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Abstract

Feature and instance selection is a crucial part of pre-processing for machine
learning classification problems involving a large amount of training data. This
is because a significant volume of data will often include redundant features and
instances, which do not contribute in a positive way to the outcome of the algo-
rithm that are being used in the training process. There are many techniques
used to complete this task; however, these mainly treat feature selection and in-
stance selection as two distinct problems. The goal of this project is to create a
solution for classification algorithms in the field of machine learning. Using Evo-
lutionary Computing to encapsulate the tasks of feature selection and instance
selection into a single algorithm.
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Chapter 1

Introduction

Data is a crucial part of any machine learning algorithm [1]. As the amount of data being
produced grows [2], filtering out irrelevant values in data sets becomes more and more crit-
ical. Having redundant features and instances could decrease the accuracy of classification
algorithms, increase their time complexity [3] and cause classification models to overfit[4].

There are several ways to achieve feature and instance reduction; one of the conventional
approaches is through Evolutionary Algorithm[5]. However, most of the current solutions
to the problem are done by dealing with features and instances separately [6]. This is be-
cause the search space is too large when these tasks are performed together, meaning there
could be too many combinations of features and instances to search through. Nevertheless,
combining feature and instance selection into one algorithm is still a task worth investigat-
ing, as it has the potential to achieve higher data reduction while maintaining the accuracy,
as different combinations of features and combination of instances could correlate to each
other. When performing these tasks together, these combinations are more likely to be main-
tained than when the tasks are performed separately, because the algorithm evaluates the
combination of them together rather than evaluating combinations of features and then in-
stances separately.

The goal of this research is to analyse further how combining these two tasks rather than
having them separated may benefit the increase in data reduction and affect the accuracy of
the classification models. The research will focus on developing a hybrid algorithm derived
from Genetic Algorithms and Local Search techniques to achieve this goal.

1.1 Motivation

Classification methods are becoming more popular due to the increase of computational
power in the last decades [7]. This allows computers to process more significant amounts
of data in a feasible amount of time. The amount of data that can be stored, also increased,
allowing the storage of data with many instances(rows in a data set) and features(columns
in a data set).

Classification algorithms are computer programs that allow computers to classify in-
stances [8]; these algorithms require a large amount of data to be accurate [9]. Hence the
growth in data allows these algorithms to perform more accurately on average. However,
some features and instances have none or negative impact on computational tasks, and re-
moving them could improve the accuracy achieved by the algorithms [10].

For a data set with N features and M instances, the total size of the data set would be
N*M. Because feature and instance selection decreases the dimensional of both, N and M,
it has the potential achieve a far greater reduction of data dimensionality than only feature



selection or only instance selection.

Reducing the number of features and instances of a data set decreases the storage ca-
pacity needed to store that specific data set, and has the potential to improve the data set
for classification purposes. The goal of this project is to explore a different approach to the
problem of feature and instance selection, which will reduce the data used for classification.

1.2 Objectives

Genetic Algorithm(GA) has been used successfully to solve both tasks, feature selection [3],
and instance selection [11]. To perform the task of feature selection, Local Search [12] has
also been applied successfully in combination with GA [13]. The overall goal of this project
is to reduce the size of a data set while increasing the accuracy of classification algorithms
using the data set. To achieve this goal, there are four main objectives:

1. Create a simple feature and instance selection algorithm with a classifier accuracy as
the fitness function;

2. Develop well-designed crossover and mutation operators;

3. Develop a fitness function that encapsulates both features and instances used in the
solution as well as the accuracy achieved on the classifier.

4. Implement Local Search and merge it with the implementation of GA.

1.2.1 Objective 1

The representation of an individual and the generation of the initial population are crucial
tasks for GA to achieve adequate results. Creating a basic version of GA to accomplish the
task of feature and instance selection will allow us to explore a good way to specify both, a
generation function and the representation of individuals. Because not much work has been
done on the topic, this might be a difficult task to achieve [14].

1.2.2 Objective 2

To achieve relevant results, GA requires well-designed mutation and crossover operators
[15]. Depending on the task, the design of these can be reasonably tricky. Because this project
is merging two different tasks into one, the design of crossover and mutation operators will
require innovative thinking. Crudely designed operators for this task will lead the algorithm
to perform poorly when solving the classification task.

1.2.3 Objective 3

An adequate fitness function is what will direct the algorithm into a satisfying solution,
rather than performing an utterly random search. The failure to design a suitable fitness
function for the feature and instance selection will result in an algorithm with lousy per-
formance. The proposed algorithm will use a wrapping approach, wrapping classification
algorithms into a fitness function is a commonly used method to measure the fitness of an
individual in GA [3].



1.2.4 Obijective 4

Local Search has been successfully implemented with GA to perform the task of feature
selection [13]. However, it has not been used for the task of feature and instance selection
simultaneously. Incorporating this method into the proposed algorithm could increase its
performance. This algorithm could be useful to further develop the best solutions created
by GA.

1.3 Organisation

The remaining parts of this report are organised as follows. Chapter 2 is a literature survey
describing related work on the topic and motivations for this project. Chapter 3 presents
an overview of the algorithms used as the baseline and explains how the experiments were
conducted to ac hive the results presented in the next sessions. The achievements so far, and
the analysis of the results are covered in Chapters 4 and 5. Finally, Chapter 6 concludes the
report providing a summary of all ideas discussed in the other sections.






Chapter 2

Literature Survey

As computation power increases, Machine Learning [16] has become more popular. The
task of machine learning for classification requires clean data to be accurate. The term clean
data, in machine learning, referrers to data with little to no noise. The data for the machine
learning task is usually divided into two sets: training data set and test data set. The training
data is used to teach the algorithm on how to solve a problem, while the test data is used to
validate how well the algorithm solved the problem for previously unknown data. Given
that the test set is supposed to be unseen, it can not be used in the evolutionary process of
the algorithm. Therefore, when using Evolutionary Algorithms, the training set is usually
split into two, one set used to train the algorithm and the other to calculate the fitness of the
current solutions [17].

To assure that machine learning algorithms perform well on the test set, the instances in
the training set need to have features that follow the same probability distribution to those in
the test set, meaning they are similar. This will allow the algorithm to predict the instances
in the test set correctly based on the training set. Feature and instance reduction are tasks
that can improve that aspect of on the data.

The tasks of feature and instance selection, as crucial parts for machine learning, have
been analysed by several individuals using several different measures. Already in 1999,
there were surveys on methods used to solve the task at the time [18]. Even though these
problems have been analysed for 20 years, there is no final solution only approximations, as
these problems are in the subset of NP-Hard problems [19].

High dimensional data can contain many noisy features and instances, and when used
to train a machine learning model can lead to overfitting [4]. Overfitting is when the trained
model achieves high accuracy on the training set, but the accuracy achieved on the test set
does not correlate. This happens when the model does not learn a generalised solution to
solve the problem and is biased towards the training set. Feature and instance selection can
remove noise in the data, preventing models from overfitting when trained on the training
set.

2.1 Genetic Algorithm

Genetic Algorithm is a subset of evolutionary algorithms [20]. This set of algorithms is based
on natural selection [21]. In nature, organisms are composed of chromosomes, which are
composed of genomes. According to the theory of natural selection, chromosomes mutate
over time, allowing organisms to evolve and better adapt to the environment they live in.
Chromosomes can also be mixed trough reproduction. Reproduction allows two parents to
generate a child which will have a mixture of both parents genomes. GA tries to simulate



this process in a computer algorithm to provide solutions to problems [22]. An example of
the usage of GA can be found here [23]; in this example, GA is used to evolve cars to drive
in different environments. In each generation, a new population of vehicles is generated
with new individuals who could potentially outperform the previous generation in the same
environment. GA is composed of the following aspects:

e Individual: an individual is a possible solution for the problem.
e Chromosome: chromosomes are parts that compose an individual.

e Genomes: These are parts that form a chromosome; genomes are domain-specific and
vary depending on the problem.

e Population: a population is a group of individuals.

e Fitness: fitness is how well an individual solves the problem; it is evaluated using a
fitness function.

e selection: this is the process that selects individuals of the population, based on their
fitness values, to create a new population.

e Crossover: crossover mixes two different individuals to derive new solutions from the
mixture.

e mutation: mutation changes the composition of an individual to try achieving a better
solution.

