization. Tapping and holding an icon displays help information. Tapping cyan coloured borders on categories

orients icons and text to that direction.

II. SOURCEVIS

SourceVis is a collaborative application for visualizing the
structure and evolution of software systems. The aim is to
help developers working in co-located teams to explore how
a system has been structured by viewing metric visualizations
and evolution visualizations. These steps can help identify
what parts are large and likely need to be refactored.

SourceVis is designed for multiple users to interact syn-
chronously or asynchronously on a multi-touch table, and
supports multiple visualization techniques. We selected a rep-
resentative sample of existing techniques from the information
visualization and software visualization literature [8], from
our visualization wall user study [2], and our preliminary
candidate multi-touch software visualizations [1]. SourceVis is
displayed on a large custom-made horizontal interactive multi-
touch table (48 inch projected image display), that we built
following some existing technical guides [20]. Visualizations
can be displayed at full screen, within scalable windows, or at
any orientation on the horizontal plane. Multiple visualizations
can also be displayed at once.

A. User Interface

Users first load a system by selecting a system from the
load menu at the bottom left of the startup screen (see Figure
2). Only one system and all versions from that system can be
loaded at any one time. Visualizations are launched by tapping
a visualization icon. They are grouped into three categories:
exploration, structure, and evolution. The visualizations in the
startup screen are overview visualizations and users can select
individual entity visualizations from these overviews to get
more specific details about different entities (e.g. classes).

Each visualization is displayed in a separate window which
allows multiple visualizations to be displayed at once; either
next to each other, overlapping one another, or within side
another window. The right hand side border of the window
has options to maximize or close the visualization. Once a
visualization is displayed at full screen there is an option in
the bottom right in Figure 3(a) that allows closing (denoted
as cross inside circle) or making the visualization smaller
(denoted as windows overlapping).



Users interact with elements in the visualizations by tapping
for select, dragging elements with one finger, and rotating and
resizing elements with two fingers of either the same hand or
different hands. Tapping and holding an element (e.g. icon,
entity, metric label) displays properties about that element
in help message boxes (see Figure 2), and for entities (e.g.
packages, classes) displays a pie menu. Multiple entities can
be grouped by drawing a shape around them by using a lasso
gesture. The grouped elements can be moved around. Zooming
uses a pinch gesture with one or two hands. Panning uses two
fingers in any direction on the canvas of the visualization.

As SourceVis is designed for a horizontal display, it is
important for users to be able to move around the table and
orient visualizations to where they are physically standing. The
visualization windows can be moved, rotated or scaled in size
which allows the window to be oriented in any direction. On
the start screen the categories enclosing the visualization icons
and text can be oriented to any of the four directions of the
table. The direction is represented by a green border. Figure
2 shows all categories oriented to the bottom of the image.

For a multi-user scenario a visualization could be displayed
at full screen where one user is focused on the overview of
a system while another is focused on a certain aspect of the
same visualization (Figure 1(a)). Another scenario users could
be viewing two separate visualizations at the same time. One
visualization could be at full screen while the other inside of
the larger one. Alternatively two separate visualizations could
be displayed at opposite ends of the table (Figure 1(b)).

There are menus for each visualization including: system
version, options, and pie. The system version menu displays
the current version in the top left of the visualization. The
options menu displays information about entities (e.g. name
and metrics) and has features for sorting (e.g. alphabetical
and descending by all metrics), filtering (e.g. by class type
and by slider threshold values), and searching (e.g. by entity
name using a keyboard) entities. The options menu can be
collapsed to allow for more screen real estate. A pie menu is
displayed with a tap and hold gesture on an entity. Figure 3(a)
shows a pie menu for a class with options to display metrics
properties in a dialog box or a new visualization type.

B. Software Visualizations

SourceVis contains 13 visualizations grouped into three
categories and are aimed at supporting answering the kinds
of questions developers ask within industry [22]. The vi-
sualizations allow users to explore, see the structure, and
evolution structure of a system. The exploration category
contains visualizations that show a list of entities, metrics
about systems, packages, and classes, and vocabulary em-
ployed in entities. The structure category adapts Polymetric
Views [14] to multi-touch including the System Hotspots View
and Class Blueprint, and graph based visualizations to show
dependencies between entities. The evolution category shows
how a system has evolved over time focusing on structural
changes including versions, packages, and classes of a system
using Polymetric View encodings and charts.

1) Exploration: The System Explorer (SE) shows all pack-
ages (left hand side) and classes (right hand side) in scrollable
lists where each entity is selectable. Tapping a package high-
lights the name and classes from that package are displayed.
All classes in the system can be displayed by tapping the
classes heading label. In Figure 3(a) junit.framework package
and junit.framework.TestSuite class have been selected, and
metrics properties for TestSuite, and a pie menu are on display.

The Metrics Explorer (ME) shows metrics about packages
and classes. The metrics for a package are the total number
of classes, number of variables (NIV), number of methods
(WMCQ), and number of lines of code (LOC). The metrics for
a class are NIV, WMC, LOC [9]. Tapping a package (left hand
side) displays metrics about a package and also displays the
classes from the package (right hand side). Likewise tapping
a class displays metrics about a class. In Figure 3(b) the
packages are sorted in descending order by all metrics. The
junit.framework package is selected and shows that there are
14 classes of which 10 classes are concrete, three interfaces,
and one abstract class. The classes have been sorted in
descending order and TestSuite is selected.

