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Abstract

In recent years, image classification has received substantial attention from
researchers all over the world but remains a challenging problem. It is a widely
used task in artificial intelligence for many applications such as social media
platforms, automobile industry and medical diagnosis. Genetic Programming
(GP) has been applied to this area with promising results. High-level features
extracted using methods such as Local Binary Patterns (LBP) and Histogram of
Orientated Gradients (HoG) are commonly used for image classification. This
project aims to investigate novel approaches to using GP with uniform LBP
and an improved variant of LBP, known as Local Quinary Pattern (LQP) to ex-
tract/construct high-level features to effectively perform image classification re-
spectively. Some high-performing GP individuals are analysed to interpret how
GP can be effectively be used with high-level features.
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Chapter 1

Introduction

Computer vision is a field of study that aims to develop robust computational models that
has a similar or better capability than humans to interpret and extract information from
images or videos [10]. Image classification is an important task in computer vision with a
wide range of applications such as battlefield analyses in the military, robot navigation in
robotics and breast density classification in medical diagnoses [45].

Image classification refers to the ability of a computer to identify several variables such
as people, objects or buildings by analysing an image. While humans can identify images
with relative ease, it is far too labour-intensive to analyse a large number of images man-
ually. Image classification remains a difficult problem in computer science and machine
learning due to the large variations in images.

1.1 Motivations

The objective of this project is to develop new techniques in a novel way with existing tech-
niques for image classification. It aims to investigate the use of genetic programming (GP)
to perform feature extraction and construction to create advanced high-level features for
classifying images.

Feature extraction is a major step in image classification. It derives values intended to
be informative and non-redundant in order to facilitate subsequent learning. It is a special
form of dimensionality reduction to obtain the most relevant information from a raw image
and represent that information in a lower dimensional space. The primary goal of feature
extraction is to extract a set of features to maximize the recognition rate of a learning sys-
tem. A number of widely used feature extraction methods are Local Binary Patterns (LBP)
[31], Histogram of Orientated Gradients (HOG) [14] and Grey-Level Co-occurence Matrix
(GLCM) [23].

Evolutionary computation is a general problem solving technique based on simulated
evolution. It typically creates a population of individuals and evolve these individuals to
create a new population. This technique is able to search for the best solution from a set of
solutions through a number of generations without any human intervention. GP is one of
the most commonly used evolutionary computation technique on image analysis [57]. In
literature, GP has shown high performance for optimizing and classifying related problems
[33] [9] [3].

Since it was introduced in the 1990s, GP has been applied in various fields of image
analysis tasks such as edge detection [22], object tracking [47], segmentation [44] and classi-
fication [9]. Combining GP with feature extraction methods has the potential to effectively
perform extract high-level features for image classification. However, existing works on
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using image-related operators/descriptors in GP for feature extraction and image classifica-
tions are limited.

LBP is a simple gray-scale descriptor that has been combined with GP for image classi-
fication in [9] and [46]. LBP, when combined with GP, was able to achieve a high accuracy
compared to other state-of-art image classification methods. LBP have inspired many vari-
ants which are widely considered the state-of-art among texture descriptors such as local
ternary pattern (LTP) [59] and local quinary pattern (LQP) [37]. The results of LQP in [37]
has shown high performance, thus it is able to find a reliable set of features. Employing
LQP and LBP in GP has the potential to allow it to evolve high-level image features from
raw images.

While GP, LBP and LQP have been used extensively for various image classification
tasks, literature combining LBP or LQP as feature extractors with GP is limited. Using LBP
and LQP by itself to extract features across a whole image can be limited, when only parts of
an image may produce meaningful features. Combining GP with these effective descriptors
has the potential to boost image classification performance.

Furthermore, most of the existing methods involve the use of image operators using
predetermined parameters. These image operators are not tuned with a range of parameter
values to adapt its operation to work with a wide range of problems. As a consequence, the
image operators may end up using parameters that are unsuitable for the problem. How-
ever, manually tuning of the parameters requires a significant amount of time and requires
expert knowledge, which is not always available. Therefore, employing GP in order to
evolve the parameters used in these image operators can aid in choosing parameters that
are more suited for different data sets.

1.2 Goals

In this project, the goal is to develop new GP-based methods that incorporate LBP and LQP
operators to improve upon the accuracy of binary image classification. Binary classification
was chosen as a starting task of the project in order to evaluate the effectiveness of the
proposed methods. The solution could be extended in future to deal with multi-class image
classification. The specific objectives for the project include:

1. Developing new GP methods with a new program structure, a new function set and
a new terminal set to identify regions of interest, extract useful features, construct
powerful high-level features, and classify the images. Two potential methods will be
developed which extract features using LQP and LBP in the first and second method
respectively.

2. Investigating whether the proposed methods can outperform the GP and non-GP
methods on a range of datasets of varying difficulties.

3. Visualizing and interpreting the features that have been automatically extracted and
constructed by the new GP methods.

1.3 Major Contributions

This project contains a number of major contributions:

• This work shows that using texture descriptors such as LQP and LBP operators to
extract and construct high-level features for image classification shows promising re-
sults. This proves that textural information are effective features for many image clas-
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sification problems, including non-texture datasets. The method using uniform LBP
was able to achieve comparable average testing accuracy to general and GP based
classification methods. While the method did not always outperform all GP methods,
they achieved faster training time than the best performing GP classifier.

• This work shows that GP programs are intelligible and interpretable, which is an im-
portant goal in data mining. This was achieved by visualising the evolved programs
as tree structures, and representing the nodes of the trees as the intermediary steps of
the algorithm. This is an advantage over general classifiers such as Random Forest or
AdaBoost where it is difficult and sometimes impossible to visualise each step of the
algorithm due to its extreme complexity.

• This work shows how GP can be used for simultaneously selecting regions on inter-
ests, extracting good features and performing classification by using a single evolved
program that combines local binary pattern features and low-level features. The auto-
matically evolved programs were able to achieve comparable average testing accuracy
to general and GP based classification methods.

1.4 Report Organisation

Chapter 2 presents an overview of machine learning, evolutionary computation and image
classification, background to the work, including a general overview of feature extraction
operations (LBP and LQP) and related works. Chapter 3 presents the proposed LQP-GP
method, results and analysis of the new GP approach using LQP as well as datasets and
baseline methods used in this work. Chapter 4 presents the proposed uLBP-GP method.
Chapter 5 concludes the report and discusses future work.
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Chapter 2

Background and Related Work

An overview of machine learning, evolutionary computation and genetic programming that
form the basis of this work are discussed. Related works in image classification are also
discussed, and the limitations of existing works are summarised to form the motivations of
this project.

2.1 Machine Learning

Machine learning [7] is a field in Artifical Intelligence (AI) that solves a problem by learning
from past experiences or input data, in order to make predictions on unseen data. Machine
learning often uses algorithms that involve building and refining a model by optimizing the
corresponding parameters using the input data.

Machine learning techniques can be categorised in one of the three following categories,
supervised learning, unsupervised learning and reinforcement learning.

2.1.1 Supervised Learning

Supervised learning trains a program on a pre-defined set of labelled training examples and
the expected output of the training example is known. For example, using a Decision Tree
or Support Vector Machine classifier to classify whether a patient has cancer or not, given a
dataset containing information on the patient’s health.

Supervised learning algorithms such as Random Forest [10] and AdaBoost [27] have
been employed to perform image classification tasks with good results. Both Random Forest
and AdaBoost are ensemble learning techniques. Random Forest is a classifier that consists
of a number of trees, in which each tree is grown using randomization [10]. Each individual
tree in the random forest determines the class label and the class label with the highest
number of votes becomes the model’s final prediction. AdaBoost works in a similar manner
by classifying datasets using a weighted sum of all base classifiers which represents the
model’s final prediction. [27].

Common stopping criteria are reaching a predefined accuracy reached on the training
set, training all instances trained or elapsing a certain amount of computational time. The
trained model is then applied to the unseen instances in the test set. The accuracy of the
model on the test set determines the predictive ability of the model on future data, and
hence gives a evaluation of its performance and effectiveness.

However, a common problem in supervised learning is overfitting, a situation where a
model corresponds too closely or exactly to the training set, resulting in poor performance
on the test set. One way to combat this issue is to introduce a validation set. After each
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iteration of the training process, the performance of the model is evaluated on the validation
set. When the performance starts to deteriorate, it indicates that the model is over-fitting
and training should be stopped. Therefore, using a validation set allows test accuracy to be
improved by preventing the model to be overly specific on the training set.

2.1.2 Unsupervised learning

Unsupervised learning trains a program on a set of unlabelled training examples and the
expected output is unknown. Unsupervised learning [7] finds regularities or natural par-
titions on the training set in order to group the data. For example, K-means clustering is
an unsupervised learning approach that is commonly used for document clustering, which
involves grouping a set of documents into groups based on their content similarities.

Unsupervised learning is able determine unknown patterns in the training set, which is
highly useful in the business field in order to explore new ventures or understand financial
drivers of businesses based on current trends.

2.1.3 Reinforcement learning

Reinforcement learning operates by maximizing a reward in a particular solution. It ap-
proaches a problem by learning the behavior through trial-and-error interactions in a dy-
namic environment [26]. By maximizing a numerical reward signal, it allows the learning
system to learn which actions yield the most reward by trying them out. An example is
solving different games at super-human performance such Tic-Tac-Toe where the reward is
how close the agent is to creating a horizontal, vertical or diagonal connection. [48]

There are two main strategies for solving reinforcement learning problems - search in
the space of behaviors to find the behavior with the best performance in the environment
and use statistical techniques and dynamic programming methods to estimate the utility of
taking actions in states of the world. The first strategy has been taken by work in genetic
algorithms and genetic programming [25].

