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Abstract

The aim of this project is to evolve convolutional neural network structures
for text classification. Convolutional neural networks are inherently limited by
requiring a set of well tuned architecture and parameters to be performant. The
process to manually tune these settings is cumbersome and complex. As a so-
lution, we propose a method to evolve a convolutional neural network using
Evolutionary Computation methods to lessen this limitation. More specifically,
a Particle Swarm Optimisation (PSO) based solution has been developed to au-
tomatically evolve the network structures. As part of the PSO solution, two en-
coding schemes have been developed to evolve either the hyper-parameters, or
the architecture as well as the hyper-parameters. These two encoding schemes
and subsequent methods surrounding their implementation have been shown
to evolve well-performing convolutional neural networks that have promising
results compared to state-of-art techniques.
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Chapter 1

Introduction

Convolutional Neural Networks (CNNs) are a technique within the field of deep learning
that perform feature extraction and classification from an input to derive meaning. Whilst
most commonly used for analysing the properties within visual imagery, more recently
CNNSs have been applied to the field of text classification [1, 2]. Text classification is the
practice of categorising documents into predefined topics, with applications such as estab-
lishing the sentiment of a text and filtering text by established topics for news purposes.
CNNs have been shown to outperform classical machine learning methods regarding vari-
ous text classification problems [1, 2] as established by prior research. The incredible perfor-
mance of CNNs for text classification is founded in their ability to use a high-dimensional
vector representing text, much like how an image is represented to achieve similar perfor-
mance. The sequence of the text is preserved in this vector format from which the CNN can
discover patterns to discern within the text to discern meaning.

However, when using a CNN for text classification there is a major limitation as a con-
sequence of the complexity of the method. The limitation is in the difficulty constructing
an optimal architecture for a given problem, such as text classification. A CNN architec-
ture must first be constructed, then it requires a set of suitable hyper-parameters to suffi-
ciently model and train the architecture [3], from which a high accuracy can be achieved.
Currently a manual approach is the default method for constructing the architecture and
choosing these hyper-parameters. Deciding on the hyper-parameters for a CNN requires
domain experts aware of appropriate hyper-parameter settings such as filter window sizes,
pooling strategies and many more hyper-parameter interactions to create a model because
of the complexity of the system. Optimal hyper-parameter values are critical for achieving
a high-classification accuracy. The classification performance of a CNN is sensitive to all
hyper-parameters, in addition to it being difficult to discern what hyper-parameter changes
result in a difference in ability to classify a text. Developing an exact model with suitable
hyper-parameters for the particular issue at hand is a time consuming, error prone and la-
borious process.

1.1 Proposed Solution

The proposed solution developed through the project work entails an Evolutionary Com-
putation (EC) solution to automatically evolve the hyper-parameters and architecture of a
CNN specifically for text classification. The scope of the project permits evolving the hyper-
parameters and the architecture. As such, the proposed solution is two-fold. The first part
involves an optimisation of the hyper-parameters, where the architecture of a CNN is en-
forced and the hyper-parameter of each layer are evolved to find a performant set. The



second part involves an optimisation of the architecture, where the architecture and corre-
sponding hyper-parameters are both evolved.

For the two aspects, we propose two novel encoding schemes to encode either the hyper-
parameters or the architecture, in order to perform optimisation. These two aspects have
been designed and implemented, thus achieving automatic evolution of the hyper-parameters
and the architecture of a CNN. This solves the issues mentioned present with CNNs cur-
rently. In addition to this, two methods have been developed which further enhance PSO
and optimise the efficiency and speed of the method.

To perform the optimisation for this project, Particle Swarm Optimisation (PSO) is used
in this project as the proposed solution to perform hyper-parameter optimisation. PSO is
an algorithm that uses swarm intelligence principles to improve a candidate solution by
optimising an objective. We chose to use PSO as the EC method for this project for the
inherent effectiveness of PSO as an optimisation strategy [4].

Using PSO allows for searching multi-dimensional search-space to tune the various hyper-
parameters of a CNN architecture, without human intervention, to achieve effective text
classification. An evaluation of the system has been performed on popular test datasets,
using the baseline classifiers and other state-of-art method results for the datasets to be used
as comparisons for the proposed solution.

1.2 Objectives

1. Develop a baseline CNN text classifier using a rudimentary combination of hyper-
parameters and architecture.

2. Develop a method to automatically evolve the CNN hyper-parameters using PSO with
a new hyperparameter representation.

3. Develop a method to automatically evolve the CNN architecture using PSO with a
new architecture representation.

1.3 Contributions

1. A novel encoding scheme for representing CNN hyper-parameters to aid the PSO pro-
cess. This novel contribution is the first of its kind, and achieves promising results
compared to state-of-art methods.

2. Anovel variable-length encoding scheme for representing CNN architecture and hyper-
parameters to aid the PSO process. This is a significant contribution as it is the first of
its kind, as well as being a variable-length encoding scheme, which addresses a major
limitation of PSO.

3. Two methods that enhance the performance of PSO when used in tandem with the
architecture encoding scheme. This work can be adapted for other indirect encod-
ing schemes thus are applicable beyond the scope of this project work. The PSO-RV
method achieves promising results compared to state-of-art methods.

Overall, to the best of the author’s knowledge, the project work is the first of its kind
to perform evolutionary optimisation on CNNs for text classification, using PSO. This is
significant as the project work proves these optimisation methods are worth investigating
in future research.



1.4 Organisation

The remainder of this report is organised as follows. A background on the concepts and
research literature is provided in Chapter 2. Chapter 3 describes the design of the methods
behind the project. Chapter 4 discusses the implementation details from the design section.
Chapter 5 sums up the evaluation and analysis of the project, and Chapter 6 summarises the
conclusions of this report and the future work.



Chapter 2

Literature Review

2.1 Machine Learning

Machine learning (ML) is the study of computer systems that automatically learn and im-
prove through the analysis of provided example data [5]. ML is a subset of artificial intelli-
gence (Al) based on the premise that a system can learn how to form an accurate decision for
a given problem, without explicit human intervention using data [6]. The primary objective
is for a ML system to derive patterns in data to build an analytical model that performs these
decisions. The performance of an ML system is optimised by the quality and quantity of the
example data provided; this helps develop a performant system as clearer patterns can be
established to tune the calculation for a particular output adjusted accordingly. The two cat-
egories of ML that apply to this project are convolutional neural networks and evolutionary
learning. The following sections will elaborate on these.

2.2 Text Classification

Text classification is a machine learning task to label a document from a selection of given
labelled categories, based on key features within the text [5]. It is a supervised ML method,
meaning the text classifier trains on a labelled dataset to establish a set of features from a
piece of data that correspond to a certain label [6]. Text classification is a key application
of text mining - the analysis of text to develop an informative understanding of the text
presented [5]. Text classification techniques build systems to receive a set of texts as input
to develop an understanding of the particular structure, from the words used, the particular
sequence of those words, to many more determining features. Text classification has a wide
variety of useful applications. Categorising a set of news articles into defined topics for a
large news organisation is one [7]. This can extend into organising the contents of libraries,
social feeds and scientific literature [5]. Another application is the semantic analysis of a
product review to establish the rating. Text classification is a powerful and useful method
regarding text based applications.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a form of feed forward deep neural-networks.
They were originally designed to perform image processing, achieving excellent classifica-
tion accuracy [8]. CNNs utilize a series of mathematical operations to learn differences in
input data and classify data based on these differences. The first operation performed by a
CNN is a convolution. A convolution is a feature extraction operation performed on inputs
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that aims to preserve the spatial structure of the input. This operation involves sliding small
tilter maps over the input, using matrix multiplication to map a NxN matrix to a smaller
matrix where key features are present. These maps can capture varying sections of input,
dependent on the size of the map. Secondly, the filtered outputs have a downsampling op-
eration applied over to extract out the most relevant features. This operation is referred to as
pooling and isolates out high-level features by taking the max, or average values of portions
of the feature maps. Finally, the output from this pooling operation is passed to typically one
fully connected layer to perform the final classification. This dense section of the network
can have any number of layers and neurons per layer. Each neuron has an activation that
is used to establish what neurons should fire within the layer. The resultant combination of
different neurons activating governs the final output of the network.

2.4 Neuroevolution & Hyper-parameter Optimisation

Neuroevolution is a form of evolution specific to neural networks (NN), with the aim of
evolving various characteristics of NNs by applying evolutionary algorithms to optimise
performance [9]. The characteristics of NNs that can be evolved include the hyper-parameters
of the networks, in addition to their overall structure. Neuroevolution concepts were first
formally proposed in 1999 by Yao [10] where he reviews and discusses the effect of EAs
being applied to NNs to enhance their learning and performance. The work serves as an
introduction to various methodologies to evolve NNs, in addition to proposing a frame-
work for neuroevolution being comprised of three aspects: evolving the weights, structures
or learning rules [10]. Additional research by Stanley and Miikkulainen [11] contributes to
neuroevolution concepts. Their work proposes a taxonomy that aims to capture the com-
plexity of evolution seen in natural organisms. They formalise five dimensions based on
genetic principles that underpin embryonic development, which are used to draw compar-
isons between various aspects of encoding schemes used in neuroevolution. The works of
Stanley and Miikkulainen, and Yao, inform modern neuroevolution research.

As practice of Al, neuroevolution mimics natural evolution through artificially learning
optimal network structures. The structures are represented as a population of solutions,
where structures of solutions that are strongly performing in an evolution have their struc-
ture mimicked and evolved. The evaluation criteria for neuroevolution is an assessment on
how performant a network solution is for the given task [9]. Neuroevolution is the premise
behind the project, we will utilise the practice of neuroevolution to evolve the network struc-
ture of a CNN for text classification.

The practice of neuroevolution for this project is hyper-parameter and architecture opti-
misation. Hyper-parameter optimisation (HPO) is the automation of hyper-parameter con-
tigurations to optimise the performance of a system [12]. All machine learning systems have
a set of hyper-parameters that represent how a structure adapts to input and forms an out-
put. A simple analogy for hyper-parameters is a telescope, in that a telescope has the zoom
and focus as parameters, where rotating the lens and dials aids in enhancing the clarity of
the image, therefore optimising the parameters. Hyper-parameter and architecture optimi-
sation are beneficial to the field of machine learning as it reduces the human effort necessary
for building a ML model [12]. Utilising an automatic approach eliminates the need for hu-
man intervention in the process. Optimisation can also explore solutions of a system in far
greater detail than a human would ever be able to. As the solution to the project, HPO and
architecture optimisation will be used to optimise the structure of a CNN for text classifica-
tion, using an evolutionary computing approach.



2.5 Evolutionary Computation

Evolutionary computation (EC) is a subfield of Al pertaining to algorithms that perform
global optimisation with a stochastic evolutionary process akin to biological principles of
evolution as discussed in [13]. EC is utilised when the solution pool is too large for classical
optimisation algorithms to compute a reasonable solution. For an EC solution, a popula-
tion of candidate solutions is generated, where each candidate represents partial or poten-
tial solutions, that are continually evolved using processes based on evolutionary concepts -
natural selection, or genetic inheritance, mutation - and then evaluated. The goal of the eval-
uation is to find optimal solutions to include in the population of the next generation, and
sub-optimal solutions to eliminate from the population like in natural selection, where new
solutions are bred from previous well performing solutions to replace them, or mutated to
alter existing performant solutions. EC is typically categorised into evolutionary algorithms
such as genetic algorithms and genetic programming, swarm intelligence such as particle
swarm optimisation, ant colony optimisation and artificial bee colony algorithm, and other
techniques such as EMO and memetic algorithms [14, 15]. EC is critical for the project as we
will use an EC method to perform neuroevolution to optimise the hyper-parameters.