The Vocabulary View (VV) shows the vocabulary used in
the names of entities (e.g. packages, classes) to understand
the coding standards employed. The visualization uses a
word cloud representation. Packages and classes can also be
visualized separately that use metrics (e.g. NIV, WMC, LOC)
to determine the font size for the name of the entity. In Figure
3(c) the largest class org.junit.Assert has been selected. Four
class metrics properties are being displayed and some classes
have been filtered using the slider leaving a total of 20 classes.

The Toxicity Chart! (TC) (Figure 3(d)) shows which classes
are toxic in a system and how the problems are distributed. A
class in the chart is represented as a bar and the height shows
the toxicity score. The score is based on several metrics and the
higher the score the more toxic a class is. In our adaptation
we use the following metrics: file length, coupling, lack of
cohesion, depth of inheritance tree, method length, cyclomatic
complexity, and method nesting. The individual metrics of the
score are colour coded. Classes that score zero points are not
included in the chart. The data in the chart can be filtered by
selecting all or some of the metrics and using a slider to show
classes greater than the toxicity score threshold. Individual
elements in the chart can not be tapped. The chart can be
resized or displayed as another chart.

2) Structure: The System Hotspots View (SHV) highlights
large classes in a system [14]. In our adaptation packages
are displayed down the Y axis in the packages pane and
classes from each package along the X axis in the classes
pane. Packages and classes can be sorted by metrics. Classes
are represented using Polymetric View encoding where width
indicates NIV, height WMC, and shading LOC. A darker
shading means more lines of code. Coloured borders represent
the type of class (e.g. black a concrete class, red interface,
blue abstract class). In Figure 4(a) the packages have been

Thttp://erik.doernenburg.com/2008/1 1/how-toxic-is-your-code/



Packages Classes

Junitextensions junitframework Protectable

Junit ramework Junitframework Test

junitrunner Junitframework TestListener
junittextui Junitframework Assert

org junit Junitframework AssertionFailedError
org junitexperimental junitframework ComparisonCompacior
org junitexperimental.categories Junit ramework ComparisonFailure

org junitexperimental.max Junit ramework.JUnit4 TestAdapter

org junitexperimental.resuits
org junitexperimental.runners

junitframework JUnit4TestAdapterCache
junitframework JUnit4TestCaseFacade

orgunitexperimental theories: Junitframework TestCase

org junitexperimental.theorles.intemal Junitframework TestFailure Dependency
org junitexperimental theories. suppliers Junitframework TestResult

org junitintemal Junitframework TestSulte

org unitintemal.builders

org unitintemal.matchers. Narmer ok Testsute €

org junitintemal.requests. W JU"N&?_

org junitintemal.runners m‘g -

org junitintemal.runners.model Loc: 161
org junitintemal.runners statements
org junitmatchers

orgjunitrules

orgjunitrunner

org junitrunner.manipulation

0%

(a) System Explorer (SE) - JUnit 4.8.2

a0 - hell
_ - A
e penme®  junit.framework-assert— o=
NumWords: 20 s Cless Loc: 148
Weight: 20 i P
" junit.framework.testresult junit_framework_tes
H : junit.textui.resultprinter juni
junit.runner.basetestrunner .. g UM
. . I vy e+
org.junit.assert o
org.junit.runners.blockjunit4classrunner
org.junit.experimental.max.maxhistory
"v:;_” po org.junit.experimental.theories.internal.assignments
clsmner ol org.junit.experimental.theories.theories.theoryanchor
Size of:
:::- org.junit.internal.runnWSclassrunner org.junit.internal.runners.jur
i Name:org untiemalunners. nseCassiumnr €)
Npspoonerete ess Toma:Gonsi Cass
i85 org.junit.runner.description e unit.runner.notificatig

JUnit-A 8.2

Package Details Packages Class Details Classes
Metics: Metrics: TestSulte
Classes: 14 org unitintemal.cunners oA Gonoreto Class | agsert
Methods: 148 Methods: 26
Code Lines: 735 ervjunitrumners Code Lines: 161 TesiResult
Options: orgjunit Oplors: TestCase
Search For: org junitrunner Search for: £Y ComparisonCompactor
[g-orgjunit ] [e9. TestCase ]| JunitaTestadapter
Sortby: orgjunitrunners.model Sortby: JUnit4TestAdapterCache
- Alphabetical Junitrunner - Alphabetcal TestFailure
y 3 org. ma Sort by Metrics: ComparisonFailure
[ALL [NV [ wiic | Loc | | org junitexperimental theories.intemal [ALL [ NV [ wMc [ LOC | | Junit4TestCaseFacade
- Ascending orgjunitrules - Ascending AssertonFalledError
- Descending Junittextui - Descending Testlistener
‘Show packages: orgjunitintemal ‘Show by class type: Test
- All Packages org junitrunner.notification - All Class Types Protectable
System Details org junitintemal. matchers TR O
Metrics: orgjunitintemal.runners.statements. - Interface Classes | ]
Pac jes: 27  junit tal rig -
Comm : T4 ‘org junitexperimental.categories. Abstract Classes.
Interfaces: 10 orgjunitinteral.builders - Annotation Classes ]
Abstract Classes: 17
Annotations: 14 Jjunitextensions ~Enum Type Classes
Enum Types: 0
Fields: 192 org junitexperimental.results
ods: 915
Cods Lines: org junitrunnermanipulation
‘orgjunitinternal.runners.model ‘
(b) Metrics Explorer (ME) - JUnit 4.8.2
JHotDraw-7.5.1 Toxicity Class Chart: JHotDraw-7.5.1
= Number of Classes 27
.
Toxicity: s
Num Classos: 27 [
Toxicity Score: 10.0 7
n
o
®
g
Z
£ 3
»
5
»
Metrics: *
Neme: [ Vaue: 0
Fielength 500 i n | i | | I 1 I
Coupling 10 k)
Lcom 50 H
oI 3 3
Method Length 30 2
Cycomatc 10
Nesting 3
( ) Classes >
[F P Congn o Couping = LCoM = ithod Langt = itod Cyomatic

