Visor in Practice: Live
Performance and Evaluation

Jack Purvis
Victoria University of Wellington, New Zealand
jack.purvis@ecs.vuw.ac.nz

Craig Anslow
Victoria University of Wellington, New Zealand
craig@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington, New Zealand
kjx@ecs.vuw.ac.nz

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

Visor is a new environment for live visual performance that was de-
veloped to demonstrate code jockey practice (CJing), a new hybrid
performance practice that combines live coding and VJing to harness
the strengths of both practices. CJing draws on live coding for the
ability to improvise content at a low level by coding in textual inter-
faces. VJing is drawn on for its ability to manipulate content at a
high level by interacting with GUIs and hardware controllers. Com-
bining these aspects of both practices enables flexible performances
where content can be controlled at both low and high levels. We
build on previous work by reflecting on the use of Visor in live perfor-
mances and evaluating feedback gathered from creative coders, live
coders, and VJs who experimented with the environment. We con-
clude by discussing Visor’s effectiveness and whether ClJing effectively
combines live coding and VJing along with areas for future work.

Introduction

The creation of visuals to accompany music is an essential part of any
audiovisual experience. Live coding and VJing (video jockey prac-
tice) are live performance practices that offer the ability to improvise
and manipulate visuals that synchronize with music in real-time. Live
coding makes use of live programming techniques, enabling code to
be executed at runtime with immediate feedback (Tanimoto 2013).
Live coding is used to explore how algorithms can generate music
or visuals and is typically performed live at events called Algoraves
(Collins et al. 2003). Video jockeys (VJs) are live visual artists that
mix content in real-time, often complimenting music played by disc
jockeys (DJs) to create audiovisual marriages that engage the senses
(Faulkner and D-fuse 2006). VJs typically perform by layering multi-
ple video clips together, applying video effects, and interacting with
effect parameters using hardware devices such as MIDI controllers.
Live coding focuses on writing code to improvise or manipulate
content. This focus provides fine-grained, low level control of visuals,

mailto:jack.purvis@ecs.vuw.ac.nz
mailto:craig@ecs.vuw.ac.nz
mailto:kjx@ecs.vuw.ac.nz

but does not provide high level control, impairing usability as all in-
teractions must occur through a textual interface. VJs instead focus
on interacting with comprehensive graphical user interfaces (GUIs)
and hardware controllers to improvise or manipulate content. This
focus provides overarching, high level control of visuals, but does not
provide low level control, preventing improvisation of content from
scratch or the ability to make fine-grained adjustments to existing con-
tent. The CJing practice was introduced to overcome the limitations
of live coding and VJing by combining the practices together (Purvis
et al. 2019). In Cling, a performer known as a code jockey (CJ)
interacts with code, GUIs, and hardware controllers to improvise or
manipulate visual content in real-time. CJing harnesses the strengths
of live coding and VJing to enable flexible performances where content
can be controlled at both low and high levels. CJing has been demon-
strated by Visor, a new live coding environment that embodies the
practice (Purvis et al. 2019). Visor has been purpose-built following
a practice-based, user-centered approach to offer features for both live
coding and VJing to enable live visual performances. To determine
the effectiveness of Visor and whether CJing can effectively combine
live coding and VlJing, in this paper we reflect on Visor’s use in live
performances and evaluate feedback gathered from creative coders,
live coders, and VJs who experimented with the environment.

Background
CJING

Code jockey practice (CJing) is a new hybrid performance practice
that was first proposed by Purvis et al. (2019). CJing harnesses the
strengths of live coding and VJing to enable flexible performances
while simultaneously removing limitations identified in each practice.
In Cling, a performer known as a code jockey (CJ) interacts with
code, GUIs, and hardware controllers to improvise or manipulate vi-
sual content in real-time. ClJing is designed to complement live coding
and VlJing by providing a new approach that enables performers to

utilise aspects of both practices in the same performance. For ex-
ample, an aesthetic of CJing practice is the utilisation of live coding
as a method to improvise 'visual instruments’ on the fly. Once de-
fined, visual instruments can be performed using GUIs and hardware
controllers to generate live visuals.