¢ Generation: generation is a population at an iteration.

The genomes and chromosomes differ from one problem to another; the representa-
tion of these has to be decided by the developer depending on attributes of the problem.
This means that generating the individuals and the fitness function will require a certain
amount of domain-specific knowledge. However, the remaining parts of the algorithm are
not domain-specific, allowing GA to solve a wide variety of problems.

The population is composed of diverse individuals; this allows it to have enough diver-
sity enabling the algorithm to evaluate multiple solutions and cover a large search space
[24]. In approximation algorithms such as GA, several solutions are developed for a prob-
lem. However, there are many reasonable solutions that are not-optimal which are called
local solutions. The optimal solution is referred to as a global solution [25]; a global so-
lution is the best possible solution for a problem. Having enough diversity can also help
the algorithm develop a globally optimal solution rather than a local one, which is essential
for search algorithms. Usually, global solutions are not found as it is tough to find them.
Instead, a best local solution that approximates the problem well is developed. Often, the
population size is consistent throughout the whole algorithm.

The fitness function varies from problem to problem; in general terms, it measures how
well an individual solves a given task. The fitness function requires a certain level of domain-
specific knowledge from the developer when being designed, as one needs to know how to
measure the proximity of a solution to that specific problem. The design of the fitness func-
tion is essential, as it will guide the algorithm to provide a good solution. Poorly designed
fitness functions will lead to a poorly performing algorithm [26].

Generally, the selection step selects individuals from the current population to generate
a new one, made of individuals with good fitness values. However, there are other factors
that need to be taken into account when selecting a new population; diverse potential so-
lutions need to be preserved. To preserve both diversity and fitness, any individual in the



population has the chance to be selected, but the ones with lower fitness are less likely to
be chosen to be taken into the next population. This process allows individuals to evolve,
aiming for a better solution.

The crossover step generally mixes genomes of two individuals producing two offsprings.
This generates two new solutions from two existing solutions that could potentially have a
better fitness value than prior solutions. There are several ways the crossover can be done;
however, the most typical one copies fifty per cent of one parent and fifty per cent of the
other to each offspring. Mixing individuals often create a better solution or one that can
contribute to a better solution in the future [27].

The mutation step in the algorithm replaces a percentage of genomes of a given individ-
ual with different ones. This allows diversity to be maintained and could help the algorithm
develop a global solution. The diversity of the population tends to decrease as the program
runs, because of the selection step selecting the current best solutions which tend to be sim-
ilar to each other. An adequately designed mutation function helps increase the coverage of
the search space, allowing the algorithm to pursue different solutions[28].

In a generation, a new population is created from the old one. Typically, individuals in
the population are crossed over, mutated and then selected into a new population. Usu-
ally, a number of generations are used as stopping criteria, where the algorithm runs for N
generations until it stops and the results are analysed.

2.2 Related Work

Local Search

Local search is a search method used to solve problems by making small changes to current
solutions of a problem trying to achieve a better result. This method aims to find a local
best solution for the given problem. Local search is often used to approximate NP-Hard
problems [19] and typically performs relatively well [29]. When trying to find a solution,
the algorithm searches through the neighbourhood, a set of next possible solutions, and
jumps to one of them if the result is better than the previous solution. The neighbourhood
should be defined as close solutions, meaning that there is no drastic change between any
of the neighbours and the current solution.

2.2.1 Feature Selection

Feature selection is the task of reducing the number of columns of a data set. Some features
in a data set do not have a positive impact on classification algorithms, so minimising these
features should not decrease the accuracy of the algorithm. However, removing them results
in a smaller data set, taking less memory to store, and can increase the accuracy of the
algorithm; as some features can contribute to noise in the data set. There are many different
algorithms used to approximate the problems of feature and instance selection; this project
will be focusing on two of them: GA and Local Search.

Both methods have been successful in approximating a solution for the problem individ-
ually [3][30]and together [13]. However, there is still work to be done in terms of improving
the time complexity, accuracy and data reduction capability of the algorithms.

2.2.2 Instance Selection

Instance selection is the task of reducing the number of rows of a data set. Similarly to
features, some instances can cause noise in a data set and do not contribute in a positive
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way for the task of classification. Removing these instances reduces the amount of space
need to store the data set and can also contribute to a higher accuracy on classification tasks.
Although a substantial amount of work has been done on the topic [31], there is not as much
work done as there is for feature selection. This might be because both are relatively similar,
and concepts of feature selection also apply to the selection of instances. Similar to feature
selection, there has been a substantial amount of research using GA for this task, and it again
proved useful [11].

2.2.3 Genetic Algorithm for Feature and Instance Selection

GA is a good algorithm to approach NP-Hard problems [32]. For the tasks of feature and
instance selection, GA can search an ample space and compute acceptable solutions with less
computational power than other methods, and it does not require a large amount of domain-
specific knowledge to solve the problem [33]. Because of these benefits, GA is a widely used
algorithm for both of these tasks. However, there are few people who analysed both of these
tasks together. Most times, when they are investigated together, one is performed after the
other [6] and when performed together, the accuracy suffers due to the large search space
[14]. However, finding a good solution for both of these problems together is still a problem
worth analysing.

The approach of using a hybrid algorithm that merges GA and Local Search seems
promising, as local search could search for a better solution around the solution found by
GA. these methods used together have not yet been analysed for the task of feature and in-
stance selection. When used for feature selection, the hybrid algorithm performed well for
the task [13]. Hence this project will analyse the performance of both, GA and Local Search,
for the task of feature and instance selection.

2.2.4 Limitations

One of the reasons why there is no substantial amount of work done on the tasks of fea-
ture and instance selection performed together is potentially the ample search space. When
performed separately, the search space the algorithm has to cover is already vast; when
performed together, this space becomes exponentially larger. This raises difficulties when
navigating the space, searching for an acceptable solution.

These two tasks by themselves are computationally expensive, and when performed
one after another, they can take a long time to complete. Performing them simultaneously
is more expensive than running them individually. However, with processing power in-
creases, this is a feasible task to be performed.

2.3 Summary

The tasks of feature and instance selection are crucial for the pre-processing of unclean data,
as these reduce data dimensions and improve classification accuracy. A large number of
methods have been developed to solve these problems separately; however, these methods
rarely approach the tasks together. This is because the search space to find an optimal solu-
tion for both of these tasks together is very large. This project proposes a solution that will
cover the search space creating a solution that will reduce the dimensions of the given data
significantly, improving or maintaining the classification accuracy on the data containing all
features and instances.



Chapter 3

The Baseline Algorithm

This chapter will analyse and describe an overview of the baseline algorithms and their
methods. It will have diagrams illustrating the general algorithm and will provide a general
overview of its methods. It will also offer insides on the methods used for testing and will
describe the results achieved by the proposed algorithm on the data sets.

3.1 Chapter Goals

The goal of this chapter is to provide a general overview of the baseline algorithms and its
methods. The diagrams will be as understandable and as straightforward as possible while
describing the general outline in great detail. It will also describe the design of the exper-
iment, explain the parameters used, describe the data sets used to test the algorithm and
provide an overview of the baseline method as well as the results achieved by the methods.

