
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui
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Abstract

Feature selection is an important problem in classification. However, it is
a difficult task due to the large search space in the original dataset as well as
the complex interaction between features. Statistical clustering methods con-
siders feature interaction to group similar features in the same feature cluster.
This work firstly introduces a new representation for continuous particle swarm
optimisation (PSO), which takes the advantage of statistical clustering to select
a small number of features while still achivers high classification performance.
Another hybrid PSO based algorithm is also proposed in this project, which em-
beds genetic operators into standard PSO to avoid premature convergence prob-
lem. Experimental results show that by using the statistical clustering informa-
tion in PSO for feature selection, small subsets of features are evolved, which
achieve significant improvement over using all features in terms of the classifi-
cation performance. Furthermore, the hybrid PSO algorithm is found to better
explore the search space than the standard PSO for feature selection.
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Chapter 1

Introduction

1.1 Introduction to Feature Selection

Classification is one of the most important tasks in machine learning, which aims to predict
the class label of an instance based on the value of features. In the learning process, a set
of instances, called training set, is used to train a classification algorithm, which is tested
on unseen dataset, called testing set. In many problems, a large number of features is used
to well describe the instances. Unfortunately, due to “the curse of dimensionality”[10], the
larger a set of features is, the longer time the training process takes. In addition, relevant
features are often unknown without prior knowledge. Therefore, a large number of features
often contain irrelevant or redundant features, which are not useful for classification. Those
features might lower the quality of the whole feature set [42], because they usually conceal
the useful information from the relevant features. Feature selection methods [13] are used
to remove those redundant and irrelevant features, which will not only speed up the learn-
ing/classification process but also maintain or even increase the classification performance
over using all features. However, due to the complex interaction between features and the
huge search space, it is hard to develop a good feature selection approach.
The main goal of feature selection is finding a small feature subset from a large set of original
features to achieve similar or even better classification performance than using all features.
In feature selection, suppose there are n features introduced, then the total number of pos-
sible subsets is 2n. It can be seen that over the large search space, the exhaustive search is
too slow to perform in most situations. In order to reduce the searching time, some greedy
algorithms such as sequential forward selection [35] and sequential backward selection [22]
are developed. However, these methods easily get stuck at the local optima. Because of the
global search ability, evolutionary computation (EC) techniques, such as genetic program-
ming (GP) [24], genetic algorithm (GAs) [41] and particle swarm optimization (PSO) [33, 40],
have been applied to solve the feature selection problem. Compared with GA and GP, PSO
is more preferable because it is simple and easy to implement. In addition, PSO not only
uses fewer parameter but also converge more quickly.
Feature selection can be viewed as a multi-objective problem because it needs to maximize
the classification accuracy and simultaneously minimize the dimensionality of the selected
subset. However, with fewer features being used for classification, the classification ac-
curacy is likely decreased. Therefore, those two objectives often conflict with each other
and the searching process needs to consider the trade-off between them. Furthermore, sta-
tistical clustering methods (SCm) [19] can be applied as a preprocessing step of selecting
process, where the similar features are grouped together in the same cluster. There are two
main kinds of PSO, which are continuous PSO [15, 30] and binary PSO [17]. Most of PSO-
based feature selection algorithms use binary PSO as its binary representation can naturally

1



present a feature subset. But the research in [36] shows that continuous PSO can achieve
better performance than binary PSO.Therefire, this work will develop a new representation
in continuous PSO to utilise the benefits of feature clustering information.

1.2 Objectives

The overall goal of this works is to develop a new PSO based feature selection algorithm,
which selects a small feature subset while achieving similar or even better clasification per-
formance than using all features. The performance of feature selection methods will be
evaluated on a number of datasets with different numbers of features, classes and instances.
In particular, the overall goal of this project can be divided into two main objectives:

• Objective 1: to develop new representation and updating methods for continuous PSO
(CPSO), which can effectively utilise the statistical clustering information to select a
smaller number of features and achieve better classification performance than using
all features.

• Objective 2: to combine genetic operators with continuous PSO. By introducing ge-
netic operators such as mutation or crossover, the diversity of swarm is expected to be
ensured to better explore the search space to further improve the performance.

1.3 Organisation

The remainder of this report is organised as follows. Chapter 2 provdies background infor-
mation. Objective 1 is discussed in Chapter 3 and 4. Chapter 5 presents a new hybrid PSO
based algorithm, which aims to solve the second objective. Chapter 6 provides a discussion
of the major conclusions drawn from this project and some remaining future work.
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Chapter 2

Background

2.1 Machine Learning and Classification

Machine learning is a major field of Artificial Intelligence, which aims to develop a system
that is capable to learn from data. Based on the desired output of the algorithm, machine
learning algorithms can be grouped into three main catergories: supervised learning, unsu-
pervised learning, and reinforcement learning. Classification is one of the most important
problems in machine learning, which is to assign of a class label to a given input instance.

2.2 Feature Selection

In classification problems, a large number of features are usually used to well decribe the
instances of datasets. However, due to “the curse of dimensionality”[10], having a large
number of features results in a long classifier training time, a complex classifier structure
and poor preditive performance. In addition, a large set of features might contain redun-
dant and/or irrelevant features, which would not improve or even decrease the classifica-
tion accuracy. Feature selection is a technique, which selects a small subet of features from
the original features. It can not only improve the classification performance but also reduce
the training time. According to the evaluation criterion, existing feature selection methods
can be fallen into two categories: wrapper approaches and filter approaches [7, 18]. In a
wrapper approach, a learning algorithm is used to calculate the fitness value of the selected
features. Meanwhile, a filter approach is done in an independent way of learning algo-
rithms. Therefore, wrapper methods usually can achieve better classification accuracy than
filters. But wrappers may produce a feature subset with poor generality, which is only good
for specific a learning algorithm. In addition, compared with wrappers, filter methods are
usually less expensive in terms of the computation complexity. This work focuses mainly
on wrapper feature selection.

2.3 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) [16] is an evolutionary computation method, which is
inspired by social behaviours such as bird flocking and fish schooling. In PSO, a problem is
opimized by using a population, called swarm, of candidate solutions, which are called par-
ticles. In order to find the optimal solution, each particle moves around the search space by
updating its position as well as velocity. Particularly, the current position of particle is repre-
sented by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimensionality of the search space.
These positions are updated by using another vector, called velocity vi = (vi1, vi2, . . . , viD),
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which is limited by a predefined maximum velocity, vmax and vid ∈ [−vmax, vmax]. During
the search process, each particle maintains a record of the position of its previous best per-
formance, called pbest. The best position of its neighbours is also recoreded, which is called
gbest. The position and velocity of each particle are updated according to the following
equations:

vt+1
id = w ∗ vt

id + c1 ∗ ri1 ∗ (pid − xt
id) + c2 ∗ ri2 ∗ (pgd − xt

id) (2.1)

xt+1
id = xt

id + vt+1
id (2.2)

where t denotes the tth iteration in the search process, d is the dth dimension in the search
space, i is the index of particle, w is inertia weight, c1 and c2 are acceleration constants, ri1
and ri2 are random values uniformly distributed in [0,1], pid and pgd represent the position
entry of pbest and gbest in the dth dimesion, respectively.

2.4 Related Work on Feature Selection

2.4.1 Traditional Feature Selection Methods

A basic version of feature selection is feature ranking [7], where a score is assigned to each
feature according to an evaluation criterion. Feature selection can be performed by selecting
the features with the highest scores. However, this type of algorithm ignores the interac-
tion between features. Additionally, the features with the highest scores are usually similar.
Therefore, these algorithms tend to selecting redundant features.