2.6 Particle Swarm Optimisiation

The steps above detail a traditional EC approach. The EC method this project will em-
ploy is the swarm intelligence algorithm, Particle Swarm Optimisation (PSO) proposed by
Kennedy and Eberhart in 1995 [16]. Further work by Shi in 1998 [17] enhanced the original
algorithm by proposing the addition of a new parameter, inertia weight, which showed to
greatly increase the chance of finding the global optimum, and is the version of PSO used
in this project. The inspiration behind the method is sourced from swarm intelligence in
nature, where a swarm is a collection of many individuals seeking a common goal. PSO
operates iteratively by finding the most fit candidate solution of the swarm, and update the
swarm accordingly. In PSO, an individual operator is referred to as a particle, an encoded
candidate solution. A number of candidate solutions then form a population pool labelled
as a swarm. Each candidate solution has a position and velocity in D dimensional search
space, as represented by X; = (xi1,Xp, ..., xip) and V; = (vj1, 02, ..., vip) respectively. The
optimal position of a particle is denoted as their personal optimal position or PBEST, with
the optimal position of the swarm denoted as the global optimal position or GBEST. After a
random initialisation of the population, each iteration searches for an more optimal position,
and updates the position and velocity of the particles according to the following equations:

1 ot t+1
Xig = Xjg 0y

Vi = WUy ey (pia — Xig) + €2 % 125 % (Pga — Xig)

t denotes the iteration. d denotes the dth dimension. ¢; and c; denotes the "cognitive" and
"social" constants. They control whether a particle follows its personal best or the swarm’s
(global) best position. w denotes the inertia component. ry; and r; denote random values
uniformly distributed (0 < ry;, 75 < 1). Pgea and pgy denote personal best position and
global best position respectively. These equations update each particle per generation, till
an optimal solution is found. This can be applied to hyper-parameter optimisation where
each candidate solution is encoded as a set of D hyper-parameters, each iteration of PSO
aiming to discover a more optimal configuration of hyper-parameters than the last.



Particle swarm optimisation was selected as the method for optimisation for a few rea-
sons. Firstly, it is a relatively straight-forward optimisation technique, unlike GP and GA
methods where more processing is required to establish the nodes for the algorithm, the tree
construction and the cross-over and mutation operators. PSO has another advantage over
GP and GA in that convergence will be quicker, as the particles are constantly moving in the
of the direction of the vector sum of the global best solution, their personal best solution and
their current velocity, which allows for more variety in the exploration of the search space
[4]. Another justification for the selection of PSO is due to the particles encoding a solution
within D dimensional space, which allows for a more precise approach than GP rather than
a random generative approach, as the PSO evolutions are more controlled and thus more
reliable as no mutation or crossover operators are applied. A final reason is PSO has had
little research done with the algorithm for evolving CNN architectures, especially regard-
ing CNN s for text classification. Exploring this research space allows for more impactful
research.

2.7 Related Work

There is limited research on evolving CNN for text classification. To the best of the author’s
knowledge, there are no publications on evolving CNNs for text classification with PSO as
the method of evolution. However, there are many publications that deal with evolving
deep neural networks using PSO, and were deemed sufficiently similar to justify their in-
clusion in the background survey. The following section is split into sections covering the
main topics pertaining to the project.

2.7.1 Convolutional Neural Networks for Text Classification

One of the first proposed methods of using CNNSs for text classification was by Kim in 2014
[2]. CNN:s for text classification work by the spatial orientation of the input being preserved.
In text, this equates to the structure of sentences where the words appear next to each other
and their sequences. Filter maps can be applied to extract patterns in the text to discern the
sentiment for example, where negative words will appear more often than positive. Vary-
ing the size of the filter maps allows contextual understanding to be developed too, through
N amount of words appearing in succession, denoting a happy or sad phrase. A caveat of
using text with a CNN is the text must be converted an acceptable format, as CNNs are de-
signed to operate using numerical data. To achieve this, the technique of word embeddings
is utilised. Word embeddings are a technique to represent the vocabulary of a document
through dense vectors that have to be learned for a particular corpus. The vector space
used to represent the words aims to group similar words by learning their distribution. The
distribution of a word is learned by capturing similarities and their usage in context to the
entirety of the vocabulary; similar words are represented in a similar way to capture their
meaning. Thus the position of a word within the vector space is dependent on every other
word in the vocabulary. Each of these dense vectors is mapped to a corresponding location
in an embedding matrix. Words are initially encoded as a sparse vector that has matrix mul-
tiplication applied to it to retrieve the corresponding dense vector from the mapped location.
The dimensionality of the output of this layer is known as the embedding dimension. This
weight matrix forms what is known as the embedding layer. The embedding layer is the-
oretically similarly to a fully-connected layer which outputs a dense vector per word from
the input document. This dense vector is the input layer for a text-based CNN. Yoon pro-
poses in his research that using pre-trained word embeddings when training a CNN for text
classification leads to a strongly performing classifier, as opposed to a random initialisation
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[2]. He also concludes that even with a simple structure, performant results are achievable
when using pre-trained embeddings.

Conneau et al. [18] uses character-level CNNs for text classification. Character-level
means the input of the CNN is not a singular sentence, or a body of text, it is instead all
the characters in the text. They are extracted and used as the input sequence. This means
their work can operate on many languages as it is the individual character, not the semantic
of words that is being interpreted. They manually designed an architecture for their usage,
and achieved promising results relative to traditional NLP methods.

Zhang et al. [1] are as far as the author is aware, propose the deepest CNN for text
classification at 29 layers deep. Their work represents a translation of principles discovered
in CNNs for image-classification that deep and narrow structures can lead to strong classi-
fication accuracy [19]. They too use character-level input sequences, as well as having an
extremely dense architecture with many convolutional plus pooling layers. Their work con-
siders manually designed architectures at depths of 9, 17 and 29, and for each depth they
test 3 different pooling strategies. They achieve strong performance, outperforming all other
methods on the datasets tested.

Both of these works use the datasets selected for the evaluation of the project work, thus
the work serves also as a comparative measure of performance.

Lee and Dernoncourt [20] propose both an recurrent neural network (RNN) and CNN
for text classification, using short-text input sequences. Short-text in this scenario means
defined sequences of text but not sentences or whole documents, their primary testing used
3 words. The designs for their architectures involving many convolutional layers extracting
features from a series of short-texts, then a max-pooling layer is applied for down-sampling.
This leads to a shallow and wide architecture. Their models achieve state-of-art results
across the datasets tested.

Rios and Kavuluru [21] perform biomedical text classification using CNNs. They are
the few academic researchers to use sentence input sequences. They base their model off
of Yoon’s work [2] by applying various filter window sizes over the input text to then have
a singular pooling layer to perform down-sampling. In addition to the model, they also
performed similar tests to Yoon’s on a variety of text embedding initialisations. Across the
medical classification datasets used, their work achieved promising results relative to prior
methods. Their research represents the promise evolving CNNs for text classification can
have, if applied to fields like medical research, the practical impact could be quite beneficial.

All aforementioned research on CNNs for text classification all share a distinct common-
ality in that their architectures are manually designed, as opposed to an evolved approach
for architecture design. Their individual implementations differ in terms of what research
they cite as justification for the the design of their architectures, but have yet to explore
evolving CNNSs for text classification. This is a key limitation within the research field that
is addressed by the project work.

2.7.2 PSO for Hyper-Parameter Optimisation

Yamasaki et al. [22] used PSO to perform evolution on the parameter settings of an image
based CNN. Their contribution includes being one of the first to optimise hyper-parameter
settings for CNN with a fixed architecture. They state their form of PSO uses only 2-4% com-
putational load compared to standard PSO, with this being their primary contribution. This
works by using Spearman’s ranking correlation which is calculated to determine when the
accuracy fails to improve a significant amount after a certain number of epochs. Secondly,



they employ a volatility approach by looking at the stability of the network structure. When
their measure becomes constant over time, they can compare the performance difference
between particles. This is a huge advantage as they noted when the correlation ranking
was over 0.8, the volatility stabilised and was used to determine the amount of epochs.
This is how they accounted for such computational improvement by having a small num-
ber (5-10) of epochs. They optimise the kernel sizes, padding, number of feature maps, and
types of pooling where the project solution aims to enhance an increased number of hyper-
parameters. One hyper-parameter they omit is stride size, as when the stride size becomes
too great the convolutions will not function well as they will not capture key detail. Mine
will be different, as when this hyper-parameter becomes too large the system should tend
away from the higher ranges and thus not be an optimal position in the swarm. Another
feature of their work is they do not cap the randomness of the parameter distribution at
the start of PSO. This is a disadvantage that should be avoided. Having uncontrolled pa-
rameters and not setting reasonable bounds from known well performing ranges and is a
disadvantage to the optimisation of the system.

Ye [23] has the hyper-parameters encoded as a vector of m-dimensional real-number val-
ues. The parameters used are learning rate, dropout rate, momentum, and weight decay, in
addition to the number of neurons per hidden layer. Whilst real numbers allow for efficient
processing, the structure of this scheme is limited by the length of the encoding strategy, it is
practical albeit not scalable. A disadvantage of Ye’s proposed method is using time-varying
social and cognitive constants, and inertia. The time-varying mechanism seeks to reduce
the explorative nature of PSO by focusing on the global best solution to avoid local minima.
However, this assumes the initial global best solution is the one to be sought out, potentially
missing a better solution. One advantage that offsets the aforementioned issue, is ensemble
learning. Due to PSO being a population-based optimisation method, Ye harnesses the top
particle solutions to form an ensemble model for the task at hand.

Lorenzo et al. [24] discuss using PSO on Deep Neural Networks (DNNs) to perform
hyper-parameter optimisation. This practically equates to a CNN for all intents and pur-
poses. Their contributions include the use of two metrics of evaluation to govern whether
the PSO algorithm should finish early. Firstly, if the position of the previous GBEST from
the new GBEST is less than a minimum threshold, end optimisation. Secondly, if the fitness
value of the most optimal particle only increased below a minimum threshold, end optimi-
sation. This is an advantage as it prevents two optimal solutions continually pivoting for
the best position. The second criteria ceases the optimisation after it establishes the fitness of
the value is stagnating, ceasing to improve. Both of these metrics reduce the computational
cost of utilising PSO, similar to the prior paper mentioned. We sought to utilise metrics pro-
posed in this paper for the third objective, and improve upon them by analysing more than
just the change in GBEST solution.

2.7.3 PSO for DNN/CNN Architecture Optimisation

Wang et al. [25] performs PSO with a novel variable-length encoding approach to CNN
architecture. Wang proposes a structure based on IP addresses, where each component sep-
arated by a period of the IP address represents a layer. Each component is an 8 bit value
ranging from 0 to 255. This can be represented by one dimension, but this method goes
further to fragment large IP component values into a number of smaller values representing
a new dimension to achieve convergence quicker through exploring more dimensions, and
allow the encoding of more hyper-parameters. This is an improvement to the PSO field, as



this IP address vector representation can encode any deep neural network layer, alongside
being extended to an increased byte length. In addition to this, having a disabled layer -
a layer that performs no operations - allows for variable-length encoding which has long
been a limitation of using PSO. However, the encoding scheme is still limited by a preset
maximum length, it can only decrease in depth, not gain it. Wang also proposes a form of
accelerant coefficient change, by allowing dimensions to be more explorative or exploitative
due to the variable value. Traditionally these are set constants for all particles regardless of
the dimension. I hypothesis this method may not be optimal - altering these constants - as
analysis must be done to find how to best vary these constants with respect to the dimen-
sion values. Wang’s code was initially utilised as a way of achieving the first objective. His
work was initially aimed at replacing the baseline classifiers for the initial comparison for
the project work. The usage of his work is detailed in the next chapter.

