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Abstract

Feature construciton aims to construct new high-level features from the orig-
inal dataset. The constructed feature is expected to improve the representation
quality of the original dataset. Particle swarm optimisation (PSO) is an effec-
tive search technique and has been widely used in feature selection tasks. How-
ever, PSO has seldom been used for feature construction. In this project, we
propose an algortihm using PSO for feature construction in binary classification.
Firstly, we propose two different representations for particles in PSO for fea-
ture cosntruction in binary classification. The experimental results show that the
single constructed new feature can improve the classification performance. Sec-
ondly, we developed a PSO based approach to constructing one single high-level
feature for multi-class classification problem. The experimental results show
that the constructed feature is not informative enough for multi-class classifi-
cation problems. Thirdly, we developed a PSO based approach to construct mul-
tiple high-level features for classification problems. The experimental results
show that the developed approach can improve the classification performance
for some datasets.
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Chapter 1

Introduction

Classification is one of the most important tasks in machine learning and data mining. The
large number of features is an obstacle when people are trying to solve real-world prob-
lems. The difficulty of classification will be increased by including irrelevant and redundant
features. The consequence is that most classification algorithms cannot achieve good clas-
sification performance. Therefore, one concern is reducing the number of original features
and improving the representation quality.

Feature transformation is one of the most popular approaches used today in which fea-
ture selection and feature construction are included [21]. Feature selection aims to choose a
subset of existing features from original features. The selected subset of features should be
able to fully represent and describe the concept shown by the original features. Compared
to feature selection, the objective of feature construction is to construct new high-levl fea-
ture(s) based on some functional expression which uses the original features as input [1].
A constructed feature usually acts as a function of the original low-level features [13]. The
constructed feature(s) should be able to discover the hidden relationship amongst the orig-
inal features. Feature construction can improve the quality of the representation, reduce its
complexity and increase the classification performance [18].

Feature construction needs to produce a function or a set of functions which uses a sub-
set of the original features as input to construct new features. Two major factors significantly
influence the performance of the constructed feature. The first is how the subset of original
features can be selected. The second is what operators will be used in the feature construc-
tion function. Exhaustively searching all the possible solutions will be expensive or even
impractical when the total number of original features is large. Therefore, an effective and
efficient global search technique is essential to develop a good feature construction method.

Evolutionary computation techniques are global heuristic search techniques, which have
been widely used in many areas [5]. Feature construction using Genetic Programming (GP)
[14, 8, 15] and Genetic Algorithms (GAs) [1] have been successfully developed. GP provides
a terminal set which can reserve all original features and a function set where the potential
operators can be reserved. The terminal and function sets provided by GP are advantages
for solving the feature construction problem. Mayfield et al. [11] propose an approach for
feature construction using GP to a language processing task. The presence or absence of fea-
tures is represented as boolean statements in the proposed approach. The potential opera-
tors are AND and XOR. The results show that the unigram feature space can be improved by
introducing newly constructed features. Alfred [1] proposes a feature construction method
called Dynamic Aggregation of Relational Attributes (DARA) to represent records stored in
the non-target tables. GAs are also used to construct a relevant set of features for DARA.
Each chromosome is initialised with the format of < X, A, B >, where X represents a list of
the features from the original data set, A represents the number of features combined, and



B represents the point of crossover. GAs is used as a heuristic search strategy to find global
optimal solutions. The results show that the data summarisation results can be improved
by the constructed features.

Particle swarm optimisation (PSO) is a relatively recent evolutionary computation tech-
nique [7]. PSO is inspired by social behaviours of birds flocking and fish schooling. PSO is
a computationally cheaper and quicker converged technique compared with GP and GAs.
In PSO, fewer parameters are introduced than GP and GA, which makes PSO an easier
controlled algorithm. There are several successful implementations using PSO solving real-
world problems, such as feature selection [3, 19], process planning and scheduling [6]. PSO
has been successfully used for feature selection, but has seldom been used for feature con-
struction. This is one of the main motivations for using PSO for feature construction.

The functional expression is essential for constructing feature(s). One of the most im-
portant steps for making the functional expression is the input feature selection from the
original dataset. Therefore, a good technique for selecting a subset of useful features from
the original features is one of the most important factors in feature construction. PSO can
be a good technique for selecting features from the original dataset as inputs for the fea-
ture construction function. However, PSO has seldom been used for feature construction,
which is one of the motivations to propose this project. One of the reasons making PSO dif-
ficult for feature construction is that the current particle encoding scheme and the updating
mechanisms in PSO are not designed to allow the function operators to be included in the
evolutionary process.

1.1 The Problem

A constructed high-level feature(s) is a function of original low-level features and function
operators are necessary. The purpose of using PSO is to produce such function(s). Two of
the most important steps for feature construction using PSO are the feature selection from
the original dataset and operators selection from the potential operators set. The advantage
of using PSO for feature construcion is that PSO can easily handle feature selection from the
original data set. However, having the operators seleciton included in the PSO evolution-
ary process is difficult. Normally, the potential operators set will be defined before making
the feature construciton function. During the evolution, the operators will be selected from
the potential operators set. In PSO, the numeric representation is used for all candidate
solutions. However, the potential operators are not easy to be converted to a numeric repre-
sentation. A normal way for replacing the character-based operators is to give each potential
operator a numeric index. Therefore, during the evolution, the operators” index is going to
be included rather than the operator themselves. The problem is that how an effective PSO
encoding scheme and updating machanism can be implemented.

In PSO, each particle represents a candidate solution, which is shown by the particle’s
position [21]. At the end of the evolution of PSO, the particle with the best position will
be selected. In feature construction, each particle can be seen as one candidate for one con-
structed feature. At the end, the best particle with the one constructed feature will be chosen.
However, in real-world problems, a single constructed feature may not be enough for com-
plex problems. Therefore, how to construct multiple features could be another challenging
problem.



1.2 Project Goals

The overall goal is to develop a PSO based approach to feature construction for classification
problems. Feature construction aims to summarise data from the original data set and con-
struct high-level feature(s). By using the constructed feature(s), the representation quality of
the data set should be improved compared with the original data set. This should include
the classification accuracy improving and the computation time decreasing. To accomplish
the overall goal, three sequential sub-goals are raised, which are shown in Figure 1.1.

Feature Construction

A

Single Feature Single Feature Multiple Features
Construction for Binary | ---»| Construction for Multi- ---- > P N
e e Construction
Classification class Classification

Figure 1.1: The Goals Of The Project

One of the most difficult obstacles in PSO for feature construction is the representation
problem. In PSO, the candidate solutions are encoded as particles. To do feature construc-
tion, the output of the PSO algorithm should be a function or a set of functions using the
original features as input and producing output as a constructed new feature. However, the
encoding scheme and the updating mechanisms in PSO only allow using numeric represen-
tation for the candidate solutions. For feature construction, the operators for the feature con-
struction function are not easy to be used in the numeric representation in PSO. Therefore,
the first goal of the project is to figure out a representation design and encoding machanism
for feature construction using PSO. At this stage, a single constructed new feature for binary
classification is expected.

Secondly, the first sub-goal of the project only targets on the binary classification prob-
lem. However, in reality, the classification problem may include multiple classes. Using a
single feature for multi-class classification is going to be a challenging task. This is also a
good way to test the effectiveness of the algorithm designed for the first sub-goal because
during the design and implemention of the single feature in sub-goal 1, only binary classifi-
caiton task is used for testing. Therefore, in the second sub-goal, the multi-class classification
can help with tuning the proposed representation from sub-goal 1.

With the working on the representation for the feature construction using PSO discussed
above, the sub-goal 3 is to produce multiple constructed features. The sub-goal 1 and sub-
goal 2 only produce a single constructed feature, which may not be enough for large, com-
plex data sets. Therefore, constructing multiple features for multi-class classification prob-
lems is going to be the third goal of the project.



1.3 Major Contributions

We started our first work on PSO for feature construction in [21] during the previous sum-
mer project. In [21], PSO is used for selecting features from the dataset and an independent
operator selection loop is used to determine the operators for the constructed feature. A
single high-level feature is constructed for binary classification problem and the experimen-
tal results show that the constructed feature can improve the classification performance in
most cases. This is a motivation for us to further investigate the use of PSO for feature
construction.
In this project, the major contributions are shown below:

e We proposed an array and pair representations for PSO to evolve and select the fea-
tures and operators. In the area of feature construction, PSO has never been used to
evolve and select operators for the constructed feature. Compared with [21] which has
the operator selection as an independent loop, this project shows how operator selec-
tion can be done as part of PSO itself for constructing high-level feature. This is the
tirst work using PSO for doing operator selection. The experimental results shows that
the proposed approach can effectively select a combination of features and operators
to construct a reasonably good single high-level feature. The performance of binary
classification can benefit from using the constructed feature.

e We developed an approach to construct a single high-level feature using PSO for multi-
class classification. The project shows how to construct a single high-level feature us-
ing PSO for multi-class classification problems. PSO has never been used to construct
single feature for multi-class classification problems. The experimental results show
that the proposed approach can construct a high-level feature for multi-class classifica-
tion dataset. The single newly constructed high-level feature with the original features
together can improve the classification performance. We also compared the operator
selection performance of using the array and pair representations. The experimental
results shows that the probability of a operator can be chosen by array representation
is more evenly distributed than using pair representation for each candidate operator.

e We developed an approach to construct multiple new high-level features using PSO
for classification problems. The project shows how to use PSO to construct multiple
high-level features for classification problems, which has never been done before. The
proposed approach is based on [15] which uses GP to construct multiple features and
calculate the class interval purity to evaluate the constructed feature during the evolu-
tionary process. Different from [15], we separated the dataset for finding class interval
and calculate the class interval purity. The experimental results show that the pro-
posed method can construct a set of highly informative high-level features for some
datasets.

1.4 Organisation

The report is organised in the following way. The second chapter will show the background
information of the research. The third chpater will propose two differnet representation
for PSO to construct one single feature for binary classificaiton problems. In the fourth
chapter, we will introduce a way to construct one single high-level feature for multi-class
classification problem. In the fifth chapter, we will propose an approach to constructing
multiple high-level features for classification problems. In the last chapter, we will conclude
the project.



Chapter 2

Background

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [7, 17] is an evolutionary computation technique. PSO is
one of the techniques based on swarm intelligence. PSO was firstly introduced by Eberhart
[7] in 1995. The intention of PSO is to stimulate social behaviours of birds flocking and fish
schooling. In PSO, there are one basic element called particle. Each candidate solution is
encoded as a particle. At the beginning of a PSO algorithm, a population of particles is
initialised with random positions and the population is called a swarm in PSO. During the
evolution of PSO, all the particles move in the search space to find the optimal solutions.
For any particle i, a vector x; = (xj1, X, ..., Xip,) is used to represent its position and a
vector v; = (vj1,Vp, ..., Vip, ) Tepresents its velocity, where D is the dimensionality of the
search space. During the evolutionary process, each particle can remember the best position
visited so far as the personal best position, which is called pbest. The best position for the
whole swarm is remembered as the global best, gbest. The gbest is determined based on
how a particle shares information with its neighbours. Each particle updates its position in
each iteration based on its velocity and previous position. The velocity is also updated in
PSO for each particle. The updating equations used in PSO are presented below:

t+1 t t+1

X =Xgtvy (2.1)

it = wx ol + % (pig — xig) + i ( ia) 2.2
= i T C1 %7113 % (Pig — Xj3) + €2 % 125 % (Ped — Xjg (2.2)

In the two equations, t shows the tth iteration. d € D shows the dth dimension. w
is the inertia weight used to balance the local search and global search abilities of PSO. ¢q
and c; are acceleration constants. r1; and rp; are random constants uniformly distributed in
[0,1]. pig and pg; denote the values of pbest and gbest in the dth dimension. A predefined
maximum velocity v,y is used to limit the vfjl.

A Binary Particle Swarm Optimisation (BPSO) is developed by Kenny and Eberhart [6].
in BPSO, xi4, pia and pg4 are either 1 or 0. The velocity in BPSO represents the probability of
the corresponding position taking value of 1. To transfer the velocity value between 0 and 1,
a sigmoid function is used to achieve this. The following equations are used to update the

position of each particle:

1ifrand .
Xid = O,Z)];IZLZ’ZIUEQ:S(Ud) (23)
where .
s(0i) = T (2.4)

rand() is a random number selected from a uniform distribution in (0, 1).



2.2 Related work on Feature Construction

The feature construction approaches can be categorized by whether a learning/ classification
algorithm is included in the feature construction process or not, which are wrapper ap-
proaches and filter approaches [10].

In a wrapper method, a learning/classification algorithm is included and classification
performance is used to evaluate the quality of the constructed feature(s). Murthy et al. [12]
introduces a feature construction system. The system can construct new features through
linearly combining the original features in the process of learning a decision tree and the
technique is recognised as an efficient technique for feature construction since GP can help
with improving the accuracy by building good quality programs and expression in . Lim
et al. [9] propose an explanation-based feature construction approach. In the explanation-
based feature construction approach, an explanation-based interaction between training ex-
amples and prior domain knowledge is used to guide the automatical construction for task-
relevant discriminative features. The presented results show that the feature construction
approach can construct effective features for the most difficult and complex character pairs
in the experiment.

In filter approaches, feature construction is a separate, independent preprocessing stage
of any learning algorithm. The filter approaches improve the computational efficiency and
generality so that the filter approach becomes a popular way for feature construction prob-
lems. Otero et al. [16] propose a GP method for feature construction and the information
gain ratio is used in the fitness function. During the process, C4.5 classifier is used to evalu-
ate the performance of the constructed feature. The result shows that the constructed feature
can increase the classification performance combining with the original features. The result
may benefit from either C4.5 classifier or GP with information gain ratio as the fitness func-
tion. However, the effect of whether a different classifier can benefit the feature construction
is still unknown.

Recently, GP has been widely used in feature construction task. Neshatian at al. [15]
develop a GP based feature construction algorithm. The fitness function of the algorithm is
based on the class dispersion and entropy. The experimental results show that the classifica-
tion performance is improved. Then Neshatian and Zhang [13] develop a GP based feature
construction method. This method uses a variable terminal pool constructed by the class-
wise orthogonal transformations of the original features. The experimental results show that
the proposed GP based algorithm can improve the principle component analysis method in
terms of classification performance and dimensionality reduction. Neshatian at al. [14]
develop another algorithm based on GP. The proposed GP algorithm includes an entropy-
based fitness so that the the purity of class intervals can be maximised. A decomposable
objective function is proposed so that the system is able to construct multiple high-level fea-
tures. Experimental results show that the constructed featues are highly relevant to improve
the classification performance.

2.3 PSO for Feature Construction

PSO is rarely used for feature construction. We start the first work on PSO for feature con-
struction in [21]. The proposed algorithm uses PSO for feature construction and has a sep-
arated function operator selection algorithm. The constructed feature is used to perform a
binary classification task.

The process starts with randomly generated particles and predefined candidates oper-
ators. Each particle contains an array of binary numbers. The length of the array equals
to the number of the features in the dataset. If the value equals to 1, the feature will be



selected and 0 otherwise. In each generation, an array of features from original dataset has
been selected. Then we run an algorithm to select operators based on the selected features.
Four operators are used in the work and they are +, -, * and /. Exhaustively searching the
best function operators sets for the selected features is time-consuming. Therefore, we use
local search to find a near-optimal combination of function operators and the selected fea-
tures. The operator for the first selected feature are always set to ”+” since we do not need
form a function by a single feature. From the second selected feature, the function operators
selection algorithm starts by searching a proper operator for the first two selected features,
which construct a new feature (f;) based on the first two selected feature. The operator with
the best evaluation performance will be remembered and another operator selection process
with the third selected features started. A new operator will be selected between the f. and
the third selected feature, and the f, will be updated. The overall process will finish until
the last selected feature has been used.