3.2 Algorithm Overview

All algorithms in this report are based on GA. At the start, a new population of individuals
is generated using the generation function. Once all individuals are created, the Genetic
Algorithm process starts. Each individual in the population has the chance to be mutated,
how much it is mutated by is decided by a variable specified before running the program.
After the mutation process is done, individuals have a chance of being crossed over. After
the crossover process, each new individual in the population has its fitness value evaluated,
and the new population is selected using a selection method. Once the last generation is
reached, the algorithm stops and displays the results.

The above-described methods are explained in detail in the next chapters for the algo-
rithm developed in this project.

3.3 Algorithm Description

The algorithm developed in this project is an adapted version of GA for the task of fea-
ture and instance selection, it uses the standard genetic operators(mutation, crossover and
selection) and the final version will also have a local search implementation.

3.3.1 Individual Representation

The individuals are represented as two binary lists, one representing the features and the

other representing the instances. The Genomes can have a value of 0 or 1, representing

9



whether a feature or instance is present in the evaluation or not.

Figure 3.1: Individual Representation

Figure 3.1 above shows the representation of an individual with six out of the ten original
features and four out of seven initial instances.

3.4 Experiment Design

3.4.1 Feature Selection Baseline Description

The sklearn-genetic algorithm is an extension of the sklearn, a Python library for Machine
Learning, for feature selection [34]. Using this algorithm as the baseline is acceptable as it
performs GA for feature selection, a similar task to the one being evaluated on this project,
successfully. The comparison to this baseline shows how the method tested in this project
performs in comparison to other similar algorithms.

3.4.2 Feature And Instance Selection Baseline Description

As there are not many code sources available for a feature and instance selection Genetic
algorithm, a baseline algorithm for this research was created. The algorithm implements
the most straightforward genetic operators having a uniform crossover[35] and a mutation
function that mutates one genome.

The selection method used is tournament selection [36]. Tournament selection selects a
tournmentSize number of random individuals of the population and selects the best to be
taken in to the next generation. This allows each individual in the population to have a
chance of being taken in to the next generation.

The population initialisation function is more thought of than the other methods, and
enforces data reduction, as explained in the next section. Comparing the final algorithm to
this baseline will show how the methods proposed in this project contribute to the accuracy
and data reduction of the final solution.

Generation Of The Population

The population is created by generating individuals with an increasing number of features
and instances. The first 10% of the population is created with 10% of features, and 10% of
instances allocated randomly, the remaining 90% of the instances and features are not used.
The number of features and instances increase by 10%, of the possible amount, whenever
a tenth of the population is generated. By the end of the generation, all features and in-
stances should be represented in the individuals of the population. Each individual in the
population holds 10-90% of all possible features and instances by the end of the generation.

10



Pseudo Code:

Algorithm 1 Initial Population Generation

1: function GENERATE(populationSize) m < total number of features n < total number of

instancess
2: List featurePercent < percentages evenly distributed values from 0.1 - 0.9 of length
populationSize
3: ListinstancePercent <— percentages evenly distributed values from 0.1 - 0.9 of length
populationSize
4 population <— empty list
5 for i in populationSize do
6: Fp < select a random number from List featurePercent
7: remove Fp from List featurePercent
8 features < (Fp* m) indices filled with 1s and the rest with Os
9: Ip <+ select a random number from ListinstancePercent
10: remove Ip from ListinstancePercent
11: instances < (Ip * n) indices filled with 1s and the rest with 0s
12: add an individual with features and instances to population
13: end for
14: return population

15: end function

In the first version of this function, individuals could contain up to 100 % of possible
features and instances. However, the results achieved with 10-90 % of the features present
were better and provided a better reduction on the features and instances.

Fitness Function
To reduce bias in the accuracy achieved by the individual on the classifier, the algorithm uses
K-Fold Cross-Validation. Dividing the data, used in the evolution process, into K batches,

on each run one batch will be tested against the rest of the data and after K runs the average
of the result of those runs is taken as the accuracy of the individual.

Mutation

The mutation function on for the Feature And Instance Selection Baseline mutates one ran-
dom bit on the features and one on the instances of the given individual.

Crossover

The crossover function on for the Feature And Instance Selection Baseline copies half of one
individual to the second one, creating two new offsprings.

Pseudo Code:
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Algorithm 2 Crossover

1: function CROSSING(individuall,individual2) m < total number of features n < total

number of instancess

2: for Fiin m do
3: rn < number between 0-1
4: if rn is smaller than 0.5 then
5: values of individuall and individual2 at Fix
6: end if
7: end for
8: for Iiin n do
9: rn < number between 0-1
10: if rn is smaller than 0.5 then
11: swap values of individuall and individual2 at Ii
12: end if
13: end for
14: return individuall, individual2

15: end function

3.4.3 Data Sets

All data sets used to test the performance of both the baseline and the algorithm created in
this project, had a medium to large numbers of features and instances. The data sets were
retrieved from UCI, and Kaggle data sets [37][38] and are presented in Table 3.1.

Table 3.1: Data Sets

Data set Number of Features | Number of Instances | Number of Classes
Libras Movement 90 360 15
arrhythmia(Ary) 279 452 12
Mobile KSD Data(Mobile) Set 71 2856 56
Human Freedom Index(Mobile) 118 880 4
First order theorem proving(ML) 56 6118 2
Multiple Features(Mfeat) 216 216 2000 10
Multiple Features(Mfeat) 240 240 2000 10
internet advertisements(Ad) 1558 3279 2
Online News Popularity Data Set(Popularity) 58 39644 11
Smartphone Dataset for Human Activity Recognition(UCI) | 561 10299 6

Data sets containing a more significant amount of features and instances are more likely
to have redundant values in them. These data set are suitable for feature and instance selec-
tion. More redundant features and instances can be removed to reduce the size of the data

set and improve accuracy for classification.

3.4.4 Parameters

The parameter present in the algorithms were based on the parameters used in the following
paper [3] and will be presented and discussed below.
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Table 3.2: Parameters

| Parameter Name | Parameter Value | FS-Baseline | FS-IS-Baseline
mutation rate 0.3 yes yes
crossover rate 0.7 yes yes
generations 50 yes yes
population 100 yes yes
tournament size 3 yes yes
number of folds 10 yes yes
crossover independent probability | 0.5 yes no
mutation independent probability | 0.05 yes no
scoring accuracy yes no
max features number of features present at the beginning | yes no
flipProb 0.09 no yes

Algorithm Runner

This function puts the algorithm together. It creates the initial population using the genera-
tion function; it then performs selection, crossover and mutation to generate a new popula-
tion. This process is repeated for numgen which is the number of generations the algorithm
is supposed to run for.

3.5 Testing Method

To ensure that results were not achieved on accident, both algorithms were run on ten dif-
ferent data sets with 30 random seeds. A large number of random samples provide results
that can be represented as a normal distribution, allowing a confidence test to be performed
in the results. In this experiment, the Wilcoxon rank-sum test was performed on the 30
samples of each data set.

Having ten different data sets ensures that the results achieved by the experiment are
not restricted to one data set. While it is expected that the performance of each algorithm
varies depending on the given data, taking the average of several data sets provides better
inside of the overall performance of the algorithms.