Visual

Programming
. Performance
Live Tools
Programming

Custom
AudioVisual
Performance
Tools

Live Coding
Environments

Creative
Coding

Figure 1: ”Software that supports ClJing lies at the intersection of
creative coding, live programming, and VJing related software tools.”

(Purvis et al. 2019)
ClJing practice is formulated from the broader subject areas of

creative coding, live programming, and VJing (Purvis et al. 2019).
As shown in Figure [T} software that supports ClJing is placed at the
intersection of these subject areas. Purvis et al. (2019) proposes that
ClJing practice is based on three key ideas:

1. Code as a universal language: Creative coding should be used
to produce content from scratch, while live coding enables the
coded content to be manipulated on the fly at runtime. In
ClJing, code is the predominant content that is used to instruct
the visual output, similar to how musical tracks are treated in
DJing, and how video clips are treated in VJing.

2. Complete content control: CJing should allow for content to
be manipulated at both low and high levels, enabling flexible
control of the visual output during performances. The low level
aspect is provided by live coding, allowing content to be impro-
vised or edited using code. The high level aspect is provided by
VJing, allowing content to be organised into layers and manip-
ulated through effects, parameters, or hardware controls.

3. User interfaces as an abstraction: Code should be abstracted
upon by user interfaces, providing high level functionality that
would not be easy to achieve by simply writing code. Therefore,
ClJing software maintains a relationship between user interfaces
and code, for example, providing contextual interfaces that de-
tect when changes occur to the code and update themselves
accordingly. At the same time, code should be able to access
the state of interactive user interfaces.

VISOR

VisorEI is a new hybrid environment that was developed with the pri-
mary goal being to embody CJing, exploring how live coding and
VlJing can be combined into a single environment to harness the

Thttps://www.visor.live

strengths of both practices (Purvis et al. 2019). Visor achieves this
goal by offering a number of core features to facilitate live perfor-
mance: Live coding: Visor offers the ability to live code visuals with
the Processing API (Reas and Fry 2006) in the Ruby language.

e State management: Visor supports a state management inter-
face that automatically visualises and provides GUIs to update
live coded variables. For example, numeric variables are pre-
sented as sliders with configurable ranges and boolean variables
are presented as checkboxes, enabling parameters to be manip-
ulated at a high level without the need to write any code.

e Layers: Visor offers the ability to organise code into multiple
layers that are composited together into the final visual output
using a variety of blend modes. Each layer acts as an indepen-
dent Processing sketch with its own state and draw loop.

e FFT: Visor supports the fast Fourier transform (FFT) algo-
rithm to generate a frequency spectrum from an audio input
in real-time. The spectrum is visualised in the interface and
made accessible in the code, enabling audio reactive visuals.
Tap tempo: Visor offers the ability to set a tempo that can be
referenced in the code to animate visuals to the beat of live mu-
sic. The tempo can be set by repeatedly clicking a button in
the interface or by using a keyboard shortcut.

e MIDI: Visor supports a framework for configuring inputs from
external devices such as MIDI controllers using the MIDI pro-
tocol. The framework enables sliders, knobs, and buttons to
become directly accessible in the code or mapped to state pa-
rameters. Visor supports a number of other notable features
including support for multiple code tabs, support for multiple
display outputs, a console, an in-app tutorial, and in-app doc-
umentation. A number of existing features were also refactored
since Purvis et al. (2019), most notably, the REPL editor and

https://www.visor.live

the draw loop editor were merged into a single editor. The im-
plication of this is that the code that should be executed every
frame should now be scoped within a method called draw, akin
to how Processing traditionally operates. Figure [2| shows Visor
in action by presenting the Visor interface and corresponding
visual output.

Design Methodology

Visor was developed using a practice-based approach where the en-
vironment was tested in a performance context throughout develop-
ment to ensure it met the needs of a performer (in this case, the
first author). Unlike conventional software engineering processes, this
approach considers the act of developing software as a form of craft
research (Blackwell and Aaron 2015) and places emphasis on the need
for 'research through design’ (Gaver 2012). Using Visor in a perfor-
mance context during development meant that the effectiveness of the
environment could be evaluated iteratively: Existing features could
be validated, features that needed improvement could be refined, and
ideas for new features could be generated.