Reinforcement learning differs from supervised learning in several ways. The most cru-
cial difference is that there are no representations of input and class labels. After an action
is chosen, the agent is told the immediate rewards and the subsequent state, instead of the
action that would have benefited the agent the most.

2.2 Evolutionary Computation

Evolutionary computation (EC) is a field in AI that involves the study of algorithms inspired
by biological evolutionary principles. EC is often applied to problems with large search
space. The common underlying idea behind all EC techniques operate iteratively to refine
candidate solutions to a problem in each step in order to find the optimal solution. An
objective function is used as an abstract fitness measure.

EC techniques typically includes Evolutionary Algorithms [19], Swarm Intelligence [28]
and other algorithms. Evolutionary Algorithms (EA) are based on Darwinian principles of
natural selection [18] such as reproduction, mutation and crossover.

The fittest candidates are chosen based on the result computed by the fitness function,
to seed the next generation by applying genetic operators such as mutation, crossover and
reproduction. The process repeats until a given criterion is reached (e.g. a specific number
of iterations have been executed or a good solution has been found). The general scheme of
EA can be given as follows [18]:
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Initialize population with random individuals (candidate solutions)

Evaluate the fitness all individuals using a suitable objective function

while stopping criterion is not reached DO

Select parent from parent population

Create offspring using genetic operators on parent

Evaluate the fitness of the offspring

Replace less fit parents by some offsprings

END

Common EC techniques are Particle Swarm Optimisation (PSO) [17] and Genetic Algo-
rithms (GA) [24]. PSO is a swarm intelligence technique that replicates the behaviour of
swarming animals, such as birds, by using a number of particles which are moved around
the search space. Each particle is a candidate solution and the solution is encoded within
the particle. The position of the particle changes after each iteration based on its best known
position and the swarm’s best known position. On the other hand, GA is an EA algorithm
that have similar encoding methods as PSO, but uses the biological evolutionary principles
discussed above to iteratively refined their pool of candidate solutions.

2.2.1 Genetic Programming

Genetic programming (GP) uses Darwinian natural selection to evolve computer programs
to perform a given task. GP is a subarea of EA that will be the focus of this project due
to its flexible representation and interpretability of the solution/model. GP typically have
individuals represented as a tree based structure, commonly referred to as programs. The
resulting programs are often hierarchical. For example, a mathematical function 2 - (x * 8)
can be represented as a tree structure as shown in Figure 2.1.

Figure 2.1: Mathematical function of 2− (x ∗ 8) represented as a tree structure.

Before applying GP to a problem, there are five preparatory steps to carry out [30]. They
involve determining the terminal set, the function set, an objective function for the purpose
of fitness measure, the parameters for controlling and the criterion for terminating a run.
The terminals in the terminal set are usually inputs to the program and the functions in
the function set should be able to accept one or more values as its arguments that may be
returned by any function in the function set or assumed by any terminals in the terminal set.
A major consideration is that the function set and the terminal set must satisfy both closure
(any function can accept the output of any other function or terminal) and sufficiency (a
combination of functions and terminals can solve the problem) property [30].
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Another major step of GP is designing an appropriate objective function for fitness mea-
sure. Each individual is evaluated using the fitness measure to determine its performance
in the problem environment. Often, the fitness is measured by the discrepancy between the
results produced by the individuals and the desired results. For example, a fitness measure
for a suitable classification problem would be the percentage of instances correctly classified,
where 100 is the most ideal and 0 is the worst.

The primary parameters for controlling a run of genetic programming includes the pop-
ulation size and the number of generations. The termination criterion frequently used is the
maximum number of generations reached.

Strongly Typed Genetic Programming

Strongly typed genetic programming (STGP) was proposed by Montana [36] places restric-
tions on how functions and terminals may be combined. STGP differs from standard GP in
which the data type constraints are enforced for each argument of the function. This allows
STGP to handle a combination of data types to generate more high-level programs as more
complex functions can be used. For instance, in an image classification problem, a function
may take one child of type image and output a processed image.

2.3 Computer Vision

Computer vision is a field that works to automate computers to see, identify and process
images the same way the human brain does. However, enabling computers to differentiate
between images of different objects is a difficult task, as images are simply represented as
pixels.

Computer vision consists of many tasks such as image classification, object recognition
and object detection [49]. Image classification aims to assign a label to the image as a whole,
object recognition aims to determine all of the objects within an image and object detection
is similar to object recognition with the difference that it also finds the position of the objects
within the image. [13].

This project focuses on image classification due to its wide use in various real-world
applications.

2.3.1 Image Classification

Image classification [35] is a task in Computer Vision which involves assigning an image
with a class label based on the content in the image. For instance, determining if a given
image contains a face or not, which is an example of binary classification. Another type
of image classification is called multi-class image classification, which differs from binary
classification in which the problem have at least three or more classes to be labelled from.
For instance, determining if a set of fruit image is a ”strawberry”, ”tomato” or ”orange”
based on what fruit was in the image.

While humans are able to identify images with ease, it can be challenging for computer
programs to achieve similar performance due to several factors such as differences in con-
trast, brightness and presence of noises across images A common approach to address these
issues is to perform feature extraction.
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2.3.2 Feature Extraction

Feature extraction is a procedure which derives features that are intended to be informative
and improve the view representation of the image in order to facilitate the subsequent learn-
ing. It works by reducing the number of data required to describe a large set of data. The
output from feature extraction is then used as inputs for classifiers.

Two feature extraction techniques are primarily used in this project, Local Binary Pattern
and Local Quinary Pattern.

Local Binary Pattern

LBP is a textural image descriptor proposed by Ojala et al. [41] that can define the local spa-
tial structure and the local contrast of the image. LBP compares a pixel with its surrounding
neighbors in an image by thresholding the neighbor into a binary pattern. First, a set of
neighboring pixels are considered for each pixel in the image. The intensity of the central
pixel is then compared with the intensity of the neighboring pixels. If the intensity of the
neighboring pixel is larger than the central pixel, then the value for that neighbor in the cor-
responding extracted binary pattern is 1, otherwise it is 0. Finally, a binary weighted sum of
the values is obtained, resulting in the LBP value. The equations to calculate the LBP value
is shown below.

LBPP,R =
P−1

∑
p=0

f (vp − vc)2p (2.1)

f (x) =

{
1, if vp − vc > 0
0, otherwise

(2.2)

where P denotes the number of neighbors of the central pixel c, vc denotes the intensity of
the central pixel and vp denotes the intensity of the pth neighbor. The f (x) function is used
to calculate the binary values and is calculated according to Equation (2.2). A more detailed
example of calculating LBP value is shown in the figure below.

Figure 2.2: Illustration of the main LBP steps.

Fig. 2.2(a) displays a sample of a square neighborhood in the size of 3 by 3. The number
of neighbors for this neighborhood is 8. The intensity of the neighbor pixel are thresholded
by the intensity of the central pixel according to Equation (2.2) to extract the binary pattern in
Fig. 2.2(b). The binary pattern is multiplied by the weights given to the corresponding pixels
Fig. 2.2(c) resulting in the values shown in Fig. 2.2(d). Finally, the values of the 8 pixels are
summed to obtain the LBP value. The LBP value for the given example is 128+ 8+ 16 = 152.
After the LBP values are calculated for all pixels of the image, the histogram of all the LBP
values is computed. The bins of histogram are used as features.
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Later on, the LBP descriptor was extended to consider circular neighborhoods, called
circular LBP. Circular LBP uses circular neighborhoods which allow any radius and number
of pixels in the neighbourhood by interpolating the pixel values using bilinear interpolation
[1]. When using circular LBP, Equation 2.1 still remains. If the coordinates of vc is (0, 0), then
coordinates of vp are (Rcos(2πp/P), Rsin(2πp/P) where R denotes the value of the radius,
p denotes the pth neighbor and P denotes the total number of neighbors being considered. In
this project, the circular LBP is used. Fig. 2.3 shows an example of a circular neighbourhood
with 8 sampling points on a circle of radius 2.

Figure 2.3: A circular neighborhood with 8 sampling points on a circle of radius 2. The pixel
values are bilinearly interpolated whenever the sampling point is not in the center of a pixel.

A useful extension to the original operator known as the uniform LBP, which can be used
to reduce the length of the feature vector [52]. Instead of using all values of the pixel, only
59 LBP values are considered. Using uniform patterns, the length of the feature vector for a
single cell reduces from 256 to 59. The 58 uniform binary patterns correspond to the integer
values 0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124,
126, 127, 128, 129, 131, 135, 143, 159, 191, 192, 193, 195, 199, 207, 223, 224, 225, 227, 231, 239,
240, 241, 243, 247, 248, 249, 251, 252, 253, 254 and 255. The 59th bin contains all non-uniform
patterns. Using uniform LBP greatly reduces the size of the feature vector when it comes to
higher number of sampling points.

Local Quinary Patterns

LQP, which is also known as elongated quinary patterns, has been widely used in many ap-
plications such as mammogram analysis [5], facial expression recognition [54] and biomedi-
cal indexing [15]. It is known to be more robust with noise and large illumination variations
[51].