Table 3.2 shown below contains the results of each algorithm on each detest. The data
set column is populated with the name of the data set the experiment ran on. The algorithm
column is populated with the name of the algorithm the experiment ran on. Baseline + FS
represents the feature baseline, Baseline +FS +IS represents the feature and instance selection
baseline, New Algorithm +FS +IS represents the methods that achieved the results and Raw
Classifier represents the Classifier algorithm ran on the original data set. The number of
Features and Number of Instances columns represent the number of features and instances
after the algorithm has performed. The Average Accuracy column is populated with the
average accuracy achieved by each algorithm with the 30 random seeds on each data set.
The P-value is the result of the Wilcoxon rank-sum test on the results of the data set, achieved
by each algorithm in comparisson to the raw classifier.
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3.6 Results

Table 3.3: Baseline Results Table

[ dataset | Algorithm | Number of Features | Number of Instances | Average Accuracy | significance test on accuray |

Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + IS | 75.0 429.0 94.74 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + IS | 48.0 1497.0 454 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + 1S | 10.0 2725.0 99.93 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + IS | 918.0 1742.0 97.17 +
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12733.0 42.16 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + IS | 179.0 1026.0 97.1 -
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +

As the table above shows, the feature selection baseline outperforms the feature and in-
stance selection baseline in terms of accuracy and significantly in terms of feature reduction.
However the feature and instance reduction baseline, reduces a fair amount of instances,
making it possibly better in terms of overall data reduction depending on the data set.

The feature selection baseline performs exceptionally well on the Libras data set in com-
parison to the feature and instance selection classifier. This is due to the small number of
instances in the data set compared to other the ones, which makes it less ideal for the task of
instance selection.

3.7 Summary

This chapter describes the baseline algorithms and the tasks they perform. The parameters,
data sets and test methods were also explained above.

In the results section it was established that the feature and instance selection is out-
performed by the feature selection baseline in terms of accuracy and feature reduction. The
overall reduction achieved by the feature and instance selection baseline is better, depending
on the data set, as it reduces instances as well as features.

The rest of the report will be presenting the results of each new method and analyse its
performance.
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Chapter 4

The Proposed Algorithm with New
Crossover and Mutation Operators

This chapter will present a description of the crossover and mutation operators used in the
algorithm.

4.1 Chapter Goals

The goal of this chapter is to describe both operators and analyse how they affect the perfor-
mance of the algorithm compared to the baseline methods. The operators will be described
in detail and will be illustrated with diagrams and pseudocode.

4.2 Crossover

4.2.1 Crossover Description

The crossover function presented in this section takes two individuals as parents and gen-
erates two offsprings. The number of genomes taken from one individual is relative to the
difference between the parents’ fitness values. The parent with a higher fitness value will
have a more significant number of genomes transferred into the next generation through
the offsprings. The number of genomes used form the best parent has an upper-bound of
20 per cent. This parameter should be tuned and optimised to achieve the best results. The
genomes selected from the best parent are randomly chosen until the percentage based on
the difference in fitness between parents is reached. After the genomes from the parent,
with a higher fitness value, are transferred, a uniform crossover is performed of the remain-
ing genomes, having 50 per cent of each parent being added to each child.
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Pseudo Code:

Algorithm 3 Novel Crossover

1: function CROSSING(individuall, individual2) m < total number of features n < total

«

18:

number of instancess

bestIndividual, worstIndividual < idividuals with best and worst fitness from

individuall ad individual2

keep < max(difference in fitness from bestIndividual and worstIndividual, 20 per

cent)

ListpossibleFeatures < from 0 to m
ListpossibleInstances < from 0 to n
for feature in keep * m do
get random index from ListpossibleFeatures and and replace value in
worstIndividual with the value of bestIndividual at the index
remove index from ListpossibleFeatures
end for
for instance in keep * n do
get random index from and replace value in worstIndividual with the
value of bestIndividual at the index
remove index from ListpossibleInstances
end for
perform uniform crossover on bestIndividual and worstIndividual, as described in
Chapter 3
return bestIndividual, worstIndividual

19: end function

Figure 4.1: crossover

Stronger Individuals Features Stronger Individuals Instances

0 1 0 1 0 1 0 1 1 1
Weaker Individuals Feafures Weaker Individuals Instances

0 1 0 0 0 0

Stronger Individuals Features Stronger Individuals Instances

0 0 0 1 0 1 0 0 1 1
Weaker Individuals Features Weaker Individyals Instances

0 1 1 1 0 0 0 1 0 1

Figure 4.1 above represents the crossover function. The top binary strings represent the
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features and instances of the individual with a higher fitness value, while the bottom one
represents the one with the lower value. The genomes transferred are assured to be taken
into the next generation by both offsprings. On the first part of the diagram, genomes of the
better individual(represented in green) are inserted into the individual with a lower fitness
value. On the second diagram, after the arrow, the crossover of genes is illustrated having
the genes that were swapped in red.

4.2.2 Results

The table below shows the difference in results between the Classifier, the Feature Selection
Baseline, the Feature and Instance Selection Baseline and the New Algorithm. The new
Algorithm, in this case, is the baseline for feature and instance selection, with the novel
crossover operator.

Table 4.1: Crossover Results Table

[ dataset | Algorithm | Number of Features | Number of Instances | Average Accuracy | significance test on accuray |

Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
New Algorithm + FS + IS 52.0 203.0 77.31 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 144.0 215.0 64.29 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + 1S | 75.0 429.0 94.74 +
New Algorithm + FS + IS 71.0 430.0 94.61 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + IS | 48.0 1497.0 454 +
New Algorithm + FS + IS 48.0 1509.0 455 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + IS 10.0 2749.0 99.92 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 135.0 1077.0 94.33 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + IS | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 899.0 1745.0 97.16 +
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12726.0 42.17 +
New Algorithm + FS + IS 36.0 12637.0 4221 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + 1S | 179.0 1026.0 97.1 -
New Algorithm + FS + IS 178.0 1031.0 97.04 +
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +
New Algorithm + FS + IS 387.0 5504.0 97.7 +

The results of the new crossover operator showed to improve the performance of the al-

gorithm compared to the feature and instance selection baseline in terms of accuracy, feature
reduction and in instance reduction. The results show that this novel method does not out-
perform the baseline for feature selection in terms of feature selection and average accuracy.
However, the new methods have a higher data reduction depending on the dat set due to
the instance selection capability.
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The algorithm with the novel crossover operator outperforms the feature and instance
selection baseline slightly in terms of average accuracy; it uses 2.6 fewer features on average
and 3.6 fewer instances. The algorithms best performance was on the Popularity data set,
reducing 89 more features on average while increasing the accuracy compared to the feature
and instance selection baseline.

These results are achieved because features and instances that increase the accuracy have
higher chances of being transferred into the next generation, while features and instances
that do not contribute to the accuracy are more likely to be discarded. This due to the bias
towards the fitter parent, as it assures that a certain amount of features and instances will be
identical to the parent with a better fitness value.

The proposed algorithm does not outperform the feature selection baseline in terms of
average accuracy and in terms of feature reduction. However, the average amount of in-
stances reduced by the new algorithm is far more significant than the feature selection base-
line as the baseline does not perform instance selection.

Due to the high computational cost of running this experiment, the tuning of this method
was not performed. The number of genomes copied over has an upper bound of 20 per cent,
tuning this parameter could have a positive impact on the performance of this method.

Overview

The algorithm described in this section has the crossover operator as described above all
other functions are as described in Chapter 3.

Table 4.2: Parameters

| Parameter Name Parameter Value | FS-Baseline | FS-IS-Baseline | New Algorithm |
mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability | 0.5 yes no no
mutation independent probability | 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
flipProb 0.09 no yes yes

4.3 Mutation

4.3.1 Description

The mutation operator is composed of two parts: soft mutation and hard mutation.