Fielding and Zhang [26] propose a multitude of methods to enhance PSO for evolving
the architecture of a CNN for image classification. Their method shows excellent results
relative to the dataset used. The basis for their architecture is the architecture of VGG-16,
a performant CNN architecture, and modifying it slightly [19]. The form of PSO they use
is enhanced by adaptive acceleration coefficients, their first contribution. Instead of fixed
values the importance of the global and personal components is reversed in later genera-
tions, with various cosine and crossover functions used to calculate these new values. This
allows different search behaviours to be exploited and used within their methods. Their
second contribution is a form of parameter sharing through weight inheritance and a table
lookup. The former is achieved by having architectures inherit weights from previously
trained particles. The latter is achieved by establishing a table that is populated by trained
blocks within the CNN individuals. It is used when a block that has been previously trained
reappears in a different particle. If so, the previously trained weights are inherited. Whilst
their system is performant, an issue may occur when applying the methods to a different
solution space, where the parameter settings for their methods will need to be recalculated
to be performant. My solution furthers research like this by exploring new ways PSO can be
enhanced to aid training.

Albeahdili, Han and Islam [27] discuss in their work an optimisation to the traditional
back-propogation algorithm that uses stochastic gradient descent, by introducing PSO as an
initial training scheme for CNN architectures. Their proposed approach works by perform-
ing PSO on a population of CNN architecture weights to optimise them. When the error
stagnates, retrain the particles otherwise apply GA to the population to stimulate the par-
ticles by applying genetic operators to them, effectively regenerating the population. This
means the diversity in the search space is always high, and can steer PSO away from local
optimums which in conjunction with premature convergence that is known to occur. In ad-
dition to this when a generation has finished the GA-PSO aspect of training, SGD is applied
to accelerate the training further. This enhanced algorithm is very promising research as it
is not always a singular method that proves successful, but a combination of methods to
balance out the drawbacks of others. A limitation of this approach however is due to the
introduction of GA, even though high diversity is maintained, for such a stringent training
process reproducing the population probably means the training time for this algorithm is
relatively long. This method is also hampered by not evolving the architecture, moreso the
weights for a given architecture which means the method has an artificial cap it can reach.

Junior and Yen [28] too use PSO to optimise CNN architectures. They propose a variety
of methods to optimise the use of PSO and the training of the architecture. The first is calcu-
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lating the difference between the convolutional and pooling layers to establish how much
one particle should change and be influenced by the PBEST and/or GBEST. The second is
their velocity calculation, where a sum of differences is taken between the current particle,
PBEST and GBEST to establish the change in velocity. In addition to this, they also have
a mechanism that allows unlimited depth to be added to the CNN, in the form of if by a
random number threshold a layer is selected to be compared with the current particle, they
layer can be added or removed, removing the artificial limit imposed by PSO. It is interesting
to know they train their particles for a singular epoch as the evaluation criteria when per-
forming PSO. Their approach takes the difference between layers to calculate the velocity.
However, they do not consider the ratio of the difference in layers, they merely determine
the difference between layers as a numeric sum, and if the layers between particles do not
match, a value is resolved to be in-between both which can lead to inaccuracies. In addi-
tion to this, the velocities of layers are not even calculated for particles with no difference
in layers, as well as fully-connected layers remain untouched for the initial calculation. My
ratio-based velocity strategy instead deals with the ratio between the hyper-parameters of
the layers, as well as considering the fully connected layers as layers that can be evolved,
unlike this limited approach.

2.7.4 PSO for Feature Selection

Tran et al. [29] proposes a variable-length PSO encoding scheme for Feature Selection.
The paper introduces VLPSO a variable-length encoding scheme that operates by a length
changing mechanism, where if GBEST has not changed after a predefined number of itera-
tions, the current swarm is updated and the lengths of the particles are varied. The length
changing mechanism works in tandem with a new initialisation method called population
division. This method sections particles into divisions with varying lengths to facilitate a
diverse population. When the stagnant GBEST iterations value is reached, the length of the
particle with the best performing division becomes the longest length of all particles, and
the rest of the particles are resized. This method is less applicable to the current project
as a division based approach to CNN architecture is not feasible. A benefit of this method
reduces a premature convergence as the particles can have their length altered to avoid lo-
cal optima, to find potentially better regions in the search space. By reducing the length of
particles, computational cost is reduced also. Similar to research by Wang et al. [25] the
encoding scheme in this paper is important work within the field of PSO, as developing a
variable-length scheme solves a key limitation of PSO.

2.7.5 EC for DNN/CNN architecture optimisation

Knippenberg et al. [30] propose a neuro-evolution based approach to evolving CNNs. The
initial conception of their idea was sourced from Large-scale evolution of image classifiers,
which acts as a baseline of using genetic programming to evolve a CNN. They saw issues
with how the selection process within the population was conducted, it incurred a large
computational cost, so have sought to improve it. Their method involves evolving a set of
convolutional autoencoders, to find the best one to train a population of CNNs. The pair-
ing of the most effective CNN and autoencoder creates the most optimal overall network.
They designed their own set of mutations for the encoders to aid the initial evolution, as
well as used a Pareto front approach to determine the most performant autoencoder. Au-
toencoders were used in an effort to reduce the input sample sizes. Their research showed
the approach could reduce training times by a factor of days, with in some instances twenty
percent more networks being generated throughout the process [30]. This approach is how-
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ever flawed by the inherent fact you are training a set of autoencoders before you even train
your networks, meaning the training time reduction gained may not be offset by this initial
evolutionary process. This EC approach is still significant as any methodology that reduces
training time is valuable.

Zhu et al. [31] developed a novel solution based on an EC method similar to PSO, Ar-
tificial Bee Colony (ABC). They perform hyper-parameter optimisation by using ABC in a
three phase approach. Firstly, employed bees use a local memory factor, similar to the "cog-
nitive constant” in PSO, to search a new area of the search space. Secondly, onlooker bees
receive the updated search information from the previous step. Thirdly, scout bees find a
new area to search if their local memory of a previous position has been dropped. They
too use only five epochs to train each CNN in the evolutionary procedure, and a reduced
training set count. This approach also extends to evolve batch size, learning rate and rule.
Their overall encoding is fascinating as it deals with layers in a "block" approach, encoding
the layers in a vector within the larger encoding. The rule they developed is if a pooling
layer is to exist, it always follows a convolutional layer. The approach is further simplified
by limiting the pooling type to be only max, and a fixed stride size. I evolve the stride size,
but fix the pooling type based on prior research proving max is the best pooling operator
for text classification [32]. However, the inherent complexity of their encoding scheme lead
their research to not be complete due to the computational cost.

Yanan et al. [33] proposes an EC method using GA to evolve performant CNN architec-
tures for image classification. The primary contributions are a new encoding scheme that
extends the depths of CNNs by introducing skip connections as a layer that can be evolved,
as well as running population evaluation across GPUs asynchronously. Firstly, the mutation
operator as part of the CNN-GA strategy can add a skip or pooling layer, remove a layer or
randomise the hyper-parameter values of a block. Secondly, the crossover operator allows
for variable length individuals, meaning there is a higher ceiling on the potential evolu-
tions per individual that can occur. As part of the algorithm an environmental selection
is employed, to filter the top individuals for the next generation. One benefit of the algo-
rithm is it requires no pre or post-processing, a truly manual system for the task at hand.
One aspect that is highlighted is the reduced probability of a pooling layer being evolved.
Down-sampling affects the total information the system has to process, thus limiting the
addition of this layer to the population may increase the performance. In contrast, there is
a higher probability of mutating a skip layer, as this deepens the CNN to aid in the perfor-
mance. Relative to state-of-the-art algorithms on selected data-sets, the proposed algorithm
outperforms almost all competitors.

2.8 Summary of limitations

1. There is a lack of academic research on PSO for automatically evolving CNNs, espe-
cially for text classification.

2. Most methods change a small number of hyper-parameters, thus not evolving the
CNN to a great degree.

3. A limitation exists with the use of the "social" and "cognitive" constants to control
training time as they reduce the explorative or exploitative nature of PSO.

4. There are no optimal formulas to calculate the difference between two encoded CNN
particles using PSO, which is critical to determining how close a particle solution is to
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the GBEST or PBEST position.

5. The encoding scheme for CNN architectures using PSO is critical to evolving a per-
formant architecture. However, there are no optimal encoding schemes proposed in
academia yet.

6. All classifiers for text classification are manually designed, and do not use any evolu-
tionary computing techniques.
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Chapter 3

Design

3.1 Choosing Tools and Technologies

Keras was chosen as the neural-network library for the project. Keras is comprised of many
deep-learning modules written in Python for academic usage. Keras has enabled the imple-
mentation of the first two objectives seemlessly due to the ease of use of the library. Tensor-
flow or PyTorch are libraries that have the same functionality required for this project. These
two options are promising for the future development of the project as their modules extend
beyond Keras’, allowing for in-depth deep-learning development through lower level mod-
ules. However, Keras has a lower learning curve and is suitable for the initial objectives.
Likewise, PyTorch and Tensorflow require a more delicate setup when it comes to package
and OS versioning, where Keras did not.

PySwarms is the library used for the PSO implementation for the first objective of the
project. Itis a robust, frequently updated PSO library that has allowed for the initial solution
to be developed [34]. PySwarms allows for various usages and implementations of the PSO
method. This library was chosen over two other options, a personal implementation and
pyswarm. A personal implementation in the initial stages of the project poses challenges to
the development as an understanding needed to be developed in how to implement PSO,
detracting from the other objectives which is not ideal. However, a personal implementa-
tion was developed for the latter objectives. PySwarms is easier to use than Pyswarm, in
addition to having a greater breadth of documentation and is regularly updated. For future
development, we will require an extension of this library through implementation of our
own methods, or, an entirely independent implementation of PSO.

3.2 Text Preprocessing

Text classification has an inherent issue with the data used to train and classify. Much like a
blurry image, text can contain a variety of uninformative characters and unexpected format-
ting which increases the difficulty of accurately classifying a document. We have opted to
preprocess our data for the following reasons. Firstly, it cleanses the data of content such as
punctuation, numbers and extra white space as these aspects of the text have little predictive
power in addition to being more information the classifier has to process. Secondly, as a con-
sequence of cleaning the data the vectors generated for the text representations are shorter
and more communicative of the overall sentiment as non-predictive elements have been
removed. Various publications do not preprocess data and perform classification on the
data as it is [18]. However, the project aims are to develop methods of evolving the hyper-
parameters and architecture of a CNN for text classification, thus it is in our best interests
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to feed the CNN important information. An additional final step limits the total corpus to
the most frequent words. Another approach would be to replace the lower frequency words
with part-of-speech tagging (POS tagging); converting them to their base particular part of
speech; nouns, verbs, adjectives, etc. This would reduce the overall dimensionality of the
input by changing the representation to a simpler value. However, the word embeddings
mentioned below solve this issue of losing information of removing words by incorporating
sentiment information which is more indicative of the context and content of the text than
simply POS tagging.

3.3 Word Embeddings

The project also requires a form of embeddings for Text Classification. Pre-trained em-
beddings were shown to increase classification performance [2]. As such, the embeddings
utilised for the project are sourced from GloVe, developed by Pennington et al [35]. GloVe
embeddings are developed by global and local statistics of the co-occurence words in the
contexts it appears in the document, to derive the semantic relationship. If words co-occur
they are deemed to be semantically linked. Another option for embeddings which is widely
used in literature is word2vec. However, Pennington et al [35] concluded that their model of
word embeddings, GloVe, consistently outperformed classification tasks that used word2vec.