The experimental results show that the proposed feature construction method can con-
struct a useful feature for improving the classification performance. However, the benefit
of the constructed feature can be caused by the local search for the operator selection which
is computaionally expensive. The proposed algorithm made the feature selection and op-
erator selection process separtately. Therefore, in this project, we want to use PSO for both
feature selection and operator selection simultaneously.






Chapter 3

Two Representations in PSO For
Feature Construction For Binary
Classification

3.1 Introduction

This chapter focus on the first sub-goal of using PSO for feature construction, which is to
construct a single high-level feature for binary classification. In the rest of this chapter, we
will describe the new methods and results.

3.2 Chapter Goals

The first goal of this project is to develop a PSO based algorithm for feature construction in
binary classification tasks. We expect that the newly constructed high-level features can ben-
efit the classification performance either used solely or combined with the original features.
We will propose two representations for the PSO based feature construction algorithm, an
array representation and a pair representation.

Specifically, we will investigate:

e whether the new representations can do a good enough job for feature construction.
We will compare the results of the new developed representations with [21]

e whether only use the newly constructed feature can improve the classification perfor-
mance.

e whether combining the constructed feature with the original feature can improve the
classification performance.

3.3 Proposed Approach

3.3.1 The Overall Design

In this section, we propose two PSO based feature construction and classification approaches.
A single high-level feature will be constructed as the result of the algorithm. The different
part for the two algorithms is the particle representation. The process starts with spliting a
training set and a testing set from the original dataset. By using the training set, a high-level
feature is constructed. The high-level feature is then used to transform a new training set

9
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Figure 3.1: Overall Operator Selection Process

and a new testing set based on the original training and testing set. The new training and
testing sets only contain a single newly constructed feature and the class labels. The purpose
of having these two new training and testing sets is to test the classification performance of
the newly constructed high-level feature. The Figure 3.1 shows the overall process of PSO
for feature construction (PSOFC).

In order to construct a high-level feature, a set of function operators needs to be selected
and optimised with the selected features. This is the main challenge for using PSO for fea-
ture construction.

Two new representations for particles in PSO are proposed. The process starts with ini-
tialising particles with random positions. The next step is to select features from the original
dataset as input for a feature construction function. Meanwhile, according to the different
representations, the corresponding function operators are also selected for the selected fea-
tures. The details for selecting the operators using the two representations will be shown
in the following two sections and the particle representation is the main difference between
the two proposed representations. Then, in order to evaluate the solution and proceed the
evolution, a binary classification process will be used to produce a fitness value based on
the constructed feature. The evolution process will finally stop until the maximum number
of iterations is reached.

3.3.2 Array Representation

In this proposed representation which we call it array representation, each particle is ini-
tialised with an array of float numbers. If the total number of features of a given dataset
is n, the length of the array will be 2 x n — 1. In each particle, an array is a combination of
features and function operators. The array can be seen in Figure 3.2:

The feature and operator selection shares the same value range. However, as the solution

10
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Figure 3.2: Array Representation

featureq||operatory | features||operators | ... | feature,

Figure 3.3: Pair Representation

for feature selection is only selected or not selected, we will need to evenly split the value
range to two parts. Since there can be more than two candidate operators, we will need
to equally split the same value range according to the number of the candidate operators.
During the evolutionary process, the algorithm will firstly decide a set of new features from
the array of the particle based on a predefined threshold. Secondly, the algorithm will need
to decide the operators for the features. If a feature is selected and with an index of m where
the feature is not the last feature in the array, then the algorithm will get the number at
position m + 1. Base on the pre-defined range, we will get an operator. Algorithm 1 shows
the process to select an array of operators (ops) for the selected feature. The process will not
stop until the last dimension or element of the array in the particle is reached.

Data: position // the position should not be null
Data: operators // operators.length == ((pos.length — 1) /2)
Result: operators
pos < position;
count <+ 0;
i+ 0;
operators < {};
while count < pos.length do
if pos[count] > threshold then
operators|i] <— getOperators(pos[count + 1]);
i+—i+1;
end
count < count + 2;
end
return operators;

Algorithm 1: Selecting the operators for selected features using array representation

3.3.3 Pair Representation

In this proposed representation which we call it pair representation, each particle is initialised
with an array of floating numbers except for the last feature since there are no other fea-
tures will be operated with the last selected feature. The array will have same length of the
number of features in the given dataset. However, each number of the array can decide
both whether the feature is selected or not, and which operators will be used if the feature
is selected. The general structure can be seen in Figure 3.3.

During the evolution of PSO, the algorithm will first look at whether the feature is se-
lected or not. If the feature is selected, an operator will be decided according to the same
value which decides the feature selection. The feature selection and function operator se-
lection will not terminate until the last value in the array of a particle has been evaluated.

11



To be noticed, the value range for feature selection and function operator selection are not
the same. The value range of the feature selection will be always twice to the value range
of the function operator one. Algorithm 2 shows the operator selection process when using
the pair representation.

Data: position // the position should not be null
Data: operators // operators.length == pos.length — 1
Result: operators
pos <— position;
count + 0;
i+ 0;
operators < {};
while count < pos.length do
if pos[count| > threshold then
operators|i] <— getOperators(pos|count]);
i+ i+1;
end
count < count +1;
end
return operators;

Algorithm 2: Selecting the operators for selected features using pair representation

3.3.4 Binary Classification

In the proposed algorithm, the binary classification performance is used to evaluate the
fitness of the constructed feature. Because of only binary classification problems considered
in the work for both representations, the proposed algorithm sets a threshold to “0”. An
instance is classified to class 1 when the value of the constructed feature is larger than 0.
Otherwise, it is classified to class 2. The purpose for having a classification process without
any classification algorithm is to increase the speed of the fitness evaluation so that we can
have shorter time for running the program.

3.4 Experimental Design

In order to evaluate the performance of the proposed feature construction algorithm, a set
of experiments have been conducted using different binary benchmark datasets. The binary
benchmark datasets are chosen from UCI machine learning repository [2]. The details of the
seven datasets used in this report are shown in Table 3.1. The number of features is ranged
from 14 to 500. The number of instances ranges from 351 to 4400. The instances in each
dataset will be divided into 70% as a training set and 30% as a testing set [14, 20].
According to [17], the parameters of the proposed algorithm are set as follows: w =
0.7298, ¢; = ¢ = 1.49618, vyar = 0.1, vy, = —0.1, domain,,;,, = 0.0 as the minimum
position of a particle in each dimension, domain,,,y = 1.0 as the maximum position of a
particle in each dimension, population size is 30, threshold = 0.5 and the maximum number
of iterations is 100. The fully connected topology is used in the experiments. For each
dataset, the proposed algorithm has been independently run for 50 times. A single high-
level newly constructed feature will be produced in each run. The function operators set

AR A/ 3

used in this work are L7, and ”/” (protected division).
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Table 3.1: Datasets

Dataset No. of Features | No. of Classes | No.of Instances
Australian 14 2 690
Ionosphere 34 2 351

WBCD 30 2 569
Hillvalley 100 2 606

Musk1 166 2 476

Semeion 256 2 1593

Madelon 500 2 4400

For the array representation, the value ranges for each operator are:
”+”: 0.0, 0.25)
”-": [0.25, 0.5)
”*7:10.5, 0.75)
77 10.75, 1]
For the pair representation, the value ranges for each operator are:
”+”: [0.5,0.625)
”-": 10.625,0.7)
7*7:10.7, 0.825)
”[”: [0.825, 1]

We designed the operator value range for each representation is based on the concerns
that every operator is equally important.

Three different classifiers are used to test the classification performance of the newly con-
structed high-level feature. The three classifiers are naive bayes (NB), K-nearest neighbour
(KNN) where K = 5 and decision trees (DT).

For each data set, we will conduct the classification performance evaluation using the
three classifiers on the original dataset. The results will be used as a baseline for comparison
with the constructed feature. For each representation of the algorithm, we will test the con-
structed feature by the three different classifiers and get the best classification performance,
the average classification performance and the standard deviation. Then the classification
performance of the combination of the original features and the newly constructed high-
level feature is evlauated by the three classifiers to get the best classification performance,
the average classification performance and the standard deviation of the classification per-
formance.

3.5 Experimental Results

The experimental results of using the array representation is shown in Table 3.2. The ex-
perimental results of using the pair representation is shown in Table 3.3. In both tables,
”All” means only the original features are used for classification; “CF” means only the sin-
gle constructed feature is used for classification; “CFOrg” means the combination of con-
structed feature and original features is used for classification. The symbol “Best”, "Avg”,
”Std” represent the best classification accuracy, the average classification performance and
the standard deviation of the classification performance.
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Table 3.2: Result of array representation

Data set | no. Features | Methods bt KNN NB
Best | Avg Std Best | Avg Std Best | Avg Std
All 85.99 70.05 85.51
australian 14 CF 86.96 | 84.79 | 1.48E-2 | 86.47 | 66.22 | 18.5E-2 | 76.33 | 55.54 | 5.34E-2
CFOrg | 8792|8579 | 1E-2 | 86.96 | 78.88 | 4.39E-2 | 88.89 | 86.63 | 60.7E-4
All 86.67 83.81 28.57
ionosphere 34 CF 85.71 | 76.04 | 4.57E-2 | 84.76 | 75.92 | 5.24E-2 | 85.71 | 82.38 | 1.36E-2
CFOrg | 9143 | 86.08 | 3.88E-2 | 87.62 | 844 | 1.14E-2 | 28.57 | 28.57 | 2.78E-16
All 92.98 92.98 90.64
whbcd 30 CF 9591 | 9219 | 2E-2 |9591 | 91.54 | 2.62E-2 | 614 | 614 | 2.22E-16
CFOrg | 97.08 | 93.45 | 1.01E-2 | 95.91 | 92.99 | 1.07E-2 | 90.64 | 90.64 | 2.22E-16
All 62.09 56.59 522
hillvalley 100 CF 98.35 | 95.27 | 3.08E-2 | 98.35 | 94.43 | 444E-2 | 47.8 | 47.8 0EO
CFOrg | 98.63 | 954 | 3.05E-2 | 98.35 | 91.73 | 46.8E-2 | 52.47 | 52.2 | 3.85E-4
All 71.33 83.92 42.66
musk1 166 CF 66.43 | 58.14 | 4.54E-2 | 67.13 | 57.41 | 4.33E-2 | 60.84 | 59.33 | 54.8E-4
CFOrg | 72.03 | 71.29 | 32.5E-4 | 86.71 | 66.76 | 13E-2 | 72.73 | 72.73 | 3.33E-16
All 93.31 96.44 90.79
semeion 265 CF 91.42 | 90.02 | 25.5E-4 | 89.96 | 89.2 | 79.2E-2 | 91.42 | 90.02 | 27.8E-4
CFOrg | 96.23 | 93.44 | 54.7E-4 | 96.65 | 96.45 | 8.87E-4 | 91.84 | 90.83 | 30.1E-4
All 76.79 70.9 49.49
madelon 500 CF 62.82 | 53.84 | 18.3E-2 | 55.9 | 52.3 | 56.7E-2 | 52.95 | 49.71 | 72.8E-4
CFOrg | 7795 | 76.81 | 25E-4 | 709 | 53.38 | 58E-2 | 55.51 | 55.5 | 5.29E-4

3.5.1 Using the Array Representation

The experimental results of the array representation are shown in the Table 3.2. The exper-
imental results by using only the constructed feature based on the DT classifier, the exper-
imental results show that the classification performance can be improved on 3 out of the 7
datasets. When using KNN classifier show that the classification performance of 4 out of
the 7 datasets can be improved by using only the constructed feature. An interesting ob-
servation from the result shows that the dataset with less than 100 features can benefit from
using the constructed feature for classification performance. When the number of features is
over 100, the classification is hard to benefit from only using the single constructed feature.
Comparing with the DT classifier and KNN classifier, the result using NB is that 4 out of
the 7 datasets have the classification performance benefited from only using the constructed
feature but all the dataset with over 100 features can benefit from only using the constructed
feature.

The experimental results of using DT classifier show that the constructed feature can
improve the classification performance in all datasets if combined with the original features
and the results are 6 out of the 7 datasets for KNN classifier. The classification performance
using the NB classifier is slightly worse compared with the DT classifier and KNN classifier,
which is 5 out of the 7 datasets.

3.5.2 Using the Pair Representation

The experimental results of using the pair representation are shown in the Table 3.3. When
using the DT classifier, the result shows that the number of the dataset whose classification
performance can benefit from only using the constructed feature is 2 out of the 7 datasets.
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Table 3.3: Result of pair representation

Data set | no. Features | Methods bt KNN NB
Best | Avg Std Best | Avg Std Best | Avg Std
All 85.99 70.05 85.51
australian 14 CF 85.99 | 66.79 | 36.2E-2 | 70.53 | 62.04 | 55.2E-2 | 66.18 | 54.66 | 2.98E-2
CFOrg | 86.96 | 86.01 | 12.3E-2 | 74.88 | 69.48 | 59.2E-2 | 87.92 | 85.65 | 89.7E-4
All 86.67 83.81 28.57
ionosphere 34 CF 83.81 | 7422 | 19.7E-2 | 82.86 | 73.79 | 58E-2 | 85.71 | 81.2 | 2.92E-2
CFOrg | 90.48 | 86.91 | 78.1E-4 | 86.67 | 84.94 61E-2 28.57 | 28.57 | 2.78E-16
All 92.98 92.98 90.64
wbed 30 CF 95.32 | 8322 | 16.7E-2 | 9532 | 854 | 464E-2 | 614 | 614 | 2.22E-16
CFOrg |95.32 | 93.18 | 70.8E-4 | 95.32 | 92.79 | 49.3E-2 | 91.23 | 90.67 | 11.5E-4
All 62.09 56.59 52.2
hillvalley 100 CF 76.92 | 54.39 | 7.23E-2 75 | 5443 | 23E-2 47.8 | 47.8 0EO
CFOrg 783 | 62.92 | 4.21E-2 75 5495 | 6.39E-2 | 522 | 522 0EO
All 71.33 83.92 42.66
muskl 166 CF 67.83 | 58.86 | 15.2E-2 | 62.94 | 55.74 | 1.38E0 | 60.84 | 59.37 | 61.4E-4
CFOrg | 7133 | 71.24 | 434E-4 | 83.92 | 79.08 | 1.41E0 | 72.73 | 72.73 | 3.33E-16
All 93.31 96.44 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 | 90.79 | 82E-2 | 5.55E-16 | 89.96 | 89.96 | 5.55E-16
CFOrg | 93.31 | 93.31 | 5.55E-16 | 96.44 | 96.44 | 8.88E-16 | 90.79 | 90.79 | 4.44E-16
All 76.79 70.9 49.49
madelon 500 CF 59.36 | 50.69 | 2.09E-2 | 53.33 | 50.43 | 37.9E-2 | 49.49 | 49.49 0EQ
CFOrg | 7731 | 76.67 | 93.8E-4 | 709 | 58.36 | 20E-2 | 55.51 | 55.51 | 3.33E-16

When using the KNN classifier, the number increases to 3 out of the 7 datasets. The classifi-
cation performance of the NB classifier is 2 out of the 7 datasets.

