VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

T8

School of Engineering and Computer Science
Te Kura Matai Piikaha, Piirorohiko

\17\21]131?1;’2)2? Tel: +64 4 463 5341
New Zealand Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

Particle Swarm Optimisation and
Statistical Clustering for Feature
Selection

Mitchell C. Lane

Supervisors: Mengjie Zhang, Bing Xue

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering (Hons).

Abstract

Feature selection is important in classification tasks. By removing irrelevant
and redundant features, the accuracy, understandability and training time of a
learned classifier can be improved. However, feature selection is complex due
to a potentially large search space and unpredictable feature interaction. This
project represents the first work using statistical clustering information in parti-
cle swarm optimisation (PSO) for feature selection in general classification tasks.
Seven single-objective PSO-based feature selection approaches are proposed to
select a small number of features based on the statistical clustering information.
A further two multi-objective PSO-based feature selection approaches are pro-
posed to evolve non-dominated feature subsets in terms of their dimensionality
and classification performance. Experimental results show that by using the sta-
tistical clustering information in PSO for feature selection, many irrelevant and
redundant features are removed and the classification performance is signifi-
cantly improved over using all features. Furthermore, the two multi-objective
algorithms are found to outperform standard Binary PSO for feature selection.

Acknowledgements

I wish to acknowledge the research into the statistical clustering of data undertaken by Ivy
Liu, which has been used to cluster features that are used in the PSO algorithms presented
in this project. I would like to also express my great appreciation to my two supervisors,
Mengjie Zhang and Bing Xue, which have poured countless hours into helping me complete
my research project to a high standard.

ii

Contents

1 Introduction 1
1.1 Objectives e 2
1.2 Major Contributions L oo 3
13 Organisation 3
2 Background 5
2.1 Machine Learning and Classification 5
22 FeatureSelection L o 5
2.3 Evolutionary Computation, 6
2.3.1 Particle Swarm Optimisation 6
2.3.2 Multi-Objective Evolutionary Algorithms 7
24 Related Work 8
2.4.1 Traditional Feature Selection Approaches 8
2.4.2 EC Approaches (Non-PSO) for Feature Selection 8
2.43 PSO-Based Feature Selection Approaches 9
2.44 Multi-Objective Evolutionary Algorithms for Feature Selection 10
25 Summary 10
3 A Constrained PSO-based Approach to Feature Selection 13
3.1 Development of PSO-based Feature Selection Approaches 14
3.1.1 Maximum Probability PPU 14
3.1.2 Maximum Probability PPU with Tournament Feature Selection 15

3.1.3 Roulette Wheel Feature Selection PPU and Incremental Maximum Prob-
ability PPU 16
3.2 Experimental Design 16
3.3 ExperimentalResults 17
331 Resultsof MPPPU 17
3.3.2 Results of MPTSPPU, RWSPPU and IMPPPU 19
3.3.3 Further Analysis 20
34 Summary 20
4 Single-Objective PSO for Feature Selection 21
4.1 Development of PSO-based Feature Selection Approaches 21
41.1 Multiple FeaturePPU 22
41.2 Gaussian PSO for Feature Selection 22
42 Experimental Design 23
43 ExperimentalResults o L 24
431 Resultsof MFPPU 24
432 Resultsof GPSO1 25
433 Resultsof GPSO2 25

iii

434 Further Analysis
44 Summary

A Multi-Objective PSO-based Approach to Feature Selection

5.1 Development of PSO-based Feature Selection Approaches
511 NSGPSO e
512 NSGPSO2 e
52 Experimental Design 0 .
53 ExperimentalResults 0 ..
531 Resultsof NSGPSO
532 Resultsof NSGPSO2
54 Summary

Conclusions and Future Work

6.1 FutureWork
A.1 Roulette Wheel Feature Selection PPU
A.2 Incremental Maximum Probability PPU
A.3 PPU Design and Implementation
A.3.1 Reuse and Understandability Issues
A.32 Coupling and MaintenanceIssues
A.3.3 Improving Software Design with the Strategy Pattern
B.1 Gaussian Multiple FeaturePPU
B.2 Gaussian Fitness Function 0 0.