(c) Vocabulary View (VV) - JUnit 4.8.2

(d) Toxicity Chart (TC) - JHotDraw 7.5.1

Fig. 3. Exploration Visualizations.

sorted, junit.framework and junit.framework.Assert have been
selected, and the keyboard is available to search for classes.

The System Dependency View (SDV) (Figures 1(a) and
4(b)) shows all the classes in a system displayed around a
circle with curved edges to represent dependencies between
classes. Tapping a class displays the class name, metric values,
and highlights the class dependency edges. A slider allows
filtering dependencies according to the weight value. Classes
can be filtered according to class type. Classes that have no
dependencies and or no references can be displayed which are
potentially redundant classes. All the classes around the circle
can be rotated by doing a rotation gesture in the middle.

The Class Dependency View (CDV) shows what classes a
class depends on. The class is coloured yellow with blue edges
to dependent classes. Dependent classes are coloured accord-
ing to class type and can be filtered by the slider. Edges are
weighted according to the number of dependencies between
classes. The stronger the dependency the thicker the edge.
Figure 4(c) shows org.jhotdraw.draw.DefaultDrawingView has
17 dependent classes.

The Class Blueprint View (CBV) (Figure 4(d)) shows the
references between methods and attributes within a class [14].

The visualization has five layers from left to right. The first
four layers relate to the methods and the final layer to the
attributes. The initialization layer displays initialization meth-
ods (e.g. constructors), interface layer public methods, imple-
mentation layer private methods, and accessor layer accessor
and mutator methods (e.g. get()). The attribute layer displays
the attributes. The methods and attributes have different fill
colours depending on which layer they belong to, likewise the
edges for the references. Edge weight can be adjusted by the
slider to highlight coloring. Multiple methods or attributes can
be selected at once to highlight edges.

3) Evolution: The System Evolution View (SEV) shows
how a system has evolved using a chart similar to the TC. The
metrics are the total number of packages, classes, methods,
fields, and lines of code. The chart can be updated by selecting
different metrics. All versions or major versions (ending in
zero in the version number) of a system can be displayed.

The System Package Evolution View (SPEV) (Figure 5(a))
shows all packages and all versions of a system in a Polymetric
View encoding. The width of a package represents the number
of methods, height number of fields and shading the number
of lines of code. Each package is grouped inside a version



ol Name: junit.framework.Assert Class Name:
reaiorer | | ftranenor] [UOMIEES gttt € e
Folds: 20 ‘Type: Concrete Ciass. |
Mothods: 146 NIV:0 Junit4CiassRunnor |
S e 1865 —r——
2 Name: org unt.runners BockiUnit4Ciassiunner € i
e.gorgjunit [a] s :M«;ﬁ. WMC: 18
~Reset [orgunitrunners | == s Loo o
Sortby: st RIS
3 Weight: 2.0
Apnabotea IDeEeesms| Nambr: 108
Sortby Metrics: . o Colou ;
[ o [ wee] e 4®)
- Ascending Jpe: Concree a
(oo ___| 855%
ss Do
Class Name:
rr— (o juniterporimenta roories |
Assert
Gass i [orpiunitrumers model |
Giass Optons: TREAEEAEEREE) O o Dopendendes
ogTosCase || |[Junitrunner IWIETRITIM IV ol PN ResotDepondenden |
“Roset saerj(ASIRIFIIHILIKILIG I ‘Showby cass type:
A S F2 313 I3 [T 1Y 8 7 B sttt
3 -Interface Ciasses [l
ALL | NIV | wme | Loc |Dm4unlloxuﬂmlﬁmoﬂu,lm J e — .
- Ascending - Annotation Classes [l
\ g [oauntries] =IRr=T] z e a
(a) System Hotspots View (SHV) - JUnit 4.8.2 (b) System Dependency View (SDV) - JUnit 4.8.2
: .
~os Dota | ass Details Initialization Implementation
Class Name: [ orgshotiraw araw svent FigureSelectont istener Cloes Name® [repaintriandies | intComponents
Hedl crhosmudmy drawBackground invalidateHandles
Class Metrics: ingView ;“‘Mm: isSelectionEmpty | Handles
E.’&' prertece Yame:oy potrmu s Davrgion € wy"z: »
aic: 19 e Loc: 1152
Dependencies: frests References Weight:
Weight: 1.0 ‘wledeMwEdm Value: 0.1
| | Classes: 17
org notdraw draw Drawing |
Encoding:
inatzeion/ I —
ey ot erce e
Y1 mmmw.sem.c«n@- ‘org hotdraw.draw.Consiainer :n::v E
y
Atributes [l —
org hokdraw.craw CompositoFigure z
(c) Class Dependency View (CDV)- JHotDraw 7.5.1 (d) Class Blueprint View (CBV) - JHotDraw 7.5.1

org.jhotdraw.draw.DefaultDrawing View

org.jhotdraw.draw.DefaultDrawing View

Fig. 4. Structure Visualizations.