When using the DT classifier, the classification performance can be improved on 5 out of
the 7 datasets by using the combination of the original features and the constructed feature.
When using the KNN classifier with the combination of the constructed feature and original
features, the number of datasets with improved classification performance is 4 out of the 7.
When the NB classifier is used, the number increased by 1 and 5 out of the 7 datasets can
improve the classification performance by using the combination of the constructed feature
and the original features.

3.6 Further Discussions

We have two general observations from the experimental results above by comparing the
two representations. Firstly, the constructed feature can improve the classification perfor-
mance if we combined the constructed feature with the original features. This observation
is applied for both representations. Therefore, we can make a conclusion that the proposed
algorithm for both representations cannot achieve the goal of reducing the original features.
Secondly, we found that both representations cannot construct a single effective feature for
the datasets with more than 100 features. Thirdly, for both representations, the classification
performance of the DT classifier is better than the other two classifiers.
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3.6.1 Limitation on Feature Selection

One of the most important steps for feature construction tasks is to select a set of features
from the original features. The set of the selected features are to be used as the input for
constructing a new feature. The hidden relationship between features can be diverse. PSO
has a good nature for feature selection problems. In our PSO algorithm for selecting the
features from the original dataset, we represent each original feature by an ordered array of
float numbers. Therefore, the relationship can be omitted if two features are not neighbours
to each other. Also, the number of appearance of each feature is fixed and it is always 1 or
0. The problem is that some feature may be worth to be repeatedly used for constructing a
new feature.

3.6.2 Limitation on Operator Selection

The selection of the function operators by PSO is the most difficult part of the work. There
are still shortages of function operator selection although this work has successfully evolved
the function operators using PSO. Firstly, the mapping function for the division function is
slightly larger compared with other operators. The reason is that the interval for the division
include the side value of the maximum domain number on the right hand side. This slightly
difference can increase the opportunity of the selection of the division function. Secondly, if
we compare the two representations, we can find that the array method have larger range
for each operator. The result by using the array representation is slightly better than the
pair representation. Therefore, the mapping range may affect the quality of the constructed
feature.

3.6.3 Efficiency Improvement

Compared with [21], the proposed algorithm can efficiently construct a reasonably good
new feature. The computational cost of the new algorithm can be significantly reduced
for the function operator selection. Considering a dataset with n features and m candidate
operators,the maximum number of evaluations for selecting operators in [21] is m"~1. The
proposed method using a hashtable based method. Therefore, the worst cost for operator
selection is 1 * (n — 1). Therefore, we can see that the proposed algorithm is more efficient
than the previous work although the average classification performance is slightly worse
compared than the our previous work. In Table 3.4, we compare the array representation,
the pair representation with the previous results using only the constructed feature. In most
of cases, the previous results are slightly better than the new algorithms.

In Table 3.4 and Table 3.5, we compare three different algorithms. The symbol ”All” rep-
resents using all the original features only, ”Array” means the array representation, “Pair”
means the pair representation and “Gecco” means the algorithm proposed in [21].

In Table 3.4, we compare the three algorithms by the classification performance of only
using the single constructed feature. When using the DT classifier, the array representation
can achieve better classification performance in 2 out of the 7 datasets compared with other
two algorithm. When using the KNN classifier, only the “madelon” dataset can achieve
better classification performace compared with others two algorithms and, 2 out of the 7
datasets can achieve equally good classification performance with the “Gecco” one. When
using the NB classifier, there are 3 out of the 7 datasets can achieve better classification per-
formance by using the array representation. One observation we found is that the array
representation may be good at constructing useful feature for larger dataset because the
constructed feature by the array representation achieves better classification performance
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Table 3.4: Comparison table for three methods by single constructed feature
DT KNN NB
Dataset | no. Features | Methods
Best | Avg Std Best | Avg Std Best | Avg Std
All 85.99 70.05 85.51
. Array | 86.96 | 84.79 | 1.48E-2 | 86.47 | 66.22 | 18.5E-2 | 76.33 | 55.54 | 5.34E-2
australian 14
Pair 62.82 | 53.84 | 18.3E-2 | 55.9 | 52.3 | 56.7E-2 | 52.95 | 49.71 | 72.8E-4
Gecco | 86.96 | 85.35 | 1.13E0 | 86.96 | 55.16 | 14.3E0 | 86.47 | 62.97 | 10.2E0
All 86.67 83.81 28.57
. Array | 85.71|76.04 | 457E-2 | 84.76 | 7592 | 5.24E-2 | 85.71 | 82.38 | 1.36E-2
ionosphere 34
Pair 83.81 | 74.22 | 19.7E-2 | 82.86 | 73.79 | 58E-2 | 85.71 | 81.2 | 2.92E-2
Gecco | 87.62 | 81.14 | 3.16E0 | 87.62 | 80.53 3.7E0 | 83.81 | 77.56 | 1.71EQ
All 92.98 92.98 90.64
bed 30 Array | 9591 (9219 | 2E-2 |9591 | 9154 | 2.62E-2 | 614 | 61.4 | 2.22E-16
whbc
Pair 9532 | 8322 | 16.7E-2 | 9532 | 854 | 46.4E-2 | 614 | 614 | 2.22E-16
Gecco | 95.32 | 9331 | 1.07E0 | 9591 | 9296 | 136E0 | 614 | 614 | 35.1E-4
All 62.09 56.59 52.2
. Array | 98.35|95.27 | 3.08E-2 | 98.35 | 94.43 | 444E-2 | 47.8 | 478 0EO
hillvalley 100
Pair 76.92 | 54.39 | 7.23E-2 75 54.43 23E-2 478 | 47.8 0EO
Gecco | 9945 | 99.41 | 9.53E-2 | 9945 | 994 | 11E-2 | 4945 | 48.5 | 48.6E-2
All 71.33 83.92 42.66
" 166 Array | 66.43 | 58.14 | 4.54E-2 | 67.13 | 57.41 | 4.33E-2 | 60.84 | 59.33 | 54.8E-4
mus
Pair 67.83 | 58.86 | 15.2E-2 | 62.94 | 55.74 | 1.38E0 | 60.84 | 59.37 | 61.4E-4
Gecco | 76.22 | 65.96 | 3.24E0 | 72.03 | 63.9 | 3.15E0 | 59.44 | 58.43 | 62.8E-2
All 93.31 96.44 90.79
. Array | 91.42 |90.02 | 25.5E-4 | 89.96 | 89.2 | 79.2E-2 | 91.42 | 90.02 | 27.8E-4
semeion 265
Pair 89.96 | 89.96 | 5.55E-16 | 90.79 | 82E-2 | 5.55E-16 | 89.96 | 89.96 | 5.55E-16
Gecco 100 | 100 0EO 89.96 | 89.96 | 18.4E-4 | 100 | 100 0EO
All 76.79 70.9 49.49
Array | 62.82 | 53.84 | 18.3E-2 | 559 | 52.3 | 56.7E-2 | 52.95 | 49.71 | 72.8E-4
madelon 500
Pair 59.36 | 50.69 | 2.09E-2 | 53.33 | 50.43 | 37.9E-2 | 49.49 | 49.49 0EO
Gecco | 53.97 | 53.97 | 43.6E-4 | 49.23 | 49.23 | 7.69E-4 | 49.1 | 49.1 | 25.6E-4

than the other two algorithms in “madelon” dataset which is the largest dataset in our ex-
periments.

In Table 3.5, we compare the three algorithms by the classification performance by com-
bining the constructed feature and original features for classification. When using the DT
classifier, only 2 out of the 7 datasets can achieve better classification performance by using
the array reprpesentation. When using the KNN classifier, better result can be found for the
array representation. There are 4 out of the 7 datasets achieving better classification per-
formance by using the array representation. When using NB classifier, only 2 out of the 7
datasets can achieve better classification performance by using array representation.

Seeing from Table 3.4 and Table 3.5, the array representation can produce better result
compared with the pair representation. One reason of the results can be that the value range
for operator selection is larger compared with the array representation. As a consequence,
the operator selection for the array representation can better avoid the local optima solution
than the pair representation.
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Table 3.5: Comparison table for three methods by constructed and original features

DT KNN NB
Data set | no. Features | Methods
Best | Avg Std Best | Avg Std Best | Avg Std
All 85.99 70.05 85.51
. Array | 93.31 | 93.31 | 5.55E-16 | 96.44 | 96.44 | 8.88E-16 | 90.79 | 90.79 | 4.44E-16
australian 14
Pair 86.96 | 86.01 | 12.3E-2 | 74.88 | 69.48 | 59.2E-2 | 87.92 | 85.65 | 89.7E-4
Gecco | 87.44 | 8593 | 66E-2 | 80.19 | 73.29 | 2.28E0 | 88.41 | 86.97 | 43.7E-2
All 86.67 83.81 28.57
. Array | 91.43 | 86.08 | 3.88E-2 | 87.62 | 84.4 | 1.14E-2 | 28.57 | 28.57 | 2.78E-16
ionosphere 34
Pair 90.48 | 86.91 | 78.1E-4 | 86.67 | 84.94 61E-2 28.57 | 28.57 | 2.78E-16
Gecco | 9238 | 86.29 | 3.45E0 |91.43 | 8554 | 2.27E0 | 28.57 | 28.57 | 14.3E-4
All 92.98 92.98 90.64
bed 30 Array 97.08 | 93.45 | 1.01E-2 | 9591 | 92.99 | 1.07E-2 | 90.64 | 90.64 | 2.22E-16
whbc
Pair 95.32 | 93.18 | 70.8E-4 | 95.32 | 92.79 | 49.3E-2 | 91.23 | 90.67 | 11.5E4
Gecco 97.08 | 93.81 1.1E0 94.15 | 9299 | 21.9E-2 | 90.64 | 90.64 | 32.7E-4
All 62.09 56.59 52.2
. Array | 98.63 | 954 | 3.05E-2 | 98.35|91.73 | 46.8E-2 | 52.47 | 52.2 | 3.85E-4
hillvalley 100
Pair 783 | 62.92 | 4.21E-2 75 | 5495 | 6.39E-2 | 52.2 | 522 0EO
Gecco | 9945|9941 | 9.53E-2 | 57.42 | 56.99 | 259E-2 | 53.02 | 52.25 | 19E-2
All 71.33 83.92 42.66
" 166 Array | 72.03 | 71.29 | 32.5E-4 | 86.71 | 66.76 | 13E-2 | 72.73 | 72.73 | 3.33E-16
mus
Pair 71.33 | 71.24 | 434E-4 | 83.92 | 79.08 | 141E0 | 72.73 | 72.73 | 3.33E-16
Gecco | 77.62 | 71.54 | 3.09E0 | 88.81 | 70.11 | 7.95E0 | 72.73 | 72.73 | 27.3E-4
All 93.31 96.44 90.79
. Array | 96.23 | 93.44 | 54.7E-4 | 96.65 | 96.45 | 8.87E-4 | 91.84 | 90.83 | 30.1E-4
semeion 265
Pair 93.31 | 93.31 | 5.55E-16 | 96.44 | 96.44 | 8.88E-16 | 90.79 | 90.79 | 4.44E-16
Gecco 100 100 0EO 96.44 | 96.44 | 35.1E-4 | 94.56 | 94.56 | 6.69E-4
All 76.79 70.9 49.49
Array 77.95 | 76.81 25E-4 70.9 | 53.38 58E-2 55.51 | 55.5 | 5.29E-4
madelon 500
Pair 77.31 | 76.67 | 93.8E-4 | 709 | 58.36 | 20E-2 | 55.51 | 55.51 | 3.33E-16
Gecco 76.79 | 76.79 | 48.7E-4 | 72.05 | 72.05 | 12.8E-4 | 55.38 | 55.38 | 46.2E-4

3.7 Chapter Summary

In this chapter, we introduces a new algorithm using PSO for feature construction in binary
classification by developing two new representations. The proposed PSO based feature con-
struction algorithm can effectively select a combination of features and operators. A rela-
tively good feature can be automatically constructed by the proposed algorithm. The ex-
perimental results show that the binary classification can benefit from using the constructed
feature.

Currently, our proposed method is only for binary classification problems. In real world,
the classification problem can contain multiple classes. Therefore, to exam the ability of
solving real-world complex problems, we will design and improve the current algorithm
to solve multi-class classification problems using a single constructed feature. We suppose
that the work will not be hard as we need to adjust the fitness function without change the
particle representation. Secondly, single constructed feature may not be adequate to solve
the real-world complex problem. Therefore, our second task for the future work is to design
an algorithm with PSO, which can produce multiple constructed features for multi-class
classification tasks.
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Chapter 4

Feature Construction For Multi-Class
Classification

4.1 Introduction

The first objective of using PSO for feature construction, which was to construct a single
high-level feature for binary classification, has been finished. Based on the proposed two
representations in the first objective, we will focuse on the second objective of using PSO for
feature construction targeting on multi-class classification.

4.2 Chapter Goals

The second objective of the project is to develop a PSO based approach for feature construc-
tion in multi-class classification tasks. The newly constructed high-level feature is expected
to be able to benefit the multi-class classification performance either used solely or com-
bined with the original features. We will work on the two representations we proposed in
the first objective. K-nearest neighbour (KNN) algorithm, decision tree (DT) algorithm and
naive bayes (NB) algorithm are used to evaluate the fitness/classification performance of
the constructed feature during the evalutionary training process.
Specifically, we will investigate:

e whether the single constructed high-level feature can improve the multi-class classifi-
cation performance, and

e whether combining the constructed feature with the original feature can improve the
multi-class classification performance.

4.3 Proposed Approach

In order to use PSO for feature construction for multi-class classification, we use three dif-
ferent algorithms in the PSO training process, DT, KNN and NB, to evaluate the classifi-
cation performance of the constructed feature, which is used as the fitness function in the
proposed algorithm. The proposed representations allow PSO to directly evolve function
operators for feature construction and construct a single high-level feature for multi-class
classification tasks.
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Figure 4.1: Overall Process and the Detail of Each Evaluation In PSOFC

4.3.1 The Overall Design

In this section, we propose three different PSO based feature construction algorithms. Each
algorithm will construct one single high-level feature. The three algorithms differ from the
learning algorithms and classification algorithm used during the training process and all the
three algorithms will use the representations we developed in the first objective, the array
representation and the pair representation. The process will start with splitting the origi-
nal dataset to a training set and a testing set. The training set will be used to construct a
high-level feature. Since in this chapter, we target on multi-class datasets rather than only
binary-class datasets. The binary classification algorithm we used before is not suitable for
this objective. DT, KNN and NB will be used during the evolutionary training process to
evaluate the classification performance/fitness of the constructed feature. This is the differ-
ent part from the first objective. The right handside of Figure 4.1 shows the overall process
and the highlighted part is the evolutionary training process of PSOFC. The constructed
feature will be used to construct new training and testing sets based on the original train-
ing and testing sets. The new training and testing sets will only contain the single newly
constructed high-level feature and the class labels. The overall process is same as we did in
objective one.

4.3.2 Evolutionary Training of PSOFC

In this section, we will explain how DT, KNN and NB are used for the evalutation during the
evolutionary training process of PSOFC. As the left handside of Figure 4.1 shows, we will
get a constructed feature during each evolution from each particle to perform an evaluation.
In order to evaluate the constructed feature for each particle, we split the original training
set to a new training set (TR1) and testing set (TT1). Then according to the constructed
feature, we will perform the data transformation on TR1 and TT1 to generate a new training
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set (Tranformed TR1) and new testing set (Transformed TT1). The evluation is to perform
a classification task using a specific algorithm with Transformed TR1 as training set and
Transformed TT1 as testing set. The performance value of the classification is used as the
titness value for each particle.