Practice-based approaches have been demonstrated by the Sonic
Pi and Palimpsest environments (Aaron 2016; Blackwell 2014), both
of which were developed with a consideration for craft practice and
were discussed in the context of their use in live performance. Here
we take a similar approach by reflecting on the use of Visor in live per-
formances, as presented in Section 3. Visor is also evaluated following
a more conventional user-centered approach (Abras et al. 2004) by
analysing feedback collected from respondents of an online survey,
similar to the approach taken to evaluate the Gibber live coding envi-
ronment (Roberts et al. 2014). This evaluation is presented in Section
4.

Related Work

Figure 3: Mainstage of the Taniwha’s Den 2019 music festival. The
rendered visuals are projected across multiple screens around the DJ
booth using multiple projectors. The VJ booth is situated behind
where this photograph was taken.

There are a number of software applications that support fea-
tures that coincide with Visor or the broader ClJing practice. Sonic
Pi (Aaron 2016) is a Ruby based live coding environment for creat-
ing music that focuses on simplicity to excel in computing education.
Mother (Bergstrom and Lotto 2008) is an extension to Processing
that enables VJing performances where multiple sketches can be lay-
ered together to instruct the final visual output. Auraglyph (Salazar
2017) is a live coding environment that supports visual programming
of music using a touch screen interface, offering gestural manipula-
tion akin to using a MIDI controller. Praxis LIVE (Smith 2016) is an
audiovisual live coding environment and IDE that supports creative
coding with Processing and offers GUIs that work hand in hand with
coded content. Siren (Toka et al. 2018) is a hybrid system for the

Visor File ~ View ~ Sketch ~ Settings / Sketch Server

. Layers
DPEET circles sphere :
Opacity
17 r = RADIUS + fft_range(0, 4) * 100

r r ke3 * 2 SUBTRACT 4

with_translate @pos.x, @pos.y sphere
noStroke
fill (frameCount * 1.5) % 100, 100, 100, 100 * s2 circles
ellipse 0, @, r, r

NE S ©

Default

No U B W

Circle.layer = self

NNNNNNNNNRN

© oo

regen
@circles = []
120.times
@circles Circle.new

www

ww w
QUPWNRS

User

: @circles

3

~N

@speed 10
set_range :@speed, -30, 30
: @speed
draw
fill @, 255 * ka2 0
noStroke
rect 0, 0, width, height

regen on_beat : @boxes

@circles.each Icirclel : @shape_size

circle.update
circle.draw

c Execute sphere : @fc 100785.815...

Tap Tempo Console

300

128 BPM

01234567 8 9101121314 15 16 17 18 19 20 21 22 23 24 25 26 27,28 29

Figure 2: Visor in action. The interface (left) is made up of multiple GUI elements including a live code editor (1), layer interface (2), state
management interface (3), console (4), FFT display (5), and tap tempo interface (6). The visual output corresponding to this state of the interface
is also shown (right).

composition of algorithmic music and live coding performances that
offers GUIs to interact with code. ResolumeE] is a widely used tool
for VJing that supports video mixing, a variety of effects, and allows
parameters to be animated to music in real-time using an FFT or tap
tempo.

Live Performances

Visor was used by the first author in 20 live performances to reflect
on the effectiveness of the environment as part of a practice-based
approach. The intent of the performances was to provide visuals
to accompany music performed by DJs, live coders, and other mu-
sicians, demonstrating Visor’s effectiveness in a live context. The
performances were conducted alongside a variety of collaborators at a
variety of different events including gigs, algoraves, livestreams, exhi-
bitions, research group meetings, private parties, and music festivals.
By using Visor in real performances, we explored and demonstrated
what it meant to perform with an environment that embodies CJing.
We now describe the typical performance setup, approach to using
Visor in live performances, and two notable issues concerning CJing
that were observed.