The soft mutation function mutates a low percentage of genomes from each individ-
ual. The amount that is mutated is specified as a parameter called flipProb representing the
probability each genome has of mutating. This parameter is specified before running the
program and should be small since this function is supposed only to mutate the individual
slightly. Each time the function is invoked, it alternates on mutating the features and in-
stances of the individual passed in. There is also a chance that both features and instances of
an individual are mutated simultaneously; this probability is specified with the feature and
instance mutation chance.
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Figure 4.2: Soft Mutation

Features Instances

0 1 0 1 0 1 0 1 1 1

Features Instances

1 1 0 1 0 1 0 1 1 1

Figure 4.2 illustrates the soft mutation on the features of an individual. The same pro-
cess occurs for the instances when they are supposed to mutate; the red genome has been
mutated and flipped.

The hard mutation function mutates an individual according to its fitness values if the
individual has a higher fitness value fewer genomes will be mutated whereas when the
individual has a lower fitness value, it will have a higher amount of genomes mutated.
This is because mutating a large number of genomes is likely to decrease the accuracy of
an individual, so if the accuracy is already reasonably low the individual can have a more
substantial amount of genomes mutating without having a significant effect on the best
fitnesses of the population. The function will also alternate the mutation between features
and instances as well as having a chance of mutating both, like the soft mutation.

Figure 4.3: Hard Mutation

Features Instances

0 1 0 1 0 1 0 1 1 1

Features Instances

1 0 0 0 0 1 0 1 1 1

Figure 4.3 illustrates the hard mutation on the features of an individual; the same process
occurs for the instances when they are supposed to mutate. The red genomes have been
mutated and flipped. In this scenario, the hard mutation rate is four times higher than the
soft mutation rate.

What mutation should be performed is decided by the hardMutationRate parameter. This
parameter should be relatively low, as hard mutation should not occur too often. This is
because mutating a large amount of an individual could lead to a substantial decrease in
that individuals accuracy. However, this method increases the diversity of the population,
allowing it to explore more diverse solutions.

The first implementation had the hard mutation and soft mutation in different functions
with different methods and different implementations. However, after testing this turned
out to be fragile and hard to tune, therefore in the new implementation, both of these func-
tions are embedded into one method. When a hard mutation is supposed to occur, the flip-
Prob is multiplied by the constant hardMutationAmount, meaning the individual will have a
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higher number of chromosomes mutated. hardMutationAmount should not be too little since
it would have to little effect on the mutation function and also not too large, as it can cause
individuals to decrease their fitness significantly.

Pseudo Code:

Algorithm 4 Novel Mutation

1: function MUTATION(individual) fit < individuals fitness

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

f < flipProb
if randomNumber between (0,1) < hard MutationRate then
f < hardMutation Amount*(1 — fit)
end if
both < false
if randomNumber between (0,1) < chance of both mutating then
both < true
end if
if istances should mutate or both then
for each instance in individual do
if randomNumber between (0,1) < f then
instance <1-instance
end if
end for
end if
for each feature in individual do
if randomNumber between (0,1) < f then
feature <1-feature
end if
end for
end if
return individual

24: end function

4.3.2 Results

The table below shows the difference in results between the Classifier, the Feature Selection
Baseline, the Feature and Instance Selection Baseline and the New Algorithm. The new
Algorithm, in this case, is the baseline for feature and instance selection, with the novel
mutation operator.
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Table 4.3: Mutation Results Table

data set ‘ Algorithm ‘ Number of Features ‘ Number of Instances ‘ Average Accuracy ‘ significance test on accuray ‘
Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
New Algorithm + FS + IS 53.0 199.0 77.39 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 140.0 207.0 64.95 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + IS | 75.0 429.0 94.74 +
New Algorithm + FS + IS 71.0 424.0 94.29 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + 1S | 48.0 1497.0 454 +
New Algorithm + FS + IS 47.0 1477.0 45.23 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + IS 10.0 2652.0 99.91 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 136.0 1056.0 94.35 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + 1S | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 893.0 1731.0 97.16 +
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12733.0 42.16 +
New Algorithm + FS + IS 36.0 13061.0 4212 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + 1S | 179.0 1026.0 97.1 -
New Algorithm + FS + IS 176.0 1007.0 97.06 -
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +
New Algorithm + FS +1S 387.0 5332.0 97.71 +

Using the novel mutation operator showed to improve the accuracy as well as feature

reduction compared to the feature and instance selection baseline. The number of instances
reduced by the baseline is slightly, but not significantly higher than the algorithm with the
new method.

The results suggest that the mutation operator increased the average accuracy of the al-
gorithm slightly in comparison to the feature and instance selection baseline, the number of
features reduced is also lager having 3.7 more features reduced on average. The new algo-
rithms best feature reduction occurred on the Ad data set, and it reduced 25 more features
while keeping the accuracy.

The accuracy and feature reduction in the feature selection baseline is higher than the
one achieved by the new method. The algorithm, including the new mutation function, per-
forms a grater overall data reduction depending on the data set due to its instance reduction
capability.

The results achieved by the new mutation method, are due to greater diversity in the
population, as the mutation inserts a more considerable amount of random genes into the
population than the previous methods. This allows the algorithm to search a broader range
of possible solutions. The novel mutation function also takes into account the current fitness
of the individual and does not fully randomise reasonable solutions.

The parameters for the mutation method could not be optimised due to the time required
to run the algorithm. Tuning the parameters feature and instance mutation chance and hard-
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MutationAmount could improve the performance of the algorithm, by allowing it to focus on
instances and features simultaneously or more separated by changing the feature and instance
mutation chance and also allowing the search space to be searched more thoroughly using a
higher hardMutationAmount.

Overview

The algorithm described in this section contains the mutation operator as described above
all other functions are as described in Chapter 3.

Table 4.4: Parameters

| Parameter Name | Parameter Value | FS-Baseline | FS-IS-Baseline | New Algorithm |
mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability 0.5 yes no no
mutation independent probability 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
feature and instance mutation chance | 0.7 no no yes
flipProb 0.09 no yes yes
hardMutationRate 0.2 no no yes
hardMutationAmount 4 no no yes

4.4 Mutation and Crossover

4.4.1 Description

This section of the chapter will analyse the results of both above-described methods put

together.

44.2 Results

The table below shows the results achieved by the new algorithm in comparison to the

baselines.
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Table 4.5: Mutation and Crossover Results Table

data set ‘ Algorithm ‘ Number of Features ‘ Number of Instances ‘ Average Accuracy ‘ significance test on accuray ‘
Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
New Algorithm + FS + IS 52.0 200.0 76.92 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 143.0 209.0 65.14 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + IS | 75.0 429.0 94.74 +
New Algorithm + FS + IS 67.0 418.0 94.54 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + 1S | 48.0 1497.0 454 +
New Algorithm + FS + IS 48.0 1483.0 45.23 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + IS 10.0 2728.0 99.9 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 132.0 1056.0 94.26 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + 1S | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 882.0 1722.0 97.2 +
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12733.0 42.16 +
New Algorithm + FS + IS 36.0 13025.0 42.15 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + 1S | 179.0 1026.0 97.1 -
New Algorithm + FS + IS 175.0 1005.0 97.03 -
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +
New Algorithm + FS +1S 385.0 5362.0 97.72 +

The above-described methods performed together increased the number of features re-
duced on average compared to both algorithms run separately. It also shows improvement
in the accuracy in comparison to the feature and instance selection baseline.

The new methods performed together achieved a slightly higher accuracy on the data

sets than the feature and instance baseline classifier. It also reduces 5.6 more features on av-
erage, which is higher than any of the above-described methods run alone, the new method
reduced on average 6.5 fewer instances of data. The new algorithm had the best improve-
ment on the Ad data set; it reduced 36 more features and 20 more instances on average while
increasing the accuracy on the test set.