LQP is based on a five level scale for encoding the local gray-scale difference proposed
by Loris Nanni et al.[37], who suggested to use a five-value encoding in order to obtain a
more robust descriptor. As opposed to the standard LBP which uses the difference between
the intensity of the central pixel and that of the neighboring pixels to create a binary pattern,
LQP uses the difference between the intensity of the central pixel vc and that of the neigh-
boring pixels vp, and two fixed thresholds (t1 and t2) to create four binary patterns. The LQP
variant assumes five values shown in Equation (2.3) instead of two values in standard LBP
shown in Equation (2.2). The equations to calculate the LQP value is shown below.

f (vc, vp, t1, t2) =



2, vp ≥ vc + t2

1, vc + t1 ≤ vp < vc + t2

0, vc − t1 ≤ vp < vc + t1

−1, vc − t2 ≤ vp < vc − t1

−2, otherwise

(2.3)
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The quinary pattern is split into four binary patterns according to the following binary
function.

bc(x) =

{
1, x = c
0, otherwise

, c ∈ {2, 1, 0,−1,−2} (2.4)

Using Equation (2.4), the four binary patterns are respectively obtained considering c =
2, c = 1, c = −1 and c = −2.

Figure 2.4: Quinary pattern

(a) (b) (c) (d)

Figure 2.5: Binary pattern for (a) c = 2, (b) c = 1, (c) c = −1, (d)c = −2

Fig. 2.4 displays a quinary pattern extracted from a square neighborhood in the size
of 3 × 3 according to Equation (2.3) using two predefined thresholds (t1 and t2) and the
intensity of the neighboring pixels and central pixel. The quinary pattern is then divided
into four binary patterns shown in Fig. 2.5 using Equation (2.4). Finally, the binary patterns
is multiplied by the weights given to the corresponding pixels as shown in Fig. 2.2(c), similar
to the LBP operator, and finally summed in order to obtain four LQP values. For example,
the LQP value for Fig. 2.5(a) will be 8.

After the four LQP values are obtained for all pixels of the image, four histograms are
computed based on the four LQP values. The histograms are concatenated and the resulting
histogram is then used as features for image classification.

2.4 Related Work

2.4.1 Image Classification using Canonical Machine Learning Methods

Many popular supervised machine learning techniques such as Random Forest and Support
Vector Machines have been used in many image classification tasks with promising results.
The process often involves manually choosing, extracting and processing features before
feeding them into the classifier.
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In 1999, Chapelle et al. [11] proposed a method that chooses support vector machine
(SVM) as its classifier because of its high generalization performance, even with high di-
mensional input space. The inputs are color histograms in the hue-saturation-value space
extracted from images. The model produced a good classification performance with er-
ror rates as low as 11%. Szummer et al. [50] introduced a method that uses the k-nearest
neighbour method as the classifier using a range of different features as inputs. Each of the
features represents the image’s color, texture and frequency information. The best classi-
fication results were generally obtained by combining color features with texture features.
However, it was difficult to determine the suitable combination of features or the usage of
any single features with k-nearest neighbour to produce consistent results.

Bosch et al. [10] proposed a method that uses automatic selection of the regions of in-
terest in training, extract features that represents shape and appearance of the image and
use random forests to perform classification. The result showed comparable performance
over other image classification method using SVM. The use of automatic region detection
provided a significant benefit to the performance.

Nayak et al. [38] presented presents an automated system for brain magnetic resonance
(MR) image classification that combines both AdaBoost and Random Forests. The dimen-
sion of features were reduced from 1024 normalized features to 13 significant features using
probabilistic principal component analysis. The method yielded superior performance com-
pared to all the existing methods such as k-nearest neighbor, neural network and SVM.

2.4.2 Image Classification using Genetic programming

Over the years, GP has been used in various image classification problems such as pul-
monary nodule detection [12] and remote sensing classification [16]. Kobashigawa et al.
[29] showed that GP achieved better results compared to neural networks, even with the
increase in problem difficulty levels.

One approach of image classification is using GP to perform feature extraction due to its
ability to manipulate features without any domain knowledge. Experimental results have
shown that the performance was able to outperform a human-designed extraction system.
Shelton et al. [46] proposed a GP method to extract features using uniform LBP that evolves
the number, position and size of regions for feature extraction. The result showed that using
36% of the image for feature extraction gained a higher accuracy than of that of using a
standard LBP approach that covered the entire image.

Some earlier works involve using previously extracted image features to evolve a pro-
gram that mathematically combine them to classify the images. In 1999, Zhang and Ciesiel-
ski [61] proposed a GP method that used a domain independent image feature extraction
method (simplified as FeEx in this paper) and evolve a GP program based on these features
for object detection. The performance of this approach was able to outperform a neural
network-based method. Oechsle and Clark [39] proposed a GP method that evolves both a
feature extraction system and a classification system in two separate evolution. However,
these techniques often require domain specific knowledge and human intervention.

To address the limitation of requiring human intervention, GP-based techniques that
perform feature extraction and classification in a single program tree have been proposed
by several researchers. Atkins et al. [8] proposed a three-tier GP (3TGP) method to connect
the feature extraction and classification steps into one single program tree. This allows the
program to operate directly on raw pixels rather than pre-defined features. The three tiers
consist of image filtering tier, aggregation tier and classification tier. However, 3TGP has
some limitations in the image filtering tier which were addressed by Al-Sahaf et al. in [3].

Al-Sahaf et al. introduced a two-tier GP (2TGP) method which simplified the 3TGP
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method to only consist of two-tiers: aggregation tier and classification tier. The features
discovered have a higher predictive power than manually extracted features. The extension
of 2TGP proposed in [4] was also able to outperform 3TGP by extracting features from image
regions instead of the entire image.

Since 2TGP and 3TGP were only able to extract low level features, Lensen et al. [33]
developed another GP approach which extracted high-level features using functions based
on HOG (GP-HOG). HOG descriptor was used as it has a high ability to describe specific
image features including shape and appearance. The new function was able to produce
more advanced features and increase the classification performance.

Bi et al. [9] proposed a multi-layer GP method (MLGP) to also perform high-level feature
extraction and classification using 11 image-related operators. The operators helped to re-
duce noise, increase contrast or detect edges of an image. The result showed that MLGP was
not only able to achieve significantly better results than other GP methods, but also more
stable performance. MLGP dealt with complex image classification tasks such as texture
image or scene image classification with good results without any prior domain knowledge.

Al-Sahaf et al. [2] proposed a GP method that manually combine the detected keypoints
using an operator inspired by LBP that is also rotation-invariant. While the experiment
considers evolving the two parameters of radius and neighboring pixels, there are many LBP
variants that have outperformed the standard LBP approach. Experimental results in [37]
showed that the LQP operator has a high ability to classify textural images in comparison
with other LBP variants, there are some limitations in the existing LQP operator.

2.5 Summary of Limitations of Existing Work

The methods of image classification using canonical machine learning techniques typically
involve two processes - feature extraction and classification. This causes the performance
to be highly dependent on the feature extraction method and the classification method for
dealing with different image classification tasks. Many of these methods do not general-
ize well with other data sets as the most effective feature extraction methods varies with
different tasks.

Most of the existing methods of image classification using GP involve the use of im-
age operators using predetermined parameters. These image operators are not tuned with
various parameter values in order to adapt its operation to work with a wide range of prob-
lems. For example, MLGP uses the LBP operator with a fixed radius value for all tasks,
which may not be effective for certain classification tasks. GP-HoG also uses the HoG im-
age operator with a fixed number of bins. These existing image operators may not use the
appropriate choice parameters in the final program, which could potentially affect the per-
formance. Manually tuning the parameters require human intervention that in many cases
can be a very difficult task. Evolving the parameters used in these image operators can aid
in choosing parameters that are tailored towards different data sets.

Furthermore, one important drawback of the LQP method is the use of the static thresh-
olds. These thresholds need to be set by the user as input parameters and are usually de-
termined via trial and error. The accuracy of the LQP analysis is therefore very sensitive to
the threshold values. Each class of texture may require different threshold values in order to
get a good performance. To determine threshold values for separate problems requires both
time and domain knowledge which is not always available.

Therefore, the methods proposed in this project is designed to investigate the usage of
LBP and LQP in GP while evolving the parameters involved for image classification.
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Chapter 3

The LQP-GP Approach

3.1 Introduction

This chapter presents a novel approach of using GP with LQP to extract and construct high-
level features for image classification called LQP-GP. This new method is tested on two
datasets from different domains, and compared to existing GP methods. The new GP pro-
gram structure, the new function set, the new terminal set and the fitness function are de-
scribed here.

3.2 Chapter Goals

This chapter aims to investigate how LQP can be used with GP for image classification. This
will be achieved with the following objectives:

1. Design a new function set and a terminal set for a GP program to determine suitable
parameters for LQP to extract features. GP has shown promising performance using
both low-level and high-level image features. However, literature using GP to con-
struct high-level image features are limited.

2. Design a new program structure to select regions for feature extraction with the LQP
algorithm. The standard approach of LQP extracts features by considering the entirety
of an image within one run of the algorithm. This approach may not work well in
images that do not have useful features throughout the whole image.

3. Evaluate LQP-GP by comparing its performance against other GP methods on a range
of datasets.

4. Analyse the results and provide discussion regarding the performance of the LQP-GP.

3.3 Program Structure

A strongly-typed GP [36] is used to create the new LQP-GP program tree structure in order
to introduce restrictions on the inputs and outputs of the different nodes. The tree can be
virtually divided into five layers, i.e Input, Region Detection, Feature Extraction, Feature
Construction, and Classification, inspired by the program structure designed in [9]. This
program structure is presented in Fig. 3.1, where each layer is shown in a different colour.

1. Input
Images and randomly generated constants are fed from this layer to the GP method.
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Figure 3.1: Example LQP-GP program structure

2. Region Detection
Detects square or rectangular region in an image located by the program that effec-
tively describes the relevance of the image.

3. Feature Extraction
The layer in which the LQP operator is applied or pixel statistics are calculated to
extract image features from detected region. The thresholds for LQP are randomly
generated constants.

4. Feature Construction
The extracted features by LQP are further constructed to form a new high-level feature.

5. Classification
The top layer of the program, which assigns a class label to the input image according
the value of the constructed feature and a threshold.