Performance Setup

The typical performance setup consisted of a number of hardware
and software components. A MacBook Pro laptop was used to run
the Visor software. A Novation Launch Control XL was used as a
MIDI controller, offering 8 sliders, 24 knobs, and 16 buttons. Where
available, a line-in from the sound desk was used as input to Visor’s
FFT, otherwise, the laptop microphone was used. Projectors were
usually provided by the venue and were either connected directly to
the laptop or routed through another computer running the Resol-

%https://resolume.com/

3https://tinyurl.com/visor-toplapi5/

ume VJ software. Resolume was used to projection map the rendered
output of Visor onto complex surfaces. An example of this is shown
in two performances that were conducted at the Taniwha’s Den 2019
music festival. In the first performance, the visuals were projected
onto multiple screens using multiple projectors, as shown in Figure
In the second performance, the visuals were projected onto a large
limestone cliff face, as shown in Figure This offered a novel live
coding and VJing experience.

Figure 4: Limestone cliff face that was used as a projection
surface during the Taniwha’s Den 2019 festival. Note the size
of the people standing at the base of the cliff.

Performance Approach

The conducted performances were generally approached in one of two
ways. The first approach was to live code from scratch and was most
similar to a traditional live coding performance, due to starting with

https://resolume.com/
https://tinyurl.com/visor-toplap15/

an empty screen. This approach was used in 10 of the performances
including the TOPLAP 15th Birthdayﬂ performance shown in Figure
This approach involved live coding the visual content throughout
the course of an entire performance. This included the live coding of
visual elements such as shapes, animations, and colours. Individual
layers of content were created progressively and introduced, manipu-
lated or removed at different times throughout the performance. Live
coding also established mappings between parameters and MIDI vari-
ables, followed by the performance of these parameters on the MIDI
controller. This approach showcased the performance aesthetic of the
CJing practice where live coding can be used as a method to improvise
visual instruments that are then performed using GUIs and hardware
controllers.

The second approach was to perform with prepared code. This
approach involved coding the visual content in preparation for the
performance and was most similar to a traditional VJ performance,
due to primarily making use of existing content. This approach was
used in 10 of the performances including the Taniwha’s Dcnﬁ perfor-
mance shown in Figure This approach involved organising visual
elements into layers where parameters of each layer were assigned to
groupings of controls on the MIDI controller. These performances
mostly focused on interaction with the MIDI controller as the content
and MIDI mappings had been defined in advance. Live coding also
occurred during these performances to improvise content or to ma-
nipulate the existing content, for example, to toggle predefined states
and attach or detach parameters from the FFT and tap tempo.

In addition to these two approaches, during two performances, a
collaborator was invited to perform alongside the author for a small
section of each performance. This collaborator focused solely on inter-
acting with the MIDI controller while the author focused on live cod-
ing and interacting with the GUI. Overall, these approaches demon-
strate respectively how Visor can be used for live coding and VJing
style performances. The crossover of these two approaches also high-

4https://tinyurl.com/visor-taniwhasden-2019/

lights Visor’s demonstration of the CJing practice where aspects of
both live coding and VJing can be used together in the same perfor-
mance.

Reflection

Using Visor in live performances helped to identify general usability
issues and aspects of the core features that could be improved. More
notably, two issues were identified concerning the broader CJing prac-
tice. The first issue relates to the idea of user interfaces as an abstrac-
tion and highlights the need for careful consideration when designing
the relationship between code and GUIs in CJing environments. This
issue was observed when interaction with layers using both the GUI
and the code would result in conflicting behaviour. For example, when
the code to set the blend mode was specified (i.e. set_blend_mode),
the blend mode set through the GUI could be unintentionally over-
ridden by the executing code. To avoid this behaviour, the live per-
formances almost exclusively used the GUI to set blend modes. This
issue highlights the importance of the relationship between code and
user interfaces in CJing environments: careful consideration should
be taken when designing a flexible CJing environment where both
live coding and VJing can be used to interact with specific features.
The second issue relates to the idea of complete control and was the
need to switch contexts between live coding and using the MIDI con-
troller. This issue was also observed in the user feedback presented in
Section 4. As both contexts required almost full attention, it seemed
impossible to live code and perform with the MIDI controller at the
same time. This was mostly observed in the early stages of the ”from
scratch” performances. In these performances, parameters of existing
content could not be tuned using the MIDI controller while the focus
was placed on live coding new content. The opposite holds true for
later in the performance when the focus was placed on the MIDI con-
troller and live coding was mostly used to make minor adjustments to

https://tinyurl.com/visor-taniwhasden-2019/

the existing content. This issue emphasises that CJs must not only
develop their skills in live coding and using the controller, but must
also learn to strike an effective balance when working across multi-
ple modalities. This highlights the importance of automated features
such as the FFT and tap tempo which continuously produce dynamic
visual effects without requiring the attention of the performer.