Sequential search techniques are also applied to solve feature selection problems. In par-
ticular, squential forward selection (SFS) [35] and sequential backward selection (SBS) [22]
are proposed. At each step of selection process, SFS (or SBS) adds (or removes) a feature
from an empty (full) feature set. Alothough these local search techniques achieve better per-
formance than the feature ranking method, they might suffer “nesting” problem, in which
once a feature is added (or removed) from the feature set, it cannot be removed (or added)
later. In order to avoid nesting effect, Stearns [31] proposed a “plus-l-takeaway-r” method in
which SFS was applied l times forward and then SBS was applied for r back tracking steps.
However, it is challenge to determine the best values of (l,r). This problem is addressed
by sequential backward floating selection (SBFS) and sequential forward floating selection
(SFFS), propsoed by Pudil et al.[27]. In SBFS ad SFFS, the values (l, r) are dynamically de-
termined rather than being fixed in the “plus-l-takeaway-r” method.

2.4.2 EC Approaches(Non-PSO) for Feature Selection

EC techniques are well known because of their global search ability. EC algorithms have
been applied to feature selection problems, such as GAs [43], GP [25]. Zhu et al.[43] pro-
posed a hybrid feature selection approach, which combines both local search and GA. In
this algorithm, a filter method is used to rank features individually. Basing on the ranking
information, GA delete or add a feature to achieve better fitness value, which is the classi-
fication accuracy. The experiments showed that this algorithm outperforms the GA alone
and other algorithms.

Yuan et al. [41] proposed a two-phase feature selection approach based on GA. The
proposed algorithm combined both filter and wrapper approach. Particularly, the first phase
is a filter approach, which uses inconsistency criterion to remove irrelevant features. The
second phase is a wrapper approach, which uses a feedforward neural network to remove
rhe redundant features. The proposed algorithm intended to reduce the computation cost
at wrapper step by reducing the size of feauture set in the filter step. However, due the
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the complex interaction between features, the first phase might remove the features, which
should be included in the best feature set.

Neshatian and Zhang [25] proposed a wrapper GP-based apporach, which evaluates
and rank feature subset in binary classification tasks. Expreiments show that the proposed
methods detected subset of relevant features in different situations, where other methods
had difficulties.

2.4.3 PSO-based Feature Selection Methods

Many EC algorithms have been used for feature selection, such as GAs, GP or PSO. PSO
is preferable because it is easier to implement and uses fewer parameters than GAs and
GP. Two PSO based filter feature selection algorithms were proposed in [4], where mutual
information and entropy are used in the fitness function to evaluate the relevance and re-
dundancy of the selected feature subset. The experiments show that the proposed methods
significantly reduce the number of features whilst achieve similar or better classification
than using all features.

In PSO, premature convergence is a common problem, in which the swarm converges quickly
to a local optima. To avoid premature convergence, Chuang et al. [5] proposed a new gbest
updating mechanism, which resets gbest elements to zero if it maintains the same value after
several iterations. However, the performance of this algorithm is not compared with other
PSO based algorithms. Another binary PSO based algorithm, which also aims to avoid
premature convergence, is proposed by Bin et el. [2]. At each iteration of this algorithm,
the swarm is divided into two groups, named “leaders” and “followers”. The “leaders”
have better fitness value. The “followers” update their positions and velocities based on
“leaders”’ update. The experimental results showed that the propoed update strategy bet-
ter utilises the social behaviour phenomenon than the standard binary PSO. Another new
gbest updating mechanism is developed by Xue et al. [39], which regards not only classi-
fication accuracy but also the number of selected features. The proposed algorithms can
increase the classification accuracy and simultaneously reduce both the number of selected
features and the computational time.
Based on the statistical clusering method and PSO, Lane et al. [19] proposed a feature selec-
tion approach, which selects one feature from each cluster. Although the number of features
is significantly reduced to be the same as number of clusters, the classification accuracy
is still imporved. The results demonstrate that feature clusters, provided by the statistical
clusering method , is useful information for feature seletion. Therefore, this work will take
the advantage of such information to further develop a new PSO based approach for feature
selection.
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Chapter 3

A New Representation in PSO for
Feature Selection

This chapter addresses Objective 1, which is to develop a new representation in PSO for
feature selection that can make use of the statistical clustering information for feature selec-
tion. Since the statistical clustering method groups similar features in one feature cluster,
selecting a small number of representative features from each cluster is expected to provide
the same or similar information to using all features in that cluster. Hence the number of
features is reduced while the classification performace would be maintained or even im-
proved. Additionally, in most of current PSO-based feature selection methods, each feature
is encoded as one dimension in search space, which results in a high dimensional the search
space. This chapter introduces a new representation, which has a lower dimensionality to
utilise the statistical information to select a small number of relevant features from the large
original set of features.

3.1 Development of A New Representation for PSO-based Feature
Selection Approaches

With standard PSO for feature selection, the dimensionality of each particle equals to the
number of features, which is large in most situations. Due to the “curse of dimensionality”,
it might take a long time to select a good subset of features from such a high dimensional
search space. In addition, in the original set of features, many features are similar, which
can be considered redundant features. Those features are likely to be selected together since
they have same effects on the classification process. However, if those redundant features
are selected, the classification performance will not be improved meanwhile the training
time might be longer due to the large number of features. A new representation, based on
statistical feature clustering, is introduced to address the redundancy problem as well as to
improve the classification performance.

3.1.1 Feature Clustering Information

Removing redundant features is an essential task in feature selection problems. In the tradi-
tional representation, all features play the same role which allows the presentation of redun-
dant features in the solution. The statistical clustering algorithms proposed by Pledger and
Arnold [26] and Matechou et. al. [23] are used to group features into different groups, called
feature clusters. Features in the same cluster are considered similar and features in different
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clusters are dissimilar to each other. The technical detail of statistical clustering methods is
not described here due to the page limit and the scope of this project.

The statistical clustering information can be utilised to minimise the chance of selecting
redundant features. Particularly, in the new representation, all features which are in the
same cluster, have to compete with each other to be selected in the optimal solution. Each
cluster possesses a finite number of entries in the position of each particle. Those entries are
indices of the selected features from that cluster.

In the new representation, the length of the new representation is determined according
to the number of clusters and the total number of features. There are a limited number of
entries, which correspond to a feature cluster to determine the selection of features from
this cluster. In particular, the number of entries belonged to the jth cluster is the maximum
number of selected features from a cluster, which is called mSNj. This important parameter
will be defined in the later section. Being smaller than the number of features in a cluster is
one of the conditions to select mSNj, which is mSBj ≤ Nj, where Nj is the number of features
in the jth cluster. By applying the clustering information, the new representation introduces
a shorter position vector for each particle. In particular, the length of the new representation
is ∑

j
mSNj, which is smaller than ∑

j
Nj. On the other hand, ∑

j
Nj is the total number of

original features, which is also the length of the traditional representation in PSO for feature
selection. So the new representation not only minimises the chance of selecting redundant
features, but also shorter the position vector, which hopefully leads to shorter computation
time.

Figure 3.1: Example of N features that are grouped into 4 clusters with N1, N2,N3 and N4
features, respectively, then N = N1 + N2 + N3 + N4. mSNj is the predefined maximum
number of features seletcted from cluster j and mSN1 < N1, . . . , mSN4 < N4

The comparison between the standard representation and the new representation is
given in the Figures 3.1. Note that all features from the same cluster are represented by the
same colour. Representation 1 shows the traditional way of using PSO for feature selection
without considering the feature clustering information. Representation 2 the the proposed
new representation consider the feature clustering information. Representation 2 is different
from Representation 1 by putting features in the same cluster together, which is proposed
by [20]. The new representation is represented in Rpresentation 3, which is different from
Representation 1 and 2 in two main aspects. Firstly, the dimensionality of the new represen-
tation is smaller than the two other representations. The second difference is the meaning of
each element in the position vector. In Representation 1 and 2, each element (e.g. xi or xj,k)
determines whether the corresponding feature is selected or not. In the new representation,
each element shows which feature is selected from the corresponding cluster.