The program structure of the proposed LQP-GP method is comprised of the five layers
in a bottom-up manner.

3.4 Functions and Terminals

3.4.1 Terminals

The terminal set shown in Table 4.1 includes parameters for functions in region detection
layer and feature extraction layer. These parameters include Image, X, Y and size. In addi-
tion to the input image parameters, there are also two additional terminals that provide the
thresholds for the LQP operator in the feature extraction layer. They are t1 and t2. The val-
ues of size, X, Y, t1 and t2 are randomly generated and evolve during evolutionary process
according to their corresponding range stated in the table.
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Table 3.1: Terminal set

Name Output Details
Image Image The image being classified

size size Random integer value in [3, min(minwidth, minheight)]
X X Random integer value in [0, Imagewidth] that provides the

horizontal location in the image
Y Y Random integer value in [0, Imageheight] that provides the

vertical location in the image
t1 t1 Random integer value in [2, 8] that provides the parameter

of the lower threshold in the LQP operator
t2 t2 Random integer value in [9, 15] that provides the parameter

of the upper threshold in the LQP operator

3.4.2 Functions

Functions of region detection layer

Table 3.2 shows the functions used in the region detection layer. These two functions detects
a square or rectangular region with a suitable size and position by taking arguments from
the terminal set. If the area in the detected region is beyond the boundaries of the image,
only the area inside the input image is used as the detected region.

Table 3.2: Functions of region detection layer

Name Input Output Details
Square Region Image, X, Y, size region Detects a square region at a selected

position in an image with a suitable
size

Rectangular Region Image, X, Y, size,
size

region Detects a rectangular region at a se-
lected position in an image with a
suitable size

Functions of feature extraction layer

Table 3.3 shows the functions used in the feature extraction layer. The LQP operator is a
new function, inspired by the LQP algorithm. The standard approach of LQP computes a
histogram of 256 bins for each quinary pattern (c = 2, c = 1, c = −1 and c = −2) and
concatenate the resulting four histograms into one histogram of 256 ∗ 4 = 1024 bins. The
LQP operator used in LQP-GP differs from the standard LQP approach in which a histogram
of 32 bins is calculated for each quinary pattern instead. Each bin contains of a range of 8
gray values of the image. The first bin contains the frequency of the gray values from 0
to 7 and the second bin contains of that from 8 to 15 and so on. Consequently, the final
histogram have a total of 32 ∗ 4 = 128 bins. This helps to reduce the number of features in
order to reduce computational cost.

Another important change from the standard LQP approach is that the final histogram
is normalized. This reduces the search space to ensure that images with high gray values is
able to output a negative number in the classification layer.

Aside from the LQP operator, statistical information are extracted from the resulting
histogram. They are standard deviation, mean, minimum and maximum.
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The next function is distance, which finds the Euclidean distance between two histograms
outputted from two LQP operators. This produces a float value which gives a measure of
how dissimilar the two histograms are.

Table 3.3: Functions of feature extraction layer

Name Input Output Details
LQP region, t1, t2 histogram Performs the LQP operator on a re-

gion
Std histogram float Calculate the standard deviation of

a histogram
Mean histogram float Calculate the mean of a histogram
Min histogram float Calculate the minimum value of a

histogram
Max histogram float Calculate the maximum value of a

histogram
Distance histogram, histogram float Calculate the distance between two

histograms

Functions of feature construction layer

There are 3 arithmetic function used for this layer. They are Sub(−), Add(+) and Mul(×)
which subtracts, adds and multiplies respectively, two floating-point numbers and returns
a floating-point number.

Table 3.4: Functions of classification layer

Name Input Output
Sub (−) float, float float
Add (+) float, float float
Mul (×) float, float float

Functions for classification layer

The function for this layer is that if the output from the feature construction layer is positive,
the class label for the input image is 1 (class 1), otherwise the class label is 0 (class 0).

3.5 Fitness Function

Fitness function is a crucial element of GP. In binary image classification, the commonly
used fitness function is the classification accuracy. The equation to calculate the classification
accuracy is in Eq. 3.1.

TP + TN
TOTAL

× 100% (3.1)

where TP denotes the total number of True Positives, which are positive instances classified
as positives, TN denotes the total number of True Negatives, which are negative instances
classified as negative, and TOTAL denotes the total number of instances in the dataset.
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A GP program with a higher accuracy would have a better fitness value and is more
likely to participate in the next generation. The proposed method works by maximizing the
fitness function / classification accuracy.

3.6 Overall Algorithm

The overall algorithm process is shown in Figure 3.2. Each image undergoes region detec-
tion to find a local region that best describes the relevance of the image. Then, the local re-
gion undergoes feature extraction using the LQP operator to output a histogram of 128 bins.
The statistical information such as standard deviation, mean, minimum or maximum value
from the resulting histogram or Euclidean distance between histograms are computed. The
results then undergoes arithmetic operation such as subtract, add or multiply to construct
higher-level features. The constructed features are then classified with class label 1 when
the output of the float is positive or class label 0 otherwise.

Figure 3.2: Flowchart of LQP-GP approach

3.7 Experiment Design

3.7.1 Datasets

Two different datasets are used to evaluate the performance of the proposed method. They
are JAFFE [34] and BIRDS [55]. Each data set is split into a training set, a validation set and
a test set, having 50%, 25%, 25% images respectively.

The training set is used to evolve programs to search for an optimal individual among
the space of all individual using GP. The validation set is used to measure its generalization
capability and select the best individual for testing. The test set is used to measure the
performance of the best individual.

3.7.2 Baseline methods

In order to evaluate the performance of the proposed method, five GP-based methods are
evaluated with the same data set. The five GP-based methods comprise of MLGP [9], 2TGP
[3], FeEx+GP [61], Hist+GP and uLBP+GP. The Hist+GP method extracts 64 histogram fea-
tures and and the uLBP+GP method extracts 59 uniform LBP histogram features. Both meth-
ods use the extracted features as input for GP. Fig. 3.3 and 3.4 shows example images from
each data set.
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Figure 3.3: BIRDS dataset: Pelagic
cormorant vs Red-faced cormorant

Figure 3.4: JAFFE dataset: Happy vs
Surprised

3.7.3 Parameter Settings

The proposed method is implemented in Python based on the DEAP (Distributed Evolu-
tionary Algorithm in Python) [20] package. Each experiment is run independently 30 times
using different seeds for each method for each data set.

Table 3.5: GP runtime parameters

Parameter Value
Generations 50

Population Size 1024
Crossover rate 0.80
Mutation rate 0.19

Elitism rate 0.01
Tree depth 2-10

Selection type Tournament
Tournament size 7

The parameter settings in all the GP methods are the same as listed in Table 3.5. During
the evolutionary process, each individual is evaluated at each generation on the training
set. The best individual on the training set is evaluated on the validation set in order to
avoid overfitting. The validation set selects a configuration of the runtime that maximizes
the generalization performance.

3.8 Results and Discussions

Tables 3.6 and 3.7 shows the test results in terms of maximum, mean and standard deviation
of classification accuracy obtained by LQP-GP and the other five GP methods on two data
sets in 30 runs.

On the JAFFE data set, LQP-GP obtains a better performance than FeEx+GP, Hist+GP
and uLBP+GP. However, it is outperformed by MLGP and 2TGP. On BIRDS data set, LQP-
GP obtains the lowest maximum accuracy out of all GP methods, while achieving a slightly
higher average accuracy than 2TGP and Hist+GP. This shows the LQP-GP may not be
suitable for object recognition (BIRDS), but performs relatively well for facial recognition
(JAFFE).
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Table 3.6: Classification accuracy (%) of all the GP methods on JAFFE

JAFFE
Max Average St. dev

LQP-GP 95.00 75.00 12.89
MLGP 100.00 86.50 7.89
2TGP 100.00 79.00 12.55

FeEx+GP 95.00 69.00 11.99
Hist+GP 50.00 50.00 0.00

uLBP + GP 75.00 51.67 9.94

Table 3.7: Classification accuracy (%) of all the GP methods on the BIRDS

Birds
Max Average St. dev

LQP-GP 60.71 53.90 4.06
MLGP 71.43 61.67 6.45
2TGP 67.86 51.79 7.70

FeEx+GP 64.29 54.64 5.77
Hist+GP 78.57 51.67 9.53

uLBP + GP 71.43 60.36 7.57

Based on the experimental results, the proposed LQP-GP approach is not able to compete
with some of the baseline GP methods. The performance of LQP-GP on the JAFFE data set
is rather unstable and fluctuates a lot, which can be seen in the standard deviation value.
While it is able to exceed FeEx+GP, Hist+GP and uLBP+GP, it is not able to surpass the more
recent GP approaches for image classification such as 2TGP and MLGP. This indicates that
2TGP and MLGP are able to construct key discriminatory features with their function sets
that LQP-GP is unable to replicate. Besides, JAFFE is a relatively small dataset, which shows
that LQP-GP is unable to sufficiently learn from its limited training instances, as compared
to 2TGP and MLGP.

This shows that LQP-GP may need to be further improved. However, due to inadequate
computational power to handle the complexity of LQP operator and time constraints, this
may be done in the future.

Fig. 3.6 displays four binary images created by each quinary pattern using Equation
2.3 and 2.4 on one of the instance in the BIRDS data set shown in Fig. 3.5. The binary
images for quinary pattern c = 2 and c = −2 are relatively similar looking in which they
extracted the edges of the bird in the image. On the other hand, The binary images for
quinary pattern c = 1 and c = −1 also look relatively similar in which they extracted the
textural information of the image.