Class Details

|| sortoy ere:

| [ T Twve Troc |
| | -Ascending

| | -pescending

il system Details

| [ Versions:

Ciass Optons:

oo |
~Reset

Sortby:

System Details

Versions:

Num Versions: 21
A | Major

‘System Metrics:

»
H
-

OO
T |I|

TS| ~
1

o

e
oIy mmrﬂ[]]%
o WW]E

30 35 X : 381 |[as2
= =

(a) System Package Evolution View (SPEV) - JUnit, Package Evolution View (b) System Class Evolution (SCEV) - JUnit and junit.awtui.TestRunner selected
(PEV) - junit.framework

pane. Packages can be sorted across the whole visualization
or within each version. A package can be highlighted across all
versions it appears in. We do not cater for packages changing

Fig. 5. Evolution Visualizations.

name between versions. All versions or major versions of a
system can be displayed. The Package Evolution View (PEV)
shows the evolution of one package over time, displayed as a



Polymetric View encoding or as a chart, and can be launched
from other views. In Figure 5(a) the Package Evolution View
is displayed above the System Package Evolution View.

The System Class Evolution View (SCEV) is similar to
System Package Evolution View but shows classes which can
be sorted, filtered by class type, and searched for. In Figure
5(b) junit.awtui.TestRunner appears in seven versions. The
Class Evolution View (CEV) shows the evolution of a class
and is similar to the Package Evolution View.

C. Implementation

SourceVis has been used with sample systems from the
Qualitas Corpus [25] ranging in size from small to very large
based on lines of code and number of classes, see Table I.
The systems were loaded into a static analysis tool called
Understand® to generate metrics data for the visualizations.

SourceVis is implemented upon MT4j which is an open
source toolkit for multi-touch [15]. We integrated third party
libraries for the vocabulary® and chart* visualizations.

We created classes to represent entities from Java for
systems, packages, classes, methods, and fields. These classes
all implement an interface which has generic behaviour such as
getEntityName(). These classes extend the MT4j MTTextArea
class so text can be displayed or represented as a rectangle with
no text. Some specialized classes were required to represent
words and dependencies. The classes have attributes for the
following aspects: if properties are being displayed, depen-
dency weight of an edge, what layer an entity belongs to, and
what colour an entity is. We created a comparator class to
compare entity names of the same type.

We extended the MT4j main applet to a SourceVisShell
class which launches SourceVis. Once launched the startup
screen is displayed and represented by the SourceVisCate-
goriesScene which contains all the loaded systems as Vis-
Systems. A VisSystem contains the system name, list of all
versions, current version, and associated data metrics files.
The SourceVisCategoriesScene has three kinds of categories:
exploration, structure, and evolution. Each Category has many
VisScenes which are images and other properties. A VisScene
contains one SourceVisScene which represents a visualization
in SourceVis and extends the MT4j AbstractScene.

TABLE 1
SOFTWARE SYSTEMS VISUALIZED BY SOURCEVIS.

System (latest) Line of code | Classes | Versions | Size
Azureus 4.5.0.4 453433 7249 51 V Large
Weka 3.7.2 224356 2099 49 V Large
ArgoUML 0.34 194859 2905 10 Large
FindBugs 1.3.9 109096 1744 2 Large
JHotDraw 7.5.1 75958 1070 6 Medium
GanttProject 2.0.9 | 47051 1058 2 Medium
JUnit 4.8.2 6164 209 21 Small
SquirrelSQL 3.1.2 | 6944 2211 2 Small

Zhttp://www.scitools.com/
3http://opencloud.mcavallo.org/
“http://www.jfree.org/jfreechart/

III. USER STUDY

The aim of our study was to collect data about how effective
our visualization techniques are for software understanding in
order to meet our design challenges following a qualitative
approach. Other researchers have used a similar research
approach to understand how groups of participants collabora-
tively use a multi-touch table in a co-located environment. The
findings have provided insight into the design of multi-touch
tables for information visualization [11], visual analytics [12],
and collaborative design [21].

A. Participants

There were six male participants who were computer sci-
ence graduate students. All had a degree in computer science:
one a diploma, three with an honours degree, one masters
degree, and a PhD. The participants conducted the user study
in pairs (e.g. Participants ID 1 and 2). All pairs chose their
fellow participant. The first pair had known each other for four
years, second pair 10 years, and third pair two years. None
had previously used any software visualizations tools before.
All had some form of professional development experience.
When working on previous projects four participants regularly
programmed with other developers daily, weekly, or monthly.
All participants except one claimed that they did regular code
reviews either daily or weekly. They have used a range of
tools for code reviews including: source revision control, unit
tests, project management, bug tracking, and IDEs. Four of the
participants have touch mobile phones, while one of these also
has an iPad. Two of the participants have used touch screens
for work previously.