3.1.2 Indexing Features in Feature Clusters

Feature clusters will be used as an input to get rid of the redundant features or irrelevant
features in a new PSO-based algorithm. In order to allow a particle to refer to features within
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Figure 3.2: Interval for selection features (Not PSO positions)

a cluster, all features in the cluster need to be indexed. The chance of selecting a feature is
affected by its index, the indexing method ensures fairness between features. This require-
ment is done by assigning sub-intervals with identical length to all features in the same
cluster. In addition, a virtual feature, called “null” feature, is introduced to each cluster,
which allows the selection of zero feature from a cluster, in case all features in that cluster
are irrelevant or redundant.

Suppose the jth cluster Cj contains Nj features, which is Cj = { f1, f2, . . . , fNj}. A close
interval [0,1] is split into (Nj + 1) sub-intervals that are assigned to features within Cj by the
follwing rule: Feature fi : [ i−1

Nj+1 , i
Nj+1 ] where i ∈ [1, Nj]

Null Feature : [ Nj
Nj+1 , 1]

(3.1)

So each feature is assigned to a sub-interval, whose length is 1
Nj+1 . For example, suppose

a cluster Cj consists of 4 features, Cj = { f1, f2, f3, f4}, each feature is indexed as shown in
Figure 3.2. As can be seen in Figure 3.2, the interval [0,1] is further divied into five intervals,
where four of them corresponds to the four features while the last interval corresponds to the
“Null” feature, i.e. no feature is selected. Suppose that its mSNj = 2 and the position values
are {x1,1 =0.5, x1,2 = 0.96}. As x1,1 ∈ [0.4, 0.6], which is the interval of feature f3, f3 will be
seleted. Similarly x1,2 ∈ [0.8, 1.0] that belongs to Null feature, which means that no feature
is selected. So that entry values are iterpreted as selecting only feature f3 from the cluster.
As can be seen from the above example, the use of “null” feature allows the algorithm to
choose less than mSNj features, so mSNj plays a role as an “upper limit”number of the
selected features. Equation 3.2 shows a general case of how to determine which feature or
no feature is selected from cluster j, where x is the position value in a dimension.

Feature =

 fk, if x ∈ [ k−1
Nj+1 , k

Nj+1 ] where k ∈ [1, Nj]

Null Feature, if x ∈ [
Nj

Nj+1 , 1]
(3.2)

3.1.3 Define Upper Limit mSNj

The “upper limit”, mSNj, is an important parameter for this algorithm, which controls the
number of selected features from each cluster. Basically, mSNj needs to satisfy the following
conditions:

1. mSNj ≤ |cluster|

2. mSNj increases with respect to |cluster|, because the larger the cluster is, the more
information it provides.

According to the above criteria, the upper limit number of selected features from each cluster
is calculated by the following equation:

mSNj =
√
|cluster| (3.3)
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Figure 3.3: Three different ways of determining mSNj

Figure 3.3 compares three different ways to determine mSNj which are Equation 3.3,
a constant function and a liner function, respectively plotted by using green, blue and red
lines. As can be seen from the figure, Formula 3.3 allows selecting more features from a clus-
ter that contains a large number of features, which cannot be done by the constant function
(blue line). On the other hand, Equation 3.3 is preferred over linear scaling, since it defines
a smaller number of selected features from large feature clusters, which likely consists of
redundant features. The smaller mSNj will reduce the chance of selecting those redundant
features.

Overall, the pseu-docode of the new algorithm with the new representation (PSOCC),
which bases on continuous PSO based algorithm and feature clustering information, is
shown in Algorithm 1

Algorithm 1 : Pseudo-code of PSOCC

1: begin
2: indexing features in each cluster;
3: define mSNj for each cluster according to Equation 3.3;
4: randomly initialise the position and velocity of each particle;
5: while Maximum iterations is not reached do
6: evaluate the fitness of each particle according to its classification accuracy;
7: for i = 1 to Population size do
8: update pbest and gbest of particle i;
9: end for

10: for i = 1 to Population size do
11: update vi of particle i according to Equation 2.1;
12: update xi of particle i according to Equation 2.2;
13: end for
14: end while
15: calculate the training and testing classification accuracy of the selected feature subset;
16: return the position of gbest, the training and testing classification accuracies;
17: end

9



Dataset #features #clusters #classes #instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

Table 3.1: Datasets

3.2 Experimental Design

3.2.1 Benchmark Techniques

In order to examine the performance of the proposed representation, a traditional wrap-
per feature selection approaches (LFS [12]) and two PSO based feature selection algorithm
(PSOFS [37] and PSO42 [39]) are used for comparison purposes in the experiments. The tra-
ditional algorithm, LFS, limits the number of features being cosidered during the forward
selection process, which is quite similar to the upper limit number of selected features from
each cluster. The algorithm PSOFS selects features by using standard continuous PSO. The
other PSO-based algorithm, PSO42, introduces a new initialisation strategy and updating
mechanism. Both PSOFS and PSO42 use the traditional representation.

3.2.2 Datasets and Parameter Settings

Eight datasets (Table 3.1) chosen from the UCI machine learning repository [1] are used in
the experiments. These datasets have different numbers of fetures, classes and instances.
For each dataset, all instaces are randomly divided into a training set and a test set, which
contains 70% and 30% of the instances, respectively. Up to 500 training instances are used in
the statistica clustering method to group features into different clusters, where the number
of clusters are listed in the second colum in Table 3.1. In the experiments, the classifica-
tion/learning algorithm is K-nearest neighbour (KNN) where K = 5.
The parameters of PSO are set as follows [34]: w = 0.7298, c1 = c2 = 1.49618, vmax = 6.0, pop-
ulation size is 30, the maximum number of iterations is 100. The fully connected topology
is used. The algorithm POCC is run 30 independent times on each dataset. A statistical sig-
nificance test, Wilcoxon signed-rank test, is performed to compare between the algorithm’s
classification accuracies of different algorithms. The significance level of the Wilcoxon test
was set as 0.05.

3.3 Experimental Results

Table 4.1 shows the experemental results of the PSOCC algorithm. In this table, “All” means
that all available features are used, “Ave-size” shows the average number of selected fea-
tures, “Best”, “Ave-Test-Acc”, “Std-Test-Acc” illustrate the best, average and standard de-
viation of the testing accuracies over the 30 independent runs. T represents the results of
the significance tests between the testing accuracy of PSOCC and other algorithms. “+” or
“-” means that the algorithm PSOCC achieved significantly better or worse classification
performance than other algorithms, “=“ means there is no significant difference between
them.
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As can be seen from Table 3.2, on the eight datasets, PSOCC achieves similar classifi-
cation accruacy to all features on two datasets and significantly higher accuracy than all
features on six datasets. Furthermore, PSOCC also selects a small feature subsets from the
original one. On most of datasets, the number of features is reduced by 70%. Especically,
on the large datasets such as Madelon and Multiple Features, nearly 90% of the features
are removed from the original feature sets meanwhile the classification accuracy is signifi-
cantly increased. The results show that PSOCC successfully removes redundant/irrelevant
features and simultaneously maintains or even improves the classification performance.