The results achieved by this implementation of the algorithm is due to of both, muta-
tion and crossover, methods making smaller changes to individuals with higher fitness than
those done to individuals with lower fitness values. This preserves the fitness of the popu-
lation while still allowing the algorithm to search the feature and instance space effectively.

In comparison to the feature selection baseline, the new algorithm still does not outper-
form it in terms of accuracy or feature selection. However, these methods performed to-
gether diminished the difference in accuracy between these two algorithms in comparison
to the other methods.
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4.4.3 Overview

The table below shows the parameters used by the algorithm.

Table 4.6: Parameters

| Parameter Name | Parameter Value | FS-Baseline | FS-IS-Baseline | New Algorithm |
mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability 0.5 yes no no
mutation independent probability 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
feature and instance mutation chance | 0.7 no no yes
flipProb 0.09 no yes yes
hardMutationRate 0.2 no no yes
hardMutationAmount 4 no no yes

4.5 Summary

The results achieved by the novel method show positive results in the reduction of features
and instances as well as in terms of accuracy when compared to the feature and instance
baseline algorithm.

When compared to the feature selection baseline, the algorithm does not outperform it
on average accuracy or feature reduction. This is because the feature selection baseline per-
forms exceptionally well on the Libras data set and methods involving instance reduction
do not. This is because the Libras movement data set lacks instances when compared to
all other data sets, making it harder to perform instance selection on it without a loss in
terms of accuracy. The number of features reduced by the new method is less than the one
achieved by the feature selection baseline; this is due to the ample search space that needs to
be searched by the feature and instance algorithm in comparison to only feature selection.

The tuning of both methods should be performed to achieve higher accuracy; however,
due to the high computational power required to run these experiments and the lack of time,
this was not possible.

In general, the novel operators improved the performance of the baseline and show
promising results that can contribute well to the final implementation of the algorithm.
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Chapter 5

The Proposed Algorithm with New
Selection and Local Search Operators

This chapter will present a description of the local search and selection methods used in
the algorithm. It will also give the final algorithm containing the new crossover, mutation,
selection methods and local search.

5.1 Chapter Goals

The goal of this chapter is to describe the selection and local search methods and analyse
how they affect the performance of the algorithm compared to both of the baseline meth-
ods. The chapter will describe in detail how the methods are performed and discussed the
results achieved. The results of all methods embedded together will also be presented and
discussed at the end of this chapter.

5.2 Selection

5.2.1 Description

The selection method used in this implementation is double tournament selection [39] with
elitism [40]. Double tournament selection selects K number of individuals from the popu-
lation according to the specified tournament size and from those individuals, it chooses the
fittest one to be taken into the next torment. The second tournament selects the individuals
in the same manner as the first one; however, it uses the number of features and instances as
the selection criteria rather than the fitness, having the individuals with fewer features and
instances selected. Elitism allows the best solution so far to be present in the next genera-
tion, providing it with a chance of being further developed. The double tournament allows
the individuals with the least number of of features and instances and best fitness values to
be taken into the next generation.

Pseudo Code:
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Algorithm 5 Selection
1: function DOUBLETOURNAMENT(currentPop, tournmentSize)

2: newPop < |]
3 firstSel < |]
4: for i in populationSize do
5: t <— tournmentSize random individuals from currentPop
6: firstSel gets the fittest out of ¢
7: end for
8: for i in populationSize do
9: t < tournmentSize random individuals from firstSel
10: newPop gets the individial with the smallest number of fs and is out of ¢
11: end for
12: return newPop

13: end function

5.2.2 Results

The table below shows the difference in results between the Classifier, the Feature Selection
Baseline, the Feature and Instance Selection Baseline and the New Algorithm. The new
Algorithm, in this case, is the baseline for feature and instance selection, with the novel
selection operator.

26



Table 5.1: Double Tournament Selection Results Table

data set ‘ Algorithm Number of Features ‘ Number of Instances ‘ Average Accuracy ‘ significance test on accuray ‘
Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
New Algorithm + FS + IS 36.0 193.0 76.22 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 107.0 178.0 65.02 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + IS | 75.0 429.0 94.74 +
New Algorithm + FS + IS 41.0 370.0 95.18 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + 1S | 48.0 1497.0 454 +
New Algorithm + FS + IS 36.0 1411.0 44.71 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + IS 9.0 2453.0 99.94 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 104.0 1013.0 94.52 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + 1S | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 717.0 1643.0 97.05 +
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12726.0 4217 +
New Algorithm + FS + IS 21.0 9520.0 425 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + 1S | 179.0 1026.0 97.1 -
New Algorithm + FS + IS 153.0 938.0 97.02 -
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +
New Algorithm + FS +1S 316.0 5092.0 97.74 +

The results suggest that the reduction, of both features and instances, and accuracy
achieved by the double tournament selection is significantly betters than the baseline for
feature and instance selection.

The accuracy achieved by the implementation of double tournament selection into the al-
gorithm is slightly better than the one produced by the feature and instance baseline. How-
ever, the number of features instances reduced is far more significant. The new algorithm
reduces 44.6 more features and 433.2 more instances on average than the feature and in-
stance selection baseline. The algorithms best performance was on the Human data set,
improving the accuracy while reducing ten more features than the feature selection baseline
and 34 more features than the feature and instance selection baseline. It also reduced 59
more instances than the feature and instance selection baseline.

The overall data reduction achieved by the new method is higher than the one produced
by the feature selection baseline, due to the number of instances reduced as well as features.
The new algorithm does not yet perform better feature selection than the feature selection
baseline; however, it narrowed the gap between the two significantly.

Using double tournament selection showed to improve the algorithm in feature and in-
stance reduction as well as in terms of accuracy and will contribute well to the final imple-
mentation of the algorithm.
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Overview

The algorithm described in this section contains selection function as described above all
other functions are as described in Chapter 3.

Table 5.2: Parameters
Parameter Value

FS-Baseline | FS-IS-Baseline | New Algorithm |

Parameter Name

mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability | 0.5 yes no no
mutation independent probability | 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
flipProb 0.09 no yes no

5.3 Local Search

At first, the idea was to implement local search as one of the genetic operators. However, this
would give an outstanding advantage to the individuals who had local search performed
on, creating biases towards a local solution in the selection process of the algorithm. In this
version of the algorithm, local search runs on the best solution after the evolutionary process
is completed.

5.3.1 Description

One of the goals of this project was to implement a local search algorithm to run as part of
my final algorithm. Local search is a powerful search method used to search for a locally
optimal solution. The implementation of this search method varies depending on the prob-
lem; however, the main structure of the search is the same. The local search algorithm is
composed of three steps:

1. creating a neighbourhood. Neighbouring solutions define the neighbourhood; these
solutions depend on the nature of the problem.

2. selecting the best solution. To achieve this, there needs to be a method that measures
how good a solution is.

3. repeat the search on the new best solution until the stopping criteria is reached. The
stopping criteria can be a certain number of iterations or when the new neighbourhood
does not have a better solution than the current one.

The neighbourhood for my algorithm is composed of each individual where one feature
or one instance differs from the current best solution. Because the size of the neighbourhood
is exponentially large, instead of searching for the best solution in the neighbourhood, the
algorithm searches for a better solution than the current one. On each iteration, the algo-
rithm searches through a part of the neighbourhood, declared by the searchPart parameter,
and if a better solution is found, the solution is used in the next iteration. If a better solution
is not found in the current section of the neighbourhood, the algorithms searchers a new
part of the same neighbourhood trying to find a better solution, this continues until a cer-
tain number of runs is achieved or the whole neighbourhood was searched, and no better
solution was found in the entire neighbourhood.
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Figure 5.1: Local Search Diagram
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Figure 5.1 above shows the steps of the implemented version local search in a visual way.