3.4 Baseline Classifiers

The premise for the first objective was to generate a set of CNNs for text classification to
be used for analysis to inform the design of the PSO solution. The initial design for this
section was not my own. As previously stated in the background, we utilised Wang’s work
for a baseline classification result [25]. This is because he had created a promising PSO im-
plementation for classification that would have been an extensive baseline to evaluate the
project work against. However, his work is based upon image classification. This posed a
significant problem as a conversion was required to train on, and classify text. As elabo-
rated upon in the implementation, this approach was attempted but it was deemed baseline
classifiers that did not evolve were better. Classifiers without evolution were a better option
as developing eight different architectures as classifiers enabled an investigation into what
exactly the system should aim to evolve in terms of hyper-parameters. Analysing the results
of the different architectures developed an understanding of what is required for the final
solution.

The design for the implementation of the baseline classifiers are simple three till ten
layered architectures. Each architecture has at least an embedding layer, a convolutional
layer, a pooling layer and a fully connected output layer. The number of layers was counted
as the layers between the starting embedding and the final fully connected output layer,
which had the required amount of output nodes per number of classes of dataset. The
layers also used were a max-pooling strategy, and global max-pooling strategy. These were
chosen based off prior research [32], and based off initial testing showing the training per
architecture suffered from a degree of over-fitting thus dropout was included.

A number of hyper-parameter settings were also used per each layer as permitted. The
value ranges for the hyper-parameters were based on a publication by Zhang [32] and ran-
domly deviated from here. This was a critical design decision as an exhaustive approach
to the hyper-parameter setups would be time inefficient. Establishing randomised values
means more meaning can be derived as to what aspects govern the classification of a text,
due to there being potentially multiple optimal solutions. As PSO operates to find an opti-
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mal solution within the search space, having randomised values aids this search by covering
a larger spread of the potential values which allows for more discovery per evolution. Fur-
thermore, this best mimics the output of the PSO system which will look unlike traditional
architecture, as the optimal values may not follow a pattern or correlate in any regard.

3.5 Design of PSO-based Classifiers for Text Classification

Particle Swarm Optimisation is the choice of EC method to optimise CNN architectures
for text classification. The majority of the project work was invested into developing and
analysing the classifiers, developing new encoding schemes, and the PSO implementation.
PySwarms is the aforementioned library used for the PSO solution for the following hyper-
parameter encoding. A personal implementation of PSO is used for the following objective
relating to optimising the architecture. A standard algorithm for PSO is being utilised for
the project. This involves using a GBEST topology for both implementations. In addition
to this, both implementations also share the same form of fitness function, the error value
from training each particle as an individual architecture. The first encoding design for PSO
regards a scheme used to perform hyper-parameter optimisation, with an enforced archi-
tecture. The second encoding design for PSO regards a scheme used to perform structure
optimisation, modifying and comparing various architectures to evolve a well-performing
system. Both encoding schemes cover the second and third objectives of the project.

3.6 Hyper-parameter Encoding

The second objective for the project involved the development of an encoding scheme for
optimising the hyper-parameters of a CNN. The design of the hyper-parameter encoding
is limited to six layers with a hyper-parameter representation encompassing the number of
filters, filter sizes and pooling window size listed below.

’ [nf_ 1, sf_1, sp_1, nf 2, sf_2, sp_2, nf_3, sf_3, sp_3]

nf_X denotes the amount of filters in layer x. sf_X denotes the size of filter window. sp_X
denotes the size of pooling window. This encoding scheme is used for a CNN architecture
with a convolutional layer and pooling layer pair repeated three times to form the six layer
architecture.

The design for this architecture uses six layers as this depth was the most performant of
the baseline classifiers when evaluated on the IMDB dataset. The classifier with six layers
was also evaluated to have one of the highest classification accuracies from the Yelp dataset.
PSO is incorporated into this representation by having a nine-dimensional particle struc-
ture, using the ranges listed above as the bounds for the dimension ranges. The particle
class consists of nine hyper-parameter values that are encoded for a six-layered CNN struc-
ture. Whilst academic work has shown that deep and narrow architectures are performant
for text classification [18], the classification accuracy using the baseline classifiers on both
datasets indicated that promising classification performance can be achieved using a shal-
low structure. This is another reason behind evolving a six layered architecture.

The design for this encoding scheme stems from the simplicity and easy translation it of-

fers when decoding an individual particle. Whilst other implementations use a bit-string im-
plementations [25], [29], for this objective it was deemed excessive to design such a scheme.
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As we are evolving a CNN, a set of convolutional layers and pooling layers were an appro-
priate fixed structure to evolve. The reasoning for this design was the performance of this
straightforward architecture could govern the performance utilising key CNN components,
and highlight issues where additional layers such as a regularisation layer may be needed.
An enhancement to this design could have involved evolving a global pooling layer in con-
trast to a max pooling layer within the encoding scheme. The reason behind this is for text
classification Zhang et al. concluded that 1-max pooling is more effective than max pooling
in general scenarios [32]. However, max pooling was favoured due to the increased hyper-
parameters associated with the layer that can be evolved. Opting for max-pooling allows
for a more performant CNN to be evolved through greater dimensionality.

The ranges of these hyper-parameters are shown in the Table 3.1 below. Unlike Yamasaki
et al. [22], whose research did not include a restriction to the layer hyper-parameters, enforc-
ing a restriction is a benefit to the solution to limit the number of unsuccessful architectures
evolved. Ranges used are sourced from literature recommending suitable values for the
layers [32, 2, 1, 25].

Hyper-Parameter | Lower bound | Upper bound
Num. of filters 32 1024

Size of filter 2 5

Size of pooling 2 4

Table 3.1: Hyper-parameter ranges for PSO evolution

3.7 Architecture Encoding

The third objective for the project involved the development of an encoding scheme for a
CNN architecture. This is a continuation of the previous work done for the hyper-parameter
optimisation where the overall optimisation has been extended to include the architecture
as a solution representation. A key difference is now the layers in conjunction with their
hyper-parameters are being evolved. Another key difference from the previous encoding
scheme is in addition to evolving the individual layers, a new implementation of PSO is
used. PySwarms, the framework used to run the PSO algorithm for the second objective has
been replaced with a personal implementation. PySwarms could have been extended to be
used for this work on the third objective too, but the investment of effort put into achieving
this was deemed better spent on developing the encoding scheme and subsequent methods
associated it.

In addition to this new encoding scheme, two methods were devised to enhance the
optimisation of PSO, detailed in sections 3.8 and 3.9.

3.7.1 Encoding Scheme

The basis of the encoding scheme is to encode a layer and the corresponding hyper-parameters
for that layer in the most effective way possible, a way that will allow for the best perfor-
mance from PSO. The design developed for this objective is an eighteen dimensional con-
tinuous encoding. Each three integers of the encoding represented a new layer or block,
allowing for up to two hyper-parameters per layer. There are six layers per individual. Be-
low is a representation of the encoding scheme where X is equal to six, for a six layered
CNN.
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A key design decision for this encoding scheme was to enable a variable-length encod-
ing. This means providing the ability for an architecture to evolve to be shorter or longer
depending on the problem at hand. As such, the scheme introduces the idea of a disabled
layer. A disabled layer is not a layer used within the final CNN architecture, instead it is
a representation of a layer slot that is not used, thus disabled. These can be evolved to in-
cluded or excluded from the particle dependent on the solution space favouring a deeper or
shallower network.

[1t_1, hpl_1, hp2_1 | 1t_2, hpl_2, hp2_2 |,| 1lt_X, hpl_X, hp2_X]

It_X denotes the type of network layer used x. hpl_X denotes the first hyper-parameter for
the layer hp2_X denotes the second hyper-parameter for the layer. The encoding scheme
is initialised to have a maximum of six layers as based on the results from the baseline
classifiers, and results from the hyper-parameter encoding. The primary reasoning is due
to the initial PSO and baseline results being performant relative to benchmarks in various
papers [18], [36], thus I retained the six layered architecture.

Encoding schemes for PSO in academic research are typically constructed from bit-strings
[29, 25]. The encoding scheme for this project uses continuous values, for the reasons stated
below. Using continuous values allows for a direct translation between the value decoded
from the particle, to the hyper-parameter setting that is used in the CNN. The secondary
reasoning is this allows an easier conversion to a ratio, or probability, for how likely a layer
should be to occur within the automatic CNN evolution by having clearly defined ranges
that require no translation. If I had implemented a bit-string encoding I would require a
system to decode the particle, reducing the time to work on methods to enhance the overall
system.

The ranges of these layer-types are shown in Table 3.2 below. These values correspond to
the /t_X values described in the encoding scheme above. The ranges for these values were
arrived at by initial testing the types of evolved architectures that the algorithm computed
being performant for classification.

Layer Lower bound | Upper bound
Convolutional 1 <=10
Pooling >10 <=20
Fully Connected | > 20 <=30
Disabled > 30 <=35

Table 3.2: Layer type ranges for architecture encoding

There is an equal ratio (a range of 10) for a layer to be a convolutional, pooling or fully-
connected layer. This is in line with CNN development where a convolutional layer is fol-
lowed by a pooling layer, with the potential for a fully-connected layer to be included also
[33, 25, 18]. There is a point highlighted in [33] that discusses the reduced probability of
pooling layers to increase the amount of information the system has, however such work
as [32] describes the importance of down-sampling for text classification thus the ratio of a
pooling layer existing in the architecture was kept the same as the convolutional and fully-
connected layers. In addition to this, the values were also inspired by literature [25]. There
is a decrease of 50% to the ratio that a layer can evolve to be disabled, this is due to the parti-
cle encoding already being shallow, thus the ratio is reduced to allow for a disabled layer to
be evolved, but not at the same likelihood as other layers. All convolutional layers for this
encoding scheme use ReLu activation function. ReLu is a well performing activation func-
tion, as it converges quickly, avoids weight related issues, and outperforms other activation
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functions [37].

In addition to the previous point about the ratios of each layer type, every particle en-
coding has a convolutional layer initialised as the first layer, preceding the embedding layer.
This is to reduce the number of invalid architectures within the initial population pool. If
this step was not implemented, some particles may fail to be trained and thus would need
to be pruned from the population pool.

(3.4, hpl_1, hp2_1 | 17.8, hpl 2, hp2.2 | 31, hpl X, hp2 X ... ]

The above encoding is an example particle that represents a convolutional layer, pooling
and a disabled layer for the first three layers of the architecture.

The ranges of these hyper-parameters are shown in Table 3.3 below. These values cor-
respond to hpl_X and hp2_X values described in the encoding scheme above. Ranges are
again sourced from literature recommending suitable values for the layers [32, 2, 1, 25].
However, I have reduced the ranges of filter amounts for the convolutional layer. This was
done to reduce the time taken to evolve the architectures as there was a noticeable decrease
in time taken to train each particle after this change. To further support this change, there
was no noticeable decrease in performance from this change too. A side effect of this encod-
ing strategy is for the pooling and fully connected layers, only one hyper-parameter value
is used. This is shown below in the table where the pooling and fully connected rows only
list one hyper-parameter, but the convolutional row lists two. In terms of the encoding, this
means after the first value that establishes the layer type, only one out of the preceding two
values may be used as hyper-parameter values if the layer type is not convolutional. The
reasoning behind this is because it allows the encoding scheme to be extensible if required,
as well as the fully connected layer can only use one value for the amount of neurons within
the layer. This too applies to the pooling layer, as using the second hyper-parameter as the
stride size may lose critical feature information thus is not used in the encoding.

Layer Type Hyper-Parameter | Lower bound | Upper bound
Convolutional Num. of filters 1 256
Stride Size 1 5
Pooling Size of window 1 5
Fully Connected | Num. of units 1 768

Table 3.3: Hyper-parameter ranges for architecture encoding

In addition to this referenced literature [32, 2, 1, 25], there is a key change of enabling all
the lower bounds to start at one. For a convolutional layer this means there may be only one
filter. For a pooling layer this means there is may be no reduction in the dimensionality after
a convolutional layer. These changes were made to allow for a more seamless evolution
between the layers, allowing greater transition from a pooling layer to a convolutional layer
and vice versa, as this means there is overlap between each layer’s hyper-parameter ranges.