Dataset Method Ave-Size Best Ave-Test-Acc Std-Test-Acc T
All 13 76.54 +
LFS 7 74.07 +

Wine PSOFS 7.93 98.77 95.6 1.7953 +
PSO42 6.73 98.77 94.86 1.8628 +
PSOCC 4.75 100 96.70 3.10
All 18 83.86 +
LFS 9 83.07 +

Vehicle PSOFS 9.5 87.01 85.03 0.8899 =
PSO42 10.33 87.01 85.44 0.8372 -
PSOCC 5.87 86.22 84.72 0.8720
All 34 83.81 +
LFS 4 86.67 +

Ionosphere PSOFS 12.47 93.33 88.41 2.3079 =
PSO42 3.13 91.43 86.69 1.6444 +
PSOCC 9.7 91.43 88.63 1.6765
All 60 76.19 +
LFS 3 77.78 +

Sonar PSOFS 26.1 84.13 77.3 3.5765 +
PSO42 11.23 84.13 77.94 3.2104 =
PSOCC 14.33 84.13 78.94 4.0185
All 166 83.92 =
LFS 10 85.31 -

Musk1 PSOFS 85.93 88.81 84.61 2.0568 =
PSO42 77.3 89.51 84.87 2.7042 =
PSOCC 35.03 90.21 83.12 3.4196
All 279 94.46 +
LFS 11 94.46 +

Arrhythmia PSOFS 118.73 95.14 94.56 0.3517 =
PSO42 69.77 95.59 94.77 0.4495 +
PSOCC 44.17 95.59 94.96 0.38
All 500 70.9 +
LFS 7 64.62 +

Madelon PSOFS 259.07 78.97 76.35 1.0909 +
PSO42 206.57 84.23 78.81 3.1171 +
PSOCC 54.39 85.13 83.40 2.0368
All 649 98.63 +

Multiple LFS 18 99.0 +
features PSOFS 297.07 99.2 99.0 0.0934 -

PSO42 314.5 99.2 99.0 0.0935 -
PSOCC 51.07 99.23 98.84 0.1751

Table 3.2: Experimental Results of PSOCC

According to Table 3.2, comparing with PSOFS, PSOCC selects a smaller number of fea-
tures. On five of the eight datasets, PSOCC achieves similar or higher classification accu-
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racy than PSOFS. Although on two datasets, (Vehicle and Multiple Features), the classifi-
cation accuracy of PSOCC is lower than PSOFS, PSOCC selects fewer features than PSOFS.
Especially, on the dataset Multiple Features, PSOCC only picks 51 features from the origi-
nal 649 features, which is six times smaller than PSOFS, meanwhile the classification accu-
racy is reduced only 0.16%. Comparing with PSO42, on most of datasets, PSOCC selects a
smaller number of features, and the classification performace is smilar or even better. Only
on two datasets, (Sonar and Ionosphere), PSOCC selects a larger number of features, but
PSOCC achieves significantly higher classification accuracy than PSO42. The results show
that PSOCC with the new representation can use the clustering information to envolve bet-
ter features subets with a smaller number of features and similar or even higher classfication
accuracy than two existing PSO-based algorithms, PSOFS and PSO42.

Comparing between LFS and PSOCC, Table 3.2 shows that LFS selects a smaller num-
ber of features, but PSOCC achieves higher classification performance. The only exception
is the dataset Musk1, where PSOCC achieves lower accuracy than LFS. But PSOCC’s best
solution achieves higher accuracy than LFS. The results show that PSOCC with the new rep-
resentation can better explore the search space to find the better subsets than the traditional
method, LFS.

3.4 Summary

The goal of Objective 1 was to develop a new PSO representation, which utilises the feature
clusterinng information to envolve a small subset of features that maintains or improves
the classification accuracy. This goal has been achieved by introuducing the upper limited
number of selected features and indexing features method, which allowed to encode cluster-
ing information inside a particle’s position. The algorithm with the new representation was
compared with two PSO-based algorithms (PSOFS, PSO42) and a traditional methods (LFS).
The results showed that the new algorithm successfully reduced the number of features and
simultaneously maintained or increase the classification accuracy.

From the results in Table 3.2, it can be seen that for some datasets like Musk1 and Multi-
ple Features, PSOCC selects a small number of features, which results in poor classification
accuracy. Although the upper limited number of features decreases the computation time,
it also reduces the chance to select a good feature subset. For example, in case all features
in a cluster are important, but the upper limited number of selected features will not allow
selecting all features from that cluster. In the following chapter, an improved version of
PSOCC is proposed, which uses Gaussian distribution to better explore the search space to
further improve the performance.
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Chapter 4

Applying Gaussian Distribution in
PSO

In Chapter 3, a new representation is proposed in PSO for feature selection to utilise the
statistical clustering information to reduce the number of features selected and increase the
classification performance. In that representation scheme, each element in the position vec-
tor indicates which feature is selected form its corresponding cluster. In particular, suppose
a feature F in a cluster is assigned with an interval [a, b], where 0 ≤ a < b ≤ 1. If the
element in the position vector has value c, which falls into the interval [a, b], the feature F
will be selected. This transformation rule introduces a limitation of the new representation.
For instance, suppose that in two different particles p1, p2, the elements values are c1 and
c2 respectively, where a < c1 < c2 < b. According to the transformation rule, both p1 and
p2 selects the elements corresponding feature. Although the element in p1 and p2 are as-
signed with two different values, the corresponding selected features are identical. This fact
significantly affects on the search ability of PSO. Particularly, a small change of an element
within the position vector might not lead to any change in the selected features as well as
the fitness value. The purpose of using continuous PSO in the new representation schema is
to utilise the smooth movement of particle in the search space. However, the transformation
rule accidently diminishes smooth property of the search space. This chapter aims to solve
this limitation by adding more meaning to the element of a position vector and creating a
new transformation rule, which allows particles to move smoother in the search space. The
new transformation rule is expected to better utilise the continuous search space and achieve
higher classification accuracy than the representation developed in Chapter 3.

4.1 Developemnt of New Representation Schema in Continuous
PSO

4.1.1 Gaussian Distribution for Feature Selection

Before introducing a new meaning of entries in the position vector, it is worth to have a
short review on the new representation, proposed in Chapter 3. In the new representation,
the position value in a dimension determines which feature is selected from a certain cluster.
In other word, the position value plays a role as the index of a feature in a cluster. For the
cluster i that contains Ni features, an interval [0, 1] is equally divided into (Ni + 1) sub-
intervals. The length of a sub-interval is called step. Therefore, the step of a cluster can be
calculated by the Equation 4.1.

stepi =
1

Ni + 1
(4.1)
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Figure 4.1: Indexing features

Figure 4.2: The Gaussian distribution when position value is 0.5.

where Ni is totalnumber of features in the ith cluster. If the entrys value falls into a features
interval, this feature is selected. Although, the position value in a dimension could varies in
the interval [0, 1], its meaning is still an index of a feature. Each position entrys value has
exactly one corresponding feature. Suppose the ith feature fi in the jth cluster is assigned
to the interval [0.2,0.4]. Two different position entrys values 0.25 and 0.35 have exactly
same interpretation, which is “feature fi is selected”. Therefore, when the position value
is changed from 0.25 to 0.35, the set of selected feature is not changed. So even the search
space is in continuous form, the particle does not move smooth.

In order to solve the above limitation, the position entry value is used to calculate the
probability that a feature being selected. To achieve this, a Gaussian distribution is intro-
duced in the interpreting process. This Gaussian distribution will determine which feature
is selected within a certain cluster. The determining rule is shown later in the following sec-
tion. By using the Gaussian distribution, all features in the cluster have chance to be selected,
while in Chapter 3, only the corresponding feature will be selected. The parameters of the
Gaussian distribution are defined, so that the corresponding feature has the biggest chance
of being selected. The further from the corresponding feature a feature is, the less chance
that feature is selected. Therefore, the position value is chosen as a mean for the Gaussian
distribution, which ensures that the selection of the corresponding feature is given a higher
probability than the selection of other features with in the cluster.

The standard deviation of the Gaussin distribution is set to 0.1 ∗ step, where step is cal-
culated using the Equation 4.1. This standard deviation ensures the probability that the
corresponding feature being selected is more than 99%. The rest 1% is distibuted to other
features with respect to how far the feature is from the corresponding feature.

An example of applying Gaussian distribution on the new representation is outlined
below. In this example, suppose a cluster contains 4 features f1, f2, f3, f4. Therefore, an
interval [0,1] is divided into 5 sub-intervals, which are respectively assigned to 4 features as
being shown in the Figure 4.1. The step value is step = 1

4+1 = 0.2.
Suppose that the position value of a dimension is 0.5, the corresponding feature is f3.

The Gaussian distribution with this position value is shown in Figure 4.2. As can be seen
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Figure 4.3: The differences introuduces by different position values.

from the figure, it is about more than 99% that feature f3 is selected. In addition, f2 and f4
have more chance to be selected than f1 or Null (i.e. no feature is selected), because they are
closer to f3.