4.4 Experimental Design

A set of experiments have been conducted using different benchmark datasets to evalu-
ate the performance of the proposed PSO based feature construction algorithm. The used
benchmark datasets are chosen from UCI machine learning repository [2]. The details of the
13 datasets are shown in Table 4.1. The number of features is ranged from 13 to 649. The
number of instances is from 351 to 4400. The number of classes is ranged from 2 to 16. The
instances in each dataset will be divided into 70% as a training set and 30% as a testing set
[6, 20].

Table 4.1: Datasets

Dataset No. of Features | No. of Classes | No.of Instances
Australian 14 2 690
German 24 2 1000
Ionosphere 34 2 351
WBCD 30 2 569
Hillvalley 100 2 606
Musk1 166 2 476
Semeion 256 2 1593
Sonar 60 2 608
Madelon 500 2 4400
Wine 13 3 178
Z0oo 17 7 101
Vehicle 18 4 846
Lung 56 3 32
LibrasMovement 90 15 360
Arrhythmia 279 16 452
MultipleFeatures 649 10 2000

The parameters of the proposed algorithm are set as follows [17]: w = 0.7298, ¢; = ¢ =
1.49618, vyyax = 0.1, Vi, = —0.1 and domain,,;, = 0.0 as the minimum position value of a
particle in each dimension, domain,;;, = 1.0 as the maximum position value of a particle in
each dimension, population size is 30 and the maximum number of iterations is 100. The
fully connected topology is used in the experiments. For each dataset, the proposed algo-
rithm has been independently run for 50 times. A single high-level feature will be produced
in each run. The function operators used in this work are ”+”, ”-”, ”*” and ”/” (protected
division).

For the array and pair representations, the value ranges for each operator are shown in
the Table 4.2.

Table 4.2: Function Operator Selection

Operator | Array Rep | Pair Rep
T [0.0,0.25) | [0.5,0.625)
- [0.25,0.5) | [0.625,0.7)
i [0.5,0.75) | [0.7,0.825)
i [0.75, 1] [0.825, 1]

Three different classifiers are used to conduct the classification performance tests to eval-
uate the goodness of the newly constructed high-level feature.
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For each dataset and each newly constructed high-level feature, we will conduct a clas-
sification performance test with the three classifiers separately. Then we will combine the
newly constructed feature with the original features. We will perform a T-test to see whether
the newly constructed feature can improve the classification performance.

4.5 Experimental Results

The experimental results of using the array representation with the training classifier of DT,
KNN and NB are shown in Table 4.3 Table 4.4 and Table 4.5. The experimental results of
using the pair representation with the training classifier of DT, KNN and NB are shown in
Table 4.6, Table 4.7 and Table 4.8. In all the tables, “All” means only the original features
are used for classification; “CF” means only the single constructed feature is used for clas-
sification; “CFOrg” means the combination of the constructed feature and original features
are used for classification. The symbol “Best”, “Avg”, “Std” represent the best classification
accuracy, the average classification performance and the standard deviation of the classifi-
cation performance.

4.5.1 Using the array representation
Using the DT during Evolutionary Training Process

Table 4.3 shows the experimental results of using the array representation with DT classi-
fier during evolutionary training process. When using the DT with the single constructed
feature, the classification performance is improved on 2 out of the 14 datasets. When we
using the KNN, we found that there are 4 out of the 14 datasets with improved classification
performance. When we use NB, there are 2 out of the 14 datasets with better classification
performance.

After we combine the original features with the constructed feature, using DT and KNN,
we found that on 6 out of the 14 datasets, the classification performance is improved. When
we use NB, we found that the classification performance on 2 out of the 14 datasets can be
improved.

Using the KNN during the Evolutionary Training Process

Table 4.4 shows the experimental results of using the array representation with KNN during
evolutionary training process. When using the single constructed feature for classification,
there is 1 out of the 14 datasets with improved classification performance. When we use
KNN, the number is 6 out of 14. When we use NB, there are 4 out of the 14 datasets with
better performance compared with the original classification performance.

When we combine the original features and the constructed feature, the number of
datasets with improved classification performance is 6 out of 14. When using KNN, the
number is decreased to 3. When we use NB, the number of datasets with improved classifi-
cation performance is 2 out of 14.

Using the NB during the Evolutionary Training Process

Table 4.5 shows the experimental result of using the array representation with NB. When
we use the single constructed feature and DT, there is no datase where the classification
performance is improved. When we use KNN, there are 5 out of the 14 datasets. When
we use NB, there is only 1 out of the 14 datasets where the classification performance is
improved.
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Table 4.3: Result of array representation, using DT classifier

Data set no. Features | Methods =l KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 85.99 70.05 85.51
australian 14 CF 84.54 | 84.54 | 5.55E-16 - 82.61 | 82.61 | 2.22E-16 + | 53.62 | 53.62 | 4.44E-16 -
CFOrg | 85.02 | 85.02 | 7.77E-16 - 70.05 | 70.05 | 3.33E-16 | = 85.51 | 85.51 | 5.55E-16 =
Org 72.67 68.33 73.33
german 24 CF 69 69 | 3.33E-16 - 66 66 0EO - 70.33 | 70.33 | 1.11E-16 -
CFOrg 71 71 | 5.55E-16 - 68 68 | 2.22E-16 - 73 73 | 1.11E-16 -
Org 62.09 56.59 52.2
hillvalley 100 CF 61.81 | 61.81 | 3.33E-16 - 61.81 | 61.81 | 3.33E-16 | + | 48.08 | 48.08 | 5.55E-16 -
CFOrg | 78.02 | 78.02 | 4.44E-16 + | 5659 | 5659 | 1.11E-16 | = 522 | 522 0E0 =
Org 86.67 83.81 28.57
ionosphere 34 CF 35.24 | 35.24 0EO - 7143 | 71.43 | 3.33E-16 - 73.33 | 73.33 | 4.44E-16 +
CFOrg | 86.67 | 86.67 | 3.33E-16 = | 8381|8381 |444E-16 | = | 2857|2857 | 2.78E-16 =
Org 90 70 90
lung 56 CF 80 80 | 3.33E-16 - 80 80 |3.33E-16 | + 80 80 | 3.33E-16 -
CFOrg 50 50 0E0 - 70 70 | 1.11E-16 = 90 90 | 8.88E-16 =
Org 76.79 70.9 50.51
madelon 500 CF 58.33 | 58.33 | 4.44E-16 - 53.85 | 53.85 | 6.66E-16 - 49.62 | 49.62 | 6.11E-16 -
CFOrg | 76.79 | 76.79 | 9.99E-16 = 70.9 | 709 0EO = | 5051 | 50.51 0E0 =
Org 91.36 94.94 90.99
movementlibras 90 CF 88.15 | 88.15 0E0 - 88.27 | 88.27 | 4.44E-16 - 87.16 | 87.16 | 2.22E-16 -
CFOrg | 91.36 | 91.36 | 3.33E-16 = 9494|9494 | 444E-16 = 19099 | 90.99 | 5.55E-16 =
Org 98.1 98.63 81.9
multiplefeatures 649 CF 91.57 | 91.57 0EO - 89.07 | 89.07 | 7.77E-16 - 839 | 839 | 6.66E-16 +
CFOrg | 98.13 | 98.13 | 8.88E-16 + 98.63 | 98.63 | 6.66E-16 = 819 | 819 | 1.11E-16 =
Org 71.33 83.92 42.66
musk1 166 CF 58.74 | 58.74 | 5.55E-16 - 58.04 | 58.04 | 3.33E-16 - 59.44 | 59.44 | 4.44E-16 +
CFOrg | 69.23 | 69.23 | 4.44E-16 - 83.92 | 83.92 | 5.55E-16 = | 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 -
CFOrg | 93.31 | 93.31 | 5.55E-16 = 9644 | 96.44 | 8.88E-16 + 91 91 | 3.33E-16 +
Org 71.43 76.19 53.97
sonar 60 CF 53.97 | 53.97 | 6.66E-16 - 55.56 | 55.56 | 5.55E-16 - 49.21 | 49.21 | 6.11E-16 -
CFOrg | 71.43 | 71.43 | 3.33E-16 = 76.19 | 76.19 0EO0 = | 5397 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 62.01 | 62.01 | 4.44E-16 - 62.8 | 62.8 | 4.44E-16 - 61.81 | 61.81 | 6.66E-16 -
CFOrg | 84.84 | 84.84 | 5.55E-16 + 84.06 | 84.06 | 6.66E-16 | + 83.27 | 83.27 | 4.44E-16 =
Org 92.98 92.98 90.64
wbed 30 CF 89.47 | 89.47 | 5.55E-16 - 89.47 | 89.47 | 5.55E-16 - 61.99 | 61.99 0E0 -
CFOrg | 97.08 | 97.08 | 6.66E-16 + 9298 | 9298 | 1.11E-16 | = | 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 95.06 | 95.06 | 11.1E-16 + 96.3 | 963 | 5.55E-16 | + | 54.32 | 54.32 | 3.33E-16 -
CFOrg | 97.53 | 97.53 | 11.1E-16 + 76.54 | 76.54 | 3.33E-16 = 82.72 | 82.72 | 4.44E-16 =
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Table 4.4: Result of array representation, using KNN classifier

Data set no. Features | Methods DT KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 93.21 | 93.21 | 8.88E-16 - 85.75 | 85.75 | 2.22E-16 - 93.21 | 93.21 | 8.88E-16 -
CFOrg | 95.59 | 95.59 | 5.55E-16 = 94.46 | 94.46 | 6.66E-16 = 94.46 | 94.46 | 6.66E-16 =
Org 85.99 70.05 85.51
australian 14 CF 83.57 | 83.57 | 4.44E-16 - 83.57 | 83.57 | 4.44E-16 + 53.62 | 53.62 | 4.44E-16 -
CFOrg | 83.57 | 83.57 | 4.44E-16 - 70.05 | 70.05 | 3.33E-16 = 86.47 | 86.47 | 4.44E-16 +
Org 72.67 68.33 73.33
german 24 CF 70.33 | 70.33 | 1.11E-16 - 67.33 | 67.33 | 4.44E-16 - 71.67 | 71.67 | 5.55E-16 -
CFOrg | 70.67 | 70.67 | 1.11E-16 - 67.67 | 67.67 | 3.33E-16 - 76 76 | 2.22E-16 +
Org 62.09 56.59 52.2
hillvalley 100 CF 59.07 | 59.07 | 4.44E-16 - 60.16 | 60.16 | 4.44E-16 + 48.08 | 48.08 | 5.55E-16 -
CFOrg | 89.29 | 89.29 | 5.55E-16 + 56.59 | 56.59 | 1.11E-16 = 522 | 522 0E0 =
Org 86.67 83.81 28.57
ionosphere 34 CF 35.24 | 35.24 0EO - 39.05 | 39.05 | 55.5E-18 - 7143 | 71.43 | 3.33E-16 +
CFOrg | 86.67 | 86.67 | 3.33E-16 = 83.81 | 83.81 | 4.44E-16 = 28.57 | 28.57 | 2.78E-16 =
Org 90 70 90
lung 56 CF 90 90 | 8.88E-16 = 80 80 | 3.33E-16 + 80 80 | 3.33E-16 -
CFOrg 90 90 | 8.88E-16 = 70 70 | 1.11E-16 = 90 90 | 8.88E-16 =
Org 76.79 70.9 50.51
madelon 500 CF 59.74 | 59.74 | 2.22E-16 - 58.08 | 58.08 | 3.33E-16 - 49.49 | 49.49 0E0 -
CFOrg | 76.79 | 76.79 | 9.99E-16 = 709 | 709 0EO = 50.51 | 50.51 0E0 =
Org 91.36 94.94 90.99
movementlibras 90 CF 88.4 | 88.4 0EO - 88.4 | 88.4 0E0 - 87.04 | 87.04 | 8.88E-16 -
CFOrg | 91.36 | 91.36 | 3.33E-16 = 94.81 | 94.81 | 7.77E-16 - 90.99 | 90.99 | 5.55E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 41.26 | 41.26 | 4.44E-16 - 41.26 | 41.26 | 4.44E-16 - 58.04 | 58.04 | 3.33E-16 +
CFOrg | 73.43 | 73.43 | 4.44E-16 + 83.92 | 83.92 | 5.55E-16 + 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 -
CFOrg | 93.31 | 93.31 | 5.55E-16 = 96.44 | 96.44 | 8.88E-16 + 90.79 | 90.79 | 4.44E-16 =
Org 7143 76.19 53.97
sonar 60 CF 65.08 | 65.08 | 5.55E-16 - 61.9 | 61.9 | 4.44E-16 - 49.21 | 49.21 | 6.11E-16 -
CFOrg 74.6 | 74.6 | 5.55E-16 + 77.78 | 77.78 | 4.44E-16 + 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 76.77 | 76.77 | 2.22E-16 - 77.76 | 77.76 | 5.55E-16 - 62.2 | 62.2 | 4.44E-16 -
CFOrg | 87.01 | 87.01 | 5.55E-16 + 84.06 | 84.06 | 6.66E-16 + 83.27 | 83.27 | 4.44E-16 =
Org 92.98 92.98 90.64
wbed 30 CF 91.23 | 91.23 | 444E-16 - 94.15 | 94.15 | 11.1E-16 + 61.99 | 61.99 0E0 -
CFOrg | 9591 | 95.91 | 6.66E-16 + 9298 | 92.98 | 1.11E-16 = 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 86.42 | 86.42 | 7.77E-16 - 88.89 | 88.89 | 6.66E-16 + 54.32 | 54.32 | 3.33E-16 -
CFOrg | 9259 | 92.59 | 2.22E-16 + 76.54 | 76.54 | 3.33E-16 = 82.72 | 82.72 | 4.44E-16 =
Org 93.33 80.95 98.1
Z00 17 CF 84.76 | 84.76 | 4.44E-16 - 85.71 | 85.71 | 4.44E-16 + 819 | 819 | 2.22E-16 -
CFOrg | 93.33 | 93.33 | 8.88E-16 = 80.95 | 80.95 | 5.55E-16 = 98.1 | 98.1 0EO =
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When we combine the original features with the single constructed high-level feature
and use DT, there are 6 out of the 14 datasets with improved classification performance.
When we use KNN, there are 3 out of the 14 datasets with improved classification perfor-
mance. When we use NB, there are 2 out of the 14 datasets with improved classification
performance.