B. Procedure

Participants were welcomed, given an information sheet,
consent form, and a pre-study questionnaire to complete.
The questionnaire asked participants about their demographics
and background experience. Participants then explored the
example applications from MT4j for 10 minutes, followed
by a demonstration of SourceVis by the session instructor,
then an additional 10 minutes to explore other systems in
SourceVis on their own. Figure 6 shows the user tasks which
involved answering 16 questions using 11 of the visualization
techniques and is similar to the kinds of questions software
developers ask within industry [22]. Each pair of participants
completed all the tasks using the same set of visualizations.
The System Package Evolution View and Package Evolution
View were not used as the System Class Evolution View and
Class Evolution View were of similar design. The example
systems used in the study were JUnit and JHotDraw. The
participants recorded their answers to the questions on a
sheet provided. We recorded the time it took participants to
complete the user tasks. With each participant’s consent we
video recorded their actions and asked them to think aloud.
Participants completed a post-study questionnaire which asked
for their opinion on the effectiveness, strengths, and weak-
nesses of the interaction capabilities and the visualizations.
We allowed up to 90 minutes to complete the study.



(SE)
(ME)
(ME)
(ME)
(TO)

How many classes are there in org.jhotdraw.Geom?

What is the largest package in JHotDraw version 6.0.1?

How many interfaces does this package contain?

From that package what is the largest class?

In JHotDraw version 7.5.1 how many classes have a toxicity score
greater than 5.0 for file Length?

In JHotDraw version 7.5.1 what are the four largest words used in class
names?

What are the two largest classes?

In JHotDraw version 7.5.1 what is the largest package?

From the same package what is the largest class?

In this class how many accessor methods are called by the public method
repaintHandles?

How many interfaces does this class depend on?

How many versions does this class appear in?

In JUnit 4.8.2 how many classes have no dependencies?

In JUnit what major version contains the most classes?

How many versions contain class junit.swingui.TestRunner?

How many versions contain annotation classes?

(VV)

(VV)
(SHV)
(SHV)

(CB)

(CD)
(CE)
(SD)
(SCEV)
(SCEV)
(SCEV)

Fig. 6. User tasks by software visualization, 16 questions in total.

C. Qualitative Findings

We now present the qualitative findings from the study as
feedback given by participants and summarized in Table II.

1) Strengths: SourceVis allowed multiple users to interact
at the same time which encouraged participants to collaborate,
learn from each other on how to use SourceVis, and work as
a team.

“Working with someone cooperatively helped me to
better understand how to manipulate the informa-
tion (which settings to toggle for instance). I was
constantly communicating with my partner and we
were always assisting each other. We were able to
easily take turns manipulating the interface.” PID2.

SourceVis supported multiple visualizations and displaying
many visualizations at once. Users can launch new visualiza-
tions from the start screen or using a pie menu from a currently
displayed visualization to show more detailed information
about an entity (e.g. Class Blueprint, Class Evolution).

“It is easy to follow a particular class around the
different visualizations, and are often linked directly
via the tap and hold pie menu.” PIDI.

SourceVis was designed so that many elements in the visual-
izations could be manipulated, in a visually consistent manner,
such as sorting, filtering, searching, and moving elements.

TABLE 11
SUMMARY OF QUALITATIVE FINDINGS.

Strengths Weaknesses
Multi-user Interaction Visualization Context
Multiple Visualizations Navigation
Visualizations | Data Manipulation UI Consistency
Overviews Menus
Details on Demand Pie Menu
Software Metrics and Trends | Search
Outliers and Relationships
Multi-touch Large Shared Display Screen Resolution
Table Multi-touch Interaction Touch Detection

“I liked how I could manipulate everything. I ap-
preciated being able to zoom and rotate individual
items away from my partner so I could get a better
look.” PID2.

The visualizations provided an overview of a system and
the ability to drill down to get more details on demand about
specific entities including packages and classes.

“There were lots of information on one screen which
allowed me to quickly understand the data on a
high-level before manipulating the components to
get individual details.” PID2.

The metrics data made several trends and information easily
discoverable that are hard to get at otherwise, especially
concerning evolution and dependencies.

“The visualizations did a great job of showing me
metrics, trends, and dependencies more easily than
I have experienced with existing IDEs and version
control tools.” PID2.

The visualizations were designed to help identify entities
that are outliers such as large and small classes, and relation-
ships between entities.

“Being able to quickly see problem classes is a great
feature.” PID3.

”The visualizations helped when
look at the relationship between
classes/methods/packages.” PID 4.

trying to
different

Participants liked the large size of the table as it easily
allowed them to see and share lots of things about the
visualizations at the same time.

“The size makes it very easy for people to be looking
at different things at the same time.” PID1.

The multi-touch capabilities allowed multiple participants
to interact which removed the barriers from a single person
being in control.

“Having a large screen that removes the need for
a singular keyboard and mouse allows all team
members to contribute to the task at hand. It felt
quite good.” PID3.

2) Weaknesses: Given the participants were novice users of
SourceVis some were confused as to what visualization they
were currently looking at and got lost through the linking of
some of the visualizations especially if there was deep nesting.
Adding breadcrumbs and labels would help users to remember
the context of the visualizations. Some participants got lost in
terms of navigating within a visualization.

“I found that there were too many visualizations
which made it difficult to remember which one does
what. Some visualizations looked very similar. I
sometimes forgot which visualization I was looking
at or where I came from.” PID2.