Algorithm 2 : Pseudo-code of GPSOCC

1: begin
2: indexing features in each cluster;
3: define Nsc for each cluster according to Equation 3.3
4: initialize the best feature set (BFS) with the worst fitness. 3.3;
5: randomly initialise the position and velocity of each particle;
6: while Maximum iterations is not reached do
7: for each particle in the swarm do
8: transform from the position to set of selected features
9: evaluate the fitness based on the selected features

10: if the fitness is better than BFS’s fitness then
11: update BFS
12: end if
13: end for
14: for i = 1 to Population size do
15: update pbest and gbest of particle i;
16: end for
17: for i = 1 to Population size do
18: update vi of particle i according to Equation 2.1;
19: update xi of particle i according to Equation 2.2;
20: end for
21: end while
22: calculate the training and testing classification accuracy using BFS
23: return BFS, the training and testing classification accuracies;
24: end

Since the position value relates to the probability that a feature is selected, a change in
position entry results in the different probablilities. To better illustrate this assertion, the
above example is resued, in which the position entry takes 3 different values 0.45, 0.5 and
0.55. According to the trasnfromation rule in Chapter 3, these values indicate the same
meaning, that is “feature f3 is selected”. However, by using Gaussian Distribution, these
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Figure 4.4: Updating process of the best feature set.

different values have different meanings. The differences are shown in Figure 4.3. At the
beginning, the position value is 0.5, which is also a mean of the Gaussian Distribution. As
can be seen, the chances that f2 and f4 being selected are equal. If the position value is
updated to 0.55, which is still in the interval of feature f3. The Gaussian distribution moves
toward feature f4. Therefore the feauture f4 is more likely to be selected than feature f2.
On the contrary, the chance of feature f2 being selected is more than feature f4 when the
position value is updated to 0.45. Therefore, althoguh these three different values are in the
same features interval, they introduce different probability that features within the cluster
being selected.

4.1.2 How to Select Features

Introducing the Gaussian distribution makes the position value has more meaning than
just an index of selected feature in a cluster. This section discusses how to translate from
the position value to the selected feature with Gaussian distribution. Firstly, a Gaussian
distribution is built by using the position value as its mean. After that, a random number
is generated from the distribution. Notice that this number should fall into the range [0,1].
That is why the standard deviation is calculated as the Equation , which is small enough to
ensure that the random number is in the interval [0,1] in most cases. This random number
is used to determine which feature is selected from a certain cluster. The selection rule is
similar to the selection rule in PSOCC, except that the random number is used instead of
the position value. The chance that the random number falls into a features interval can be
viewed as the porbability that feature is selected.

Since the transformation process from the position to the selected future set uses a Gaus-
sian distribution, the future set is not deterministic. In particular, the same position might
results in different feature sets at different times. Therefore, it is necessary to keep track of
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the best selected feature set, which is used as a solution at the end of each run. This se-
lected set is updated during the fitness calculation process. The updating process is shown
in Figure 4.4. The pseudo-code of the proposed algorithm, GPSOCC, is shown in Algorithm
2.

4.2 Experimental Design

Dataset Method Ave-Size Ave-Train ± Std-Train Ave-Test ± Std-Test T
Wine All 13 76.54 +

GPSO1 5.4 96.71 ± 7.77E-14 96.59 ± 2.76 +
PSOCC 4.75 95.05 ± 0.58 96.70 ± 3.10 +
GPSOCC 4.60 97.37 ± 0.42 97.70 ± 2.52

Vehicle All 18 83.86 +
GPSO1 8.94 86.11 ± 0.20 84.30 ± 0.62 +
PSOCC 5.87 84.61 ± 0.56 84.72 ± 0.87 =
GPSOCC 7.30 90.10 ± 0.40 84.74 ± 0.49

Ionosphere All 34 83.81 +
GPSO1 7.66 91.59 ± 0.47 89.50 ± 1.68 -
PSOCC 9.7 90.04 ± 0.99 88.63 ± 1.68 -
GPSOCC 3.17 93.90 ± 0.67 86.89 ± 1.8

Sonar All 60 76.19 +
GPSO1 17.64 86.74 ± 0.94 78.19 ± 4.14 =
PSOCC 14.33 87.01 ± 2.00 78.94 ± 4.02 =
GPSOCC 10.17 90.67 ± 1.6 78.25 ± 2.96

Musk1 All 166 83.92 +
GPSO1 39.64 90.02 ± 0.60 84.95 ± 2.73 -
PSOCC 35.03 89.78 ± 1.25 83.12 ± 3.41 =
GPSOCC 38.93 93.22 ± 1.37 83.29 ± 2.48

Arrhythmia All 279 94.46 +
GPSO1 45.5 94.87 ± 0.09 94.85 ± 0.34 +
PSOCC 44.17 95.11 ± 0.20 94.96 ± 0.38 +
GPSOCC 42.03 95.75 ± 0.18 95.12 ± 0.34

Madelon All 500 70.9 +
GPSO1 36.08 85.45 ± 0.73 85.68 ± 1.10 -
PSOCC 54.39 83.73 ± 1.74 83.40 ± 2.00 +
GPSOCC 51.17 89.20 ± 1.41 84.06 ± 1.65

Multiple All 649 98.63 +
features GPSO1 91.4 99.38 ± 0.38 99.01 ± 0.13 =

PSOCC 51.07 99.17 ± 0.09 98.84 ± 0.18 =
GPSOCC 51 99.36 ± 0.07 98.86 ± 0.17

Table 4.1: Experimental Results of GPSOCC

To examine the performance of the proposed algorithm, GPSOCC, a set of experiments have
been conducted. The experimental design is the same as in Objective 1. In addition, the
performance of GPSOCC is compared with PSOCC, which is the proposed algorithm in
Chapter 3 and a binary PSO based feature selection algorithm, GPSO1 [20], which also uses
statistical feature clustering information and Gaussian distribution.
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4.3 Experimental Results

Table 4.1 shows the experemental results of the GPSOCC algorithm, where “All” means that
all the available features are used for classification. “Ave-size” shows the average number
of selected features over the 30 runs. “Ave-Train”, “Std-Train”, “Ave-Test”, “Std-Test” illus-
trate the average and standard deviation of the training and testing accuracies over the 30
independent runs. T shows the results of the statistical significant tests between the accuracy
of GPSOCC and other algorithms. “+” or “-” means that the algorithm GPSOCC achieved
significantly better or worse classification performance than other algorithms, “=“ means
there is no significant difference between them.

From Table 4.1 , it can be seen that the number of features selected by GPSOCC is much
smaller than the total number of features, but using the selected features only, the 5NN
classification algorithm achieved significantly better or similar classification accuracy. For
example, on the Madelon dataset, GPSOCC selects on average 51 features from the original
500 features, but achieve a significant increase in classification accuracy of 14%. The results
suggests that GPSOCC can be successfully used for feature selection to reduce the dimen-
sionality of the data and significatly increase the classification performance over using all
features.

In comparison with PSOCC, GPSOCC achieves a higher classification performance in
three datasets and has similar performace on four others. The only dataset that the PSOCC
outperforms GPSOCC is the Ionosphere datatset. However the number of features selected
by GPSOCC is about three times smaller than the number of features selected by PSOCC.
In addition, on all datasets, GPSOCC achieves higher traning accuracy than PSOCC. For
example, on the Madelon dataset, GPSOCC selects less features than PSOCC but GPSOCC
achieves higher training accuracy, 89.2%, which is about 6% better than PSOCCs tranining
accuracy. The results suggests that the Gaussian distribution can help PSO to better explore
the continuous search space by applying smooth movement for each particle.

Comparing GPSOCC with GPSO1, GPSOCC selects less features than GPSO on most of
datasets, except on the Madelon dataset. In terms of testing accuracy, GPSOCC achieves
higher classification performace on 3 datasets and has similar peroformance on two other
datasets. On all datasets, GPSOCC s traning accuracies are much better than GPSO1s train-
ing accuracy, which illustrates that GPSOCC explores the search space better than GPSO1.