An approach to mitigating the friction caused by context switch-
ing in CJing was observed when a collaborator performed alongside
the first author during two performances. Utilising two performers
meant that one performer could focus on live coding while the other
focused on the MIDI controller, enabling content to be improvised
from scratch while the parameters of existing content were performed
at the same time.

Evaluation

An online feedback survey was constructed to evaluate the effective-
ness of Visor as part of the user-centered design process (Abras et
al. 2004). The survey solicited feedback from people with creative
coding, live coding, and VJing experience who had used Visor. The
Visor users who participated in the survey were asked to complete a
questionnaire that asked about their background, their usage of Vi-
sor, their outlook on Visor’s core features, how difficult they found
Visor to learn, the context in which they might use Visor, and what
they liked or disliked about Visor in general. These questions were
formatted as either Likert scales, multiple choice, or free form text
fields.

ID | Ruby | Proces-| Live VlJing | Visor Visor Con-

expe- sing cod- expe- Time text
rience | expe- ing rience
rience | expe-
rience
P1 | Little | Pro Little | Little 1-5 Performance
hours | (Live cod-
ing)
P2 | Little | Little | None None 1-5 Performance
hours | (VJing)
P3 | Little | Pro None Little 1-5 Creative

hours | coding

P4 | Little | Pro Pro Pro 5-10 Teaching
hours

P5 | Fair Fair Little Little 10+ Performance
hours | (VJing)

P6 | None Pro None None 1-5 Creative
hours | coding

P7 | None Fair None None 10+ Performance
hours | (VJing)

P8 | Pro Little | None None 1-5 Creative

hours | coding

P9 | Pro Little Little None 10+ Creat. cod.
hours & Perf.

P10| None Pro Little None 10+ Performance
hours | (Live cod-

ing)

P11| None Fair None None 1-5 Teaching
hours

Table 1.1: Feedback survey participants background, estimated time
spent using Visor, and the context in which they might use Visor.

@ Visor Edit View Window Help

Default Model
ev 0.0
set_range :@
state_to_midi

draw
background_transparent 0, (150 - 150 * ka3)

er ey

rectMode CORNER

noStroke

fill 255, 255 255 s3

rect 0, 0, width, height

rectMode CENTER

noFill

stroke 255

strokeWeight 20

translate width * 0.5, height * 0.5

sa = 800 * inv_beat_progress
sa = 300 + sin(@r * 0.2) * 300

rot = radians(frameCount) * 0.5

3.times il
a=1/2.0

s=sa*a
with_matrix

rotate rot
rect 9, 0, s, s

CIOVIEY | Execute ‘draw

Tap Tempo

@jackvpurvis - Visor

s £

Grow

PET

Model

:@p

: @v [kb2)

: @v [kb3]

0.228

Model : @model

npnAEBA N

Sketch

=

100% B3

Sun 8:19 PM

@mattmckegg - DESTROY WITH SCIENCE

Figure 5: Screenshot from the livestream of the TOPLAP 15th Birthday performance. The Visor GUI (left) is displayed alongside the rendered
visuals (top-right) and a camera recording of the physical performance by the first author and a musical collaborator, DESTROY WITH SCIENCE
(bottom-right).

Participants

In total, 11 participants completed the feedback survey since it was
launched in January of 2019. Participants were recruited through re-
cruitment messages placed on the Visor website and within the soft-
ware itself. Visor was advocated through various online forums, chat
channels, and social media groups relating to live coding, creative
coding, Processing, and VJing. The environment was also advocated
through the author’s existing networks of live coders, creative coders,
and VJs. Visor itself has been downloaded more than 900 times since
January 2019.

Participants were asked to provide background information with
respect to their experience with general programming, Ruby, Process-
ing, live coding, and VJing. To answer these questions, participants
could choose from the following options: no experience, a little expe-
rience, a fair amount of experience, or professional experience. The
results are shown in Table All of the participants reported having
more than three years of programming experience except for P7, who
had 1 to 2 years of experience.