All visualizations supported navigation by two finger or
hand zooming and panning gestures on the background canvas.
Occasionally, when multiple participants tried to zoom at the



same time, SourceVis was confused as to what gesture to per-

form. Navigating (zooming and panning) in the visualizations

was really only effective when one user was in control.
“With multiple users there were issues with two
people zooming by accident.” PIDA4.

Many elements in the visualizations were designed to be-
have in a similar way so that users can manipulate elements
(e.g. drag, tap and hold) and perform interaction gestures (e.g.
two finger zoom in and out, and pan for navigation) in a
consistent manner. Occasionally there were some unexpected
behaviour where some elements could be moved such as the
submenus in the options menu and touching some text labels
had different effects across different visualizations.

“It was not always obvious what part of the interface
could be touched and what it would do, and there
were some inconsistencies as to how to close specific
popups.” PIDS.

We located the main menus primarily on the left hand side
of visualizations which made it difficult for participants to
interact with them if they were standing on the other side of
the table. If a participant wanted to display a new visualization
from the start screen and one visualization was being displayed
at full screen, it required closing or minimizing the current
displayed visualization. Creating flexible free floating menus
for the options and visualizations on the start screen to open
anywhere in SourceVis will make it easier for participants to
launch new visualizations.

“It was a bit cumbersome if you wanted to for
example click on something but the buttons were
on the other side, then you had to ask your team
mate to do it.” PIDS.

The pie menus caused some issues when displayed, espe-
cially if the canvas was zoomed in or out at a very short or
long way. Either the pie menu was too small, or too big and
off screen. Most of the time the pie menu worked as expected
and participants could read the sub menus. This could easily
be rectified by displaying the pie menu at the same zoom level.

“Pie menu needs to be independent of zoom, as it
becomes a little clunky and hard to read when half
of it disappears off the bottom of the screen.” PID3.

When a search query was issued the entities that matched
the query were displayed while other entities were hidden.
Any subsequent search would search upon entities that were
currently visible and not the hidden entities. To make a
subsequent search on all the original entities a user would
have to tap the reset option, which redraws the visualization
in the original state. Another way to implement this would
have been to highlight the entities found and fade the colour
of other entities.

“The search option should reset the list at the begin-
ning of a new search.” PIDI.

The resolution of the table was 1280x800 pixels which
is lower than most contemporary desktop computers. This
resolution occasionally made some text hard to read especially
when the current view was zoomed out a long way.

“This particular table does suffer from low resolu-
tion, making reading small text hard.” PID1.

Detecting touch points was inaccurate sometimes which
caused some participants to be cautious when they touched
the table while their colleague was also touching. This led
one pair to take turns when interacting with the table.

“I would have liked to manipulate the interface at the
same time as my partner, but didn’t due to accuracy
issues with the table. Sometimes we both touched
the same object at the same time, which lead to
surprising changes in size and position of objects.”
PID2.

D. Quantitative Findings

All pairs answered all the questions correctly. The first pair
took 22 minutes, second pair 24 minutes, and third pair 29
minutes; for an average of 25 minutes.

Figure 7 shows the average perceived effectiveness of the
techniques each participant stated in the post-survey, with
0 being least effective and 10 being most effective. There
is no rating for the System Package Evolution and Package
Evolution visualizations as participants did not use these when
answering the questions. Most of the visualizations ranked
between 7 and just over 8 on average. The overall perceived
effectiveness ranked between 7 and 8, with 7.8 on average.

The Metrics Explorer was perceived as the most effective
technique at 8.2 on average. The Exploration visualizations
ranked the highest between 7.7 and 8.2 on average. The chart
based visualizations ranked between 7.5 and 8 on average,
with the Toxicity Chart perceived as the most effective chart
visualization. The System Hotspots View and Class Evolution
visualizations both use Polymetric encodings and ranked quite
similar approximately 7.5 on average. The dependency visu-
alizations were perceived least effective and ranked between

10

o

{5

i e
L1

| [
i

Perceived Effectiveness
«

SE
ME
w

TC

SHV
Sbv
cbv
CBV
SEV
SCEV
CEV
Startup

Effectiveness

ion

Fig. 7. Perceived effectiveness of the software visualization techniques by
participants, O being least effective and 10 most effective.



5 and 6 on average. No participants ranked the dependency
visualizations higher than 7. At least one participant ranked the
Metrics Explorer, Vocabulary, Toxicity Chart, Class Blueprint,
and Class Evolution View techniques the most effective at
10. At least one participant ranked the Class Blueprint, Sys-
tem Evolution, System Class Evolution, and Class Evolution
techniques the least effective at 5. The Startup Screen ranked
between 7 and 9, with 8.2 on average.

We asked participants if they had access to a large multi-
touch table what software development activities they would
use it for. The activities were: planning team development
tasks, meetings that were either face-face or video conferences,
designing the architecture of a system using modelling tech-
niques, implementing code by pair programming, analyzing
code or systems and conducting code reviews, testing and
debugging code, not at all, or something else. 35% stated
design, 29% planning, 24% analysis, 6% both implementation
and testing, and 0% not at all and something else.