4.4 Summary

The goal of this chapter is to further improve the new PSO representation, proposed in the
chapter 2. The goal is successfully achieved by introducing a Gaussian distribution, which
uses the position values as its mean to determine the probability of each feature in a certain
cluster being selected. A number of experiments have been conducted to compare the new
algorithm GPSOCC with its predecessor, PSOCC and GPSO1, which also useses statistical
cluster information and Gaussian distribution. The results shows that by using the Gaussian
distribution, GPSOCC can explore the serch space better than two other PSO algorithms.
However, on some datasets, GPSOCC sacrifices its classification accuracy to achieve smaller
set of selected features. In the following chapter, a new updating mechanism with genetic
operators (crossover and mutaion) is developed to help PSO explore the search spcae better.
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Chapter 5

A Hybrid PSO for Feature Selection

In recent years, several evolutionary algorithms have been developed for feature selection
problems in which Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO) are the
two most popular algorithms. GA [11] is a heuristic search technique that mimics the process
of natural evolution, which includes some pseudo-biological operators such as inheritance,
mutation, selection and crossover. In term of searching ability, GA is very good at exploring
the entire search space becuase of the pseudo-biological operators. However, GA is not
really good at precisely locate local optimal solution in the search region. Another drawback
of GA is its expensive computation cost.

Some comparisions between GA and PSO have been done in [8, 3, 14], which show that
PSO usually achieve the same performance as GA but with much cheaper computation cost.
However, premature convergence is a drawback of PSO, in which the entire population is
trapped in local optima. This problem appears frequently in solving high dimensional prob-
lems such as feature selection, whose search space contains too many local optima. Some
studies have been done to overcome this limitation. One way is increasing the exploration
ability by applying dynamic coefficient, which is proposed in [32, 28]. Another solution is
introduced in [6], which resets gbest if the gbest value does not change after three iterations.
In [21], a multi-swarm PSO is proposed to avoid premature convergence problem, in which
the population is splitted into many small sized sub-swarms to achieve better performance.
Every fixed number of generations, the population is grouped randomly to exchange the
information as well as to prevent early convergence inside each sub-swarm. Some hybrid
techniqes, which combine GA and PSO, have been done with low level of intergration. For
example, in [29], the combination of GA and PSO is done by using the result of one algo-
rithm as an input of the other algorithm. Another stronger co-opeartion of GA and PSO
is proposed by A.Gandelli [9], where the intergration is done during the entire run. Par-
ticularly, the whole population is splitted into two sub-populations, which are evolved by
GA and PSO respectively. After that, these sub-populations are merged to exchange their
achievement before being randomly splitted again in the next iterations.

In this chapter, a new PSO based feature selection algorithm, which intergrates two ge-
netic opreators: crossover and mutation in the updating process, is developed. The pro-
posed approach is examined and compared with the original PSO and another PSO based
feature selection proposed by Lane [20] to investigate whether the new approach can bet-
ter explore the search space to avoid the premature convergence problem to improve the
performance.
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Figure 5.1: Standard PSO Representation

5.1 Continuous PSO for Feature Selection

5.1.1 Particle’s Representation

In this chapter, a continuous PSO is applied to solve feature selection problems, where each
position value in the position vectore is a real number and corresponds to a feature from the
original feature set. In particular, each particle is represented by a vetor of real numbers,
xi = (xi1, xi2, . . . , xiN) where N is the total number of features. 0 ≤ xin ≤ 1 shows the prob-
ability of the nth feature being selected. A threshold θ is introdued to determine whether or
not a feature is selected. Particularly, if xin ≥ θ, the nth feature is selected. Otherwise, the nth

feature is not selected. So θ is an important parameter which can be used to control the num-
ber of selected features. The higher θ is, the less chance a feture being selected. According to
initia experience, 0.7 is a good value for θ, which balances between the number of selected
fetures and the classification accuracy. The visualisation of particle’s representation can be
shown in Figure 5.1, where the green entries indicate the selected features and the blue ones
correspond to the ones which are not selected.

5.1.2 Fitness function

In most of PSO based feature selection algorithms, the fitness function is set to the classifica-
tion performance, which guides particles to achieve high classification accuracy. This fitness
function’s formula is given in Equation 5.1

Fitness1 = ErrorRate (5.1)

where
ErrorRate =

FP + FN
TP + TN + FP + FN

(5.2)

where TP, TN, FP and FN are short for true positive, true negetive, false positive and false
negative, respectively.

However, feature selection is a multi-objective problem, which aims to minimize the
number of selected features while maximize the classification accuracy. In order to address
this problem, a new fitness function is proposed in [38], which is shown in Equation 5.3

Fitness2 = α ∗ #Features
#AllFeatures

+ (1− α) ∗ ErrorRate
Erroro

(5.3)

where α ∈ [0, 1] shows the relative importance between the number of selected features and
the classification error rate. ErrorRate is the classification error rate obtained by the selected
feature subset. Erroro is the error rate obtained by using all original features. However,
because Erroro is not changed, introducing this value causes more computation. In addition,
the fraction ErrorRate

Erroro
might be greater than 1, which is not fair because #Features

#AllFeatures ∈ [0, 1].
Therefore, a similar fitness function ( see Equation 5.4) is used in this work, which eliminates
the Erroro component.

Fitness3 = α ∗ #Features
#AllFeatures

+ (1− α) ∗ ErrorRate (5.4)
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5.2 Intergrating Crossover and Mutation into PSO

5.2.1 Crossover

In order to avoid premature convergence, the crossover operation is performs between a
number of particle pairs in each iteration. A roulette wheel selection based on the fitness
value is used to select particles, which then are used as the parents of the crossover op-
eration. A uniform crossover is applied to the selected particles to derive a new particle,
called a child. This child’s fitness value is calculated and compared with the pbest. If its
fitness is better than the parent’s current fitness value, this child will replace the parent in
the swarm. If the child’s fitness is even better than the parent’s personal best fitness, the
parent’s personal best position is then replaced by the child’s position. The improvement of
those parents is then propagated through the swarm during the sharing process.

Since the particles within the swarm will be more similar near the end of the run, the
crossover will have more impact at the beginning, when the population is just randomly
initialized. Therefore, the number of particles , which are used to apply the crossover op-
eration, is reduced with respect to the increase of the number of iterations (see Equation
5.5). By doing so, the computation cost will be reduced, while the crossover performance is
maintained.

Pi = bN − i ∗ N − 2
I
c (5.5)

where Pi is the number of selected particles for crossover at ith iteration, I is the total number
of iterations.

The pseudocode of crossover in each iteration is shown in Algorithm 3

Algorithm 3 : Pseudo-code of Crossver in iteration ith

1: begin
2: calculate Pi according to Equation 5.5
3: noCrossover = b Pi

2 c
4: while noCrossover is not reached do
5: select a pair of particles as parents;
6: perform uniform crossover between these parents to get a child;
7: calculate child’s fitness value;
8: if child’s fitness is better than parent’s current fitness then
9: parent’s current position← child’s position

10: parent’s current fitness← child’s fitness
11: end if
12: if child’s fitness is better than parent’s personal fitness then
13: parent’s personal best position← child’s position
14: parent’s presonal best fitness← child’s fitness
15: end if
16: remove the two particles from candidate parents list
17: end while
18: end

An exmple of typical run-through of selecting particles for crossover operation is out-
lined below. In this example, suppose the swarm contains 6 particles {p1, p2, p3, p4, p5, p6}
with these respective fitness values {0.1, 0.2, 0.1, 0.3, 0.1, 0.2}. We are going to do the crossover
operation 2 times, which means 4 particles being selected. So accroding to Algorithm 3,
Pi = 4 and noCrossover = 2.
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• Step 1: The probabilities of selecting each particle is shown in Figure 5.2a. Two features
are chosen via a roulette wheel selection. Since we aim to minimise the fitness value
(error rate), the lower a partice’s fitness value is, the better that particle is. As can
be seen from the figure, the particle, which has higher fitness value than the others,
has more chance to be chosen. Therefore, the worse particle will be more likely to be
improved via the crossover operation. In this example, we assume that the roulette
wheel selection determines that the particle 1 and particle 6 are selected. This step is
the first iteration in Algorithm 3. After that, the process inside the loop of Algorithm
3 is applied to do crossover operation between feature 1 and 6.