Results

The results are grouped based on Visor’s usage, learning difficulty,
core features, and ease of use. The results about Visor’s usage and
learning difficulty were reported based on a combination of multiple
choice questions and comments received in free form questions. The
remainder of the results were reported based on direct quotes from
free form questions. These questions asked participants how effective
they found each of Visor’s core features and why, as well as what fea-
tures of Visor they enjoyed most or least. Usage: The participants
were asked to report how much time they had spent using Visor and
the context in which they might use Visor. The responses to these
questions are also presented in Table All of the participants re-
ported using Visor for at least one hour while five had used it for five
hours or more. P1 and P10 reported that they would use Visor for live

coding new material in performance; P2, P5, and P7 reported that
they would use Visor to VJ with pre-prepared material; P3, P6, and
P8 reported that they would use Visor for creative coding; P4 and
P11 reported that they would use Visor in teaching; and P9 reported
that they would use Visor for creative coding and in both perfor-
mance contexts. This variety of responses that were received for this
question indicates the potential versatility for Visor to be used by dif-
ferent audiences including creative coders, live coders, and VJs. Two
of the participants also made additional comments on their current
or intended usage of Visor:

"I see a lot of potential is this program, I'm trying to learn
everything as soon as possible, and have people interested
already [sic] in applying it in real clubs. I haven’t had this
much fun with a program in a while.” (P7)

"T've used visor for two creative coding projects. In one
of them, I used visor + a genetic algorithm gem that I've
published to ”evolve” visualizations ... The project got
a great response and I don’t think I would have been able
to pull it off so smoothly without Visor.” (P9)

Learning difficulty: The participants were asked to report how dif-
ficult they found Visor to learn. Seven of the participants disagreed
or strongly disagreed that it was difficult (P1, P2, P4, P5, P7, P8,
P11); three of the participants were neutral (P3, P9, P10); and one of
the participants agreed that it was difficult (P5). Some of the partic-
ipants commented on the effectiveness of the documentation. Three
stated that it was useful for helping them get started (P4, P6, P9).
It was suggested by another participant that the learning difficulty
depended on the user’s creative coding experience:

”For someone with creative coding experience, I picked it
up easily. For an absolute newbie coder, I'd put it on a
par with something like Processing.” (P3)

Live coding: Most of the participants reported enjoying the live
coding experience in Visor. Reasons for this included its similarity to
Processing (P1, P2), utilisation of Ruby (P4, P5, P9), and the fast
iteration time that was provided (P1, P6). Some of the participants
also reported issues with the live coding experience in Visor. One par-
ticipant struggled to improvise quickly, but put it down to their lack
of experience with the IDE (P4), another stated that it was tedious to
have to execute different code tabs individually (P5), and one other
mentioned that they would be more productive if they could use their
own editor (P8).

State management: The state management interface was reported
to be effective for a number of reasons. These reasons included the
ability to set ranges on values (P2), slider interactions (P5, P11),
visual confirmation for debugging (P3, P5, P6), and being able to
change variable values without inspecting the code (P2, P7, P9). One
participant also discussed specifically how the feature provided high
level control of a coded sketch:

"It was also useful for compartmentalizing the sketch into
different key pieces I can control once they were setup.”
(P6)

Two of the participants also brought up a usability issue with
the state management interface, reporting that it became cluttered
as their programs got larger and there were no options for organisa-
tion (P1, P2). One participant with extensive live coding experience
did not use the feature due to how it required them to take their
hands off the keyboard and reach for the mouse (P4), something they
were not accustomed to doing when live coding. This insight empha-
sises the issue of context switching that was also identified in the live
performances described in Section 3. The participant went on to dis-
cuss how they would have used the state management interface, MIDI
controller, and tap tempo more if they were conducting pre-composed
performances.

Layers: Visor’s ability to organise code into layers proved to be
one of the most popular features amongst all of the participants. Rea-

sons for the feature’s popularity included how they enabled switching
between scenes (P2, P7), combining sketches (P1, P2), organising
content (P4), provided a way to develop or test a piece of code in
isolation (P4, P9), provided more visual variety from less code (P8),
and were fun to experiment with (P3, P6).