Table 4.5: Result of array representation, using NB classifier

Data set no. Features | Methods bT KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 91.97 | 91.97 | 3.33E-16 - 91.74 | 91.74 | 7.77E-16 - 93.21 | 93.21 | 8.88E-16 -
CFOrg | 95.59 | 95.59 | 5.55E-16 = | 9446 | 9446 | 6.66E-16 | = | 94.34 | 94.34 | 9.99E-16 -
Org 72.67 68.33 73.33
german 24 CF 70.67 | 70.67 | 1.11E-16 - 62.33 | 62.33 | 6.66E-16 - 70 70 | 1.11E-16 -
CFOrg 72 72 | 4.44E-16 - 68 68 | 2.22E-16 - 71.67 | 71.67 | 5.55E-16 -
Org 62.09 56.59 522
hillvalley 100 CF 478 | 478 0E0 - 4725 | 47.25 | 5.55E-16 - 48.08 | 48.08 | 5.55E-16 -
CFOrg | 62.09 | 62.09 | 3.33E-16 = 56.59 | 56.59 | 1.11E-16 = 53.02 | 53.02 | 4.44E-16 +
Org 86.67 83.81 28.57
ionosphere 34 CF 28.57 | 28.57 | 2.78E-16 - 27.62 | 27.62 | 2.78E-16 - 73.33 | 73.33 | 4.44E-16 +
CFOrg | 86.67 | 86.67 | 3.33E-16 = | 8381|8381 |444E-16 | = | 2857|2857 | 2.78E-16 =
Org 90 70 90
lung 56 CF 80 80 | 3.33E-16 - 80 80 | 333E-16 | + 80 80 | 3.33E-16 -
CFOrg 70 70 | 1.11E-16 - 70 70 | 1L11E-16 | = 90 90 | 8.88E-16 =
Org 91.36 94.94 90.99
movementlibras 90 CF 884 | 884 0E0 - 87.78 | 87.78 | 2.22E-16 - 86.91 | 86.91 | 3.33E-16 -
CFOrg | 91.36 | 91.36 | 3.33E-16 = | 9494 | 9494 | 444E-16 | = | 90.99 | 90.99 | 5.55E-16 =
Org 98.1 98.63 81.9
multiplefeatures 649 CF 82.13 | 82.13 | 2.22E-16 - 819 | 819 | 1.11E-16 - 83.83 | 83.83 | 1.11E-16 +
CFOrg | 98.1 | 98.1 | 11.1E-16 = | 98.63 | 98.63 | 6.66E-16 | = 81.9 | 819 | 1.11E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 40.56 | 40.56 | 55.5E-18 - 40.56 | 40.56 | 55.5E-18 - 59.44 | 59.44 | 4.44E-16 +
CFOrg | 71.33 | 71.33 0E0 = 83.92 | 83.92 | 555E-16 | = | 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 -
CFOrg | 93.31 | 93.31 | 5.55E-16 = 96.44 | 96.44 | 8.88E-16 | + 91 91 | 3.33E-16 +
Org 71.43 76.19 53.97
sonar 60 CF 52.38 | 52.38 | 5.55E-16 - 52.38 | 52.38 | 5.55E-16 - 50.79 | 50.79 | 6.66E-16 -
CFOrg | 66.67 | 66.67 | 3.33E-16 - 76.19 | 76.19 0EO0 = | 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 76.18 | 76.18 | 2.22E-16 - 70.08 | 70.08 0EO0 - 63.39 | 63.39 | 6.66E-16 -
CFOrg | 84.65 | 84.65 | 5.55E-16 = | 8386 |83.86 | 6.66E-16 | = 82.68 | 82.68 | 5.55E-16 -
Org 92.98 92.98 90.64
wbed 30 CF 67.84 | 67.84 | 5.55E-16 - 67.25 | 67.25 | 3.33E-16 - 62.57 | 62.57 0EO0 -
CFOrg | 92.98 | 92.98 | 1.11E-16 = | 9298|9298 | 1.11E-16 | = | 90.06 | 90.06 | 3.33E-16 -
Org 87.65 76.54 82.72
wine 13 CF 77.78 | 77.78 | 4.44E-16 - 79.01 | 79.01 | 6.66E-16 + | 54.32 | 54.32 | 3.33E-16 -
CFOrg | 87.65 | 87.65 | 6.66E-16 = 76.54 | 76.54 | 3.33E-16 | = 82.72 | 82.72 | 4.44E-16 =
Org 93.33 80.95 98.1
Z00 17 CF 93.33 | 93.33 | 8.88E-16 = 73.33 | 73.33 | 4.44E-16 - 93.33 | 93.33 | 8.88E-16 -
CFOrg | 93.33 | 93.33 | 8.88E-16 = | 8095|8095 | 555E-16 | = 98.1 | 98.1 0E0 =

4.5.2 Using the Pair Representation
Using the DT during the Evolutionary Training Process

Table 4.6 shows the experimental results of using the pair representation with DT. The exper-
imental results by using the only constructed feature based on the DT show that only int the
WBCD dataset where the classification performance can be improved. When using KNN,
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the classification performance is improved by 5 out of the 14 datasets . The number of the
datasets where classification performance can be improved by only using the constructed
feature slightly decrease to 4 out of the 14 datasets when using NB. An interesting obser-
vation here is that the results indicate the constructed feature by using DT as the training
algorithm can perform better when using KNN and NB.

The experimental results by using the combination of the constructed feature and orig-
inal features are shown in Table 4.6. When we use DT, there are 12 out of the 14 datasets
where the classification performance can be improved. When we use KNN, there are 5 out
of the 14 datsets where the calssification performance can be improved. When we use NB,
there are 5 out of the 14 datasets where the classification performance can be improved.
Therefore, when using the combination of the constructed feature and original feature, the
new datasets can gain better performance by using the DT as the testing classifier.

Table 4.6: Result of pair representation, using DT classifier

Data set no. Features | Methods bt KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 85.99 70.05 85.51
australian 14 CF 744 | 575 | 8.45E-2 - 7246 | 55.63 | 8.32E-2 - 60.39 | 53.78 | 98.7E-4 -
CFOrg | 89.37 | 86.14 | 58.3E-4 = 70.05 | 70.05 | 3.33E-16 = 86.96 | 85.15 | 74.7E-4 -
Org 72.67 68.33 73.33
german 24 CF 71.33 | 68.65 | 5.78E-2 - 70.33 | 57.85 | 14.7E-2 - 70.67 | 69.96 | 33.8E-4 -
CFOrg | 74.33 | 72.43 | 1.08E-2 = 68.67 | 67.81 | 37.2E-4 - 7533 | 72.79 | 1.03E-2 -
Org 62.09 56.59 522
hillvalley 100 CF 60.44 | 50.82 | 2.24E-2 - 56.87 | 50.61 | 2.27E-2 - 522 | 482 | 1.01E-2 -
CFOrg | 70.33 | 60.43 | 2.55E-2 - 56.59 | 56.59 | 1.11E-16 = 53.3 | 52.12 | 58.2E-4 =
Org 86.67 83.81 28.57
ionosphere 34 CF 76.19 | 55.16 | 16.9E-2 - 75.24 | 57.58 | 14.8E-2 - 73.33 | 71.54 | 1.15E-2 +
CFOrg | 89.52 | 86.8 | 73.8E-4 = 84.76 | 83.89 | 25.8E-4 + 28.57 | 28.57 | 2.78E-16 -
Org 90 70 90
lung 56 CF 90 83.6 | 12.9E-2 - 100 69 21.3E-2 = 100 | 834 | 7.9E-2 -
CFOrg 90 89.8 | 14E-2 = 70 70 | 1.11E-16 = 90 89.6 | 1.96E-2 =
Org 76.79 70.9 50.51
madelon 500 CF 60.64 | 51.58 | 2.91E-2 - 56.15 | 50.84 | 2.11E-2 - 49.74 | 49.51 | 10.9E-4 -
CFOrg | 76.92 | 76.8 | 1.79E-4 = 709 | 709 0EO = 50.51 | 50.51 (0200] =
Org 91.36 94.94 90.99
movementlibras 90 CF 89.01 | 87.81 | 45.9E-4 - 88.89 | 87.81 | 39.4E-4 - 87.16 | 87 8.49E-4 -
CFOrg | 9222 | 91.32 | 23.5E-4 = 94.94 | 9492 | 4.01E-4 - 90.99 | 90.99 | 5.55E-16 =
Org 98.1 98.63 819
multiplefeatures 649 CF 89.6 | 82.36 | 1.44E-2 - 89.03 | 82.31 | 1.32E-2 - 83.83 | 81.81 | 29.4E-4 -
CFOrg | 98.13 | 98.1 | 46.7E-6 = 98.63 | 98.63 | 6.66E-16 = 819 | 819 | 1.11E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 64.34 | 54.78 | 7.88E-2 - 63.64 | 51.13 | 8.94E-2 - 60.84 | 59.51 | 54.6E-4 +
CFOrg | 74.13 | 71.38 | 39.2E-4 = 83.92 | 83.92 | 5.55E-16 = 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.88 | 55.6E-4 - 89.96 | 89.55 | 2.81E-2 -
CFOrg | 93.51 | 93.26 | 24.2E-4 = 96.44 | 96.41 | 7.67E-4 + 92.89 | 90.85 | 49.4E-4 =
Org 71.43 76.19 53.97
sonar 60 CF 65.08 | 50.1 | 4.42E-2 - 63.49 | 50.51 | 4.69E-2 - 50.79 | 48.35 | 1.59E-2 -
CFOrg | 71.43 | 70.73 | 2.06E-2 - 77.78 | 76.54 | 73E-4 + 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 76.38 | 67.18 | 3.46E-2 - 74.02 | 66.08 | 3.32E-2 - 62.8 | 6192 | 27E-4 -
CFOrg | 86.81 | 85.04 | 65.1E-4 + 84.06 | 84 8.84E-4 + 83.46 | 83.25 | 9.02E-4 =
Org 92.98 92.98 90.64
wbed 30 CF 93.57 | 74.75 | 14.4E-2 - 94.15 | 73.39 | 14.5E-2 - 62.57 | 61.93 | 29.2E-4 -
CFOrg | 96.49 | 93.22 | 68.2E-4 + 9298 | 9298 | 1.11E-16 = 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 83.95 | 72.12 | 7.05E-2 - 83.95 | 72.72 | 7.23E-2 - 54.32 | 52.62 | 92E-4 -
CFOrg | 91.36 | 879 | 85.5E-4 + 76.54 | 76.54 | 3.33E-16 = 82.72 | 82.72 | 4.44E-16 =

26



Using the KNN during the Evolutionary Training Process

Table 4.7 shows the experimental results for only using the pair representation with KNN.
When using the DT, there is no dataset where classification performance can be improved
by only using the constructed feature. When using KNN and NB, the number of the datasets
where the classification performance can be improved by the single constructed feature is 5
out of the 15 datasets.

Table 4.7 shows the experimental results for using the combination of the constructed
feature with original features. When using DT, there are 13 out of the 15 datasets where
the classification performance can be improved. When using KNN, the number is 6 out of
the 15 datasets. When using NB, there are 5 out of the 15 datasets where the classification
performance can be improved.

Using the NB during the Evolutionary Training Process

Table 4.8 shows the experimental results for using the pair representation with NB. When
using the single constructed feature for classification, there are 2 out of the 15 datasets where
the classification performance can be improved when using DT. The number is increased to 6
when using KNN. When we use NB, there are 4 out of the 15 datasets where the classification
performance can be improved.

When using the combination of the constructed feature wiht original features, there are
10 out of the 15 datasets where the classification performance can be improved by using DT.
When using KNN, there are 5 out of the 15 datasets where the classification performance
can be improved. When using NB, there are 6 out of the 15 datsets where the classification
performance can be improved.

4.6 Further Discussions

In this section, we will give a discussion based on the experimental results above. Firstly, we
will compare some of the experimental results with the previous experimental result of PSO
based feature construction for binary classification. We found that the experimental results
we get for the second objective is worse than the previous experimental results when only
using the single constructed high-level feature. During the experiments, we found that the
value of the newly constructed high-level feature is huge, for example 1.5 * 10E150. There-
fore, we look back at the training process. The training process consists two major parts, the
feature selection and functional operator selection. In all the dataset, there is no such signifi-
cant huge number in any features. Therefore, those huge number in our constructed feature
is not caused in the feature selection since the feature selection cannot affect the constructed
feature by select a particular feature. Therefore, we will also investigate the potential causes
for the huge value. In particular, we will investigate the operator selected in each experi-
ment.

In order to investigate the operator selection for the proposed PSOFC, we collect and
count the average number of the four operators being used during 50 runs of each dataset.
In Figure 4.2, Figure 4.3 and Figure 4.4, we show the average percentage of the four operators
used for the final constructed high-level feature by using the array representation. Figure
4.5, Figure 4.6 and Figure 4.7 show the average percentage of the four operators being used
for the final constructed high-level feature. The blue, red, green and purple bars represent

VA Y

the operator "+”, ”-”, 7*” and ” /" respectively.
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Table 4.7: Result of pair representation, using KNN classifier

Data set no. Features | Methods bt KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 93.33 | 91.87 | 2.66E-2 - 93.21 | 88.3 | 3.42E-2 - 93.21 | 93.21 | 8.88E-16 -
CFOrg | 95.59 | 95.59 | 5.55E-16 = 94.46 | 94.46 | 6.66E-16 = 94.57 | 94.55 | 5.54E-4 +
Org 85.99 70.05 85.51
australian 14 CF 81.16 | 57.2 | 8.58E-2 - 80.68 | 55.18 | 8.17E-2 - 60.39 | 53.65 | 2.36E-2 -
CFOrg | 88.89 | 86.06 | 43.2E-4 = 70.05 | 70.05 | 3.33E-16 = 86.47 | 85.51 | 66.9E-4 =
Org 72.67 68.33 73.33
german 24 CF 71.67 | 69.33 | 1.34E-2 - 71 | 59.55 | 12.6E-2 - 70.67 | 69.86 | 49.9E-4 -
CFOrg 75 7217 | 1.03E-2 - 68.67 | 67.81 | 38.3E-4 - 74.67 | 72.47 | 1.09E-2 -
Org 62.09 56.59 522
hillvalley 100 CF 54.12 | 50.38 | 1.7E-2 - 55.77 | 50.58 | 2.67E-2 - 53.02 | 48.15 | 1.12E-2 -
CFOrg | 74.73 | 61.09 | 2.95E-2 - 56.59 | 56.59 | 3.85E-4 = 53.57 | 52.2 | 39.6E-4 =
Org 86.67 83.81 28.57
ionosphere 34 CF 82.86 | 56.99 | 15.7E-2 - 781 | 56.55 | 14.7E-2 - 7524 | 71.81 | 1.31E-2 +
CFOrg | 90.48 | 86.99 | 1.14E-2 = 84.76 | 83.94 33E-4 + 28.57 | 28.57 | 2.78E-16 =
Org 90 70 90
lung 56 CF 90 794 | 22.8E-2 - 100 65 20.4E-2 = 100 | 81.8 | 7.12E-2 -
CFOrg 90 89.8 | 14E-2 = 70 70 | 1.11E-16 = 90 89.6 | 1.96E-2 =
Org 91.36 94.94 90.99
movementlibras 90 CF 89.01 | 87.8 | 52.7E-4 - 89.26 | 879 | 53.8E-4 - 87.16 | 86.98 | 7.47E-4 -
CFOrg | 92.35 | 9129 | 37E-4 = 95.19 | 94.92 | 6.05E-4 - 90.99 | 90.99 | 5.55E-16 =
Org 98.1 98.63 81.9
multiplefeatures 649 CF 89.43 | 82.25 | 1.12E-2 - 88.97 | 82.23 | 1.02E-2 - 82 | 81.76 | 4.46E-4 -
CFOrg |98.13 | 98.1 | 66.7E-6 = 98.63 | 98.63 | 6.66E-16 = 819 | 819 | 1.11E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 65.73 | 57.96 | 5.35E-2 - 62.24 | 55.47 | 7.57E-2 - 60.84 | 59.37 | 52.8E-4 +
CFOrg | 76.22 | 71.43 | 68.5E-4 = 83.92 | 83.92 | 5.55E-16 = 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.75 | 1.44E-2 - 89.96 | 89.95 | 2.93E-4 -
CFOrg | 94.14 | 93.24 | 35.1E-4 = 96.44 | 96.39 | 8.93E-4 + 92.68 | 90.97 | 54E-4 +
Org 71.43 76.19 53.97
sonar 60 CF 58.73 | 50.03 | 4.11E-2 - 63.49 | 50.38 | 5.4E-2 - 50.79 | 47.81 | 1.21E-2 -
CFOrg | 73.02 | 71.17 | 1.43E-2 = 79.37 | 76.54 | 1.2E-2 + 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 74.02 | 66.33 | 3.07E-2 - 73.03 | 65.45 | 2.83E-2 - 62.8 | 61.89 | 23.3E-4 -
CFOrg | 86.42 | 84.92 | 64.9E-4 + 84.06 | 83.96 | 9.81E-4 + 83.46 | 83.24 | 7.51E-4 -
Org 92.98 92.98 90.64
wbed 30 CF 924 | 7021 | 15E-2 - 91.81 | 69.06 | 15.7E-2 - 62.57 | 61.98 | 29.8E-4 -
CFOrg | 97.08 | 9325 | 82E-4 + 9298 | 9298 | 1.11E-16 = 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 86.42 | 7193 | 7.9E-2 - 86.42 | 73.7 | 7.82E-2 - 54.32 | 52.89 | 67E-4 -
CFOrg | 90.12 | 87.83 | 60.5E-4 = 76.54 | 76.54 | 3.33E-16 = 82.72 | 82.72 | 4.44E-16 =
Org 93.33 80.95 98.1
200 17 CF 91.43 | 83.89 | 4.38E-2 - 90.48 | 82.88 | 3.35E-2 + 87.62 | 81.92 | 2.01E-2 -
CFOrg | 9524 | 93.52 | 53.9E-4 + 80.95 | 80.95 | 5.55E-16 = 99.05 | 98.06 | 37.9E-4 =
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Table 4.8: Result of pair representation, using NB classifier