iv

Chapter 1

Introduction

Classification is an important task in machine learning and data mining that aims to ac-
curately classify each instance with its correct class label according to the information de-
scribed by its features. In order to learn how to classify instances with a high level of ac-
curacy, a classification algorithm is trained on a set of instances that are representatives
of the classification problem and then tested on the unseen instances. In many cases, the
dataset used for training and testing the classification algorithm contains a significantly
large number of features. This is known as “the curse of dimensionality” [1] with each
feature representing a dimension in the search space. Many of these features are completely
irrelevant or redundant, which leads to extensive classifier training time and poor classi-
fication performance. An important technique that can reduce the number of irrelevant
and redundant features is feature selection [2]. By reducing the number of irrelevant and
redundant features, feature selection can simplify the structural complexity of the learned
classifiers and/or improve the classification performance [3, 4]. However, developing an ef-
fective feature selection algorithm is challenging due to complex feature interaction within
a potentially large search space [2]. Consequently, many statistical methods and machine
learning techniques have been adopted to perform the task of feature selection.

The task of feature selection is usually over a large search space in which an exhaustive
search would take too much time in most cases [5]. Therefore, an effective and efficient
search technique is needed. Greedy algorithms such as sequential forward selection (SFS) [6]
and sequential backward selection (SBS) [7] have been proposed to reduce the time taken to
select optimal feature subsets. However, these greedy approaches are likely to prematurely
converge to a local optimum, ineffectively searching the global solution space.

To provide better global search capabilities, evolutionary computation (EC) techniques
have been applied to feature selection problems, including genetic algorithms (GAs) [8],
genetic programming (GP) [9], ant colony optimisation (ACO) [10] and particle swarm op-
timisation (PSO) [11, 12, 13, 14, 15]. PSO is based on swarm intelligence and uses a swarm
of particles to search for an optimal solution where each particle represents a possible solu-
tion in the search space. Compared with GAs and GP, PSO is easier to implement due to its
simple particle representation and use of simple mathematical functions. It also has fewer
parameters to tune, is computationally less expensive and can converge more quickly [16].

Traditionally, feature selection approaches are single-objective algorithms in which the
classification performance is maximised by evaluating the goodness of solutions (feature
subset) based solely on their classification performance. However, feature selection is a
multi-objective problem where the dimensionality of the feature subset is also desired to be
minimised. With fewer features, classifier training time can be reduced and as fewer features
are used in constructing the classifier, its structure is likely to be less complex with greater
generalisation on the unseen data. Multi-objective feature selection is a complex task as its

two objectives often conflict with each other. This happens as the classification error rate is
likely to increase when fewer features can be used to distinguish the correct class label of
a given instance. Recently, ideas from Multi-Objective Evolutionary algorithms (MOEa’s)
such as the improved Non-dominated Sorting Genetic Algorithm (NSGA-II) [17], the Pareto
Envelope-based Selection Algorithm (PESA) [18] and the improved Stength Pareto Evolu-
tionary Algorithm (SPEA2) [19] have been adopted to solve feature selection as a multi-
objective problem, in which the two objectives are to minimise the classification error rate
and minimise the dimensionality of the evolved feature subsets. Unlike single-objective fea-
ture selection approaches, multi-objective feature selection approaches such as a modified
version of NSGA-II for feature selection [20] and Non-dominated Sorting Particle Swarm
Optimizer (NSPSO) [21] provide multiple non-dominated feature subsets from which the
user can select a single solution according to their desired trade off between the classifica-
tion error rate and the dimensionality of the feature subset.

Many statistical measures have been used to evaluate the goodness of feature subsets
chosen by a feature selection algorithm [3, 22]. Statistical approaches can also be used as
a preprocessing step to group related features together into a feature cluster, producing a
set of feature clusters that can then be used as input to a feature selection algorithm. By
doing this, the search over feature subsets can use the statistical information provided by
the feature clusters in a number of beneficial ways. For example, the statistical clustering
information can be used to identify and eliminate irrelevant and redundant features within
the same cluster. Furthermore, the search can be modified to better uncover complex feature
interaction within features of different clusters. In order to utilise the benefits of statistical
clustering as a preprocessing step, novel feature selection approaches need to be developed
that can select optimal feature subsets based on a set of feature clusters.