• Step 2: After being chosen, particle 1 and 6 are removed from the wheel, so other
particles will have chance to improve its fitness via crossover operation. This step cor-
responds to the second iteration of Algorithm 3. In this iteration, another two particles
are chosen as parents of the crossover operation.

(a) The probability of a particle being se-
lected to be a parent of the crossover op-
eration

(b) The probability of a particle being se-
lected to be a parent of the crossvoer oper-
ation after feature p1 and p6 being selected

Figure 5.2: Selecting parents for the crossover opreation basing on fitness value

5.2.2 Mutation

Although the crossover operation can be used to better explore the search space, it has less
impact near the end of run because particles in the swarm become very similar. Oppsite
to crossover, mutation operation has less impact at the beginning of a run, and more near
the end [8]. Therefore, intergrating a mutation operation into the PSO algorithm would also
improve the exploration ability.

Each particle within the swarm records a global best position, which is the best position
so far being discovered by the particle and its neighbours. If the gbest’s fitness value is not
improved after a number of iteration, the particle is probably trapped in local optima. This
is when a mutation operation needs to be applied on the gbest postion.

Belief in a feature

Similar to particle, the global best is also represented by a vetor of real numbers, which
are continuous values in the interval [0,1]. Suppose the gbest’s position is encoded as
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(gi1, gi2, . . . , giN). These values not only indicate which features are slected but also show
the “belief” of that feature. For example, gi1 = 0.8 and gi2 = 0.9 shows that both feature 1
and feature 2 are selected, since both values are greater than the threshold θ = 0.7. However,
it is believed that feature 2 is more deserved to be selected than feature 1, because gi2 is far
from θ than gi1. Similarly, if gi2 < gi1 < θ then the second feature is more likely not being
selected than the first one. In other word, the further distance between the feature’s value
and the threshold, the more belief that feature is selected or not selected.

Mutation on gbest

Taking the idea about belief in a feature, a new mutation method is proposed for gbest posi-
tion, where the less confident feature is more likely to be mutated. Firstly, the confident rate
(CR) of each feature is calculated basing on the distance from its value to the threshold θ,
which is shown in Equation 5.6

CRi =

{
fi−θ
1−θ if fi > θ
θ− fi

θ if fi ≤ θ
(5.6)

where CRi is the confident rate of ith feature, fi is the ith feature’s value in gbest.
A temporary position, called a child, is generated by applying mutation on the gbest

position. After calculating the confident rate for a feature, a random number r is generated
. If r < CRi, then the ith child’s position entry is set to the corresponding entry in gbest.
Otherwise, the ith child’s position entry is a mutated value of gbest’s correspoding entry,
which is determined by Equation 5.7.

childi = 1− gbesti (5.7)

where childi is the ith position entry value of the child, gbesti is the corresponding entry value
in gbest.

It can be seen that if a feature is selected, it will not be selected after being mutated and
vie versa. More improtant, the confident rate CR plays a role in the mutation rate. The
higher the CR is, the lower chance that its correspoding feature being mutated.

The pseudocode of mutation in each iteration is shown in Algorithm 4

Mutation example

Suppose gbest fitness value of a particle p is not changed over 3 iterations, we are going to
mutate this gbest. Assume that:

• Threshold θ = 0.7

• The total number of features are 4

• The gbest position is [0.14, 0.76, 0.91, 0.21]

According to the Equation 5.7, the confident rate of each features can be calculated as below:

• CR1 = 0.7−0.14
0.7 = 0.8

• CR2 = 0.76−0.7
1−0.7 = 0.2

• CR3 = 0.91−0.7
1−0.7 = 0.7

• CR4 = 0.7−0.21
0.7 = 0.7
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Suppose the first random number is generated, r1 = 0.45, which is smaller than CR1. So
the child’s first position entry, which corresponds to the first feature, is set to gbest1 = 0.14.
Similarly, another random numbers are generated for the other features to fully build the
child, which is shown as below:

• r2 = 0.3 > CR2, so child2 = 1− gbest2 = 1− 0.76 = 0.24

• r3 = 0.65 < CR3, so child3 = gbest3 = 0.91

• r4 = 0.75 > CR4, so child4 = 1− gbes4 = 1− 0.21 = 0.78

The mutated child’s position is 0.14, 0.24, 0.91, 0.78
The pseudocode of crossover in each iteration is shown in Algorithm 4

Algorithm 4 : Pseudo-code of Mutation

1: begin
2: for each particle pi in the swarm do
3: if pi’s global fitness is not improved in 3 iterations then
4: child← pi’s gbest
5: for i = 1 to gbest size (number of features) do
6: calculate CRi of the ith feature according to Equation 5.6;
7: generate a random number r
8: if r ≥ CRi then childi = 1− gbesti
9: end if

10: if child’s fitness is better than pi’s current fitness then
11: pi’s current position← child’s position
12: pi’s current fitness← child’s fitness
13: end if
14: if child’s fitness is better than pi’s personal fitness then
15: pi’s personal best position← child’s position
16: pi’s presonal best fitness← child’s fitness
17: end if
18: if child’s fitness is better than pi’s global fitness then
19: pi’s global best position← child’s position
20: pi’s global best fitness← child’s fitness
21: end if
22: end for
23: end if
24: end for
25: end

The pseudo-codeof the proposed algorithm, Crossover-Mutation PSO (CMPSO), is given
in Algorithm 5

5.3 Experimental Design

5.3.1 Benchmark Technques

To examine the performance of the proposed algorithm (CMPSO), a binary PSO based fea-
ture selection algorithms ,GPSO1[20]), and the PSOCC algorithm (Chapter 3) are used as
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benchmark techniques in the experiment. In addition, to further analyis the evolutionary
process, CMPSO is also compared with the original continuous PSO (PSO).

Dataset Number of features Number of clusters Number of classes No of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

Table 5.1: Datasets

Algorithm 5 : Pesudo-code of CMPSO

1: begin
2: randomly initialise the position and velocity of each particle;
3: while Maximum iteration is not reached do
4: evaluate the fitness of each particle;
5: for i = 1 to PopulationSize do
6: update the pbest of particle i;
7: end for
8: perform crossover operation on the swarm;
9: update the gbest /*Ring topology*/ ;

10: perform mutation operation on the swarm;
11: for i = 1 to PopulationSize do
12: Update velocity of particle i;
13: Update position of particle i;
14: end for
15: end while
16: end

5.3.2 Datasets and Parameter Settings

Eight datasets (Table 5.1) chosen from the UCI machine learning repository are used in thr
experiments. Those datasets are the same ones, which are used in GPSO1 and PSOCC to
ensure fair comparisons.

The parameters of CMPSO and OPSO are set as follow: w = 0.7298, c1 = c2 = 1.49618,
vmax = 0.2, the population size is 30, the maximum iteration is 100 and the threshold θ is set
as 0.7. The same paraemters are set for GPSO1, except the maximum velocity vmax is set to
6.0.