(3.4, 173, 2 | 17.8, 4, 4 | 31, 2, 2 | ... ]

Shown above is an extended view of the prior example that shows the corresponding
layers and the hyper-parameters. The encoding translates to the first layer being a convolu-
tional layer, with one hundred and seventy three filter maps, using a stride size of two. The
second layer is a pooling layer, with down-sampling window size of 4. The additional "4’
value is not used as the pooling layer only uses one hyper-parameter. The third layer is a
disabled layer, and thus neither of the hyper-parameter values are used.
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3.8 GBEST Inheritance Strategy

In conjunction with the new encoding scheme, the development of additional methods to
enhance the performance of the architecture encoding scheme were developed. These meth-
ods are aimed at aiding the evolution process of the population per generation. Zhang and
Fielding [26] proposed a method that allows weight-sharing between the particles to aid
training. The project work is a development from this method by inheriting values from
other particles.

The first method developed focuses on using elitism to enhance the solution developed
from the PSO algorithm. The premise is when one block of the encoding scheme at a par-
ticular position moves from one layer type to another, if within the GBEST particle there is
the same layer type at the same position, inherit the hyper-parameter values of that GBEST
block. This is where elitism is used, as the GBEST hyper-parameters values replace the pre-
vious values. The development of this method stemmed from analysis of the evolutionary
process showing the blocks would tend towards the upper and lower bounds of the range
for that layer type, but stagnate and not continue to evolve when the layer type changed.
A constraint upon this design is how this limits the diversity of the population as the solu-
tion space around the GBEST may not be explored due to the forced change. However, the
stochastic nature of PSO should enable a local search to take place. An additional design
feature could have been to add a random factor to this strategy being employed, if there
was a chance it did or did not occur per evolution. This has the benefit of allowing some
solutions to perform a global search. It was discovered however that this did little to stem
the issue previously highlighted thus this was not implemented.

Taking the below particle as the current GBEST position found,

(3.4, 173, 2 | 17.8, 4, 1 | 31, 2, 2 ... ]

When the particle below has a change in the first block from a pooling to a convolutional
layer, as that exact position of the GBEST position is also a convolutional layer, it inherits
the hyper-parameters.

| [11, 2, 3 ... ] -—> [9, hpl_ N, hp2 N ... ] = [9, 173, 2 ... ]

3.9 Ratio-based Velocity Strategy

A further development of the prior GBEST Inheritance strategy is a Ratio-based Evolution
Strategy. This is a change in the prior strategy by adapting it to develop a method more in-
line with PSO principles of exploring and exploiting the solution space of a problem, where
the GBEST Inheritance strategy was aggressive and cut down the available solutions that
could be explored. Further to this, the prior strategy shows a reduction in the classification
performance, especially on the Yelp dataset from the baseline classifiers. The premise of this
method is to develop a method that can calculate the difference between two encoded CNN
particles using PSO, as this is a current limitation of PSO. If you are comparing the GBEST
particle’s position and another particle within the population, how is a convolutional layer
as the third layer of the GBEST particle directly comparable to a pooling layer of another
particle. This difference does not factor in the effect these layers have on the overall CNN,
and thus a different approach must be developed, in contrast to simply performing a simple
dimensional position comparison.

The idea of the method is to alter the velocity calculation, specifically the social compo-
nent and cognitive component to enable a smoother update to the position of each particle.
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As the formula for velocity contains a social and cognitive component, and these are influ-
enced by the PBEST and GBEST positions, if the layer types at each position do not match
up, there will be a significant difference when comparing a particle’s position to the best
position that skews the velocity formula.

For example, the social component of the PSO velocity formula involves finding the
difference between the GBEST position and the particles’ position; if at a particular position
the layer types differ, the component will try to calculate the difference between the down-
sampling size and the amount of filters in a convolutional layer. A ratio-based approach is
thus required to allow for smoother evolutions, allowing greater exploration of the search
space. This method like the GBEST Inheritance Strategy only applies when one block of the
encoding scheme at a particular position differs from the layer type at the same position as
a GBEST block. When this occurs, as the velocity for each dimension of a particle is being
updated, each layer type of the blocks within the particle are checked if they differ from the
PBEST and GBEST solutions.

If they do, firstly take each hyper-parameter value of the layer in the best solution, and
divide them by their max range, to calculate the ratio of the value relative to the range. This
ratio is then multiplied by the range of the hyper-parameters of the layer currently being
evolved. The output is thus a value that can be used in the social and cognitive component
formulas as a translation from the difference in layers.

Taking the below particle as the current GBEST position found,

GBEST: [3.4, 173, 2 ... ]

Previously when the velocity was calculated the social component would perform the
calculation as shown below,

Current Particle: [13, 2, 3 ... 1 —-> 173 - 2 = =171

However, after the ratio-based strategy is employed, the resultant value is much more
suited for the ranges of that block being updated.

[13, 2, 3 ... ] —-> 173/256 * 5 - 2 =1

Due to opting for a real number encoding scheme, this is another reason why this strat-
egy is suited as this reduces the difference in encoding different layers by having to evolve
particles with differing hyper-parameter ranges. This strategy circumvents that issue.
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Chapter 4

Implementation

The following section explains the implementation of my solution. Firstly, the input data
is preprocessed and the embedding layer is generated. Then a method of classification
is utilised; either a baseline classifier or the PSO based solution. These methods are then
trained on this input data. Once training is completed, the classifier is then applied to a set
of testing data to establish a classification accuracy, thus an indication of the fitness of the
classifier.

4.1 Text Preprocessing

The text preprocessing performed includes stripping of extra whitespace and punctuation
from the documents. This leaves the documents in an easily tokenisable form with less
noise. In addition to this, only the top fifteen thousand most frequent words were selected
from each corpus to only include the most relevant words per classification task. Otherwise,
meaningless words that do not help learn the overall pattern would need to be learned by
the CNN classifier. This is the initial step of my solution.

4.2 Word Embeddings

The text vectors are generated from the cleaned data. The vectorised documents to be used
as input for the CNN have a max number of 400 words enforced. This has been done to
limit the sparsity of vectors which perform poorly when used as input for a CNN. A sparse
vector is when the majority of the vector has a value of 0. The average length of the docu-
ments is 176 thus 400 was chosen by convention based on similar text classification systems
[2]. As previously mentioned GloVe embeddings are used as the embedding matrix for the
CNN classifiers. GloVe provides a selection of embedding vector lengths to employ; I se-
lected their variation with an embedding dimensionality of 50. This is due to the publication
concluding there were diminishing returns on vectors of greater length [35]. Furthermore,
these word embeddings are trained on the corpus whilst the model is training, to develop
further contextual awareness between the words used in the texts. This is the second pre-
classification step of my implementation.

4.3 Baseline Classifiers

The implementation of the baseline classifier architectures uses convolutional layers, a pool-
ing layer with a max pooling strategy, a flatten layer to account for the dimensionality re-
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duction required and a dense layer. Eight architectures using a variety of the aforemen-
tioned layers with various settings formed the construction of the classifiers. Keras was
integral for the implementation of these aforementioned classifiers. All of the structures
developed had their inner structures based upon options present in the ‘Layers” module
provided through Keras. This implementation was chosen as it made the development of
the classifiers straightforward and interpretable. As these classifiers would go on to inform
the design of the PSO representation, they needed to be clear.

4.4 Hyper-paramter Optimisation PSO Implementation

The second objective implementation of PSO is relatively straightforward.

Algorithm 1 Integration of PSO
1: Process input documents by vectorising words and generating embeddings
2: Initialise a population of particles with randomly encoded values for a six-layered ar-
chitecture

3: while Max generations not reached do
4: for Each particle i do
5: Decode particle to CNN structure and train classifier
6: Evaluate the fitness of trained structure from the particle f(X;)
7: if f(Xi) < f(pbest) then
8: pbest < X;
9: end if
10: if f(X;) < f(gbest) then
11: gbest < X;
12: end if
13: Update velocity, then update position of particle using PSO equations

14: end for

15: end while

16: Construct CNN using gbest and train classifier
17: Evaluated trained CNN

Algorithm 1 shows that firstly, the method initialises a pool of particle solutions repre-
senting hyper-parameters for a six layer CNN architecture. Secondly, these solutions form
CNN architectures that are trained on a portion of the training dataset per each generation.
The output of that step is a loss value on the remaining portion of the training set. This is a
titness measure of a particle on a small subset of unseen data: how performant the position
found is depends on the loss value returned. The lower the loss, the more performant that
particle solution is. A separate portion of the training data is used to reduced overfitting.
This form of evaluation is used in all PSO algorithms for the project work. Each particle
solution then has their positions and velocities updated, using the equations listed in 2.6.
This above process continues iteratively until the max generation count is reached. When
this termination criteria is satisfied, use the optimal position found and build an architecture
from it.

An example particle solution representing the most optimal position found is:

[920, 3, 3, 965, 4, 3, 861, 3, 3]

As discussed in the design section earlier, this comprises the hyper-parameters selected to
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specify the 6 layers - the filter amounts, windows sizes and pooling window sizes per their
respective layers.

Conv. Layer 1: Number of filters = 920, Size of filter window = 3
Max Pooling Layer 1: Size of pooling window = 3
Conv. Layer 2: Number of filters = 965, Size of filter window = 4
Max Pooling Layer 2: Size of pooling window = 3
Conv. Layer 3: Number of filters = 861, Size of filter window = 3
Max Pooling Layer 3: Size of pooling window = 3

These values are then used to construct an architecture in the below form,

Embedding Layer

Convolutional Filter amount 1
Layer 1 Filter width 1

l

‘ Pooling Layer 1 Pooling width 1 ‘

Convolutional  Filter amount 2
Layer 2 Filter width 2

}

‘ Pooling Layer 2 Pooling width 2 ‘

|

Convolutional Filter amount 3
Layer 3 Filter width 3

l

‘ Pooling Layer 3 Pooling width 3 ‘

Flatten Layer

Dense Layer

Figure 4.1: Structure of evolved CNN using hyper-parameter encoding

With this current implementation we have validated the design of the hyper-parameter
representation. However, an issue of diversity exists in the current representation. As a
consequence of evolving only a few key hyper-parameters, the performance of the architec-
ture is limited. The rationale behind this decision was based on the analysis of the baseline
classifiers as these all performed similarly with a major difference being the value of hyper-
parameters. These previously mentioned issues can be remedied by a more complex encod-
ing scheme, which is the next section of the report - an encoding scheme for the architecture
as well as the hyper-parameters. This will allow a more diverse CNN architecture to evolve,
where the current solution will only ever generate the same architecture with variations of
the hyper-parameters. The baseline classifiers showed that varying depths, in addition to
varying layer types will be the most beneficial to achieving optimal performance. Thus, this
knowledge informs the next section of research.
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4.5 Architecture Encoding

The third objective for the project involves the development of an variable-length encod-
ing scheme for a CNN architecture. This has been achieved through a continuous value
encoding scheme comprised of blocks that correspond to a layer and the respective hyper-
parameters. The architectures that are evolved include convolutional layers, max-pooling
layers, fully-connected layers. A flatten layer is added at the end of every evolved structure
to account for the dimensionality reduction required before the final fully-connected layer.
As stated in section 3.7.1, all architectures are initialised with a convolutional layer in the
tirst position also, to reduce the amount of invalid architectures within the population. This
implementation was also done using Keras, but with a personal implementation of PSO. The
general PSO algorithm explained in 4.4 is the same PSO algorithm used in the following sec-
tion. However, an architecture encoding is used in lieu of a hyper-parameter encoding. The
methods described in 4.5.3 and 4.5.4 are implemented in line 13 of Algorithm 1 in 4.4.