1.1 Objectives

The overall goal of this project is to investigate a PSO-based feature selection approach that
can effectively use the information from the statistical clustering of features. The statis-
tical clustering method used in this paper groups features together based on a statistical
model that considers feature interaction [23, 24]. Features in the same cluster are similar
and they are dissimilar to features in other clusters. As feature interaction is an important
issue in feature selection, the statistical feature interaction information found by the cluster-
ing method can be used to discover good feature subsets. By using this information, the new
PSO-based feature selection approaches are expected to minimise the number of features se-
lected, whilst maintaining or increasing the classification accuracy. The implementation of
the clustering method is out of scope of this project and hence, will not be discussed in de-
tail. The performance of each feature selection approach will be examined on a number of
benchmark datasets with different numbers of features and instances. The overall goal is
split into three objectives:

e Objective 1 is to develop a single-objective PSO-based approach to select a single fea-
ture from each feature cluster.

e Objective 2 is to extend the single-objective PSO-based approach to select multiple
features from each cluster using statistical information to further improve the classifi-
cation performance.

e Objective 3 is to develop a multi-objective PSO-based approach that uses the statistical
clustering information to solve feature selection as a multi-objective task and obtain a
set of non-dominated feature subsets.

1.2 Major Contributions

The work in this project represents the first research in PSO for feature selection based on
statistical clustering information for general classification problems. Although there exists
one other known paper that groups features as a preprocessing step to PSO for feature se-
lection [25], the approach presented in this paper is used only for cancer microarray data.
The research presented in this project is also significantly different, resulting in a range of
novel PSO-based feature selection algorithms. In [25], the clustering step removes many
potentially useful features, resulting in a small subset of features being used as input to
PSO. However, in this project, the clustering step does not remove any features. Instead, the
statistical information provided by the clustering step is used within the newly developed
PSO-based feature selection algorithms to intelligently evolve feature subsets containing
complimentary features.

Within this project, there are three major contributions. Firstly, four new PSO-based fea-
ture selection algorithms are developed which use statistical clustering information for the
first time, to select a single feature from each feature cluster. When combined with a sta-
tistical clustering technique that allows the specification of the number of feature clusters,
these new algorithms offer a unique option to users to predefine the number of features
to be selected through the PSO feature selection algorithm. The work that forms this ma-
jor contribution has been accepted by the 26th Australasian Joint Conference on Artificial
Intelligence [26] and will be published by Springer in the Lecture Notes in the Artificial
Intelligence (LNAI) series.

The second major contribution is three new PSO-based feature selection algorithms that
use statistical clustering information to automatically discover complimentary features and
feature interaction, intelligently evolving feature subsets that can contain multiple or zero
features from each feature cluster. This contribution represents the first work that uses
statistical clustering information within a PSO-based approach to discover complimentary
features and feature interaction to select feature subsets with low dimensionality and that
achieve high classification accuracy.

The third major contribution is two new Multi-objective PSO-based feature selection
algorithms that can evolve a set of non-dominated feature subsets with different classi-
fication performances and dimensionalities. Ideas from NSGA-II [17] and a PSO-based
multi-objective optimisation method [27] are adopted in the development of these two new
algorithms, which are based on non-dominated sorting and statistical clustering informa-
tion. The research in this contribution represents the first time PSO has been used together
with statistical clustering information to solve feature selection as a multi-objective problem.
The second and third major contributions are also under preparation for submission to the
EvoStar 2014 conference [28] and another related Evolutionary Computation journal.

1.3 Organisation

The remainder of this report is organised as follows. Background information is provided in
Chapter 2. Chapters 3, 4 and 5 discuss Objectives 1, 2 and 3, respectively. These chapters in-
clude in-depth design and implementation details of each novel feature selection approach.
Each of these chapters also describe the experimental design that is used to test the effective-
ness of each feature selection approach, accompanied by a discussion upon the experimental
results and observations. Chapter 6 provides a discussion of the major conclusions drawn
from this project and some remaining future work.

Chapter 2

Background

2.1 Machine Learning and Classification

Machine learning is a major branch of Artificial Intelligence that focuses on the design and
development of systems that can learn from data in order to perform some useful task. There
are many different algorithms used for machine learning and there exists a wide variety of
tasks that machine learning has been successfully applied to. Classification algorithms are
one of the most prominently used machine learning techniques with many different imple-
mentations applied to a range of different areas, including autonomous robotics, medical
data analysis, text classification, and personal software agents [29, 30, 31, 32, 33]. These clas-
sification algorithms are trained on a set of instances and tested on unseen instances, aiming
to accurately classify each instance with its correct class label according to its features. Al-
though many different classification algorithms have been developed to solve a range of
problems, the training process of any classifier can be harmed when training on a dataset
that contains a large number of features. The problem of having a large number of features
is known as “the curse of dimensionality” [1] and can lead to extensive classifier training
time, an overly complex classifier structure and reduced classification accuracy.