E. Limitations

Our study was conducted with a small number of partici-
pants, who were a convenience sample of computer science
graduate students. This was the first time participants had
used SourceVis, hence they were novice users. This was a
study on understanding existing software systems they may
not have been familiar with and had made no contributions
to. The questions were not numbered on the sheet provided
nor did we vary the order, but all participants answered the
questions in the order they were listed. This may have led to
a learning bias on the visualization techniques. As this was a
qualitative user study we were less concerned with how long it
took participants to answer the questions, instead we wanted
to have a general understanding of how long it would take
to conduct the study. As we asked participants to think aloud
we accounted for this time when measuring how long it took
them to complete the tasks.

IV. DISCUSSION

Developing upon MT4j required a significant amount of
effort to build something substantial. Every object that was
displayed had to be rendered as a MT4j geometric shape so
all classes had to extend one of the existing built in shapes.
There existed very few user interface controls and menus,
hence it was time consuming to build our own widgets. The
visualizations relied heavily on text so we tried to make the
text as easy to read as possible and allowed text objects to be
scaled, rotated, and oriented in different positions. Nonetheless
some participants found the text was hard to read when
viewing a visualization in an individual window as the text
became blurred. SourceVis currently only supports mouse,
finger, and hand input but we would like to support others
forms including: fiducial markers, digital pens, and tablets.

Adding some advanced techniques could help the usability
of some visualizations. The System Dependency displays
many classes which are hard to read when displaying all
classes. Adding a technique that would enhance the class

names such as a focus + context technique like a fish eye
lens could make it easier to read a class name. The Class
Dependency displays one class’ dependencies at a time and
new visualizations need to be launched to view a dependent
class’ dependencies. Instead of launching a new visualization
having an option to expand the dependencies of a dependent
class would form a much larger graph visualization and nodes
could also be collapsed.

Extending SourceVis to support other visualizations is pos-
sible. As we have a representation of programming language
constructs, any visualization that utilizes these Java entities can
make use of these classes. The generic options menus can be
added to new visualizations, likewise the gestures and custom
pie menu. If visualizations require charts they can use the chart
integration class. We have integrated two open source libraries,
therefore integrating other libraries should be possible too.

The table has a large display but the resolution is rather low
at 1280x800 pixels. Ideally we would like the table to have a
much higher resolution when compared with current desktops
as this will allow greater precision for work place tasks. Using
LCD screens instead of projectors would create a much higher
resolution. Anything that was put onto the table generated a
blob which affected SourceVis be it fingers, paper, or some
other physical object. Putting objects such as paper on the
table minimizes the available display space for viewing and
interacting. The only way to prevent participants from being
able to put paper on the table would have been to remove
the paper altogether or create physical frame borders around
the table which paper or other objects could be placed upon.
Instead we chose to use nearby tables for participants to place
paper. We also tried having separate windows displayed on
the screen which contained the questions, but we felt that this
would effect participants switching between the visualizations
and the questions and take up too much screen real estate.

The table is a prototype and the participants experienced a
range of hardware performance issues from slow rendering,
fake touches from hovering fingers just above the surface,
and unexpected behaviour. The hardware we used was a Dell
Optiplex 760 Intel Core 2 Duo, 3.0 GHz, 8GB Ram, ATI
Radeon HD 3400 Series. Some visualizations had issues with
displaying lots of data on the screen, which meant participants
had to wait until the system had completed the rendering
before they could move onto the next interaction. SourceVis
worked very well for small to medium sized data sets on all
of the visualization techniques. The table employs a diffused
illumination setup which makes it hard to prevent hover touch
points and caused some fake touches to be detected slightly
above the surface. Sometimes participants were touching the
same object on the screen at the same time and occasionally
the object would all of a sudden move or change size unex-
pectedly due to unintended touches which caused confusion
and frustration. We would like to explore commercial multi-
touch tables such as the Microsoft PixelSense® table to see if
it would alleviate the low resolution and performance issues.

Shttp://www.microsoft.com/en-us/pixelsense/default.aspx



V. RELATED WORK

Some studies have explored how tools support collabora-
tive software understanding [13] and collaborative software
visualization [24], but neither focused on interactive surfaces.
A number of prototypes have explored using different inter-
active devices to support collaborative software development.
FastDash is an ambient visualization system displayed on a
projector for providing awareness about developer activities
in software teams [3]. CodeSpace uses shared touch screens,
mobile touch devices, and Kinect sensors to share informa-
tion during developer meetings [6]. CodePad uses peripheral
interactive devices ranging from portable tablets to tables to
support developers in maintaining their concentration [19].
CoffeeTable is a visual system that uses digital pens and Wii
Remotes for interaction to assist with software development
processes such as what developers are working on, a summary
of the architecture, and work flow activities [10]. CREWW is
an interactive CRC card system that uses Wii Remotes for
collaborative requirements engineering [5]. Other researchers
have also explored using multi-touch tables for activities
including: software exploration [4], pair programming [23],
code reviews [16], and software modeling [17].

Polymetric Views [14] are a well adopted suite of techniques
for visualizing software metrics. A quantitative user experi-
ment was conducted with CodeCity which utilizes Polymetric
View techniques and the results validated that CodeCity out-
performed in both correctness and completion times of two
state of the art exploration tools (Eclipse and a spreadsheet of
metrics data) [26]. Another common technique is to visualize
the evolution of contributions made by developers [7], [18],
whereas SourceVis focuses on how the structure of a software
system has evolved.