Data set no. Features | Methods bt KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 93.33 | 90.7 | 3.5E-2 - 93.33 | 88.84 | 3.63E-2 - 93.21 | 93.21 | 8.88E-16 -
CFOrg | 95.59 | 95.59 | 5.55E-16 = 94.46 | 94.46 | 6.66E-16 = 94.8 | 9456 | 6.65E-4 +
Org 85.99 70.05 85.51
australian 14 CF 78.74 | 62.11 | 7.63E-2 - 77.29 | 61.73 | 6.88E-2 - 55.07 | 53.79 | 35.6E-4 -
CFOrg | 88.41 | 86.09 | 43.2E-4 = 70.05 | 70.05 | 3.33E-16 = 86.96 | 85.25 | 90.2E-4 -
Org 72.67 68.33 73.33
german 24 CF 70.67 | 69.36 | 1.63E-2 - 70.33 | 58.59 | 13.5E-2 - 70.33 | 69.9 | 36.1E-4 -
CFOrg | 73.67 | 72.13 | 1.34E-2 - 68.67 | 67.81 | 32.8E-4 - 76.33 | 72.79 | 1.21E-2 -
Org 62.09 56.59 52.2
hillvalley 100 CF 54.12 | 50.38 | 2.02E-2 - 54.95 | 50.48 | 2.08E-2 - 53.57 | 49.93 | 2.18E-2 -
CFOrg | 67.03 | 61.62 | 1.57E-2 - 56.59 | 56.59 | 1.11E-16 = 53.57 | 52.36 | 53E-4 +
Org 86.67 83.81 28.57
ionosphere 34 CF 76.19 | 56.27 | 18.1E-2 - 72.38 | 58.59 16E-2 - 78.1 | 71.77 | 1.34E-2 +
CFOrg | 89.52 | 869 | 72.7E-4 + 84.76 | 83.85 | 18.7E-4 = 28.57 | 28.57 | 2.78E-16 =
Org 90 70 90
lung 56 CF 90 75.2 | 23.7E-2 - 100 | 67.8 | 24.1E-2 = 100 | 834 | 7.9E-2 -
CFOrg 90 89 5E-2 = 70 70 | 1.11E-16 = 90 89.8 14E-2 =
Org 76.79 70.9 50.51
madelon 500 CF 56.79 | 51.09 | 2.42E-2 - 53.59 | 50.47 | 1.83E-2 - 49.74 | 49.51 | 12.3E4 -
CFOrg | 76.79 | 76.79 | 9.99E-16 = 70.9 | 70.9 (0)200] = 50.51 | 50.51 (0)200] =
Org 91.36 94.94 90.99
movementlibras 90 CF 89.01 | 87.83 | 53.1E-4 - 89.01 | 87.9 | 47.6E-4 - 87.16 | 86.99 | 9.24E-4 -
CFOrg | 92.35 | 91.35 | 26.1E-4 = 95.19 | 94.94 | 4.61E-4 = 90.99 | 90.99 | 5.55E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 59.44 | 56.36 | 7.02E-2 - 60.14 | 55.12 | 7.78E-2 - 60.84 | 59.38 | 46E-4 +
CFOrg | 71.33 | 71.3 | 19.6E-4 = 83.92 | 83.92 | 5.55E-16 = 42.66 | 42.66 | 55.5E-18 =
Org 93.31 96.23 90.79
semeion 265 CF 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.96 | 5.55E-16 - 89.96 | 89.9 24E-4 -
CFOrg | 98.54 | 93.46 | 90.3E-4 = 96.44 | 96.43 | 5.68E-4 + 92.68 | 91.03 | 56.4E-4 +
Org 7143 76.19 53.97
sonar 60 CF 65.08 | 48.76 | 4.67E-2 - 73.02 | 50.25 | 6.08E-2 - 50.79 | 47.94 | 1.27E-2 -
CFOrg 74.6 | 71.52 | 49.3E-4 = 77.78 | 76.44 | 58.2E-4 + 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 77.17 | 68.28 | 4.62E-2 - 76.38 | 67.28 | 4.06E-2 - 62.8 62 21.7E-4 -
CFOrg | 86.22 | 84.74 | 60.4E-4 = 84.06 | 83.96 | 9.84E-4 + 83.66 | 83.13 | 30.4E-4 -
Org 92.98 92.98 90.64
wbed 30 CF 94.15 | 72.65 | 19.3E-2 - 95.32 | 704 | 19.9E-2 - 62.57 | 62.02 | 33.9E-4 -
CFOrg | 9591 | 93.25 | 72.3E-4 + 92.98 | 92.98 | 1.11E-16 = 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 95.06 | 74.62 | 5.69E-2 - 96.3 | 75.23 | 6.55E-2 = 54.32 | 52.86 | 68.5E-4 -
CFOrg | 9259 | 87.95 | 97.4E-4 + 76.54 | 76.54 | 3.33E-16 = 82.72 | 82.72 | 4.44E-16 =
Org 93.33 80.95 98.1
Z00 17 CF 9143 | 84.02 | 3.21E-2 - 88.57 | 80.65 | 3.2E-2 = 88.57 | 81.26 | 2.48E-2 -
CFOrg | 95.24 | 93.37 | 26.7E-4 = 80.95 | 80.95 | 5.55E-16 = 99.05 | 98.17 | 25.8E-4 +
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4.6.1 The operator selection when using array representation

4 4

Seeing from the Figure 4.2, Figure 4.3 and Figure 4.4, we found that the operator “+” get
the least chance to be selected. The operator ”-” and ”*” has more chance to be selected
compared with other two operators. By reviewing the operators selection we describe in the
previous section, we found that the values for selecting operator ”-” and ”*” are around 0.5
from 0.0 to 1.0. Therefore, we can make the conclusion that during the PSO evolution, most
of the particles are moving around the center of the searching space since we defined that the
scope is from 0.0 to 1.0 inclusive on each dimension for the operator selection. Since the op-
erator ”"*” get more chance to be selected for using array representation, it is understandable
that the constructed feature will produce some significant huge number sometimes.

Besides, there are some datasets whose operator selection produce interesting results.
In the Figure 4.2, we can find that the operators used for the Semeion dataset is very even.
The average percentage of appearance for each of the the four operators are almost 25 %. In
Figure 4.3, the datasets of Vehicle, Ionosphere and Australian does not use the operator ”+”
at all and the Wine dataset does not use the operator ”/”. In Figure 4.4, the Wine dataset
only uses the / operators and the Vehicle dataset only uses the ”*” operators. Therefore, we
found that our operator selection strategy in the array representation is relatively fair but
the operator ”-” and ”*” are preferred by the PSO.
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Figure 4.2: Array Representation with DT

4.6.2 The Operator selection when using pair representation

In Figure 4.5, Figure 4.6 and Figure 4.7, we calculate and present the average percentage of
the appearance of each of the four operators used by the pair representation with DT, KNN
and NB during the evolutionary training process. The boundary for the each operator se-
lection dimension in the pair representation is from 0.5 to 1.0 inclusive. We found that the
operator ”"+” is the most likely operators which can get selected by PSO. The boundary for
the operators ”+” is from 0.5 to 0.625 exclusive. By comparing the operator selection using
the array representation, we can make similar conclusion which is that the more close to
0.5, the higher the chance the operator can be selected. Also, When we use the pair repre-

sentation, there is no such operators being abandoned by any datasets. However, the high
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Figure 4.4: Array Representation With NB
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percentage of the ”+” operator makes us concerning the fairness of the operator selection
for using the pair representation.
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Figure 4.6: Pair Representation with KNN

4.7 Chapter Summary

In this chapter, we propose a way for the use of PSO for feature construction targeting on
multi-class classification. The main difference between the proposed method in this chapter
and the first objective is that DT, KNN and NB classification algorithms are used during the
evolutionary training process for PSOFC. The experimental results show that the proposed
method can construct a high-level feature. The classification performance can be improved
for some datasets if we combine the constructed feature with the original features.
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We investegate the function operator selection for the proposed PSOFC method. We find
that the operators with the range close to 0.5 are more likely to be used. Therefore, we will
keep exploring an optimised way to do the function operator selection in future work.
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Chapter 5

Multiple Features Construction Using
PSO

5.1 Introduction

In the second objective, we have developed a PSO based approach to construct a single high-
level feature for multi-class classification problems. The experimental results show that the
single high-level feature cannot improve the classification performance in many datasets.
When the number of original features in the dataset is large, we may need multiple new
high-level features that are collaborated to improve the classification performance. In this
chapter, we will develop a new PSO based approach to constructing multiple new high-level
features for classification.

5.2 Chapter Goals

In this chapter, our overall goal is to develop a new PSO based approach to constructing
multiple high-level features for classification. We will develop the multi-feature construc-
tion approach based on the array representation from the first objective. We expect that each
high-level features can distinguish one class from all other classes in the dataset. Therefore,
the number of constructed features equals to the number of classes. The new set of high-
level constructed features are used for classification and the classification performance is
measured by Decision Tree classifier (DT), K-nearest neighbour classifier (KNN) and Naive
Bayes classifier (NB).
Specially, we will investigate:

e whether the newly constructed high-level features can improve the classification per-
formance.

e whether the newly constructed high-level features with original features together can
improve the classification performance.

5.3 Proposed Approach

In this section, the proposed approach will be presented. The developed approach is dif-
ferent from the previous approaches for single feature construction we introduced in the
tirst and second objective. In order to construct multiple features, we develop the approach
based on the PSO with n-swarms, where 7 is the number of classes in the dataset. Each
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swarm will construct one high-level feature for each class. For example, if a dataset contains
three classes, the developed approach will produce three new high-level features.

5.3.1 The Overall Design

In Figure 5.1, the overall process of the multi-feature construction using PSO is shown. The
objective of this process is to produce a set of new constructed high-level features. The evo-
lutionary training process is the major difference from the first and second objectives. The
first and second objectives use one single swarm to construct one single high-level feature.
In order to construct multiple features, multiple swarms are used. The original dataset is
splitted into a training set and a testing set at the beginning. The training set is going to
be used as the input of the multi-feature construction algorithm to construct multiple high-
level features. According to the number of classes in the dataset, n swarms will be initialised
and the training set will be feed into the n swarms for the evolutionary training of multiple
feature construction using PSO (MPSOFC), where 7 is the number of classes. All the swarms
use the same training set and each swarm will produce one high-level feature regarding of
one class. There will be n new high-level features constructed. The following step is to trans-
form the original dataset to a new dataset. We transform the testing set into a new set of data
based on the constructed features. Now, a new transformed training set and a transformed
testing set based on new high-level constructed features are produced. The next stage is to
test the classification performance of the newly constructed features on the test set.

Training Set Testing Set
class 1 s class n
— ¥ ~ Const‘ruct n
. . - new high-
Evolutionary Evolutionary Evolutionary level features
Training of Training of Training of where nis the
PSOFC PSOFC PSOFC number of the
class labels in
\ v \ the original
dataset
Constructed Constructed Constructed
Feature Feature Feature

Transformed
Dataset

Figure 5.1: Overall Process for Multi-Feature Construction Using PSO
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5.3.2 Multi-Feature Construction

Constructing multiple new high-level features is considered as a more difficult task than
constructing a single new high-level features. In this objective, the number of constructed
features is the number of classes. The advantages are:

e The number of newly constructed high-level features is easily defined since it equals
to the number of the classes.

e The boundary for each constructed high-level feature is clearly defined since the fea-
ture is to classify whether the instance belongs to a particular class or not. Therefore,
the multi-feature construction objective is divided into several single feature construc-
tion tasks. Each single feature construction will be conducted by an individual swarm.

e Since the objective for each constructed high-level feature is to identify whether the
instance belongs to the class or not and each class is distinguish to each other, the
constructed high-level features set can be better protected from introducing new noise
features.

According to above, the new approach will need to measure how good the constructed
feature is to the corresponding class during the evolutionary process of PSO. The following
section will discuss the fitness function of the developed approach.

5.3.3 The Fitness Function

In order to measure the goodness of a candidate constructed feature, we will use a class in-
terval entropy based algorithm for the fitness function in this objective and the original idea
is from [15]. Since each constructed feature corresponds to one class, we intend to calcu-
late the goodness of the candidate construct feature based on how good it is for classifying
whether the instance belongs to the corresponding class.

5.3.4 The Class Interval

A class interval is defined with a lower value and an upper value denoted as (lower, upper).
In Figure 5.2, an example feature x for an interval I to class “+” is presented. The example
shows that there are two class labels (“+”, “—") in the dataset in total. An interval I is
defined by lower and upper boundary. Within the interval, majority of instances belong to

class “+".

+
L o L e

v

X
Figure 5.2: an Example Feature x and an Interval I for Class +

When we define the class interval for a particular class in a dataset based on a particular
feature, three different situations can be found: a) the interval contains purely the corre-
sponding class, which is show in Figure 5.3. b) the interval contains a mixture of majority of
the corresponding class and some other classes, which is show in Figure 5.2. ¢) the interval
contains a mixture of the corresponding class and other classes. The number of the corre-
sponding class cannot definitely dominate the class interval. Specifically, the situation c is
easier to happen for multi-class dataset which Figure 5.4 is an example for such a situation.
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Figure 5.4: an Example Interval Contains Noiesy Class Labels

5.3.5 The Overall Process of the Fitness Function

In order to construct a new high-level feature for a specific class in a dataset, we will use the
construct high-level feature as an input to find and cosntruct the class interval and calculate
the purity of the class interval for the specific class. The overall process of the fitness function
for constructing a single high-level feature for a specific class is presented in Figure 5.5.
At the beginning of each multi-feature classification, the original dataset is splitted into a
Training Set and Testing Set as we discussed in Section 5.3.1.