2.2 Feature Selection

In most datasets that contain a large number of features, there exist many redundant or irrel-
evant features which may negatively impact the classification accuracies of trained classifi-
cation algorithms. Incorporating these features into the classifier training process can result
in the evolution of a complex classifier structure that is incomprehensible to humans and
fails to generalise well when used on unseen instances. Instead, a small subset of represen-
tative and relevant features are desired for training and testing the classification algorithm.
Feature selection is a task that can achieve this goal through the selection of relevant fea-
tures that contribute to high classification accuracy [4]. This can improve the classification
accuracy of the learned classifiers, make the classifier learning process faster and make the
learned classifier structure more comprehensible due to a reduction in complexity [2]. For
these reasons, it has become a popular topic of research in the field of machine learning and
data mining. However, feature selection is a challenging task due to complex feature inter-
action within a potentially large search space. In particular, removing a redundant feature
may have a damaging effect on classification performance as two or more features that are
found to be redundant by themselves may be useful in combination with each other [2].
There are two main approaches to performing the task of feature selection: wrapper and
filter approaches [2]. Wrappers use the power of a learning algorithm to select a useful

subset of features from a dataset. The learning algorithm is used to evaluate the goodness of
a feature subset according to its classification accuracy on a set of training data. Wrappers
are computationally expensive, but can provide a set of features that can achieve better
classification accuracy with the same learning algorithm. Contrastingly, filters act as a pre-
processing step that aims to select useful subsets of features, independent of any learning
algorithm. They are computationally cheaper when compared with wrappers and are able
to provide a subset of features without any relation to any learning algorithm.

2.3 Evolutionary Computation

Evolutionary Computation (EC) is a field of Artificial Intelligence that involves techniques
based on or inspired by nature, biological mechanisms, social interaction and/or swarm in-
telligence. Compared to other machine learning techniques such as Neural Networks which
optimise a single solution in terms of its error over a series of iterations, EC techniques use
a population of individuals as potential solutions and evolves each of the individuals over a
series of iterations. In many cases, each individual is updated at each iteration with respect
to its fitness (which is given by a user-defined fitness function). At the end of the evolu-
tionary process, the solution with the highest fitness is selected as the best evolved solution.
As EC techniques are effective global search methods, they can be used to address feature
selection problems with a large search space. Consequently, EC techniques such as genetic
algorithms (GAs) [8], genetic programming (GP) [9], ant colony optimisation (ACO) [10]
and particle swarm optimisation (PSO) [11, 12, 13, 14, 15] have been successfully applied to
feature selection problems, often outperforming traditional feature selection approaches. In
the rest of this section, we briefly review PSO and Multi-Objective Evolutionary algorithms
since they are used in this project.

2.3.1 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an evolutionary computation technique proposed in
1995 by Kennedy and Eberhart [34]. The idea for PSO originated from imitating the social
behaviours of birds flocking and fish schooling. The algorithm itself maintains a simple rep-
resentation of solutions and requires only primitive mathematical operators to harmonise
local and global knowledge through social interaction [34]. PSO uses a swarm of particles to
search for the optimal solution over a number of iterations, where each particle represents a
possible solution in the search space.

A crucial step of PSO is the updating of particle positions within the swarm during the
evolutionary process. At the position update step, each particle uses its own local knowl-
edge in combination with the neighbourhood’s global knowledge to determine a velocity
which is then used to move the particle to a new position [34]. By sharing local and global
information within the swarm, every particle has the ability to influence the direction of
the swarm towards better solutions within the search space. This is a demonstration of
adaptability, the fifth basic principle of swarm intelligence [35] which provides an effective
heuristic for updating particle positions.