5.4 Experimental Results

This section firstly discusses the performance of CMPSO and the other three PSO based
feature selection algorithms (Table 5.2), then compares the search ability between CMPSO
and PSO.
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5.4.1 CMPSO versus GPSO1 and CPSO

Dataset Method Ave-Size Ave-Train ± Std-Train Ave-Test ± Std-Test T
All 13 76.54 +
GPSO1 5.4 96.71 ± 7.77E-14 96.59 ± 2.76 +

Wine GPSOCC 4.60 97.37 ± 0.42 97.70 ± 2.52 =
PSOCC 4.75 95.05 ± 0.58 96.70 ± 3.10 +
CMPSO 4.70 97.28 ± 0.34 97.24 ± 2.89
All 18 83.86 +
GPSO1 8.94 86.11 ± 0.20 84.30 ± 0.62 =

Vehicle GPSOCC 7.30 90.10 ± 0.40 84.74 ± 0.49 -
PSOCC 5.87 84.61 ± 0.56 84.72 ± 0.87 =
CMPSO 7.57 90.25 ± 0.43 84.49 ± 0.44
All 34 83.81 +
GPSO1 7.66 91.59 ± 0.47 89.50 ± 1.68 -

Ionosphere GPSOCC 3.17 93.90 ± 0.67 86.89 ± 1.80 +
PSOCC 9.7 90.04 ± 0.99 88.63 ± 1.68 =
CMPSO 3.77 93.75 ± 0.86 87.94 ± 2.00
All 60 76.19 +
GPSO1 17.64 86.74 ± 0.94 78.19 ± 4.14 +

Sonar GPSOCC 10.17 90.67 ± 1.60 78.25 ± 2.95 +
PSOCC 14.33 87.01 ± 2.00 78.94 ± 4.02 +
CMPSO 11.60 91.59 ± 1.74 79.42 ± 2.48
All 166 83.92 +
GPSO1 39.64 90.02 ± 0.60 84.95 ± 2.73 =

Musk1 GPSOCC 38.93 93.22 ± 1.40 83.29 ± 2.48 +
PSOCC 35.03 89.78 ± 1.25 83.12 ± 3.41 +
CMPSO 39.93 93.47 ± 1.12 85.06 ± 2.49
All 279 94.46 +
GPSO1 45.5 94.87 ± 0.91 94.85 ± 0.34 =

Arrhythmia GPSOCC 42.03 95.75 ± 0.18 95.12 ± 0.34 =
PSOCC 44.17 95.11 ± 0.20 94.96 ± 0.38 =
CMPSO 44.97 95.75 ± 0.19 95.07 ± 0.42
All 500 70.9 +
GPSO1 36.08 85.45 ± 0.73 85.68 ± 1.10 -

Madelon GPSOCC 51.13 89.20 ± 1.41 84.06 ± 1.64 -
PSOCC 54.39 83.73 ± 1.74 83.40 ± 2.00 -
CMPSO 107.2 89.4 ± 0.73 81.57 ± 1.46
All 649 98.63 +

Multiple GPSO1 91.4 99.38 ± 0.38 99.01 ± 0.13 =
features GPSOCC 51 99.36 ± 0.07 98.86 ± 0.17 +

PSOCC 51.07 99.17 ± 0.09 98.84 ± 0.18 +
CMPSO 110.77 99.53 ± 0.05 99.05 ± 0.01

Table 5.2: Experimental Results of CMPSO

Table 5.2 shows the experemental results of the CMPSO algorithms, where “All” means that
all the available features are used for classification. “Ave-size” shows the average number of
selected features over the 30 runs. “Ave-Train”, “Std-Train”, “Ave-Test”, “Std-Test” illustrate
the average and standard deviation of the training and testing accuracies over the 30 inde-
pendent runs. T shows the results of the statistical significant tests between the accuracy of
CMPSO and other algorithms. “+” or “-” means that the algorithm CMPSO achieved signif-
icantly better or worse classification performance than other algorithms, “=“ means there is
no significant difference between them.

As can be seen from Table 5.2, on all datasets, CMPS successfully selects feature subsets,
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which achieve significantly higher classification accuracy than using all feattures. In addi-
tion, on each dataset, the number of selected features is always less than a third of the total
number of features.

Compared to PSOCC algorithm, CMPSO also achieves similar or higher classification
acuracy, while the number of selected features remains similar. It is remarkable that on
all datasets, CMPSO achieves much higher training accuracy than PSOCC. Especially, on
Vehicle dataset, CMPSO’s training accuracy is about 5.27% higher than PSOCC’s one.

Comparing CMPSO with GPSOCC, in terms of testing accuracy, CMPSO outperforms
GPSOCC on 3 datasets and achieves similar accuracy on 3 of the remaining datasets. In
addition, on all datasets, CMPSO also achieves higher or similar training accuracy than
GPSOCC.

Compared to GPSO1, CMPSO achieves higher testing accuracy on 3 out of the datasets
and similar accuracy on 4 of the remaining datasets. However, GPSO1 performs better than
CMPSO on the Ionosphere dataset (about 2%). The reason is that CMPSO selects ony 3.77
features, which is 2 times less than the number of selected features by GPSO1. Furthermore,
on each dataset, CMPSO always achieve higher training accuracy than GPSO1. For example,
on Sonar dataset, the training accuracy of CMPSO is 90.62%, which is 4% higher, while
CMPSO selects even smaller number of features than both GPSO1.

The results suggest that intergrating crossover and mutation operations into PSO im-
proves the search ability of a PSO algorithm, which is clearly shown by the higher training
accuracy on all datasets. However, someone might argue that this improvement is from
the usage of continuous PSO, which usually has better exploration ablity than binary PSO
(GPSO1). In the next section, a comparison between standard PSO (PSO) and CMPSO is
done to further analysis the effect of crossover and mutation operations.

5.4.2 Comparison with standard PSO (PSO)

For each dataset, CMPSO and PSO are independently run 30 times. The fitness value of
PSO is calculated by using the Equation 5.4. Each run contains 100 iterations, in which the
fitness value is improved after each iteration. The average of fitness value at each iteration
is calcualted by using 30 indepent runs’ results. Those average values are used to evaluate
the fitness evolution of the above algorithms. The smaller fitness an algorithm achieves, the
better the algorithm is. Figure 5.3 illustrates the fitness values in each iteration on 6 datasets,
in which X-axis represents the iteration index and Y-axis represents the average fitness value
at that iteration. CMPSO’s fitness values are represented by blue lines, while red lines are
fitness values of PSO.

As can be seen from Figure 5.3, on all datasets, the blue lines are always under the red
lines, which indicates that the positions discoverd by CMPSO always have better fitness val-
ues then the ones discovered by PSO. On the small dataset like Wine, Vehilce, Ionosphere or
Sonar, the diffenrece between those 2 approaches are clearly shown in the middle iterations.
Although at the end, the blue and red lines approach each other, the blue lines are still a
little bit lower than the red lines, which idicates CMPSO still can better explores the search
space than PSO.

The more significant difference is shown in a bigger dataset, Musk1. As can be seen in
Figure 5.3e, despite of starting at the same position (same fitness value) the gap between the
red and blue line is maintained or even getting bigger with respect to the iteration order.
At the end of the run, the difference of fitness values between these two approaches is still
about 0.3%. On Arrhythmia, another dataset with a big number of features, the difference is
not as signigicant as Musk1. The reason is that the starting position is quite good. At that
position the fitness value is already 0.02, which is quite smaller, compared to the starting
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fitness of Musk1 (0.053). However, in Figure 5.3f, we still can regconise that the blue line is
still under the red line.

The results clearly show that crossover and mutation operation would help PSO to bet-
ter explore the search space, which is proved by the better fitness values that CMPSO can
achieve during an entire run.
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Figure 5.3: Fitness evolution figures

5.5 Summary

The goal of this chapter was to develop a PSO-based feature selection approach that can
better explore the search space. This goal was achieved by intergrating two genetic oper-
ators: crossover and mutation into the PSO. The results show that, on almost datasets, the
proposed algorithm (CMPSO) can achieve similar or better testing accuracy than the other
three methods PSOCC, GPSOCC and GPSO1. In terms of training accuracy and fitness evo-
lution, CMPSO outperforms these three approaches as well as the standard PSO.

In CMPSO, although the training accuracy is significantly improved, the testing accuracy
is not improved much or even getting worse than other PSO based approach. There might
be an overfitting problem in this proposed algorithm. It is worth to develop a mechanism
to balance between the training accuracy and testing accuracy. In addition, the Objective
1 shows that statistical clusering information can help PSO achieve better accuracy. It is
promissing to combine both CMPSO and statistical clusterting information to achieve better
classification performace.

28



Chapter 6

Conclusions and Future Work

The conclusions are presented in this Chapter.
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