The fitness function of the evolutionary process starts with decoding the selected fea-
tures and the corresponding evolved operators from the particle to obtain the constructed
feature. We use the array representation developed in the first objective. The decode method
can be found in Section 3.3.2 of Chapter 3. The next step is to transform the training set into
SubTraining set and a SubTesting set. There is a single high-level constructed feature in the
Transformed Training and Testing Set. The Transformed Training Set is used to by the Class
Interval Finding method to find the corresponding interval for eclass label i. Class label i is
predefined at beginning of the evolutionary, where i is one of the classs from the dataset. For
each swarm, the class label i is fixed for all the iterations. There cannot be any two swarms
obtain same class label i since each swarm is to construct one high-level feature for one class.
The output from the Class Interval Finding function will be an interval (lower, upper) which
will be defined in Section 5.3.6. A Class Purity Calculation function (described in Section
5.3.7) then will conduct the class interval calculation based on the discovered class interval
and the Transformed Testing Set. The Class Interval Purity is used as the goodness of the
constructed feature.

5.3.6 The Class Interval Finding

The function for finding a class interval towarding to a specific class label is presented in
Algorithm 3. The algorithm needs two inputs, one is the transformed data set called data and
the other one is the class label ¢ for the interval. In the transformed data set, it contains one
constructed feature and the corresponding class label for each instance in the transformed
dataset. The algorithm will start with initialise two arrays left and right. The left is to
select the lower boundary of the class interval and the right is to select the upper boundary
of interval. The array left and right contains one initial value the POSITIVE_INFINITY
and the NEGATIVE_INFINITY. The next step is to construct the array left and right to
construct the class interval. For each instance in data, data[i] is the ith constructed feature
and datali].class is the corresponding class label.

In order to find the lower and upper boundaries for the class interval according to [15],
the algorithm finds 99% of instances with class label c that falls in the middle of the range
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Figure 5.5: Construct a Single High-Level Feature for a Specific Class Label

of all the instances in data. The 1% instances with extreme values is excluded. The pro-
cess for this is shown in the two IF — ELSE clauses. The two array left and right can grow
up to the number of instances in the particular class (data.classes.size /200) elements where
data.classes.size is the total number of instances with the corresponding class label c. The
number of instances in the particular class (“data.classes.size/200”) is to define the num-
ber of 0.5% of instances and therefore, the left and right will exclude the 1% instance with
extreme value. When the size of left and right exceeds the number of instances in the partic-
ular class (data.classes.size/200), the maximum and the minimum value of the dataset will
be deducted from left and right. The FOR — EACH loop will finally fill up the left and
right array. The class interval will be constructed based on the max value in left as lower
value and minimum value in right as the upper value.

5.3.7 Calculation of Purity of the Interval

The algorithm for calculating the fitness of the single candidate constructed high-level fea-
ture is shown in Algorithm 4. The algorithm takes three inputs, the transformed training
set as dataTrain, the transformed testing set as dataTest and the target class label for the
constructed feature as c. The first step of the class interval purity calculation is to initialise
a class interval for class ¢ based on the training data set dataTrain and a empty set ¢’ for
storing all the instance in the dataTest falling into the interval. The process to construct the
set ¢’ is the first FOR loop. The second loop in the algorithm is to calculate the percentages
of each class from the original dataset which is falling into the class interval of class c.

The last FOREACH loop is to calculate the class interval purity for class ¢ based on the
Equation 5.1, where C is the the set of class labels in original dataset, I. is the class interval
for a particular class label c and X is one of the instance falling into the class interval I.
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Data: data / /the transformed training dataset which contains a single constructed
feature

Data: ¢ //the target class label

Result: (I, u) / /the class interval for class ¢ based on the transformed set data

left < {POSITIVE_INFINITY} ;

right <~ {NEGATIVE_INFINITY} ;

fori <— 0 to data.size do

if datali].class = c then

if left.size >= data.classes.size/200 then
| left < left —left.Max;

end

left < left Udatali];

end

f datali].class = c then

if right.size >= data.classes.size /200 then
| right < right — right.Min;

end

right < right U datali];

end

end

(I,u) < (left.Max, Right.min);

return (I,u);

o

Algorithm 3: Class Interval Finding Algorithm

L
—Y " p(ci)log, p(ci) (5.1)

i=1

The equation for class interval purity is based on Shannons Entropy [15]. Shannons En-
tropy is one of the most common way to measuring entropy of an object. The original Shan-
nons Entropy can be found in Equation 5.2.

H(L) = = ) p(c|X € I.) log, p(c|X € L) (52)

ceC

In our project, the entropy of the class interval is to represent the purity of the class
interval. The class interval with higher purity can be referred to Figure 5.3 in Section 5.3.6
and the entropy should be lower. The class interval with lower purity can be referred to
Figure 5.4 and the entropy is higher.

5.4 Experimental Design

We conduct a set of experiments using different benchmark datasets to evaluate the perfor-
mance of the proposed PSO based multi-feature construction approach. The used bench-
mark datasets are chosen from UCI machine learning repository [2]. The details of the 15
datasets are shown in Table 5.1. The number of features is ranged from 13 to 649. The
number of instances is from 32 to 2000. The number of classes is ranged from 2 to 16. The
instances in each dataset will be divided into 70% as a training set and 30% as a testing set
[6, 20].
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Data: dataTrain / /the transformed training dataset which contains a single
constructed feature

Data: dataTest / /the transformed testing dataset which contains a single constructed
feature

Data: ¢ //the target class label

Result: fitness //the fitness value of the constructed feature

interval <— findInterval (dataTrain,c) ;

<« {};

for i <— 0 to dataTest.size do

if dataTest[i] € c then

|« dUg

end

end

foreach label € data.classes do

if dataTest[i] € c then

iie{1,2,...,|c'|,c'|i|=label } }| .
‘ Dlabel {iie{ \|C\,| li] }H,

end

end
fitness < 0;
foreach label € data.classes do

| fitness « fitness — praperlog(Piaver );
end

return fitness;

Algorithm 4: Fitness for Cosntructed Feature Calculation Algorithm

The parameters of the proposed algorithm are set as follows [17]: w = 0.7298, ¢; = ¢, =
1.49618, vyex = 0.1, vy = —0.1 and domain,,;, = 0.0 as the minimum position value of
a particle in each dimension, domain;;;, = 1.0 as the maximum position value of a particle
in each dimension, population size is 30 and the maximum number of iterations is 100.
The fully connected topology is used in the experiments. For each dataset, the proposed
algorithm has been independently run for 50 times. A set of high-level newly constructed
features will be produced in each run. The function operators set used in this chapter are

" 15 AT AT

+7, %7, " and “/” (protected division). For the array, the value range for each operator
are shown in the Table 5.2.

Three different classifiers (DT, KNN and NB) are used to conduct the classification per-
formance tests to evaluate the performance of the newly constructed multiple high-level
features.

For each dataset, we conduct a classification performance test with the three classifiers
using the newly multiple constructed high-level features. Then we combine the set of newly
multiple constructed features with the original features for classification. We perform a
T-test to see whether the newly constructed features can improve the classification perfor-
mance.

5.4.1 Cross Validation Experiments

We conduct a 10-folds cross validation experiment based on the experiments we talked
above to avoid the problem caused by a small number of instances. Firstly, we split the
original dataset into 10 equally sets. The cross-validation process will be then process 10
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Table 5.1:

Datasets

Dataset No. of Features | No. of Classes | No.of Instances
Australian 14 2 690
German 24 2 1000
Ionosphere 34 2 351
WBCD 30 2 569
Hillvalley 100 2 606
Musk1 166 2 476
Semeion 256 2 1593
Sonar 60 2 608
Wine 13 3 178
Z00 17 7 101
Vehicle 18 4 846
Lung 56 3 32
LibrasMovement 90 15 360
Arrhythmia 279 16 452
MultipleFeatures 649 10 2000

Table 5.2: Function Operator Selection

Operator | Array Rep
e o [0.0,0.25)
v [0.25,0.5)
s [0.5,0.75)
"] [0.75,1]

times. Each of the subset of the 10 sets will be used exactly once as the test set. Then we
will get 10 validation results and using the average value as a single estimation for the clas-
sification performance of the dataset. One of the advantages is that all the instances from
the dataset will be used as training and testing data so that the overtraining problem can be
minimized.

5.5 Experimental Results

The experimental results for the developed approach based on the array representation are
shown in Table 5.3 and Table 5.4. In both tables, “All” means only the original features are
used for classification; “CF” means only the constructed features are used for classification;
“CFOrg” means the combination of constructed features and original features is used for
classification. The symbol “Best”, “Avg” and “Std” represent the best classification accu-
racy, the average classification performance and the standard deviation of the classification
performance.

5.5.1 Experimental Results of 70/30 for Training/Testing

In Table 5.3, the experimental results for using the developed PSO based multi-feature con-
struction approach. For the classification performance of using only the constructed fea-
tures, the results are shown in the CF rows. When use DT, there are only one out of the 15
datasets where the classification performance is better than using the original features for
classification. When use KNN, the number is increased to two out of the 15 datasets. When
use NB, the number is two out of the 15 datasets.

When combined the constructed features and the original features for classification, the
experimental results are shown in CFOrg rows. We found that there are two datasets getting
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better classification performance compared with only using the original features when using
DT. When using KNN, the number is five out of the 15 datasets. When using NB, the number
is reduced to four out of the 15 datasets.

One observation is that the best classification performance very differs from the average
classification performance. For example, when using KNN for dataset of “Ionosphere”, the
avg value for CF is 37.64 and the best value is 80. By reading the standard deviation of CF
from the experimental results, we can imply that the classification performance of each run
is not stable.

For the datasets with increased classification performance for any category with any
classification algorithm using either only the constructed features or the combination of
constructed features and original features, we found that the number of features is var-
ied. When using DT, only the dataset with the number of features number less than 20 (2
out of four datasets) can benefit from using the constructed fetures. When using KNN, 4
datasets (out of 7 datasets) with features number less than 50 can improve the classification
performance by using the constructed features and one dataset (out of 3 datasets) with more
than 200 features can benefit from using the constructed features. When using NB, 4 (out of
7 datasets) with features number less than 50 can be benefit from the constructed features.
Three datasets (out of 5 datasets) can be benefit from using the constructed features. One
dataset with more than 200 features can improve the classification performance by using the
constructed featurs.

5.5.2 Experimental Results of 10-Folds Cross-Validation

In Table 5.4, the experimental results of using 10-folds cross-validation are shown. For the
classification performance based on the constructed high-level features, there are one out
of the 14 datasets with the classification performance better than only using the original
features when we use DT. When using KNN, there are two out of the 14 datasets with bet-
ter classification performance compared with the classification performance based on the
original features. When using NB, the number is three out of the 14 datasets.

When we combine the constructed features and the original features for classification,
the experimental results are shown in CFOrg rows. When using DT, there are 4 out of the
14 datasets with better classification performance compared with the classification perfor-
mance by only using the original features. When using KNN, the number increased to 8 out
of the 14 datasets. When using NB, the number is 5 out of the 14 datasets.

We found that there are only four out of the 14 datasets cannot improve the classification
performance by using the constructed as the only features or part of the combination of
constructed features and original features through any defined classification algorithm.

5.6 Further Discussions

In this section, we will discuss the experimental results. Firstly, we will investigate deeply at
the quality of the multiple constructed features through discussing the classification perfor-
mance by only using the multiple constructed features. Secondly, we will discuss whether
the multiple constructed features are a strong set of new high-level features to replace the
original features or they are better to be combined with the original features for classifica-
tion. In order to examine the relationship between the multiple constructed features and
the original features, we will compare the experimental results of only using the multiple
constructed features, and the combination of original features and multiple constructed fea-
tures. At last, we will discuss the advantages and disadvantages of the developed approach
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Table 5.3: Result of the Original Design

Data set no. Features | Methods br KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 93.33 | 88.57 | 3.32E-2 - 9344 | 882 | 2.71E-2 - 8722 | 86.44 | 47.6E-4 -
CFOrg | 957 |95.53 | 25.3E-4 = 94.46 | 94.46 | 6.66E-16 = 94.46 | 942 | 14.7E-4 -
Org 85.99 70.05 85.51
australian 14 CF 85.99 | 56.35 | 14.3E-2 - 80.68 | 50.21 | 8.57E-2 - 81.64 | 52 | 9.87E-2 -
CFOrg | 86.96 | 85.05 | 3.97E-2 = 70.05 | 70.05 | 3.33E-16 = 86.47 | 85.83 | 47.9E-4 +
Org 72.67 68.33 73.33
german 24 CF 71 | 61.66 | 12.1E-2 - 70.67 | 60.13 | 9.6E-2 - 71 | 5819 | 15.2E-2 -
CFOrg | 7533 | 69.31 | 3.69E-2 - 68.67 | 67.99 | 26.6E-4 - 73 | 70.82 | 1.16E-2 -
Org 62.09 56.59 52.2
hillvalley 100 CF 55.77 | 52.55 | 2.16E-2 - 56.59 | 51.32 | 3.42E-2 - 48.35 | 48.12 | 18.5E-4 -
CFOrg | 56.59 | 53.15 | 1.87E-2 - 56.59 | 56.58 | 6.52E-4 = 53.02 | 52.61 | 21.5E-4 +
Org 86.67 83.81 28.57
ionosphere 34 CF 71.43 | 39.75 | 13.7E-2 - 80 | 37.64 | 14.5E-2 - 819 | 73.05 | 2.37E-2 +
CFOrg | 90.48 | 86.67 | 1.98E-2 = 84.76 | 83.98 | 36.6E-4 + 28.57 | 28.57 | 2.78E-16 =
Org 90 70 90
lung 56 CF 90 | 66.6 | 24.2E-2 - 90 | 56.8 | 23.1E-2 - 100 78 | 9.59E-2 -
CFOrg 90 81 | 18.8E-2 - 70 70 | 1.11E-16 = 90 | 844 | 4.96E-2 -
Org 91.36 94.94 90.99
movementlibras 90 CF 89.26 | 87.88 | 58.1E-4 - 90.99 | 88.86 | 78E-4 - 88.4 | 87.74 | 22.1E-4 -
CFOrg | 90.86 | 88.68 | 92.4E-4 - 95.19 | 94.84 | 17.7E-4 - 91.48 | 91.17 | 10.8E-4 +
Org 98.1 98.63 81.9
multiplefeatures 649 CF 90.47 | 85.87 | 2.29E-2 - 93.73 | 86.1 | 3.16E-2 - 85.57 | 82.51 | 87.9E-4 +
CFOrg | 98.67 | 944 | 2.82E-2 - 98.63 | 98.63 | 6.66E-16 = 819 | 819 | 1.11E-16 =
Org 71.33 83.92 42.66
muskl 166 CF 60.84 | 43.48 | 6.72E-2 - 61.54 | 442 | 7.43E-2 - 61.54 | 59.36 | 2.36E-2 +
CFOrg | 71.33 | 71.33 | 0EO = 83.92 | 83.92 | 5.55E-16 = | 41.96 | 41.96 | 2.78E-16 -
Org 71.43 76.19 53.97
sonar 60 CF 73.02 | 54.79 | 6.83E-2 - 65.08 | 53.11 | 5.27E-2 - 53.97 | 50.22 | 1.87E-2 -
CFOrg | 79.37 | 68.19 | 6.76E-2 - 80.95 | 76.7 | 1.21E-2 + 53.97 | 53.97 | 6.66E-16 =
Org 84.65 83.86 83.27
vehicle 18 CF 83.86 | 75.5 | 4.96E-2 - 84.65 | 77.63 | 3.65E-2 - 62.99 | 62.35 | 27.2E-4 -
CFOrg | 87.8 | 80.71 | 5.6E-2 - 84.06 | 84.03 | 6.4E-4 + 8327 | 83.24 | 6.4E-4 -
Org 92.98 92.98 90.64
wbed 30 CF 98.25 | 82.97 | 15.7E-2 - 98.25 | 87.68 | 13.1E-2 - 63.16 | 62.3 | 74.2E-4 -
CFOrg | 98.25 | 83.59 | 15.6E-2 - 9298 | 92.98 | 1.11E-16 = 90.64 | 90.64 | 2.22E-16 =
Org 87.65 76.54 82.72
wine 13 CF 97.53 | 89.38 | 5.65E-2 + 98.77 | 92.86 | 3.97E-2 + 58.02 | 54.89 | 1.42E-2 -
CFOrg | 97.53 | 89.98 | 5.03E-2 76.54 | 76.54 | 3.33E-16 = 85.19 | 83.46 | 69.8E-4 +
Org 93.33 80.95 98.1
Z00 17 CF 9524 | 89.9 | 4.3E-2 - 95.24 | 93.05 | 2.01E-2 + 97.14 | 82.88 | 6.47E-2 -
CFOrg | 95.24 | 94.19 | 1.13E-2 + 80.95 | 80.95 | 5.55E-16 = 100 | 98.46 | 75.9E-4 +
Org 93.31 96.23 90.79
semeion 265 CF 92.05 | 88.44 | 6.48E-2 - 90.59 | 87.79 | 6.84E-2 - 89.75 | 40.56 | 28.8E-2 -
CFOrg | 94.35 | 93.1 | 72.9E-4 = 96.44 | 96.36 | 10.2E-4 + 91.42 | 89.28 | 98.9E-4 -

including the discussion of class interval finding method and the class interval purity calcu-

lating function.