Supporting comments from two of the participants were:

”Very useful. Especially if you're used to Photoshop, the
metaphor for composing layers like that makes a lot of
intuitive sense.” (P1)

”Blending modes especially were fun to experiment with
since it was easy to make many variations with just a
few sketches and it was also great to have a completely
new sketch to branch into once the starting sketch got too
complicated.” (P6)

Usability issues with layers were also identified by some of the
participants. For example, P4 raised a concern about the lack of a
keyboard shortcut to easily switch between code tabs. FFT: A num-
ber of participants claimed that they found the FF'T effective in Visor.
Reasons for this included its ease of use (P1, P3, P5, P6), visualisation
of the frequency spectrum (P2, P8), enabling audio reactive visuals
(P7, P9), or that it was something they were accustomed to (P4).
Two participants requested a need for more control over the FFT in-
cluding the smoothing (P2), volume level (P5), and adding support
for multiple channels (P5). One participant couldn’t configure an
audio input (P10).

Tap tempo: The tap tempo was reported by participants to be
effective for a number of reasons including its visual design (P2), ease
of use (P3), ability to sync visuals with a tempo (P3, P5, P6, P9), and
it’s availability in situations where neither MIDI or an audio input are
available (P8). One participant’s experience with the feature was:

"Tap tempo and the ’beat’ features was [sic] useful to
quickly get something visually interesting that was synced

to the music. As someone with limited musical experience,
being able to tap to set the tempo was much more intuitive
than typing a number.” (P6)

One participant was unsure about the tap tempo and suggested
adding options to manually tune the BPM and offset without the need
to tap (P1). One participant also reported that they did not use the
feature because they didn’t initially recognise its use in the visual arts
(P4).

MIDI: Visor’s support for MIDI was a feature that could not be
evaluated effectively as part of the feedback survey. Only one partic-
ipant managed to use a controller successfully (P4). Another partic-
ipant tried to use a MIDI controller but could not use it effectively
due to an issue with Visor or the controller (P2). The remaining 9
participants did not use the MIDI feature. This is likely due to a
lack of access to a controller, highlighting a disadvantage of this type
of remote study. A better approach to testing Visor’s MIDI support
would be to conduct an in-person user study where a controller is
provided for the participants to use.

Ease of use: One prominent theme in the results was the ease of
use of some of Visor’s features. For example, the audio input for the
FFT was reported to be easily configured through the GUI, and the
built-in methods to access the data were straightforward to use. In
general, this aspect can be summed up from the following comments:

"It was very quick to launch Visor and just start making
something interesting and dynamic, and not have to worry
about setting up different libraries.” (P6)

T liked that [sic] many options for getting dynamic input
(FFT, tap tempo, setting up buttons and sliders) and that
it was straightforward to access them within the sketch.
I found these features to be better to explore/control the
sketch’s style than typing up variables.” (P6)

The last comment also touches on the participant’s enjoyment of
the high level functionality that Visor’s features provided. This reit-

erates one of the motivations for CJing in that the high level control
provided by features of VJing software can improve the usability of
live coding.

Conclusions

Visor is a new environment for live visual performance that was devel-
oped to demonstrate CJing, a new hybrid performance practice that
combines aspects of live coding and VJing, drawing on the strengths
of both practices while simultaneously removing limitations identified
in each practice. To determine the effectiveness of Visor and whether
ClJing can effectively combine live coding and VJing, we have reflected
on Visor’s use in live performances, as well as conducted an evaluation
of feedback gathered from creative coders, live coders, and VJs who
experimented with the environment.