The low performance of LQP-GP may be due to the presence of a large number features
presented by LQP-GP of 128 bins from each LQP operator over a small number of training
instances. This phenomenon may have contributed to the occurrence of overfitting. Not all
of the features extracted by the LQP operators are relevant. As shown in the similarities
between the binary images in Fig. 3.6, there is a considerable amount of redundant and
duplicate features extracted by LQP. This may have caused the resulting feature from feature
construction to be less useful for classification.
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Figure 3.5: Raw image before being processed by the LQP operator

(a) (b) (c) (d)

Figure 3.6: Binary images returned by the LQP operator for each quinary pattern (a) c = 2,
(b) c = 1, (c) c = −1, (d)c = −2

Apart from that, the average training time of LQP-GP is approximately 12 hours on
JAFFE and 18 hours on BIRDS, likely due to the large amount of computation required by
the LQP operator. The computation of the quinary patterns is the most computational heavy
part of the algorithm as it considers all the neighborhood pixels for each central pixel in the
image.

3.9 Chapter Summary

This chapter introduced a new approach called LQP-GP which aimed to improve the per-
formance of image classification by combining the LQP algorithm with GP techniques. The
approach is shown to have limited success. While LQP-GP has produced decent results, its
average training time is extremely high due to the complex nature of algorithm. Further-
more, using LQP as the only feature extraction technique may not be sufficient to derive
useful features for subsequent learning. Steps to use functions with lesser computation
power such as LBP as well as other image operators are considered in the next chapter to
address these issues.
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Chapter 4

The uLBP-GP approach

4.1 Introduction

This chapter presents a novel approach of using GP to extract and construct high-level fea-
tures using uniform LBP (uLBP) called uLBP-GP. A new GP program design with uLBP is
proposed in order to improve the performance of image classification. The main compo-
nents of the newly proposed methods, and results on various datasets are presented.

While the LQP-GP approach proposed in Chapter 3 produces good general features, fine
tuning the features further would allow more accurate classification. Furthermore, the LQP
operator is computationally expensive and extracts a large number of redundant features.

The uLBP operator is an exceptional visual descriptor that has been widely used in var-
ious application with promising results. uLBP is highly discriminative and its invariance to
monotonic gray level changes and computational efficiency make it suitable for demanding
image classification tasks such as texture classification and facial recognition. By using the
concept of uniform pattern, it can also filter out noises [56].

4.2 Chapter Goals

This chapter aims to develop a new approach which uses LQP’s predecessor, uLBP. The new
approach also adds another layer to the GP program that uses various image operators to
process the input image before performing feature extraction using the uLBP operator or
calculating pixel statistics. As before, GP is still used for region selection, feature extraction
and classification. The specific objectives of this chapter are as follows:

1. Propose a new program structure to investigate the effectiveness of adding an image
processing layer to a GP tree to remove image discrepancies such as noises or enhance
image by improving contrast before using uLBP for feature extraction.

2. Combine the new layer with the region detection approach (as in Chapter 3) to perform
region detection, feature extraction and classification in one tree.

3. Evaluate this new approach against general classifiers and GP classifiers on six datasets.

4. Analyse the programs of some high-performing individuals to understand how they
are able to achieve high classification accuracy.
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4.3 Program Structure

In order to combine various stages of image classification into a single tree, a strongly-typed
GP [36] was employed to enforce a tiered structure. The tree can be virtually divided into
six layers, i.e Input, Region Detection, Image Processing, Feature Extraction, Feature Con-
struction and Classification. The program structure is presented in Fig. 4.1 where each layer
is shown in a different colour.

Figure 4.1: Example uLBP-GP program structure

1. Input
Images and randomly generated constants are fed from this layer to the GP method.
Note that some of the constant parameters are used by successive layers other than the
region detection layer, i.e radius is a parameter used by LBP.

2. Region Detection
Detects square or rectangular region in an image that effectively describes the rele-
vance of the image.

3. Image processing
The layer in which the various image operators are applied to further enhance the in-
put image by removing noises or increase contrast to aid the feature extraction process.

4. Feature Extraction
The layer in which the uLBP operator is applied or pixel statistics are calculated to
extract image features from detected regions.

5. Feature Construction
The extracted features are further constructed into a new high-level feature.
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6. Classification
The top layer of the program, which assigns a class label to the input image according
the value of the constructed feature and the predetermined threshold.

Note: While the term image processing and feature extraction are often used inter-
changeably, in the uLBP-GP approach, they are primarily different in terms of the type
of outputs returned. The functions in the image processing layer returns an image of
the same size, while feature extraction layer returns either a histogram or float.

The program structure of the proposed uLBP-GP method is constructed according to the six
layers in a bottom up manner. The tree-based representation has operators which consists
of internal nodes and terminals consists of leaf nodes.

4.4 Functions and Terminals

4.4.1 Terminals

There are six types of terminals for this layer, which represents the input image and the
constant parameters used in the proposed uLBP-GP method. The parameters are used for
functions in the region detection and feature extraction layers. The values of size, X, Y, index
and radius are randomly generated and evolve during the evolutionary process according
to their corresponding range detailed in Table 4.1.

Table 4.1: Terminal set

Name Output Details
Image Image The image being classified

size size Random integer value in [20, 70]
X X Random integer value in [0, Imagewidth] that provides the

horizontal location in the image
Y Y Random integer value in [0, Imageheight] that provides the

vertical location in the image
radius radius Random integer value in [1, 5] that provides the parameters

of the radius of the neighbourhood in the LBP operator
index index Random integer value in [0, 58] to specify the bin of a his-

togram to be used

4.4.2 Functions

Functions of region detection layer

The same function set for the region detection layer is used in the LQP-GP method. The
details of the function set is defined in Table 3.2.

Functions of image processing layer

Table 4.2 shows the functions used in the image processing layer. These are 5 image-related
operators, which are similar to the operators used in [9] in the feature extraction layer. The
Hist Eq operator is designed to increase contrast and equalize the histogram of an image.
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The Gau1 operator reduces noise. SobelX and SobelY perform edge detection by calculat-
ing the gradient of image intensity along the X and Y axis respectively. Finally, the Laplace
operator is used to identify and highlight fine edges. The type returned from these functions
is processed which denotes the processed image using one of the operators listed in Table 4.2.

Table 4.2: Functions of image processing layer

Name Input Output Details
Hist Eq region processed Histogram equalization

Gau1 region processed Gaussian smooth filter with σ=1
SobelX region processed Sobel filter along X axis
SobelY region processed Sobel filter along Y axis
Laplace region processed Laplacian filter

Functions of feature extraction layer

LBP is used in the function set for describing the shape and texture information of an image.
In the LBP operator, the radius is set as a terminal and the number of neighbours is set to the
value of radius×8. After the LBP operator computes a histogram of 59 bins representing the
59 uniform binary patterns, the resulting histogram is normalized. This reduces the search
space in order to ensure that images with high gray values are able to return a negative
number in the classification layer.

Another operator for this layer is Distance which computes the Euclidean distance be-
tween two histograms returned by two LBP operators. The function produces a float value
which gives a measure of how dissimilar the two histograms are.

The bin function extracts a value at a specific bin in the LBP histogram (denoted by the
index) to return a float value.

Finally, statistical information such as standard deviation, mean, minimum and maxi-
mum are extracted from the resulting LBP histogram from LBP operator. All functions ex-
cept LBP and bin are similar to the function set in the feature extraction layer in the LQP-GP
method.

Table 4.3: Functions of feature extraction layer

Name Input Output Details
LBP processed, radius histogram Performs the uniform LBP operator on a

processed image region and calculate the
normalised LBP histogram.

Distance histogram, histogram float Calculate the Euclidean distance between
two histograms

bin index, histogram float Returns the float at histogram[index]
Std histogram float Calculate the standard deviation of a his-

togram
Mean histogram float Calculate the mean of a histogram
Min histogram float Calculate the minimum value of a his-

togram
Max histogram float Calculate the maximum value of a his-

togram
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Functions of feature construction layer

There are four arithmetic function used for this layer. They are Sub(−), Add(+), Mul(×) and
Protected Div(÷), which subtracts, adds, multiplies and divides respectively, two floating-
point numbers and returns a floating-point number. Protected Div returns a value of zero
if either of the float values are equal to zero to prevent any floating-point number overflow
errors.

In addition to that, there are also trigonometric functions such as Cos and Sin which
relates the lengths of the sides of a triangle to the cosine or sine of one of its angles respec-
tively. Finally, the Neg function simply negates a floating-point number to return a negated
floating-point number.

Table 4.4: Functions of feature construction layer

Name Input Output
Sub (−) float, float float
Add (+) float, float float
Mul (×) float, float float

Protected Div (÷) float, float float
Neg float float
Cos float float
Sin float float

Functions of classification layer

The same function is used in the LQP-GP approach. This functions of the classification is
defined in Section 3.4.2.

4.5 Fitness Function

The same fitness function is used in the LQP-GP approach. This fitness function is defined
in Section 3.5.

4.6 Overall Algorithm

The overall algorithm process is shown in Figure 4.2. Each image is undergoes region de-
tection to find a local region that best describes the relevance of the image. Then, the local
region undergoes image processing using various image operators to output a processed
region. Then, the processed region undergoes feature extraction using the uLBP operator to
output a histogram of 58 bins. The statistical information such as standard deviation, mean,
minimum or maximum value from the resulting histogram or Euclidean distance between
two histograms or a selected bin value from this histogram is calculated.