Within PSO, each particle has a position and velocity vector. The position vector x; =
(xi1, X2, ..., Xip) represents the position of particle i, where D is the dimensionality of the
search space and the velocity vector v; = (vj1,vp, ..., Uip) is used to represent the velocity
of particle i. During the evolutionary process each particle remembers their previous best
position (pbest) and the best position found so far by any particle in the swarm (gbest). These
two values are used to update the velocity and the position of each particle according to the

following equations.

b1t 41
Xig = Xjgt 0y (2.1)
ol = wx vl 4y x (pig — xby) + * (Pog — X47) 2.2
id — id C1 * 11 * \Pid Xid Cp * 17 pgd Xid (.)

where t denotes the tth iteration in the search process. d denotes the dth dimension in the
search space. c; and ¢, are acceleration constants. rj; and ry; are random values uniformly
distributed in [0, 1]. p;s and p,y represent the value of pbest and gbest in the dth dimension,
respectively. w is the inertia weight. The velocity v}, is limited by a predefined maximum
velocity vyay where vl € [—Upax, Uax]-

The original representation of a particle in PSO uses a vector of real values for both the
position and velocity vectors, which suits problems operating in continuous space. How-
ever, this representation does not suit the discrete feature selection problem, where features
are either included or excluded from a particular solution. In 1997, Kennedy and Eberhart
proposed binary particle swarm optimisation (BPSO) [36]. In BPSO, each entry p; in the
position vector is a binary value. Each entry v; in the velocity vector should represent the
probability of an element in the position taking the value of 1. To achieve this, a sigmoid
function s(vjy) is used to transform v, to the range of [0, 1]. Equation (2.2) is used to update
the velocity of each particle. However, a new equation is used for updating the position of
each particle as xj4, pjs and pgy must be restricted to the values of 0 or 1. BPSO updates the
position of each particle according to the following equations.

[rand() < s(vig) (2.3)
@700 otherwise .
1
s(vig) = 1+ e via 24

where rand() is a random number selected from a uniform distribution in [0, 1].

2.3.2 Multi-Objective Evolutionary Algorithms

Multi-objective optimisation involves optimising multiple objective functions which are of-
ten in conflict with each other. For example, let x; and x; be two solutions in a n-objective
minimisation problem. If x; has an equal or smaller value than x; in each of the n ob-
jectives and x; has a smaller value than x; in at least one objective, x; is said to dominate
x2. When a solution is not dominated by any other solution, it is referred to as a non-
dominated or Pareto-optimal solution. The set of these non-dominated solutions is known
as the Pareto front and forms the trade-off surface over the objectives in the search space.

Recently, Multi-Objective Evolutionary algorithms (MOEa'’s) such as NSGA-II [17], PESA
[18] and SPEAZ2 [19] have been found to be effective methods for solving multi-objective op-
timisation problems. NSGA-II [17] is one of the most popular MOEa’s and has been used
in a variety of multi-objective problems. NSGA-II uses non-dominated sorting to discover a
set of solutions that are not dominated by any other solution found so far in the search. A
crowded comparison operator is used in NSGA-II as a secondary evaluation measure that
ranks each solution within a particular non-dominated front by how crowded the solution
is. The crowding distance is then used in the construction of the new population and helps
to preserve the diversity throughout the evolutionary process.

Li[21] introduces a modified version of PSO, the Non-dominated Sorting Particle Swarm
Optimizer (NSPSO) for multi-objective optimisation. The results on four mathematical func-
tions show NSPSO is fast, reliable and often converges to the true Pareto front of the search

7

space with a good spread of solutions. Consequently, NSPSO is found to be highly compet-
itive with NSGA-II and other existing evolutionary multi-objective algorithms.

As feature selection has the two conflicting objectives of minimising the classification
error rate and minimising the number of features selected, feature selection tasks can be ex-
pressed and solved as multi-objective problems. MOEa’s such as NSGA-II [20] and NSPSO
[21] have been used to solve feature selection as a multi-objective problem and can evolve
multiple non-dominated feature subsets. The user can then choose a solution based on
their desired trade off between the classification error rate and feature subset dimension-
ality. This gives the user more flexibility than single objective feature selection algorithms
which output a single, potentially large feature subset that achieves optimal classification
performance, regardless of its dimensionality.

2.4 Related Work

2.4.1 Traditional Feature Selection Approaches

The FOCUS algorithm [37] is a traditional filter feature selection algorithm. It first starts with
an empty feature subset and exhaustively examines all subsets of features. The algorithm
then selects the smallest subset of features that can sufficiently determine the class labels of
instances in the training set. The FOCUS algorithm is computationally intensive due to the
exhaustive search that results in an exponential increase in computation time as the number
of features increase. Hence, the approach is only feasible for use with datasets that contain
a small number of features.