4.5.1 Architecture Encoding Scheme

An example encoding scheme is shown below, which when decoded corresponds to an ar-
chitecture of a CNN with a depth of four. The ellipsis at the end is omitted to save space, for
representation purposes all layers following are disabled.

(1.3, 230, 3 | 14, 2.3, 5 | 27, 400, 3 | 5, 67, 3 ... ]

The structure shown below is one of the many possible for this encoding scheme. In
addition to this structure, each layer also has a set of hyper-parameters as per the encoding.
The first convolutional layer has 230 filters with a stride size of 3, the max-pooling layer has
a window size of 2, the dense layer has 400 units and the final convolutional layer has 67
filters with a stride size of 3.

This particle above can be show as the following architecture below:

Embedding Layer

Convolutional  Filter amount

Layer Filter width
Pooling Size of pooling
Layer window

Dense Number of
Layer units

Convolutional Filter amount
Layer Filter width

Flatten Layer

Dense Layer

Figure 4.2: Structure of evolved CNN using architecture encoding

This CNN architecture is what the particle above would translate to when decoded. For
example the third dense layer would have 400 units, and the pooling layer before it would
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have a pooling window size of 2. This also shows how only convolutional layers use both
hyper-parameters in the encoding scheme. This architecture encoding scheme addresses a
major limitation of PSO, by being of variable-length. Much like how the second layer above
is a pooling layer, this can also be a disabled layer, and thus reduce the depth of the overall
architecture.

4.5.2 PSO Optimisation Methods

With a personal implementation of PSO in conjunction with a new encoding scheme, various
mechanisms are established. The first method relates to the generation of the particles. Due
to the encoding scheme being continuous, specific boundaries must be set when generating
the population. For example, an architecture would not work with a pooling layer with
a pooling window size of 178, if the value was taken from the range of the convolutional
layer range from 1 to 256. Therefore, the method generates a random value to represent the
layer type of each block. Layer type being what layer that block is. The hyper-parameters
specific to the layer type are then generated, to be within the preset range values. This block
generation continues until the whole particle is encoded. In addition to this, the first layer
of each particle is always a convolutional layer. This is manually added before other layers
are generated. This reduces the amount of invalid particles within the population.

The second additional method is a pooling check. This was developed to identify and
cleanse particle solutions that are unfit. They are deemed unfit if they are initialised with too
many pooling layers or evolved to have too many. The issue with allowing these particles
in the population is two-fold. Firstly, an increased number of pooling layers vastly reduces
the information in the system, and secondly this behaviour can reduce the dimensionality
of the output from the convolutional layers enough to introduce errors into the system. This
functionality allows the termination of particles within the population that would be unfit
for the task before they have had a chance to be evaluated, thus eliminating influence on the
global population. This method works by iterating over each particle and if there are 3 or
more pooling layers, replace the first and final with a convolutional layer. This occurs when
the population is initialised and seldom when a particle evolves to have an illegal number
of pooling layers.

Below is the full Population Initialisation algorithm.

Algorithm 2 Population Initialisation

1: Initialise total dimensions and boundaries for these dimensions
2: Initialise empty population array

3: while Max population size not reached do

4: initialise empty particle P

5: append Convolutional Layer as first layer
6: for Each remaining dimension P do
7: Generate value, It, for layer type of P[n]
8: Based on It, retrieve the min and max bounds for the layer type
9: for Each hyper-parameter hp do
10: P[n + hp] < Generate random value between min and max
11: end for
12: end for
13: Perform pooling check to reduce pooling layers

14: end while
15: Perform PSO algorithm
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The third method regards how the particle is decoded. As the particle blocks are en-
coded with the layer-type first, this is first translated from the value to the range boundary
it occupies. Then dependent on the layer-type, a layer is then added with the following
two values within the block used as the hyper-parameters for said layer. In the case of a
disabled-block, no layer is added. For example, if the layer type was within range to be a
convolutional layer, the following two values are the amount of filters and the stride size.

4.5.3 GBEST Inheritance Strategy Implementation

To aid the evolution of the particles finding an optimal position, the GBEST Inheritance
Strategy was developed.

Algorithm 3 GBEST Inheritance Velocity Strategy

1: Perform PSO algorithm to update velocities
2: while Max generations not reached do
3: for Each particle P do
Update velocity using PBEST and GBEST values
for Each particle layer block position d do
Update layer type position
if P[d] and GBEST|d] are now within same layer range then
Save GBEST|[d] hyper-parameter values
P[d +1] <~ GBEST[d + 1]
10: Pld + 2] < GBEST[d + 2]
11: end if
12: end for
13: end for
14: end while
15: Continue PSO algorithm

The below algorithm is applied when the layer-type of a block is the same as the GBEST
layer-type at that position. An example being if the GBEST layer-type at that position is a
convolutional layer, save the amount of filters and the stride size. These saved values are
then applied to the particle that is being updated, so that block now matches the GBEST
particle.

This method accelerates the search for the optimum position within the search space by
allowing more particles to "skip" to the regions of the search space that have been proven to
be promising.

4.5.4 Ratio-based Velocity Strategy Implementation

This algorithm builds upon the ideas of the previous method to aid the evolution of PSO,
but in a fashion better suited for the PSO algorithm. It is better suited as this strategy still
maintains the diversity of the population by not immediately adopting the GBEST hyper-
parameters.

As discussed before, the use of continuous values is suited towards a ratio based scheme
as the values within the particle can easily be computed as a ratio representing how close
a hyper-parameter is to the upper range boundary. All that is required is knowledge of
each layer range, as then the hyper-parameter range values can be used to establish a ratio
between the PBEST and GBEST layers.
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Algorithm 4 Ratio-based Velocity Strategy

1: Perform PSO algorithm to update velocities
2: while Max generations not reached do
3: for Each particle i do

4: Update velocity using PBEST and GBEST values
5: for Each particle layer block position d do
6: Calculate social component, social Component
7: if i[d] and GBEST|[d] not within same layer range then
8: for Each hyper-parameter hip, in i do
9: ratio <~ GBEST[d + hp]|/ Upper bound of GBEST[d + hp] layer range
10: convertedValue < ratiox Upper bound of i[d + hp] layer range
11: socialComponent < ¢ X r1 x (convertedValue — i[d + hp])
12: Return social Component
13: end for
14: else
15: social Component < ¢1 X r1 x (GBEST[d + hp] — i[d + hp])
16: Return social Component
17: end if
18: Calculate cognitive component, cognitiveComponent
19: if i[d] and PBEST|d] not within same layer range then
20: for Each hyper-parameter hip, in i do
21: ratio <— PBEST[d + hp]/ Upper bound of PBEST|[d + hp] layer range
22: convertedValue < ratiox Upper bound of i[d 4 hp] layer range
23 cognitiveComponent <— cp X 12 x (convertedValue — i[d + hp])
24: Return cognitiveComponent
25: end for
26: else
27: cognitiveComponent < cp X 12 x (PBEST[d + hp| — i[d + hp])
28: Return cognitiveComponent
29: end if
30: Update velocity of current layer block using computed XComponent values
31: end for
32: end for

33: end while
34: Continue PSO algorithm

This strategy applies in the stage of PSO where the velocities for all particles are updated.
The algorithm begins by iterating over each particle block, and computing the layer type. If
the layer type of the currently updating particle, and the particle it is being compared are
not the same, calculate the ratio between the two. This calculation occurs for each hyper-
parameter. Per hyper-parameter, get the upper bound of the hyper-parameter of the particle
you are comparing the original to. The value of the compared particle’s hyper-parameter is
then divided by this upper bound, establishing a ratio. This ratio is then multiplied by the
upper bound of the original particle’s hyper-parameter range. Hence, the final value is then
used in the PSO velocity formula to replace the PBEST or GBEST position, as shown below

vf‘jl = w * U}y + c1 * 11; % (cognitiveComponent — x!;) + cp * ry; * (social Component — xi,)

As shown in Algorithm 4, this strategy is used firstly when calculating the social compo-
nent, which is dependent on the GBEST particle layer structure, then again when calculating
the cognitive component, which is dependent on the PBEST particle layer structure.
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Chapter 5

Evaluation

The evaluation of the solution will be two-fold: an evaluation on the success of the evolving
network architectures based upon popular test datasets and the time taken to train these ar-
chitectures. Assessing the performance difference between the project solution and baseline
classifiers, using the same datasets, will determine if the project is a success. These base-
line classifiers are used to form a comparison with manually tuned architectures rather than
a PSO implementation, as there are no existing PSO implementations for evolving CNNs
for text classification. An evaluation of the classification accuracy on the same datasets de-
termines if the PSO solutions to evolve the architecture are fit for purpose by improving on
previous results. The time taken to train will be evaluated but it is more important to display
an increase in performance, though a reduction in training time is still a valuable result.

5.1 Experiment Design

5.1.1 Datasets

The following two datasets are used to evaluate the project solution. The baseline classifiers,
hyper-parameter encoding and architecture-encoding of PSO are evaluated against these
datasets.

Dataset Classes | Train Samples | Test Samples
IMDB Polarity 2 25,000 25,000
Yelp Review Full | 5 650,000 50,000

Table 5.1: Datasets

The Large Movie Review or IMDB Polarity dataset contains 50,000 reviews from IMDB.
The task of the dataset is binary classification; determining if a given review is positive or
negative. It was constructed by categorising 10 star reviews by polarity. Negative reviews
were those with 4 stars and below, and positive reviews were those with 7 stars and above.
There are equal numbers of positive and negative reviews, totalling 25,000 instances per
category. There are 25,000 training instances and 25,000 test instances.

The Yelp Review Full dataset is sourced from the Yelp Dataset Challenge in 2015. The
task of the dataset is multi-class classification; determining if a given review received one
to five stars. This dataset contains 130,000 training instances per each review categorisation
with 10,000 testing instances per category too, and this amounts to a dataset with 650,000
training instances and 50,000 testing instances.

However, due to the extent of the Yelp dataset, when training each particle a subset of
25% of the total size was used, meaning each particle only trained on 162500 instances. This
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was deemed necessary to accelerate training. In addition to this, initial testing showed this
reduction in the training set size did not have a noticable effect on the final accuracy. Both
of these datasets have been used in the literature [1, 36, 38, 39, 40, 18, 41], and will inform
the evaluation of the PSO solution in conjunction with the baseline classifiers.

5.1.2 Setup

All experiments were performed on a range of hardware. An Nvidia GTX970 GPU was used
for the baseline classifiers. The rest of the experiments were ran on Victoria University of
Wellington CUDA servers, using the Nvidia RTX2080 and NVidia GTX1080 GPUs installed
on those servers. Each result is an average of the classification accuracy across 10 runs.
The training parameters used for PSO are a population of 20, which are all evolved for 20
generations. PSO parameters are specified by convention in academic practice [32], c1 = 2
=1.49618 and w = 0.7298.

As an early stopping criteria to limit the PSO process, whenever the GBEST error loss
value reamins the same for 5 generations, if on the next generation it ceased to improve
still, the PSO training procedure would terminate and the most performant particle at that
time, the current GBEST, would be used as the final particle solution. All significance results
are calculated using the Wilcoxon signed-rank test, where a + indicates a method has sig-
nificantly differently ranked results to be deemed a valid method, and = indicates the two
compared methods share a similar distribution of results.