The result then undergoes mathematical operations such as subtract, add, multiply, pro-
tected division, negation, cosine or sine to construct higher-level features. The constructed
features are then classified with class label 1 when the output of the float is positive or class
label 0 otherwise.
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Figure 4.2: Flowchart of uLBP-GP approach

4.7 Experiment Design

4.7.1 Datasets

Six different data sets of varying difficulties are employed in the experiments. The proposed
method is evaluated using three texture image datasets (OutexTC, KyWiRo, KTH-TIPS2) to
test its performance on texture classification. Two face datasets (FEI1, JAFFE) are employed
to evaluate its performance in binary classification of facial expression. One scene dataset
(Scene) classification is used to evaluate its performance in scene classification.

The image datasets are gray-scale images, in which each pixel is ranging between 0
(black) and 255 (white). All the images from each data set have been preprocessed accord-
ingly. Each data set is split into the training set, the validation set and the test set, having
50%, 25%, 25% images respectively. Fig. 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 shows example images
from each data set. Details of the data sets are listed in Table 4.5.

Figure 4.3: OutexTC
dataset: Carpet vs Tile

Figure 4.4: KyWiRo
dataset: Sesame seeds vs
Oats

Figure 4.5: KTH-TIPS2
dataset: Wood vs Lettuce

OutexTC

This dataset was drawn from the Outex Texture Classification (OutexTC) [40] dataset for
texture classification. The dataset was formed by extracting two classes of ”tile” and ”car-
pet” from the content of Outex TC 00010 as the focus is on binary classification. Each class
contains a total of 180 images, resulting in 360 images in total. The original images are all of
the size 128 × 128 pixels and gray-scale, so there was no prior preprocessing required.

Kylberg With Rotation (KyWiRo)

KyWiRo dataset was collected from the Kylberg texture dataset [32], formed by extracting
two classes, ”sesame seeds” and ”oats” and sampled to 128 × 128 pixels. The instances of
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Figure 4.6: FEI1 dataset:
Neutral vs Smiling

Figure 4.7: JAFFE dataset:
Happy vs Surprised

Figure 4.8: Scene dataset:
Inside City vs Industrial

Table 4.5: Data set properties

Name Size Classes Training set Validation set Test set

OutexTC 128 ×128
Tile 90 45 45

Carpet 90 45 45

KyWiRo 128 ×128
Sesame seeds 960 480 480

Oats 960 480 480

KTH-TIPS2 128 ×128
Wood 216 108 108

Lettuce 216 108 108

FEI1 180 ×130
Neutral 50 25 25
Smiling 50 25 25

JAFFE 128 ×128
Happy 10 10 10

Surprised 10 10 10

Scene 128 ×128
Inside city 308 76 76
Industrial 311 76 76

the with-rotation category are extended from the without-rotation instances by rotating each
image in 12 angles around the center between 0◦and 330◦with a step size of 30◦. This results
in 160 × 12 = 1920 images for each class and 3840 images in total.

KTH-TIPS2

The KTH-TIPS2 dataset was collected from the KTH-TIPS database [21] for texture classi-
fication. The KTH-TIPS2 dataset extends the KTH-TIPS dataset by having an additional
illumination conditions taken in varying poses. The dataset was formed by extracting two
classes of ”wood” and ”lettuce”. There are a total of 864 images, with an even distributon of
wood and lettuce images. All images were converted from color to grayscale and sampled
from 200 × 200 pixels to 128 × 128 pixels.

FEI1

The FEI1 was drawn from the FEI Face Database [53], comprised of frontal images of neu-
tral and smiling facial expressions for face classification. All the images were resized from
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360 × 260 pixels to 180 × 130 pixels. There are 200 full frontal face images, with an even
distribution of neural and smiling facial expressions for each of the dataset.

JAFFE

The JAFFE dataset was drawn from the JAFFE database [34]. Out of 7 facial expression, two
classes of ”happy” and ”surprised” were used to form the dataset. All images were resized
from 256 × 256 pixels to 128 × 128 pixels.

Scene

The Scene dataset was drawn from the 15-Scene Image Dataset [6] for scene classification.
Out of 15 classes, two classes of ”inside city” and ”industrial” were used to form the dataset.
All images were sampled to 128 × 128 pixels.

4.7.2 Baseline methods

GP classifiers

In order to evaluate the performance of the proposed method, five GP-based methods are
also evaluated with the same data set. The five GP-based methods comprise of MLGP [9],
2TGP [3], FeEx+GP [61], Hist+GP and uLBP+GP.

General Classifiers

Image classification can be treated as a typical classification problem by representing each
pixel as a feature. For instance, the image in Figure 4.9 shows an image of 28 × 24 pixels,
which equates to a total of 952 pixels (red lines dividing the pixels). These pixels can be
represented as 952 features in which each feature corresponds to the intensity of the pixel.

Figure 4.9: Sample features

These features are then used as input to train and test a classifier. The classifiers are de-
ployed using the scikit-learn [43] package, a popular Python machine learning package. Clas-
sifiers were chosen from a range of paradigms to ideally give a broad range of results. The
general classifiers used were: AdaBoost, Decision Trees, Nearest Neighbour, Naive Bayes
and Random Forest. The five methods take the raw pixel values of each image as inputs and
train classifiers for classification.

The goal of comparisons is to show whether uLBP-GP can achieve better performance
than state-of-the-art methods.
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4.7.3 Parameter Settings

The proposed method is implemented in Python based on the DEAP (Distributed Evolu-
tionary Algorithm in Python) [20] package. Each training is run independently 30 times
using different seed for each method for each data set.

The parameter settings in all the GP methods are similar to the parameters used in LQP-
GP experiment as listed in Table 3.5.

4.8 Results and Discussions

This section shows the tabulated results and compares the performance in terms of testing
accuracy and training time of uLBP-GP with the baseline methods.

The proposed method (uLBP-GP) was tested on the six datasets with a range of diffi-
culties. Datasets from different domains were used to ensure that the proposed solution is
domain-independent. The Wilcoxon rank-sum test with a 5% significance level is used to
compare uLBP-GP with a baseline method on each dataset to test if the results are signifi-
cantly different.

The results of each dataset is tabulated in a table. The table consists of the summary
statistics for all the results from the classifiers (average, standard deviation and maximum
for accuracy (%) and computational time on both training and testing). The symbols ”−”,
”+” or ”=” is used to denote if uLBP-GP is significantly worse, better or similar to the
compared baseline method respectively in terms of testing accuracy. The first row of table
shows the result of the proposed method, followed by the results of the GP classifiers in the
next 5 rows and results of the general classifier in the last five rows.

Table 4.6: Summary statistics of all baseline methods on OutexTC

OutexTC
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 100.00 99.73±0.38 100.00 95.34±3.74 28763.71 17911.61±3808.71 0.25 0.17±0.05

MLGP 100.00 99.96±0.15 100.00 98.74±2.12− 321345.20 45962.09±70525.02 4.05 0.52±0.97
2TGP 97.70 86.16±7.38 86.60 72.18±10.24+ 1488.20 755.42±411.90 0.02 0.01±0.01

FeEx+GP 92.70 87.38±2.98 87.70 79.62±6.83+ 87.98 55.14±11.25 0.00 0.00±0.00
Hist+GP 100.00 99.61±0.88 100.00 97.77±2.46− 162.76 105.61±23.28 0.00 0.00±0.00

uLBP+GP 100.00 99.96±0.22 100.00 99.68±0.54− 251.35 153.05±42.28 0.00 0.00±0.00
AdaBoost 100.00 100.00±0.00 83.33 83.33±0.00+ 26.13 24.16±1.01 0.30 0.16±0.03

Decision Trees 100.00 100.00±0.00 67.78 64.11±2.26+ 1.64 0.96±0.16 0.01 0.01±0.00
Nearest Neighbour 53.33 53.33±0.00 53.33 53.33±0.00+ 0.87 0.03±0.16 0.09 0.07±0.01

Naives Bayes 98.33 98.33±0.00 84.44 84.44±0.00+ 0.76 0.10±0.13 0.09 0.06±0.01
Random Forest 100.00 99.59±0.36 94.44 87.30±2.67+ 1.21 0.43±0.16 0.03 0.01±0.00

4.8.1 Compared with GP Classifiers

For the OutexTC dataset, the proposed method is able to significantly outperform 2TGP
and FeEx+GP. This may be due to the images having different illumination settings and
nine different rotation angles, causing the low-level features produced by these methods
to be insufficient in classifying the images. Both 2TGP and FeEx+GP use only arithmetic
operations without any high-level feature extraction techniques in their respective function
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Table 4.7: Summary statistics of all baseline methods on KyWiRo

KyWiRo
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 99.70 96.12±3.74 99.00 94.74±4.68 328806.89 235362.58±55763.56 4.37 2.51±0.96

MLGP 100.00 97.84±1.54 100.00 96.95±1.90 = 937169.62 372319.03±340052.88 11.45 3.52±4.12
2TGP 99.80 93.28±3.07 98.60 91.66±3.26+ 17586.99 5127.15±3148.09 0.27 0.06±0.05

FeEx+GP 90.20 87.97±1.22 89.70 87.72±1.18+ 710.72 451.70±92.02 0.01 0.00±0.00
Hist+GP 100.00 99.60±0.22 100.00 99.52±0.23− 1448.11 1006.01±216.65 0.02 0.01±0.00

uLBP+GP 100.00 99.26±0.87 100.00 98.92±1.02− 2507.47 1467.81±394.85 0.03 0.02±0.01
AdaBoost 99.11 99.11±0.00 72.29 72.29±0.00+ 126.33 125.85±0.09 1.20 1.19±0.00

Decision Tree 100.00 100.00±0.00 62.60 60.72±0.79+ 21.12 20.86±0.16 0.01 0.01±0.00
Nearest Neighbour 72.92 72.92±0.00 67.50 67.50±0.00+ 1.40 1.39±0.00 35.28 35.27±0.00