In order to avoid a computationally intensive exhaustive search, greedy algorithms have
been introduced to solve feature selection problems. SFS [6] and SBS [7] are two greedy
wrapper feature selection approaches that both use a hill-climbing search strategy to search
for optimal sets of features. SFS starts with an empty set of features and sequentially adds
features until the point in which there is no improvement in classification accuracy. Con-
trastingly, SBS starts with a set of all features and sequentially removes features until a
point in which no improvement in classification accuracy can be achieved. As SFS and SBS
sequentially select features in a greedy manner, the computation time needed to discover
feature subsets is relatively small compared to other feature selection approaches. How-
ever, both SFS and SBS suffer from the so-called nesting effect [38], which means that once a
feature is selected by SFS or discarded by SBS, it cannot be discarded by SFS or selected by
SBS. This traps SFS and SBS searches in local optima.

The “plus-I-take-away-r” method [39] is proposed to address the limitations of the strict
sequential adding or removing of features in SFS and SBS by performing forward selection
I times followed by r backward feature removals. The main issue with this method is to
determine the optimal values for [and r. To address this problem, the sequential forward
floating selection (SFFS) [40] and sequential backward floating selection (SBFS) [40] are de-
veloped to automatically determine the values of / and r. Like SFS and SBS, SFFS and SBFS
also suffer from getting stuck in local optima, but are at least as good as the best sequential
method.

2.4.2 EC Approaches (Non-PSO) for Feature Selection

EC algorithms are well-known for their efficient and effective global search ability. They can
often outperform traditional feature selection approaches and perform significantly better
on datasets that contain a large number of features.

Yuan et al. [8] propose a two-phase feature selection approach based on GA. The first
phase is a filter approach that uses GA to search for optimal subsets of features. An incon-
sistency criterion is used to evaluate the fitness of solutions, removing irrelevant features
during the first phase. The second phase is a wrapper approach that uses a feedforward
neural network in which the input nodes are features obtained from the first phase. This
phase aims to remove redundant features from the feature subset. However, by splitting the
removal of irrelevant features and redundant features into two separate phases, the algo-
rithm fails to consider feature interactions. This happens because features that are consid-
ered irrelevant by themselves in the first phase are removed. However, these features may
become useful in combination with other features [2]. Furthermore, the second phase can
be computationally expensive if the number of features selected is significantly smaller than
the number of features obtained from the first phase. This is because each feature represents
an input node to the neural network and when a single feature is removed, the entire neural
network has to be retrained with the feature’s associated node removed.

Neshatian and Zhang [9] propose a wrapper GP-based feature selection approach that
uses a bit-mask representation for feature subsets and a set of feature subset operators that
are used as primitive functions. During the evolutionary process, GP combines the feature
subsets and operators together to discover sets of features. Through this process, the algo-
rithm discovers a number of relevant features that should be included in the program tree.
It also discovers a number of redundant and irrelevant features that should be excluded in
the final feature subset. In order to evaluate the performance of the evolved feature subsets,
a variation of Naive Bayes (NB) is used in the fitness function. The performance of the algo-
rithm is evaluated on a highly unbalanced face detection problem and achieves a significant
reduction in dimensionality and processing time compared to using all features.

Ming [10] proposes a hybrid feature selection approach that combines ACO and rough
set theory. The hybrid algorithm starts with the features included in the core of the rough
set. The search is then guided by ACO using forward selection to search for optimal feature
subsets. The proposed algorithm discovers feature subsets that contain a smaller number of
features than the C4.5 algorithm and achieve higher classification accuracy. However, the
algorithm is not compared against any commonly used feature selection algorithms.

2.4.3 PSO-Based Feature Selection Approaches

Many algorithms have been used for feature selection, but one of the most powerful algo-
rithms is PSO. Compared with GA and GP, PSO is easier to implement, has fewer parame-
ters, is computationally less expensive and can converge more quickly [16]. BPSO is often
chosen over continuous PSO for feature selection as it is designed for discrete problems such
as feature selection where a feature is either included (value of 1) or not (value of 0).

The inertia weight used in PSO controls how much of the velocity from the last iteration
is carried over to the current iteration. Inertia weight is an important parameter in BPSO as
it can potentially improve the performance by balancing the local search and global search
abilities of the swarm during the BPSO process. Yang et al. [12] propose two BPSO based
wrapper feature selection approaches that change the inertia weight during the BPSO pro-
cess. The results presented show that the two new algorithms can outperform SFS, SFFS,
sequential GA and different hybrid GAs.