It should be noted that the classification accuracy for Yelp Review Full does not factor in
the difference in predicted class compared to the actual class. Yelp Review Full is a multi-
class classification problem. If the classifier predicts 2 stars or 5 stars when the true class was
1 star, the prediction in each case would be considered to be a false prediction and not count
towards the total number of correct predictions. A formula that did compute a classification
accuracy that factors in the distance between the correct classification and the predicted clas-
sification would be more communicative of the actual performance of the classifier as this
would consider how close a prediction was. However, for evaluating the performance of
this dataset, alternative solutions proposed in academia do not use this form of evaluation.
As such, we have decided to use the same evaluation, the total number of correctly classi-
fied instances divided by the total number of classified instances, as this is what is used in
academia thus allows for a fair performance comparison.

Additionally, for the project methods involving PSO, training accuracy results have been
included to provide additional information and context behind the project methods.

5.1.3 Academic Benchmark Results

To inform the suitability of the solution and how effective it is, relative research benchmarks
are used for comparison. Below is a table containing the most state-of-art results for the
datasets used in the evaluation.

Regarding the Yelp Review Full dataset, CL refers to the work by Zhang et al. [1]. S&W
refers to the work by Le et al. [41], and it should be noted this approach does not use a
CNN. Finally, VD29 refers to the work by Conneau et al. [18], referencing their developed
architecture that has a depth of 29.

Regarding the IMDB Polarity dataset, NBSVM-bi refers to the work by Wang et al. [39].
This work too does not use a CNN. ULMFiT refers to the work by Le et al. [40]. The result
they achieved is currently 6th globally. Finally, CNN&LSTM refers to the work by Yenter
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Benchmark Classification Accuracy

Dataset Method Value
NBSVM-bi [39] 91.22

IMDB Polarity ULMEFiIT [40] 95.00
CNN&LSTM [38] | 89.50
CL[1] 62.05

Yelp Review Full | VD29 [18] 64.72
S&W [41] 64.9

Table 5.2: Benchmark Accuracies for both datasets

et al. [38]. As shown in Table 5.2, the best result achieved on the IMDB Polarity data is
ULMFiT. The best result result achieved on the Yelp Review Full dataset is S&W.

5.2 Method Results

Below are the results of the classification accuracy of the baseline classifiers from the first
objective. Each result is an average across 10 runs per CNN depth.

5.2.1 Results of Baseline Classifiers

Baseline Classification Accuracy

CNN Depth | IMDB Polarity | Best | Yelp Review Full | Best

3 86.49 £+ 0.29 86.84 | 59.05 4= 0.43 61.14
4 85.53 £ 0.60 85.52 | 59.84 - 0.21 62.17
5 85.48 = 1.08 86.69 | 60.97+ 0.47 62.39
6 86.93 £ 0.58 89.08 | 61.75 & 0.36 62.42
7 85.96 £+ 0.73 88.64 | 61.37 +0.40 62.66
8 85.93 £+ 0.49 87.68 | 62.56 = 0.41 63.43
9 84.49 +£1.52 86.73 | 61.19 £0.73 62.32
10 84.91 £+ 1.37 88.18 | 60.87 & 0.47 61.44

Table 5.3: Baseline Results: Accuracy

According to the results shown in Table 5.3, the baseline classifiers achieved a consistent
accuracy across both datasets, in addition to being very similar. The ranges for accuracy
on IMDB do not vary greatly. However, it can be noted that there is a trend towards the
six-layered architecture being the most performant. The results on the IMDB dataset are
comparable to published results by Yenter et al. [38] where they achieved an accuracy of
89.50. Whilst the results are on average 3% lower than this benchmark, they incoporated
an LSTM into their architecture which does not allow for a fair comparison. A similar case
happens for the Yelp Review Full dataset, the accuracies are relatively stable with a trend
towards the middle ranges of CNN depth. The accuracy on the Yelp Review Full dataset
is promising against current state-of-art CNN structures for text classification [18, 1]. One
aspect to note is how the accuracy across all of the classifiers shows little variance from the
shallowest to the deepest architectures. The first reason this may occur is due to the random
initialisation of the baseline classifiers, they were not optimally tuned for the classification
tasks and thus have performance that is not indicative of their depth. Another reason may
be due to these experiments only being run 10 times, a claim could be made about the lack
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of statistical significance. However, the standard deviations for the accuracies on a majority
of the architectures is sub one-percent, thus this shows the results are reasonably stable.
It can also be noted that the nine and ten layer architectures experienced a performance
drop, possibly due to over-training of the architecture. The evaluation of these classifiers
informed the development of the encoding schemes throughout objective two and three,
with the encoding scheme using a six-layered architecture as the basis.

5.2.2 Hyper-Parameter Encoding Scheme

The following section details the results regarding the second objective. PSO-HO refers
to the developed hyper-parameter encoding scheme, as part of the second objective. The
significance test is performed on the results from this method compared to the 6 layered
baseline classifer result, on both datasets.

5.2.3 Results of PSO-HO Testing Performance

PSO-HO Testing Accuracy

Method | IMDB Polarity | Best | Significance | Yelp Review Full | Best | Significance

6 86.93 £ 0.58 89.08 | N/A 61.75 £ 0.36 62.42 | N/A

PSO-HO | 86.33 £ 2.06 88.08 | + 61.20 £1.48 62.53 | +

Table 5.4: Testing accuracy of the hyper-parameter encoding, comparing PSO-HO to the 6
layered encoding

The results shown in Table 5.4 indicate that the hyper-parameter optimisation is perfor-
mant relative to the baseline performance, for both IMDB and Yelp. For IMDB the averages
between the baseline and PSO-HO is only 0.60%. This is a promising result and lends cre-
dence to the fact that automatically evolving the hyper-parameters is able to be performant.
However, the standard deviation of PSO-HO is not promising for the stability of the method
as this may just be random variance from the seeds used, meaning the method is not per-
forming the same regardless of the seeding. The significance measure for the IMDB dataset
indicates that this method is significantly worse, which is not an optimal result. However,
the average accuracy between the two methods across both datasets remains relatively the
same.

For Yelp, the PSO-HO method is shown to be performant. This is due to the accuracy
from PSO-HO only being 0.55% less than the baseline. It is critical to note that the best
performing architecture evolved for Yelp using PSO-HO surpassed the average, and the best
accuracy of the baseline. This too shows the method can have promising results. However,
this method too is also significantly worse than the baseline values.

The PSO-HO method is not as performant as the baseline classifier on average, however
on the Yelp Review Full

5.2.4 Results of PSO-HO Training Performance

The training accuracy across both datasets using PSO-HO outperforms the baseline classifier
with 6 layers. Compared to the test accuracy, this is the opposite result. We believe this is
for a few reasons. The first is due to the inherent tendency for an evolutionary method to
overtrain, as it is continually enhancing the evaluation and is only evaluated against the test
set when the final evaluation is performed. This promotes overfitting.
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PSO-HO Training Accuracy
Method | IMDB Polarity | Best | Yelp Review Full | Best
6 97.05 + 0.64 97.46 | 67.85 £ 0.95 68.49
PSO-HO | 98.01 + 1.38 99.35 | 70.29 £ 2.01 74.74

Table 5.5: Training accuracy of the hyper-parameter encoding, comparing PSO-HO to the 6
layered encoding

The second reason is there is no formal regularisation used within the training scheme
for PSO-HO. Due to being an evolutionary method, it is expected to develop a more perfor-
mant than a randomly initiated, manually designed, baseline classifier. Whilst the perfor-
mance of each trained CNN is evaluated on a set of unseen instances to reduce the effects of
overfitting, it appears that both classifiers suffer from overfitting.

5.2.5 Architecture Encoding Scheme

The following section details the results regarding the third objective. The methods devel-
oped for the third objective are the architecture encoding scheme, as well as the GBEST
Inheritance Strategy and Ratio-Based Velocity Strategy. The significance test is performed
on the results from the two methods PSO-GI and PSO-RV, compared to PSO-HO, on both
datasets.

PSO-GI and PSO-RV Testing Accuracy
Method | IMDB Polarity | Best | Significance | Yelp Review Full | Best | Significance
PSO-HO | 86.33 4 2.06 88.08 | N/A 61.20 £ 1.48 62.53 | N/A
PSO-GI | 85.97 +1.03 87.82 | + 54.18 +1.30 55.70 | +
PSO-RV | 86.68 £ 0.80 87.68 | + 58.17 & 0.61 59.42 | +

Table 5.6: Testing accuracy of the architecture encoding, comparing PSO-GI and PSO-RV to
PSO-HO

PSO-GI and PSO-RV Training Accuracy
Method | IMDB Polarity | Best Yelp Review Full | Best
PSO-HO | 98.01 4= 1.38 99.35 | 70.29 £2.01 74.74
PSO-GI | 94.76 £14.99 | 100.00 | 94.69 + 3.97 98.17
PSO-RV | 99.23 4 0.99 100.00 | 86.55 £ 3.40 90.15

Table 5.7: Training accuracy of the architecture encoding, comparing PSO-GI and PSO-RV
to PSO-HO

5.2.6 Results of GBEST Inheritance Strategy with Architecture Encoding

PSO-GI refers to the developed GBEST Inheritance Strategy, as part of the third objective.

The results shown in Table 5.5 indicate that the PSO-GI method is the weakest out of all
methods developed for the project. This is reflected in both datasets, especially on the Yelp
dataset where there was a performance drop. The validity of the method is called into
question from these results, as this shows evolving the CNN architecture using PSO may

not be as performant as a hyper-parameter optimisation. PSO-GI is also significantly worse
than PSO-HO.
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We attribute this loss of performance to the loss of diversity within the population. As
the PSO-GI method allows for particles to inherit blocks from the GBEST particle solution,
areas of the solution space are skipped over and never explored. In these regions, there may
be a local optimum that would enhance the performance of the system.

It should be noted that PSO-GI outperformed the best result from PSO-RV on the IMDB
dataset. We attribute this to the particular seeding of the data, where a local minimum was
found early and explored. Due to the PSO-GI method allowing for a local search near the
current GBEST position, this is a valid reason why the best performance of PSO-GI outper-
forms PSO-RV on the IMDB dataset. This result speaks to the solution space of IMDB also
being relatively simplistic. Due to being a binary classification, the class boundaries may
be quite large. However, when compared to Yelp, a multi-class classification problem, PSO-
GI is the weakest method. This indicates for a more complex search space such as Yelp,
the reliance on a local search decreases performance, and a global search still needs to be
performed.

The training performance of PSO-GI is the highest amongst all the methods on the Yelp
Review Full dataset, and second on IMDB Polarity. This confirms that the reduction in test
performance can be attributed to overfitting. The PSO-GI method enables a local search
of the most well performing GBEST particle at any evolution. However, this decreases the
diversity, and thus will overfit to the few local minimum regions discovered. In conjunction
with this, it also has an unusually high standard deviation. Upon inspection, this is due to
an outlier. One experiment run had a training accuracy of 54%, but a testing accuracy of
83%.

5.2.7 Results of Ratio-based Velocity Strategy with Architecture Encoding

PSO-RV refers to the developed Ratio-based Velocity Strategy, as part of the third objective.
The results shown in Table 5.5 indicate that for both datasets, PSO-RV outperforms PSO-GI,
and shows promise compared to PSO-HO especially on the IMDB dataset, where PSO-RV is
the most well performing method. It outperforms PSO-HO by 0.35% on the IMDB dataset.
PSO-RV is also significantly worse than PSO-HO.

A significant metric associated with the PSO-RV results is the standard deviation. Across
both datasets, the standard deviation is below 0.8. Relative to the other results, this value
is the lowest. This indicates the PSO-RV method is more stable than the other methods, as
well as the accuracy provided is more likely to represent the actual accuracy if ran for 30
experiment runs.