Pseudo Code:
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Algorithm 6 Local

1: function GENERATENEIGHBOURHOOD(individual)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22

neig < ]

features «+ |]

instances < ||

for instance in individual do
c < copy of individual
clinstance] < 1 — c[instance]
add c to instances

end for

for feature in individual do
c < copy of individual
c[feature] <— 1 — c[feature]
add c to features

end for

for instance in instances do
for feature in features do

add individual with features and instances to neig

end for

end for

return neig

end function

: function LOCAL SEACH(individual, partSize, iterations)
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

best + individual
currentPlace < 0
for epoch in iterations do
if currentPlace = 0 then
neig < generateNeighbourhood(best)
end if
fori = currentPlace;i < currentPlace + partSize and i < neighbourhood size do
if neig[i]> best then
best < neig][i|, currentPlace = 0
break
end if
currentPlace = i
end for
if currentPlace >= neighbourhoodsize — 1 then
break
end if
end for
return best

41: end function

5.3.2 Results

The table below shows the difference in results between the Classifier, the Feature Selection
Baseline, the Feature and Instance Selection Baseline and the New Algorithm. The new
Algorithm, in this case, is the baseline for feature and instance selection, with the novel local
search operator.
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Table 5.3: Local Search Results Table

data set ‘ Algorithm ‘ Number of Features ‘ Number of Instances ‘ Average Accuracy ‘ significance test on accuray ‘
Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + IS | 52.0 202.0 76.86 +
New Algorithm + FS + IS 51.0 203.0 76.97 +
Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 139.0 216.0 64.63 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + IS | 75.0 429.0 94.74 +
New Algorithm + FS + IS 67.0 426.0 94.58 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + 1S | 48.0 1497.0 454 +
New Algorithm + FS + IS 45.0 1490.0 4547 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + IS 9.0 2770.0 99.96 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + IS | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 909.0 1767.0 97.14 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + 1S | 179.0 1026.0 97.1 -
New Algorithm + FS + IS 184.0 1032.0 96.99 -
Raw Classifier 58.0 26432.0 40.86

Popularity | Baseline Classifier + FS 18.0 26432.0 41.15 +
Baseline Classifier + FS + IS | 36.0 12733.0 42.16 +
New Algorithm + FS + IS 34.0 13245.0 42.19 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + IS | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 135.0 1084.0 94.21 +
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + IS | 390.0 5488.0 97.64 +
New Algorithm + FS +1S 392.0 5525.0 97.59 +

The results suggest that the incorporation of local search into the algorithm improved
the accuracy and the number features reduced in comparison to the feature and instance
selection baseline.

The algorithm with the implementation of local search performs slightly better on av-
erage than the feature and instance selection baseline in terms of accuracy. It also reduces
2.1 more instances on average. The algorithm performed best on the Mobile data set, re-
ducing three more features and seven more instances than the feature and instance selection
baseline on average while increasing the accuracy on the test set.

The feature selection baseline outperforms the new algorithm with local search in accu-
racy and feature selection. The new algorithm has a higher overall data reduction depending
on the data set due to the instance selection process.

The implementation of local search shows to have the potential to benefit the algorithm.
However, the search space to be covered by local search is extremely large and requires a
lot of computational power. The implementation of local search in this algorithm does not
perform the search to find the best possible solution in the search space. Nevertheless, it
searches for a better solution than the current one and improves the final solution achieved
by GA and will contribute to the final implementation of the algorithm.

31



Overview

The algorithm described in this section contains local search function as described above all
other functions are as described in Chapter 3.

Table 5.4: Data Sets

| Parameter Name Parameter Value | FS-Baseline | FS-IS-Baseline | New Algorithm |
mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability | 0.5 yes no no
mutation independent probability | 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
flipProb 0.09 no yes yes
local True no no yes
partSize 400 no no yes

5.4 The Final Algorithm

5.4.1 Description

The final algorithm is a version of the feature and instance selection baseline with all novel
methods discussed in this research embedded into it. The algorithm has the initial popu-
lation generated, as described in Chapter 3. This is because the initialisation method used
enforces diversity, feature reduction and instance reduction in a way that allows individuals
in the population to start with acceptable fitness values.

The genetic operators used are as described in Chapter 4. This is because both meth-
ods showed to slightly improve average accuracy and feature reduction on the data sets.
These methods could not be tuned. However, they still perform well and contribute to the
performance of the algorithm.

The selection methods used is double tournament selection first on fitness than on the
size of individuals. This selection methods showed to significantly increase the average
data reduction of the algorithm while increasing the accuracy compared to the feature and
instance selection baseline.

The local search operator is performed after the evolutionary process is finished and
found a solution. The best solution achieved by GA could have better neighbouring solu-
tions that could be found by local search. The local search algorithm is restricted due to its
sizeable computational power and is not performed to its full potential. However, it showed
to have the potential to increase the performance of the algorithm and therefore, it is used
in the final solution.

Figure 5.2 below illustrates an overview of the algorithm. It follows a standard evolu-
tionary process with local search performed on the best solution found by GA.
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Figure 5.2: Final Algorithm
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5.4.2 Results

Table 5.5: Final Algorithm Results Table

‘ data set ‘ Algorithm ‘ Number of Features ‘ Number of Instances ‘ Average Accuracy ‘ significance test on accuray ‘

Raw Classifier 279.0 306.0 60.27

Ary Baseline Classifier + FS 131.0 306.0 63.13 +
Baseline Classifier + FS + IS | 145.0 216.0 63.95 +
New Algorithm + FS + IS 106.0 174.0 64.63 +
Raw Classifier 118.0 588.0 93.49

Human Baseline Classifier + FS 51.0 588.0 94.27 +
Baseline Classifier + FS + 1S | 75.0 429.0 94.74 +
New Algorithm + FS + IS 38.0 368.0 95.22 +
Raw Classifier 90.0 240.0 78.33

Libras Baseline Classifier + FS 38.0 240.0 82.67 +
Baseline Classifier + FS + 1S | 52.0 202.0 76.86 +
New Algorithm + FS + IS 38.0 190.0 76.35 +
Raw Classifier 71.0 1904.0 39.29

Mobile Baseline Classifier + FS 32.0 1904.0 46.17 +
Baseline Classifier + FS + IS | 48.0 1497.0 454 +
New Algorithm + FS + IS 41.0 1394.0 45.31 +
Raw Classifier 56.0 4079.0 94.16

ML Baseline Classifier + FS 5.0 4079.0 100.0 +
Baseline Classifier + FS + IS | 10.0 2725.0 99.93 +
New Algorithm + FS + 1S 9.0 2472.0 99.97 +
Raw Classifier 216.0 1340.0 93.64

Mfeat 216 | Baseline Classifier + FS 98.0 1340.0 94.87 +
Baseline Classifier + FS + 1S | 133.0 1085.0 94.46 +
New Algorithm + FS + IS 99.0 1013.0 94.37 +
Raw Classifier 1558.0 2186.0 95.88

Ad Baseline Classifier + FS 739.0 2186.0 96.96 +
Baseline Classifier + FS + IS | 918.0 1742.0 97.17 +
New Algorithm + FS + IS 708.0 1642.0 96.96 +
Raw Classifier 240.0 1340.0 97.12

Mfeat 240 | Baseline Classifier + FS 129.0 1340.0 96.97 +
Baseline Classifier + FS + IS | 179.0 1026.0 97.1 -
New Algorithm + FS +1S 155.0 935.0 96.98 +
Raw Classifier 561.0 6868.0 96.68

UIC Baseline Classifier + FS 278.0 6868.0 98.29 +
Baseline Classifier + FS + 1S | 390.0 5488.0 97.64 +
New Algorithm + FS + IS 278.0 5284.0 97.95 -

Due to the lack of time and computational resources, the final experiment could not be
completely finalised. However, for the data sets, where it was possible to complete the runs,
the final algorithm showed significant improvement in data reduction.