The gbest represents the global knowledge of the swarm and is used to lead particles
towards optimal solutions in the search space. In standard PSO, gbest is updated when a
new solution is better than the current gbest. Chuang et al. [13] propose a new BPSO based
feature selection algorithm that resets gbest if it maintains the same value after several iter-
ations. Experiments using cancer-related gene expression datasets show that the proposed

BPSO approach outperforms the approach proposed in [14] in most cases. Chuang et al. [15]
extends this idea by introducing the so-called catfish particles into BPSO for feature selection
after consecutive iterations in which the gbest has not improved. These catfish particles re-
place 10% of particles within the swarm that have the worst fitness values. This helps BPSO
avoid premature convergence by guiding particles trapped in local optima towards more
promising regions of the search space. The experimental results show that the proposed
algorithm outperforms sequential GA, SFS, SFFS and other methods.

Wang et al. [11] redefine the velocity in BPSO as the number of elements that should be
changed in the position of a particle. The fitness function used is given in terms of both clas-
sification accuracy and feature subset size, with a 90% weighting on classification accuracy
and a 10% weighting on the feature subset size. The inertia weight starts at a large value
of 1.4 as to provide greater exploration of the search space during the start of BPSO. With
every iteration, the inertia weight decreases, ending at 0.4 on the last iteration. This is done
to achieve a finer grained search during the end of the BPSO process. The performance of
the proposed approach is shown to be computationally less expensive than that of GA in
a filter feature selection model based on rough sets theories in terms of both memory and
running time. However, most of the running time is consumed through computation of the
rough sets, which is a drawback of using rough sets in feature selection problems.

2.4.4 Multi-Objective Evolutionary Algorithms for Feature Selection

Hamdani et al. [20] apply NSGA-II to solve feature selection as a multi-objective problem in
which the two competing objectives are the minimisation of both the number of features and
the classification error evaluated by the 1-Nearest Neighbour algorithm [20]. Although the
authors do not compare NSGA-II for feature selection against any other feature selection
approaches, they analyse the convergence of NSGA-II and the diversity of evolved solu-
tions, both of which are important aspects of multi-objective algorithms. NSGA-II is found
to converge quickly to the Pareto front of non-dominated solutions, whilst the diversity of
solutions is continuously improved throughout the evolutionary process.

Xue et al. [41] introduce a binary multi-objective PSO framework (NSBPSO) for filter
feature selection, based on the idea of non-dominated sorting in NSGA-II. They develop two
new multi-objective BPSO-based algorithms for filter feature selection, each of which are
tested with two different statistical evaluation measures (mutual information and entropy).
In most cases, the BPSO-based multi-objective feature selection approaches are found to
outperform a single-objective filter feature selection algorithm based on BPSO in terms of
both classification performance and the number of features selected. In most cases, the
algorithms developed also outperform PSORSFS [11] which is a filter feature selection based
on BPSO and rough sets.

2.5 Summary

Classification is an important task in machine learning that aims to accurately classify in-
stances with their correct class labels. In order to learn how to classify instances correctly,
classification algorithms must first be trained on instances which are representatives of their
associated class labels. However, in many cases, instances are represented by a large num-
ber of features. Many of these features are irrelevant or redundant which can harm the
classification performance. Feature selection is a task that can remove a number of irrel-
evant and redundant features by selecting a subset of useful features. However, feature
selection is complex due to the large search space and unpredictable feature interaction. As

10

EC techniques provide good global search abilities, they are commonly used for feature se-
lection. PSO is a recent EC technique that has been successfully used for feature selection
and has been found to outperform traditional feature selection techniques as well as other
EC techniques. Feature selection has traditionally been solved as a single-objective problem
in which the objective is to minimise the classification error rate. However, feature selec-
tion also has another objective: to minimise the number of features selected. Consequently,
feature selection can be solved as a multi-objective problem. However, this is rarely investi-
gated, especially in combination with EC techniques such as PSO.

There are three main limitations in the existing feature selection approaches which are
provided in summary below.

1. There is little research investigating the benefits of using statistical clustering informa-
tion within the feature selection process. By clustering features into a set of feature
clusters as a statistical preprocessing step, the search space and time taken to select

an optimal feature subset during the feature selection process could potentially be re-
duced.