Naive Bayes 97.66 97.66±0.00 70.00 70.00±0.00+ 0.17 0.17±0.00 0.09 0.09±0.00
Random Forest 95.16 93.85±0.79 78.44 76.07±1.42+ 1.35 1.34±0.00 0.02 0.02±0.00

Table 4.8: Summary statistics of all baseline methods on KTH-TIPS2

KTH-TIPS2
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 100.00 99.88±0.29 100.00 98.90±1.14 87700.42 51554.76±13151.88 1.01 0.56±0.17

MLGP 100.00 99.44±0.50 99.50 97.47±1.14+ 237517.97 78649.56±68223.91 3.44 0.76±0.89
2TGP 100.00 96.36±7.00 97.60 93.03±6.87+ 4553.51 1891.99±1024.52 0.05 0.02±0.01

FeEx+GP 100.00 99.84±0.15 100.00 98.88±0.44 = 167.79 120.50±20.76 0.00 0.00±0.00
Hist+GP 99.00 98.56±0.44 98.60 95.80±1.60+ 444.50 279.71±57.44 0.01 0.00±0.00

uLBP+GP 100.00 99.94±0.12 100.00 99.60±0.38 = 589.87 307.03±73.84 0.01 0.00±0.00
AdaBoost 100.00 100.00±0.00 83.80 83.80±0.00+ 28.72 27.96±0.14 0.23 0.23±0.00

Decision Tree 100.00 100.00±0.00 80.56 76.65±2.02+ 1.37 1.36±0.00 0.00 0.00±0.00
Nearest Neighbour 50.46 50.46±0.00 50.00 50.00±0.00+ 0.15 0.15±0.00 1.73 1.72±0.00

Naive Bayes 92.13 92.13±0.00 91.20 91.20±0.00+ 0.04 0.04±0.00 0.04 0.04±0.00
Random Forest 95.37 94.00±0.69 89.35 85.80±1.68+ 0.34 0.34±0.00 0.01 0.01±0.00

Table 4.9: Summary statistics of all baseline methods on FEI1

FEI1
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 99.00 94.00±2.95 98.00 87.27±4.53 14837.16 7751.01±2066.07 0.15 0.07±0.02

MLGP 98.00 93.33±2.80 96.00 85.73±6.05+ 45842.41 8816.65±11161.15 1.48 0.10±0.28
2TGP 99.00 96.30±2.07 96.00 90.00±2.92− 640.33 307.89±150.20 0.01 0.00±0.00

FeEx+GP 81.00 75.13±3.09 68.00 54.00±5.43+ 73.82 46.87±10.05 0.00 0.00±0.00
Hist+GP 50.00 50.00±0.00 50.00 50.00±0.00+ 47.92 38.96±5.60 0.00 0.00±0.00

uLBP+GP 88.00 80.33±3.31 68.00 52.87±7.50+ 149.31 105.19±20.76 0.00 0.00±0.00
AdaBoost 100.00 100.00±0.00 94.00 93.13±1.01− 10.88 10.35±0.10 0.10 0.10±0.00

Decision Tree 100.00 100.00±0.00 92.00 86.67±3.21= 0.30 0.30±0.00 0.00 0.00±0.00
Nearest Neighbour 62.00 62.00±0.00 48.00 48.00±0.00+ 0.01 0.01±0.00 0.14 0.13±0.00

Naive Bayes 90.00 90.00±0.00 80.00 80.00±0.00+ 0.02 0.02±0.00 0.01 0.01±0.00
Random Forest 99.00 97.07±1.08 98.00 97.47±1.17− 0.13 0.13±0.00 0.01 0.01±0.00
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Table 4.10: Summary statistics of all baseline methods on JAFFE

JAFFE
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 100.00 94.17±3.73 90.00 66.67±14.87 2982.11 1674.91±506.25 0.07 0.03±0.01

MLGP 100.00 94.33±5.04 100.00 86.50±7.89− 7664.00 1665.63±1688.61 0.16 0.03±0.04
2TGP 100.00 91.50±6.04 100.00 79.00±12.55− 192.93 55.39±41.81 0.00 0.00±0.00

FeEx+GP 100.00 94.67±4.72 95.00 69.00±11.99 = 26.81 19.08±3.16 0.00 0.00±0.00
Hist+GP 50.00 50.00±0.00 50.00 50.00±0.00+ 18.32 13.63±1.65 0.00 0.00±0.00

uLBP+GP 100.00 99.17±1.90 75.00 51.67±9.94+ 47.26 30.77±6.73 0.00 0.00±0.00
AdaBoost 100.00 100.00±0.00 80.00 77.17±2.52− 0.98 0.07±0.17 0.01 0.00±0.00

Decision Tree 100.00 100.00±0.00 80.00 76.67±2.40− 0.05 0.04±0.01 0.00 0.00±0.00
Nearest Neighbour 60.00 60.00±0.00 55.00 55.00±0.00+ 0.01 0.00±0.00 0.01 0.01±0.00

Naive Bayes 100.00 100.00±0.00 85.00 85.00±0.00− 0.02 0.02±0.00 0.03 0.02±0.00
Random Forest 100.00 100.00±0.00 100.00 98.50±2.67− 0.15 0.12±0.01 0.02 0.01±0.00

Table 4.11: Summary statistics of all baseline methods on Scene

Scene
Training Accuracy Testing Accuracy Training Time Testing Time

Max Average±Std. Max Average±Std. Max Average±Std. Max Average±Std.
uLBP-GP 80.90 78.78±1.94 80.90 72.88±3.32 47032.25 26770.43±7944.19 0.51 0.22±0.09

MLGP 85.30 79.48±3.09 80.20 73.00±3.71 = 142972.55 35368.13±42239.58 1.59 0.30±0.46
2TGP 80.30 75.05±2.72 74.30 68.04±3.62+ 2264.81 976.28±584.93 0.02 0.01±0.00

FeEx+GP 76.50 72.83±1.85 67.70 63.39±3.39+ 168.25 107.52±29.57 0.00 0.00±0.00
Hist+GP 83.40 80.66±1.87 76.30 71.54±2.88+ 280.42 168.02±46.07 0.00 0.00±0.00

uLBP+GP 91.40 88.94±1.47 90.70 87.26±2.39− 397.26 230.36±66.20 0.00 0.00±0.00
AdaBoost 100.00 100.00±0.00 68.42 68.42±0.00+ 27.64 27.18±0.09 0.16 0.16±0.00

Decision Tree 100.00 100.00±0.00 70.39 65.68±1.97+ 1.96 1.95±0.01 0.00 0.00±0.00
Nearest Neighbour 72.70 72.70±0.00 67.11 67.11±0.00+ 0.09 0.09±0.00 0.97 0.96±0.00

Naive Bayes 69.21 69.21±0.00 71.71 71.71±0.00= 0.03 0.03±0.00 0.02 0.02±0.00
Random Forest 83.49 80.92±1.19 75.66 71.43±1.52= 0.32 0.31±0.00 0.01 0.01±0.00

sets. Consequently, they are not robust against harsh illumination settings and various ro-
tation angles. On the other hand, the proposed method achieved a slightly lower accuracy
(approximately 3-4% decrease) compared to MLGP, Hist+GP and uLBP+GP. These methods
uses a higher level feature extraction techniques. However, it was still able to obtain the
maximum accuracy of 100%.

The KyWiRo dataset is the largest one out of all datasets. Again, the proposed method
achieves a better performance than 2TGP and FeEx+GP which may be caused by the low-
level features constructed by these methods. Similar to OutexTC, the proposed method
obtains a lower accuracy compared to Hist+GP and uLBP+GP by approximately 5% and 4%
in the average testing accuracy respectively. The high and stable performance from Hist+GP
and uLBP+GP may be due to the nature of constructing high-level features from the entire
image instead of local image regions.

In the KTH-TIPS2 dataset, the uLBP-GP approach outperforms MLGP, 2TGP and Hist+GP
while achieving similar performances as FeEx+GP and uLBP+GP. This dataset is easy, so all
the GP methods are able to obtain high maximum accuracies. The high performance from
2TGP and FeEx+GP proves that low level features are sufficient to distinguish the images of
different classes.
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As for the FEI1 dataset, the highest performing GP classifier is 2TGP in terms of av-
erage accuracy. However, the proposed method, MLGP and 2TGP are able to obtain the
same maximum accuracy of 96%. FeEx+GP, Hist+GP and uLBP+GP perform significantly
lower at about 50% accuracy, which shows that they are unable to find optimal solutions us-
ing the constructed features during the evolution process. While both 2TGP and FeEx+GP
constructs low-level features, 2TGP uses GP to select local regions while FeEx+GP selects 6
pre-defined local regions.

The proposed method significantly outperforms FeEx+GP, Hist+GP and uLBP+GP. These
methods uses static local regions or the entire image as the input. This indicates that GP se-
lected local regions far are more effective than manually chosen local regions for face classi-
fication tasks. The significantly lower performance from uLBP+GP and Hist+GP concludes
local features are able to obtain better performance than global features on FEI1 dataset.
Global features may be effective for texture classification but not for facial expression classi-
fication.

The JAFFE dataset is a relatively small dataset. The proposed method seems to have
encountered the issue of overfitting with an average training accuracy of 94% and testing
accuracy of 66%. The new approach is unable to perform well in small datasets as compared
to other GP classifiers such as MLGP and 2TGP.

As for the Scene dataset, the highest performing GP classifier is uLBP+GP. Unlike facial
expression images, scene images do not have a specific local image regions that can effec-
tively differentiate all the images. Using global features is more effective than local features
for this task, which is why uLBP-GP, MLGP, 2TGP and FeEx+GP are not able to shine on
this data set. Constructing high-level features using texture descriptors extracted by uLBP
on the entire image discovers the highest performing solutions. These findings indicate
that the Scene images contain important textural information and global features are very
important for good classification performance.