5.6.1 The Quality of the Multiple Constructed Features

In Figure 5.6, we present the experimental results of average testing accuracy, the training
accuracy and the classification performance using the original features only. The data in
Figure 5.6 is based on the experimental results of 10-folds cross validation. In Fiture 5.6,
the horizontal axis is the number features and the right vertical axis is the classification
performance. The blue bar is the testing accuracy, The red bar and green bar are the training
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Table 5.4: Result of 10-Folds Cross-Validation

Data set no. Features | Methods bT KNN NB
Best | Avg Std T-test | Best | Avg Std T-test | Best | Avg Std T-test
Org 95.59 94.46 94.46
arrhythmia 278 CF 92.01 | 90.26 | 86.7E-4 - 90.49 | 88.54 | 93.6E-4 - 86.32 | 85.97 | 17.6E-4 -
CFOrg | 95.16 | 94.64 | 33.9E-4 - 94.14 | 94.14 | 12.2E-16 - 94.18 | 94.07 | 5.96E-4 -
Org 85.99 70.05 85.51
australian 14 CF 67.97 | 50.21 | 4.48E-2 - 53.33 | 46.9 | 2.54E-2 - 60.43 | 52.88 | 3.06E-2 -
CFOrg | 85.65 | 84.27 | 66.3E-4 - 70.87 | 70.87 | 2.22E-16 + 85.65 | 84.97 | 23.7E-4 -
Org 72.67 68.33 73.33
german 24 CF 682 | 59.31 | 5.21E-2 - 64.7 | 5691 | 4.83E-2 - 55.2 | 43.95 | 5.73E-2 -
CFOrg 74 71 | 1.32E-2 - 68 | 67.53 | 18.7E-4 - 721 | 70.35 | 84.2E-4 -
Org 62.09 56.59 52.2
hillvalley 100 CF 61.64 | 51.64 | 2.11E-2 - 57.43 | 50.92 | 1.53E-2 - 51.07 | 50.65 | 28E-4 -
CFOrg | 61.31 | 52.04 | 2.11E-2 - 56.6 | 56.52 | 1.62E-4 - 50.5 | 50.5 | 5.55E-16 -
Org 86.67 83.81 28.57
ionosphere 34 CF 56.17 | 44.43 | 4.62E-2 - 56.51 | 44.22 | 4.88E-2 - 73.48 | 69.77 | 1.55E-2
CFOrg | 90.01 | 87.26 | 3.02E-2 = 83.48 | 83.16 | 14.3E-4 - 35.93 | 35.93 | 2.22E-16
Org 90 70 90
lung 56 CF 75 | 63.35| 6.7E-2 - 80.83 | 60.12 | 6.45E-2 - 76.67 | 60 | 9.54E-2 -
CFOrg | 78.33 | 70.22 | 7.09E-2 - 80.83 | 77.63 | 93.3E-4 + 80.83 | 78.77 | 1.62E-2 -
Org 71.33 83.92 42.66
musk1 166 CF 4912 | 44.74 | 1.6E-2 - 5254 | 453 | 2.7E-2 - 6157 | 58.41 | 1.21E-2
CFOrg | 75.63 | 739 | 1.27E-2 + 86.32 | 86.32 0EO + | 43.45 | 4345 | 2.78E-16
Org 93.31 96.23 90.79
semeion 265 CF 90.08 | 88.25 | 3.41E-2 - 90.14 | 87.7 | 2.65E-2 - 67.27 | 39.18 | 10.1E-2 -
CFOrg | 95.23 | 93.83 | 1.56E-2 + 97.24 | 97.04 | 10.5E-4 + 9197 | 91.24 | 36.4E-4 +
Org 71.43 76.19 53.97
sonar 60 CF 60.95 | 53.11 | 4E-2 - 629 | 52.86 | 3.61E-2 - 59.69 | 55.13 | 2.15E-2 +
CFOrg | 74.98 | 70.95 | 2.08E-2 = 81.76 | 80.11 | 76.6E-4 + 47.48 | 45.88 | 72.2E-4 -
Org 84.65 83.86 83.27
vehicle 18 CF 78.95 | 73.98 | 1.9E-2 - 78.43 | 75.26 | 1.52E-2 - 63 | 62.35 | 28.2E-4 -
CFOrg | 83.57 | 78.58 | 1.99E-2 - 82.27 | 82.27 | 5.55E-16 - 81.62 | 81.49 | 5.16E-4 -
Org 92.98 92.98 90.64
wbed 30 CF 87.89 | 77.68 | 5.32E-2 - 91.57 | 80.63 | 5.42E-2 - 66.26 | 65.53 | 28.1E-4 -
CFOrg | 91.92 | 79.34 | 5.47E-2 - 93.31 | 93.31 | 1.11E-16 + 88.4 | 88.23 | 2.46E-4 -
Org 87.65 76.54 82.72
wine 13 CF 94.73 | 88.77 | 3.35E-2 + 95.12 | 91.26 | 1.96E-2 + 70.94 | 67.46 | 1.38E-2 -
CFOrg | 95.14 | 91.21 | 3.39E-2 + 80.52 | 80.17 | 7.26E-4 + 87.23 | 8598 | 71.1E-4 +
Org 93.33 80.95 98.1
Z00 17 CF 93.77 | 90.6 | 1.64E-2 - 94.05 | 90.48 | 1.74E-2 + 90.6 | 82.3 | 3.13E-2 -
CFOrg | 97.14 | 95.53 | 1.03E-2 + 83.82 | 83.6 | 23.8E-4 + 98.91 | 97.65 | 52.5E-4 -
Org 91.36 94.94 90.99
movementlibras 90 CF 89.67 | 88.68 | 34.8E-4 - 91.04 | 89.66 | 43.7E-4 - 88.93 | 88.57 | 19.9E-4 -
CFOrg | 91.37 | 90.03 | 52.3E-4 - 96.89 | 96.62 | 9.69E-4 + 92.07 | 91.86 | 10.4E-4 +

accuracy and the classification performance by only using the original features.

The first observation we have from the experimental results is that the apparent differ-
ence of training and testing accuracy by only using the constructed features. We found that
the training accuracy is much higher than the testing accuracy in the three algorithms of
datasets. This phenomena in machine learning is called over fitting and it can be caused by
several different factors [4]. For the developed approach, one potential reason for overfitting
can be the training data chosen strategy although we have used 10-folds cross validation to
avoid such potential factor. From the experimental results, we can also exclude the possibil-
ity for overfitting that is the less features from the dataset, the lower the performance. The
classification performance is not improved when the number of features increases.

Another observation we found is that the training accuracy is better than the classifica-
tion performance by only using the original features. Especially when using NB, there is
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Figure 5.6: the Experimental Result of Testing Accuracy, the Training Accuracy and the Clas-
sification Performance Using the Original Features Only

only one dataset obtains worse classification performance than using the original features.

In conclusion, the quality of the constructed features is not strong enough to replace the
original features for better classification performance. However, the high performance of
the training accuracy shows the potential of replacing the original features by the newly
constructed high-level features. Besides, the constructed features can be more effective for
classification by using NB.

5.6.2 The Relationship Between the Multiple Constructed Features and Original
Features

In Figure 5.7, we present the experimental results to compare the classification performance
by only using the multiple constructed features, the combination of the constructed features
and the original features, and only using the original features. In Figure 5.7, the horizontal
axis is the number of features and the right vertical axis is the classification performance.
The blue bar is the classification performance by only using the constructed features. The
red bar is the classification performance by using the combination of the constructed features
and the original features. The green bar is the classification performance by only using the
original features.

Seeing from the figures, we found that the classification performance is lower when we
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Figure 5.7: the Experimental Result to Compare the Classification Performance by Only
Using the Multiple Constructed Features, the Combination of the Constructed Features and
the Original Features, and Only Using the Original Features

use the combination of the constructed features and the original features than only using
the constructed features. When using KNN, there are two datasets out of the 14 datasets.
When using NB, there are four out of the 14 datasets. Therefore, the classification perfor-
mance dropped when we combine with the original features since the combination includes
a larger number of features with redundancy. Although the constructed features are not in-
formative enough for datasets to replace the original features, the classification performance
is better when only using the original features compared with using the combination of the
constructed features and the original features in some cases.

5.6.3 The Difference from the GP Method

In [15], a GP based multi-feature construction method was developed. The method uses the
class interval finding and the purity of the class interval as the goodness of the constructed
teature. Compared with the approach developed in this project, there are following differ-
ences:

e we introduce the class interval finding method and class interval purity calculating
method into PSO for multi-feature construction. The purity of the class interval is
used to evaluate the candidate solution in each iteration.
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e when we evaluate an individual particle, we first split the data set into a training and
testing set. The training set is used for the class interval discovery and the testing set
is to calculate the purity of the class interval.

o the testing datasets cover larger range of number of features. In [15], the number of
features from the datasets ranges from 4 to 13, compared with a range from 13 to 649
in this project.

The Advantages of the Developed Method

The class interval finding method as part of the developed multi-feature construction ap-
proach protects from introducing more noise features since each constructed high-level fea-
ture is targeting on individual class. Each class will represent different functionality during
the classification. Therefore, the constructed features are properly constructed with explicit
objective. Besides, the developed method with class interval finding method is easy to be
implemented. We develop the multi-feature construction approach based on the approach
of the first and second approach without changing the overall evolutionary process for each
swarm except the fitness function. Only one new parameter is added to the evolutionary
process, which is the class label for the class interval.

The Limitation of the Developed Method

The class interval finding method provides an easy way to develop the multi-feature con-
struction using PSO. However, we also find some limitations from the experimental results:

o the discovery of constructed high-level features for the developed approach only stays
at the individual feature level, which means that each feature is targeted on each in-
dividual class but the algorithm does not discover the interrelationship between the
constructed features during the multi-feature construction. Therefore, the relationship
between the multiple constructed high-level feature is not established. To simplify, the
evolution process for each swarm is independent to each other so that the constructed
features is not highly interrelated.

o the classification performance for using both only the constructed features and the
combination of constructed features and original features is lower than using the orig-
inal features on the majority datasets.

5.7 Chapter Summary

The experimental results show the potential of PSO for multi-feature construction in classifi-
cation. The developed approach can construct multiple high-level features. The developed
approach can reduce the dimension of the dataset without losing too much accuracy al-
though the classification performance still cannot be improved in most cases. One shortage
of the developed approach is that the constructed features are not considered as a whole.
During the features construction, they are constructed individually by different swarms.
Therefore, one of the future plans is to develop a way to introduce the interrelationship
between the constructed features.
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Chapter 6

Conclusions and Future Plan

In this project, PSO has been used for feature construction. In order to construct useful
teature(s) by PSO, we first proposed two different representations of array and pair repre-
sentations to use PSO for function operator selection. We have conducted the experiments
for both array and pair representations. The experimental results show that the proposed
approach can construct one high-level feature for binary classification and the classifica-
tion performance can be improved by using the combination of the constructed feature and
original features on some datasets. We discussed that the proposed representations have
limitations. For both representation, the intervals defined for each candidate operator are
not even since there always is a candidate operator having a larger chance to be selected
than others. We have compared the experimental results with [21]. We found that the fea-
ture construction efficiency is improved, i.e. the proposed approach can construct a single
high-level feature much faster than [21] without losing much classification performance.

The proposed representations are also used for the second and third objectives in the
project. In the second objective of the project, we developed a PSO based approach to fea-
ture construction for multi-class classification. The proposed method is implemented based
on both the array and pair representation. The experimental results show that the proposed
approach cannot always construct high-level feature to improve the classification perfor-
mance for multi-class datasets. By comparing the experimental results, we found that the
constructed feature using the array representation is better at improving the classification
performance than using the pair representation. We found that one of reasons is that the
array representation is more efficient on operator selection than pair representation. Using
one single constructed feature for multi-class classification problem is challenging. There-
fore, we developed a PSO based approach to constructing multiple features for classification
problems.

In order to efficiently and effectively construct multiple new high-level features, we
developed a PSO based approach using class interval purity to evaluate the constructed
feature. The class interval finding and purity calculating approach is originally from [15].
Different from [15] which using GP to construct features, we using a PSO based approach
to construct multiple high-level features. We conducted the experiments for the proposed
approach using the datasets with a larger number of features compared with [15]. The ex-
perimental results show that the set of constructed features can improve the classification
performance on some datasets. We found that overfitting problem is one of the major draw-
backs of the proposed method. However, the experimental results show the potential of
using PSO for feature construction.
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6.1 Futrue Plan

The experimental results in this project show the potential of PSO for feature construction
in classification. Our future plans are shown below:

e Improve the particle encoding mechanism. In this project, we propose two represen-
tations for the particle encoding. However, one of the shortages of the array and pair
representation are less diversity during the evolutionary process. In order to overcome
such shortage, we can use tree based representation for the particle encoding. We can
introduce mutation based function to PSO to increase the diversity of candidate solu-
tions which learned from GP.

e In this project, the experimental results of multi-feature construction show that we
need more than one constructed high-level feature for classification. However, one of
the shortages of the developed PSO based multi-feature construction approach is that
the discovery of the multiple high-level constructed features only stays at the individ-
ual feature level. Therefore, in order to discover the relationship between constructed
features, we can introduce one more swarm to evolve and control the overall relation-
ship between the multiple constructed features. A weight value can be introduced for
each constructed feature. The weight value will be evolved by the newly introduced
swarm.
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