The results show that the final algorithm outperforms both baselines in terms of data
reduction significantly given that the size of the data is represented as features*instances. As
an example, using the Libras data set, the final solution of the feature selection baseline used

38%240 9120

90240 ~ 21600 ~ 042

fraction of the initial data, meaning the reduction is of 58 per cent on the overall data size.
While for the feature and instance selection baseline, the final solution used

52%202 11312
90 %240 21600

=0.52

fraction of the data, having 48 per cent of the initial data reduced. And the final algorithm

used
38190 7220

90 %240 21600

fraction of the data, which means 77 per cent of the initial data was reduced.

=0.33
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The final algorithm also outperforms the feature and instance selection baseline in terms
of accuracy, and when compared to the feature selection baseline the difference in accuracy
is low while reducing a significantly larger amount of the initial data.

The results achieved by the algorithm are due to the performance of all methods together.
While the initialisation and selection methods focus on data reduction, the crossover, mu-
tation and local search methods focus on the accuracy. Having the accuracy being lower
than the feature selection baseline indicates that these methods require further tuning and
improvement. Nevertheless, they performed well and led the algorithm to outperform the
feature and instance selection baseline slightly.

Although tuning is required to ensure the best performance of the algorithm, the final
version of the algorithm presented in this research outperformed both baselines and is a
viable approach to feature and instance selection.

5.4.3 Overview

The parameters used to run this version of the program are stated in the table below:

Table 5.6: Parameters

‘ Parameter Name Parameter Value ‘ FS-Baseline ‘ FS-IS-Baseline ‘ New Algorithm ‘
mutation rate 0.3 yes yes yes
crossover rate 0.7 yes yes yes
generations 50 yes yes yes
population 100 yes yes yes
tournament size 3 yes yes yes
number of folds 10 yes yes yes
crossover independent probability 0.5 yes no no
mutation independent probability 0.05 yes no no
scoring accuracy yes no no
max features number of features present at the beginning | yes no no
feature and instance mutation chance | 0.7 no no yes
flipProb 0.09 no yes yes
hardMutationRate 0.2 no no yes
hardMutationAmount 4 no no yes
local True no no yes
partSize 400 no no yes

5.5 Summary

Both methods discussed in this chapter have improved the performance of the algorithm.
And the final algorithm outperformed both, the feature and instance selection baseline as
well as the feature selection baseline, in terms of overall data reduction, feature and instance
selection.

Local search is not used to its full potential due to its high computational power in large
search spaces, such as the one explored in this project. Instead of searching for the local best
solution, it is searching for a local best solution, limiting the increase in accuracy achieved
by the algorithm. However, it is still performing well and contributes to the final version of
the algorithm.

The high performance of the feature selection baseline in the Libras Movement data set
leads to higher average accuracy in comparison to other methods. However, the imple-
mentation of double tournament selection helps the new algorithm to perform almost at the
same level as the baseline in terms of feature selection. In terms of overall data reduction,
the implementation of double tournament outperforms both baselines significantly, and the
implementation with the methods previously described improved further the reduction of
data achieved by the algorithm.
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The final algorithm performs very well in terms of feature, instance and overall data
reduction. The primary goal of this research was to achieve this result without having the
accuracy of the classifier suffer from the reduction of the data. This goal was completed
successfully, as the algorithm reduced the size of the data while increasing the accuracy in
comparison to the raw classifier. This result was possible because of the selection and ini-
tialisation methods, encouraging data reduction without penalising the accuracy achieved
by the machine learning model. It was also possible due to the genetic operators” tendencies
to not punish reasonable solutions in terms of accuracy.

The accuracy achieved by the algorithm still needs to be improved. This could be achieved
by fine-tuning the methods described throughout this project or creating novel ways to en-
force accuracy increase for the algorithm.
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Chapter 6

Conclusions

All main objectives of this project were achieved, except for objective 4 were the results
were obtained in a different way than initially planned. The algorithm performs well and
increases the accuracy of the raw classifier by reducing features and instances.

The algorithm presented in this project outperforms both baseline algorithms in terms
of overall data reduction, instance reduction and feature reduction. In terms of accuracy
increase, the feature and instance selection baseline was outperformed. The feature selection
baseline was not exceeded in terms of accuracy. However, the difference in performance was
low, in both feature reduction and average accuracy, and dependent on the data set it ran
on. This is because data sets with a small number of instances tend to be fragile to instance
selection, as each instance individually has a more significant impact on the outcome of
the classification in comparison to more substantial data set. Another reason for the better
performance of the feature selection baseline is due to the smaller search space it covers.
While the search space is still ample, it is exponentially lower than the one that has to be
covered by feature and instance selection.

The final algorithm developed has proven to be a viable solution for the tasks of feature
and instance selection performed simultaneously and reduced the size of the original data
set significantly.

6.1 Main conclusions

The project had four objectives to be achieved, as stated in Chapter 1.

o Create a simple feature and instance selection: This objective was achieved early on
the project and then used as one of the baseline methods to compare the improved
algorithm. The algorithm has a simple mutation and cross over function and used
tournament selection as the selection function. This algorithm achieved a reasonable
accuracy and also outperformed the feature selection baseline classifier in terms of
average data reduction.

e Develop well-designed crossover and mutation operators: This objective was achieved
halfway throughout the project; however, they were slightly modified and improved
later on. Both these operators take into account the current fitness of the individuals on
which the operation will be performed. This prevents individuals that are converging
towards a good solution from being penalised by the operators, while stills allowing
the algorithm to jump out of local solutions and allowing individuals with a lower
fitness to explore several solutions.
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e Develop a fitness function that encapsulates features, instances and accuracy: The
desired outcome of this objective was achieved in a different way than initially planned.
The original goal was meant to enforce feature and instance reduction without decreas-
ing the accuracy. Encapsulating this into the fitness function turned out to be fragile
and hard to tune. Therefore, instead of having the fitness function enforce reduction
and accuracy, it only enforces accuracy while the selection function enforces both, re-
duction and accuracy.

e Implement Local Search: This objective was achieved towards the end of the project.
The running of this method was more time consuming than expected; therefore, some
restrictions had to be implemented to ensure that it ran at a reasonable time. However,
these restrictions affected the performance of the local search operator, having it not
find the best possible solution.

6.2 Future Work

This project explored different methods to approach the task of feature and instance selec-
tion and achieved promising results. However, there is still a task worth further research.
Finding ways to search the space presented by this task in an efficient manner is an essen-
tial task as the amount of data grows, and more data cleaning techniques are required. The
methods presented in this project also have the potential to be refined and further optimised
to achieve better results in the performance of this task.

Having the local search as a genetic operator without compromising the evolution pro-
cess is also a topic worth researching and analysing, as it has the potential to improve the
performance of GA for this task.

Another idea would be to run local search on a few of the best solutions achieved by GA
and use the one that produced the highest accuracy as the final solution. This could lead to
a better overall solution, as the best GA solution is not necessarily the best solution with the
best neighbouring solutions.

The proposed algorithm achieves higher accuracy than the raw classifier; however, there
is still room for improve met on its accuracy performance. Novel methods that assure higher
accuracy should be developed and tested to ensure that the results are optimal.

To summarise, this task still requires a lot of research and focus. The current methods
to search the space are computationally expensive and although the results achieved by this
project were good. There is still room for improvement and new ways to approach this task.
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