The use of Visor in performances has demonstrated Visor’s ability
to effectively produce visuals in a live context, at least in combina-
tion with the first author’s own performance skills. Two approaches
to performance were described: live coding content from scratch, and
performing with prepared content. These approaches demonstrate
how Visor can be used effectively for conducting aspects of live cod-
ing, VJing, and both together in the same performance, demonstrat-
ing CJing. The feedback gathered from Visor users suggests that each
of Visor’s core features were effective for their intended purpose ex-
cept for the support for MIDI, which could not be evaluated to the
extent of the other features. A number of usability issues and sug-
gested improvements were also identified. Overall, the feedback was
highly supportive of Visor and participants generally enjoyed using
the environment. The evaluation of Visor has demonstrated Visor’s
effective support for aspects of both live coding and VJing, improv-
ing the usability of live coding through high level user interfaces and
providing fine-grained control of content while VJing. This showcases
Visor’s demonstration of CJing, and in turn, how ClJing can be used
to effectively combine live coding and VJing.

Two prominent issues with CJing were also identified that need to

be considered in future work. The first was the need for careful design
of the relationship between code and user interfaces when designing
CJing environments. The second was the issue of context switching
that highlighted the need for performers to split their focus between
live coding, interacting with GUIs, and using hardware controllers.
A number of opportunities for future work have also been iden-
tified. These include further development of the Visor software to
improve usability and to offer more features to enhance the environ-
ment’s performance capabilities. Ideally, we would then conduct a
more comprehensive evaluation of the environment through a con-
trolled user study. We also hope to explore how collaboration with
live coders, DJs, VJs, and CJs can play a role in CJing practice. In
addition, we hope to explore how ClJing can be applied in other live
coding environments and in particular, within the context of music.

Acknowledgements

To Victoria University of Wellington for the Victoria Masters by The-
sis Scholarship. To the Faculty of Science for the Faculty Strategic
Research Grant. To the participants who completed the feedback sur-
vey. To those who collaborated with or provided the first author with
the opportunity to perform on various occasions.

References

Aaron, S. Sonic Pi performance in education, technology and art.
(2016). In: International Journal of Performance Arts and Digital
Media 12, 2, 171-178.

Abras, C., Maloney-krichmar, D., and Preece, J. User-centered de-
sign. (2004). In: Bainbridge, W. Encyclopedia of Human-Computer
Interaction. Thousand Oaks: Sage Publications 37, 4, 445-456.

Bergstrom, 1., and Lotto, B. (2008). Mother: Making the perfor-
mance of real-time computer graphics accessible to non-programmers.

In: re) Actor3: The Third International Conference on Digital Live
Art Proceedings. pp. 11-12.

Blackwell, A. F. (2014). Palimpsest. In: J. Vis. Lang. Comput.
25, 5, 545— 571.

Blackwell, A. F, and Aaron, S. (2015). Craft practices of Live
Coding Language Design. In: Proceedings of the First International
Conference on Live Coding.

Collins, N., Mclean, A., Rohrhuber, J., and Ward, A. (2003). Live
coding in laptop performance. In: Organised sound 8, 3, 321-330.

Faulkner, M., and D-fuse. (2006). VJ: Audio-Visual Art and VJ
Culture: Includes DVD. Laurence King Publishing.

Gaver, W. (2012). What should we expect from research through
design? In: Proceedings of the SIGCHI conference on human factors
in computing systems, ACM. pp. 937-946.

Purvis, J., Anslow, C., and Noble, J. (2019). ClJing Practice:
Combining Live Coding and VJing. In: Proceedings of the Interna-
tional Conference on Live Coding (ICLC).

Reas, C., and Fry, B. (2006). Processing: programming for the
media arts. In: AI & SOCIETY 20, 4, 526-538.

Roberts, C., Wright, M., Kuchera-morin, J., and Hollerer, T.
(2014). Gibber: Abstractions for creative multimedia programming.
In: Proceedings of the International Conference on Multimedia, ACM.
pp. 67-76.

Salazar, S. (2017). Searching for Gesture and Embodiment in
Live Coding. In: Proceedings of the International Conference on Live
Coding (ICLC).

Smith, N. C. (2016). Praxis LIVE - hybrid visual IDE for (live)
creative coding. In: Proceedings of the International Conference on
Live Coding (ICLC).

Tanimoto, S. L. (2013). A Perspective on the Evolution of Live
Programming. In: Proceedings of the International Workshop on Live

Programming. pp. 31-34.

Toka, M., Ince, C., and Baytas, M. A. (2018). Siren: Interface for
pattern languages. In: Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). pp. 381-386.

	Visor in Practice: Live Performance and Evaluation