4.8.2 Compared with General Classifiers

The proposed method was able to outperform all general classifiers for all texture datasets
(OutexTC, KyWiRo and KTH-TIPS2). This proves general classifiers are not able to effec-
tively learn from pixels in the original image for texture classification tasks and GP classifiers
are able to produce better learned classifiers.

As for the FEI1 dataset, Random Forest and AdaBoost perform well on this dataset. Both
classifiers are ensemble learning algorithms that use a number of classifiers to construct a
strong classifier. This is unsurprising as ensemble learning algorithms like AdaBoost have
shown good results in facial expression recognition tasks in [58], [60] and [42].

The proposed method is outperformed by all general classifiers in the JAFFE dataset
except for Nearest Neighbour. It is likely that there are key discriminatory pixels in the orig-
inal image which were detected by the AdaBoost, Decision Tree, Naive Bayes and Random
Forest, and high-level feature extraction techniques like uLBP were not a requirement for
achieving high testing accuracy.

As for the Scene dataset, the uLBP-GP approach performs significantly better than Ad-
aBoost, Decision Tree and Neighbour and achieves a similar performance as Naive Bayes
and Random Forest.

The general classifiers that achieved significantly better results than the proposed method
in some cases are mainly AdaBoost and Random Forest. These methods are boosting and
ensemble classifiers, while the proposed method only uses a single evolved program. Be-
sides, the datasets that general classifiers was able to achieve state-of-art accuracies were
mainly facial expression classification tasks. This indicates that raw pixels extracted from
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the whole image are more effective, as opposed to single constructed feature from smaller
regions for this classification task.

It requires additional effort to extract features prior to the training process when using
general classifiers. It can be difficult to determine suitable feature extraction techniques
for each dataset as they must be carefully selected and suited when dealing with image
classification task. However, the proposed uLBP-GP method is able to achieve comparable
results without such considerations.

4.8.3 Training time

The proposed uLBP-GP method obtains a comparable performance compared to MLGP
with a decrease average training time. However, it has the highest training time after MLGP,
which is likely due to the large amount of computation required by the image processing
and uLBP operators. The gap between the average training times of MLGP and uLBP-GP
increases further with large datasets such as KyWiRo.

All other baseline methods have lower average training times. While the increase in
training time is a downside compared to the other methods, the time required (testing test)
to apply the trained solution to new, unseen images is still relatively quick. Long training
times are common when GP is used as long as the final programs are not overly complex,
they are often fast to use after the training process.

4.9 Further Analysis

The uLBP-GP produces programs which can be interpreted and understood easily. This sec-
tion analyses a few high-performing evolved programs to understand how they can perform
classification with high accuracy.

4.9.1 Example Program on the KTH-TIPS2 data set

As the KTH-TIPS data set is relatively easy, majority of the programs evolved by uLBP-GP
achieved greater than 98% in classification accuracy on training, validation and test sets.
To display the good interpretability and understandability, a simple program is selected for
analysis, as shown in Fig. 4.10. This program achieves 99.7% classification accuracy on the
training set, 99.07% accuracy on the validation set and 98.1% accuracy on the test set. Figure
4.10 shows the example program, the example image from the two different classes and the
outputs of each nodes of the example program. In the figure, the red colour represents the
outputs of the lettuce class, and the green colour represents that of the wood class.

This program detects one rectangular region and one square region at different positions
in the input image. Both regions overlaps each other slightly. The left detected region with
a size of 36×30 is smaller than the right region with a size of 63×63. Both regions captures
the differences of the wood and lettuce classes by capturing the an area on the top right side
of the image. In this region, the lettuce class shows the vein of the lettuce leaves travelling
upwards diagonally, while the wood class displays a much smoother surface. The fluctua-
tions in the gray values in the lettuce class changes more drastically than of that in the wood
class. The square region captures a larger portion of the top right area.

In the left region, the Laplace operators are evolved to highlight regions of rapid intensity
change. In the right region, the SobelY operator is evolved to detect edges along the vertical
direction. By these evolved operators, the textural information in the image is enhanced
further and extracted by the uLBP operator. The regions are then converted into normalized
histograms. The mean of histogram in the left region is computed to give an idea of average
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value of LBP code that occurred in the histogram. Unsurprisingly, the lettuce class has a
higher mean value than of that of the wood class as it has more areas with significantly
darker regions. On the other hand, the normalized histogram value at bin 48 was selected
which indicates that the value of LBP code occurred in the lettuce class only (The wood class
has a normalized frequency of zero). The two values from the mean of the histogram and
value of the specific bin from the histogram are constructed by the Sub operator further for
classification.

Figure 4.10: An example program evolved by the uLBP-GP method on the KTH-TIPS2 data
set.

4.9.2 Example Program on the FEI1 data set

Fig. 4.11 demonstrates an example program evolved by the uLBP-GP method on the FEI1
data set. This program achieves 97% classification accuracy on the training set, 96% accuracy
on the validation set and 94% accuracy on the test set. This program detects two rectangular
regions of an image. Both detected regions do not show any significant differences in their
sizes or positions. Both regions capture a rectangular region spanned from the left eye to the
corner of the lip line. However, the distinctive difference between the Smiling and Neutral
can be discovered with the presence of the upper creases of the mouth when the subject
smiles which causes more changes in the gray values in the regions.

In the both regions, the Gau1 operators are evolved to reduce image noise. The regions
are then converted into normalized histograms after extracting the LBP code by the uLBP
operator. Two different neighbourhood radius size are used to compute the LBP code, 2 and
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1 for the left and right regions, respectively.
The standard deviation of histogram in the left region is computed to give an overall

picture of the fluctuations of the LBP code values. On the other hand, the mean of histogram
in the right region is computed to give an idea of average value of LBP code that occurred
in the histogram. However, the results from both classes garnered the same value, which
indicates that the program may have been slightly more complex than it should have been.
The two value are constructed by the Sub operator further for classification.

Figure 4.11: An example program evolved by the uLBP-GP method on the FEI1 data set.

4.10 Chapter Summary

This chapter introduced a new approach called uLBP-GP which aims to improve the perfor-
mance of image classification using uniform LBP algorithm. In terms of maximum testing
accuracy achieved, the proposed method achieved 100% or 99% for all texture datasets. Fur-
thermore, it outperformed all general classifiers in terms of both maximum and average
testing accuracy. The proposed solution achieved faster training time than MLGP while
achieving a comparable performance. However, it struggled to provide state-of-the-art per-
formance on facial expression and scene datasets which are datasets with less prominent
textural information.

A clear advantage of the proposed method is the interpretability of the model. This chap-
ter showed that uLBP-GP was able to automatically extract and construct useful, high-level
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features. Performance evaluation showed promising results using the proposed method.
The analysis of high-performing solutions showed that uLBP-GP could perform well using
simple programs. The adaptation of the uniform LBP algorithm as a function set in a GP
tree was shown to be an effective method of performing high-level feature extraction.

In a nutshell, the proposed uLBP-GP method struggles to provide consistent and state-
of-art results on facial expression and scene classification tasks. However, it excels in texture
classification tasks due to its ability to effectively extract textural information.
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Chapter 5

Conclusions and Future Work

5.1 Major Conclusion

The overall goal of the project was to develop a new domain-independent image classifica-
tion by combining GP with existing feature extraction algorithms. A number of approaches
were developed which delivered promising results when compared to general classifiers.
The two main approaches used LQP and uLBP respectively with GP techniques with a slight
change in the program structure. The uLBP-GP approach adds another layer to the GP pro-
gram that uses various image operators to process the input image before using the uLBP
operator to remove any prior image discrepancies. The LQP approach was shown to pro-
duce unpromising results with a tremendously high training time. The second approach,
uLBP-GP approach has more potential and was shown to be more effective with a reduced
amount of training time. The step to use the operators with various parameters values to
adapt their operations to cater to a wide range of problems did not show a drastic improve-
ment in performance, but did display state-of-art performances in all texture datasets in
terms of maximum accuracy.

Several major conclusions can be drawn as a result of this work:

1. New GP methods using widely used feature extraction techniques such as LBP and
LQP can be designed to give promising performance results. Using GP to select re-
gions of feature extractions to classify these features was effective in the proposed
uLBP-GP method.

2. uLBP-GP was able outperform non-GP methods on all texture datasets and some GP
and non-GP methods on non-texture datasets. The proposed method was also able
to perform comparably when compared to other high performing GP methods with a
lesser training time (i.e MLGP).

3. It was shown that the features extracted and constructed by good programs using the
uLBP-GP approach were relatively easily understood by humans, giving an insight
into how region detection and parameter tuning can be used to improve classification
performance. This concluded that the methods proposed in this work were effective
as they produced solutions which could be analysed and understood.

5.2 Future Work

There are some limitations with the current approaches, which could be addressed in the
future with further development on the following points.
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The uLBP-GP approach displayed a drop in performance when tested using the JAFFE
dataset, which is a dataset with a small number of instances. This issue can be addressed
by designing an adequate fitness function to allow GP to still learn effectively from a small
number of instances.

Compared to other state-of-art general classifiers, a large limitation is the training time
taken to learn the model. Further work can be done to improve the computational efficiency
of the work.

Furthermore, only one high-level feature is constructed by uLBP-GP for image classifi-
cation which may be less effective. Features extracted by the feature construction layer of
uLBP-GP can be further investigated to determine whether the extracted/constructed fea-
tures automatically learned can be useful for other classification algorithms, such as Nearest
Neighbour or Decision Trees.
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