VI. CONCLUSIONS

We presented SourceVis, a collaborative software visualiza-
tion application for co-located software development teams to
use on large multi-touch tables. We designed SourceVis by
focusing on three considerations for collaborative visualiza-
tion applications in co-located environments [11]: design for
multiple users, support multiple visualizations, and display vi-
sualizations on large shared interactive surfaces. We described
the design, visualization features, and implementation details
of SourceVis. We presented findings from a small qualitative
user study conducted with computer science students.

The implications for collaborative software visualization
with multi-touch tables are visualizations should support mul-
tiple users and make it easy for them to control the interface.
Visualizations should be viewed from different view points
and angles. Menus should be adaptable to be displayed from
anywhere. Switching between visualizations should be seam-
less. The display screen should be large and high resolution
so that team members can easily share the visualizations.

In the future, we plan to conduct a larger qualitative study
of SourceVis with professional software developers. We would
also like to conduct a quantitative study to compare SourceVis
against state of the art exploration tools (e.g Eclipse).

ACKNOWLEDGMENTS

This work is supported by the New Zealand Ministry of Science and
Innovation, TelstraClear, Victoria University PhD Completion Scholarship,
and the Canadian NSerc SurfNet network.

REFERENCES

[1] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis: a tool for
multi-touch software visualization. In Proc. of Interactive Tabletops and
Surfaces (ITS). ACM, 2011.

[2] C. Anslow, J. Noble, S. Marshall, E. Tempero, and R. Biddle. User
evaluation of polymetric views using a large visualization wall. In Proc.
of SoftVis. ACM, 2010.

[3] J. Biehl, M. Czerwinski, G. Smith, G., and Robertson. Fastdash: a visual
dashboard for fostering awareness in software teams. In Proc. of CHI.
ACM, 2007.

[4] S. Boccuzzo and H. Gall. Multi-touch collaboration for software
exploration. In Proc. of ICPC. IEEE, 2010.

[5] F. Bott, S. Diehl, and R. Lutz. CREWW: collaborative requirements
engineering with Wii-remotes. In Proc. of ICSE. ACM, 2011.

[6] A. Bragdon, R. DeLine, K. Hinckley, and M. Morris. Code space: touch
+ air gesture hybrid interactions for supporting developer meetings. In
Proc. of Interactive Tabletops and Surfaces (ITS). ACM, 2011.

[71 A. Caudwell. Gource: visualizing software version control history. In
Proc. of OOPSLA Companion. ACM, 2010.

[8] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer Verlag, 2007.

[9]1 N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing, 1998.

[10] J. Hardy, C. Bull, G. Kotonya, and J. Whittle. Digitally annexing desk
space for software development. In Proc. of ICSE. ACM, 2011.

P. Isenberg. Collaborative Information Visualization in Co-located
Environments. PhD thesis, University of Calgary, 2009.

P. Isenberg, D. Fisher, M. Morris, K. Inkpen, and M. Czerwinski. An
exploratory study of co-located collaborative visual analytics around a
tabletop display. In Proc. of VAST. IEEE, 2010.

A. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proc. of ICSE. 1EEE, 2007.

M. Lanza and S. Ducasse. Polymetric views-a lightweight visual
approach to reverse engineering. /EEE TSE, 29(9):782-795, 2003.

U. Laufs, C. Ruff, and J. Zibuschka. MT4j a cross-platform multi-
touch development framework. In Proc. of the Workshop on Engineering
Patterns for Multi-Touch Interfaces at EICS. ACM, 2010.

S. Muller, M. Wursch, T. Fritz, and H. Gall. An approach for
collaborative code reviews using multi-touch technology. In Proc. of
Workshop on CHASE, 2012.

S. Muller, M. Wursch, P. Schoni, G. Ghezzi, E. Giger, and H. Gall.
Tangible software modeling with multi-touch technology. In Proc. of
Workshop on CHASE, 2012.

M. Ogawa and K-L. Ma. code_swarm: A design study in organic
software visualization. In Proc. of InfoVis. ACM, 2009.

C. Parnin, C. Gorg, and S. Rugaber. Codepad: interactive spaces for
maintaining concentration in programming environments. In Proc. of
SoftVis. ACM, 2010.

[20] J. Schoning, J. Hook, T. Bartindale, D. Schmidt, P. Oliver, F. Echtler,
N. Motamedi, P. Brandl, and U. von Zadow. Tabletops - Horizontal
Interactive Displays, chapter Building Interactive Multi-touch Surfaces,
pages 27-49. Springer Verlag, 2010.

S. Scott, S. Carpendale, and K. Inkpen. Territoriality in collaborative
tabletop workspaces. In Proc. of CSCW. ACM, 2004.

[22] J. Sillito, G. Murphy, and K. De Volder. Questions programmers ask
during software evolution tasks. In Proc. of FSE. ACM, 2006.

A. Soro, S. Iacolina, R. Scateni, and S. Uras. Evaluation of user gestures
in multi-touch interaction: a case study in pair-programming. In Proc. of
the International Conference on Multimodal Interfaces (ICMI). ACM,
2011.

[24] M-A. Storey, C. Bennett, I. Bull, and D. German. Remixing visualization
to support collaboration in software maintenance. In Proc. of ICSM.
IEEE, 2008.

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas corpus: A curated collection of Java code for
empirical studies. In Proc. of APSEC, 2010.

R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A
controlled experiment. In Proc. of ICSE. ACM, 2011.

(11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[21]

(23]

[25]

[26]