We attribute the success of this method to the more common sense approach to using
PSO. The output of the PSO-RV method within the code is a value that better represents the
position of the particles in space, rather than their raw hyper-parameter value which is used
in the PSO-GI method to update the hyper-parameters of each layer. This allows for lesser
changes in the velocity, promoting exploration. PSO-RV effectively acts as a measure of the
difference between two particles, and once this difference is established, the PSO formulas
can be calculated and return more sensible velocity values.

However, this method did lead to an improved result on the Yelp dataset. PSO-RV saw
a 4% increase in accuracy from PSO-GI, but still trails PSO-HO by 3.03%. A reason for this is
most likely the shallowness of the architecture limits the potential accuracy. The networks
evolved for the Yelp dataset using the PSO-RV method were wide and shallow, often evolv-
ing to be only constructed from convolutional layers. This behaviour indicates that the Yelp
dataset required a deeper architecture with a larger filter map range than what was achiev-
able from the encoding scheme. This is a promising conclusion as further research involved
with evolving deeper structures may prove beneficial.
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The training performance of PSO-RV is the highest amongst all the methods on the IMDB
Polarity dataset, and second on Yelp Review Full. This is an interesting result, due to how
well it performs compared to PSO-GI on the test set.

It is promising to see a lower training accuracy on the Yelp Review Full dataset, com-
pared to PSO-GI. This shows that the developed of PSO-RV after PSO-GI was well founded,
the method avoided a local search and the particle velocities are less sporadic, thus enhanc-
ing the performance. It also shows that a more sensible approach to comparing particles
shows potential to be quite performant. However, this still indicates that overfitting oc-
curred.

5.2.8 Training Time

The following section includes the training times for the various methods. These values are
given in seconds taken to training a full architecture. For simplicity’s sake, only one result
was included from the baseline classifiers as the 6 layered architecture has been the focus of
the development for this project.

Average Training Time (seconds)

Depth IMDB Polarity | Yelp Review Full
6 49.2 2236.0
PSO-HO | 12423 48600
PSO-GI | 10106 68534
PSO-RV | 18661 64292

Table 5.8: Preliminary Results: Time

According to the results shown in Table 5.2, PSO-HO takes the least time to optimise
the CNN architecture. An obvious conclusion is because it does not need to evolve various
architectures, the architecture enforced may inherently not take much time to train. This is
in contrast to the PSO-RV method which can evolve architectures that make take drastically
more time to train. Out of all the project methods, PSO-Gl is the quickest to train on Yelp and
PSO-HO is the quickest to train on IMDB. Compared to the baseline classifiers the results in
Table 5.2.8 are expected, as the evolutionary process is quite computationally intensive.

The reason for PSO-GI ending training quicker on the IMDB Polarity dataset, than the
other methods is due to the early stopping criteria, we propose. As shown by the train-
ing results, a local optimum is reached and over-fitting occurs, thus the error rate does not
increase after this point. Due to the use of elitism in this method, this behaviour is not un-
usual. Contrasted with the better performing method PSO-RV, where this behaviour was
not as prevalent due to using a ratio-based change.

In terms of the project objectives, a primary motivator behind them was the time factor
taken to manually tune an architecture. From these results, if the optimisation is run on a
GPU overnight the optimisation will have finished, without any human intervention. Thus,
a secondary goal for the objectives has been achieved.

5.3 Analysis

Table 5.5 represents the final table of all results regarding the project work. The solution
developed for this project consists of these three methods, PSO-HO, PSO-GI and PSO-RV.
The most performant method developed for the Yelp dataset is PSO-HO, and for the IMDB
dataset it is PSO-RV.
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The image below depicts the final results of each method in Figure 5.1.
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Figure 5.1: Bar chart of project methods averages on both datasets

The first conclusion we can draw is PSO-HO and PSO-RV both have promising perfor-
mance compared to the baseline classifiers. The relative accuracy of the first two, and last
method, indicate the methods developed are performant. They are all based on a novel
encoding scheme for a CNN architecture, automatically evolve to be more performant and
achieve promising results. An aspect that must be considered when judging the perfor-
mance of both methods on the Yelp Review Full dataset is how only a subset of 25% of the
training data was used in the PSO process. This was due for time considerations, however
it may have increased the performance on any of the project methods.

A summary of the methods developed as the project solution is shown in a box plot
below in Figure 5.2.
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Figure 5.2: Box and Whiskers plot of project methods on both datasets
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This plot clearly supports the claim that IMDB is an easier problem for the CNN struc-
tures to classify. Because IMDB is a binary classification problem, the solution space is more
easily separable. For Yelp however, a 5 multi-class classification problem, this is a far greater
issue thus is an inherently harder task to achieve a high classification rate.

Considering the methods developed, in both plots PSO-HO outperforms the other meth-
ods on average, bested only by PSO-RV on the IMDB dataset. This can be attributed to the
reasoning stated above. The single outlier in PSO-HO can be attributed to the stochastic na-
ture of the methods finding a local minimum and never discovering a more optimal position
in the solution space. Aside from this, PSO-HO has the most promising results. However,
regarding the motivation of the project, PSO-HO is the least automatic as it requires a pre-
existing architecture.

PSO-GI has the most variable performance, as shown by the plot the upper and lower
bounds were either tightly clustered to body of the box, or were far enough way to have
an extended tail. This further supports the claim of the variability of the method. PSO-RV
can be shown in both plots to have the most tightly grouped box indicating that 50% of the
results are quite similar.

A proper claim can not be made that PSO-RV is wholly a better performing method
than PSO-HO on IMDB polarity. As shown in the box and whiskers plot, there is a greater
distribution of the middle 50% of results for IMDB polarity of PSO-RV compared to PSO-
HO.

An aspect of the project that has not been considered is the type of architectures evolved,
shallow architectures versus deep architectures when regarding the PSO-RV and PSO-GI
methods. For most researchers, a 6 layered architecture, or less, would be considered more
so a shallow architecture than a deep one. This is important as the authors behind VGG16
showed within their research that deeper networks with less filters could achieve better
results than a shallow architecture [19]. This point could be a reason why the evolved archi-
tectures using the Yelp Review Full dataset are less performant than the baseline classifiers;
due to the imposed limit of the architecture encoding being 6 layers, allowing for deeper
architectures may have proven to be more performant.

Relative to the manually-designed architectures, these results do not match any of the
academic work regarding research done using the IMDB dataset. This is due to a few rea-
sons. Firstly, a lot of state-of-art results either do not use CNNs [40, 39] or they utilise an
LSTM in conjunction with a CNN [38]. This last result is less than 4% better forming than
PSO-RV. This is a promising realisation and supports the validity of PSO-RV being a perfor-
mant method. This is a more comparative indicator of performance than the other IMDB
results.

However, all results on the Yelp dataset show promising performance, especially PSO-
HO which achieved an accuracy less than 4% off the state-of-art results. Compared to VD29,
a CNN architecture with 29 layers, achieving accuracy within 4% of that shows immense
promise for the project solution. All that is required is an extension to the depth the archi-
tecture can evolve, avoiding the shallow and wide architecture problem, and the solution
may excel on this dataset. In addition to this, it is promising that such a shallow network
achieved comparable results.

Considering the project objectives, each of these methods meet the requirements. The
baseline classifier, hyper-parameter optimised classifier, and the architecture optimised clas-
sifier are all novel works that show promising results relative to state-of-art methods.
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Chapter 6

Conclusions

This chapter addresses the future work that the project would benefit from or be extended
by, in addition to conclusionary statements regarding the report and the final results of the
project.

6.1 Conclusions

For this project, various novel encoding schemes and PSO enhancement methods were de-
signed, implemented and evaluated to automatically evolve CNNs for text classification.

The aim of this project was develop a system to automatically evolve CNNs for text
classification. CNNs have shown promising results within the field of text classification,
thus the investigation into enhancing CNN usage is a worthy effort. The motivation stems
from the inherent difficulty to perform such a task, in addition to the lack of research in the
area. This project investigated evolving two aspects of deep convolutional neural network
structures for text classification using PSO. Particle Swarm Optimisation was chosen as the
method to evolve these CNN structures, due to the benefits listed in section 2.4.1. To begin
with, the first objective is achieved through attaining baseline performance of two datasets,
using CNNs where no evolutionary optimisation was used to enhance their performance.
The second objective was met by developing a system to evolve the hyper-parameters of a
fixed CNN architecture. The third objective was met by developing a system to evolve ar-
chitecture as well as the hyper-parameters, in conjunction to two methods that enhance the
usage of PSO. The encoding scheme developed for the third objective is also variable-length,
which addresses a major limitation of PSO. The above developed methods show promising
results relative to state-of-art-methods. These objectives were all successfully achieved. The
aim can therefore be said to have been met through the above objectives.

In summary, the contributions made through the course of this project are:

1. A novel encoding scheme for representing CNN hyper-parameters to aid the PSO pro-
cess. This novel contribution is the first of its kind, and achieves promising results
compared to state-of-art methods.

2. Anovel variable-length encoding scheme for representing CNN architecture and hyper-
parameters to aid the PSO process. This is a significant contribution as it is the first of
its kind, as well as being a variable-length encoding scheme, which addresses a major
limitation of PSO.

3. Two methods that enhance the performance of PSO when used in tandem with the
architecture encoding scheme. This work can be adapted for other indirect encod-
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ing schemes thus are applicable beyond the scope of this project work. The PSO-RV
method achieves promising results compared to state-of-art methods.

In addition to these contributions, to the best of the author’s knowledge, the project work
is the first of its kind to perform evolutionary optimisation on CNNs for text classification,
using PSO. This is significant as the project work proves these optimisation methods are
worth investigating in future research.

6.2 Future Work

The results obtained by the project were promising, they provided an insight into a research
area that has little prior academic work done surrounding it. This addresses a key limitation
identified in the academic work. However, there is a significant amount of work that can be
done to further the research.

The encoding schemes developed are at the forefront of this project, and can be enhanced
to be more performant. In regard to the hyper-parameter encoding, enabling more variables
or differing types would prove useful to enhancing hand-made architectures. In regard to
the architecture encoding, there is a great amount that can be explored. Considering differ-
ent activation functions, different layers, more hyper-parameters and the ability to increase
the depth to avoid shallow but wide networks that often occured during the PSO optimisa-
tion.

Further work can also be performed to the methods aimed at enhancing PSO. The GBEST
Inheritance method has a lot of potential to be implemented with a percentage chance of
occurring, or instead of adopting the GBEST layer block hyper-parameters, it moves to a
random position within a certain range of that block. Considering the Ratio-Based Velocity
method, a differing encoding scheme may be better suited to this approach, one that has less
difference in the layer and hyper-parameter range values. This could be expressed using a
binary-string, or a continuous encoding that uses values from 0 to 1.

Another research direction to consider is how to best evaluate two particles with dif-
fering layer types at the same positions. Simply put, the traditional PSO formula takes the
difference between the GBEST or PBEST particle, and each particle within the population,
when updating the velocity. If a comparison occurs at the same position between a convolu-
tional layer, and a pooling layer, currently there is no further information gathered or used
to understand how effective and necessary that layer is at that particular position. Thus, a
direct comparison only considers how performant the overall architecture is, and by proxy
the layers at each position. The aim of the Ratio-Based Velocity method was to address the
limitation found. However, the Ratio-Based Velocity method was still limited by the en-
coding scheme representation, and inherent structure of the PSO formulas. Hence, further
research can be done regarding this issue.

A direction of future research could also be the incorporation of other deep learning
structures, such as an LSTM which was shown to have excellent performance in [38]. Whether
it is evolving a CNN-LSTM structure in tandem, or just LSTM are both avenues that could
be explored. This is especially true for incoporating regularisation strategies within evolved
CNNs. As shown by the training performances of each method, overfitting was prevalent
in most methods, and is another potential area for future work.
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