2. Feature interaction within a set of features is complex and hard to model. Better tech-
niques can be developed to find these interactions more effectively.

3. There are very few papers on multi-objective PSO for feature selection, which aims to
reduce both classification error rate and dataset dimensionality. These two objectives
are usually conflicting with each other, resulting in a trade off between them. Further-
more, most methods do not provide a set of solutions to choose from. This set would
allow the user to control the trade-offs between classification error rate and dataset
dimensionality.

Objectives 1, 2, and 3 are aimed towards addressing these limitations, through develop-

ment of new PSO-based feature selection approaches that use statistical clustering informa-
tion provided by a set of feature clusters.

11

12

Chapter 3

A Constrained PSO-based Approach
to Feature Selection

This chapter addresses Objective 1, which is to develop a single-objective PSO-based ap-
proach that selects a subset of features from a set of feature clusters with the constraint of
selecting a single feature from each cluster. As each feature cluster groups a set of similar fea-
tures, selecting a single feature from each cluster is expected to provide enough information
about all of the features in the same feature cluster. This is expected to allow a PSO-based
feature selection approach to evolve feature subsets that are significantly reduced in size
and that provide competitive classification accuracy compared to that of using all features.
In order to achieve Objective 1, the statistical information gained from the preprocessing
step of feature clustering will be used to select an optimal subset of relevant features from
a large feature set. The clustering algorithm statistically assigns all features to a set of fea-
ture clusters that will be used as input to a newly developed PSO-based feature selection
approach. The particles used within the PSO-based feature selection approach will then au-
tomatically evolve optimal feature subsets that contain a single relevant feature from each
feature cluster. This clustering algorithm is out of the scope of this project and hence, will
not be discussed in detail. Objective 1 is broken down into two key sub-objectives:

e Sub-objective A is to develop a PSO-based feature selection approach that can auto-
matically select an optimal feature from each feature cluster and evolve a feature sub-
set that provides competitive classification accuracy compared to using all features.

e Sub-objective Bis to investigate whether the introduction of a greater amount of stochas-
ticity can improve the classification accuracy of the feature subset evolved by the PSO-
based feature selection approach.

BPSO is chosen over standard PSO as the framework for the development of the algo-
rithms in Objective 1 as it uses a binary position vector for particles which naturally suits
feature selection problems [36], where a feature is either included in the solution (value of 1)
or not (value of 0). Furthermore, BPSO has been successfully used in many feature selection
problems [25, 42, 41, 12, 13, 14, 15, 11, 43]. Due to a lack of research in the use of statisti-
cal grouping with PSO, there exists no current encoding scheme in BPSO that can represent
particle solutions over a set of feature clusters. Therefore, a constraint is introduced to the
BPSO representation in which only a single feature is allowed to be selected from each fea-
ture cluster. This constraint is upheld in the particle position update process within the
newly developed PSO-based feature selection approaches.

13

3.1 Development of PSO-based Feature Selection Approaches

With standard BPSO for feature selection, a particle’s position consists of a finite set of fea-
tures. The probability of selecting a feature is obtained through squashing the feature’s as-
sociated velocity value through the sigmoid function shown in Equation (2.1). As this value
is not normalised, each feature can potentially have a very low or very high chance of being
selected and anywhere in between. This allows particle positions to contain any number
of features in the dataset. However, Objective 1 constrains each particle position to consist
of features selected from feature clusters in which only a single feature is allowed to to be
selected from each cluster. This is a challenging task as a cluster may contain many useful
features that are competing for selection. On the contrary, there may also exist clusters that
contain only useless features. However, the discovery of a good feature subset within this
constraint is important as this feature subset determines the classification accuracy of the
learned classifiers that use the feature subset. In order to let each particle in BPSO select
a single feature from each feature cluster, four novel particle position update (PPU) algo-
rithms are developed for the particle position update step in BPSO. The way in which these
PPU algorithms fit within the evolutionary process of BPSO is outlined with the pseudo-
code in Algorithm 1. These four algorithms are expected to evolve feature subsets through
BPSO that can either maintain or improve classification accuracy compared to that of using
all features. Detailed PPU design and architectural implementation decisions can be viewed
in Section 3 of Appendix A.

Algorithm 1: Pseudocode of BPSO using a set of feature clusters and a PPU algorithm

Input : Training set, Test set, FC: a set of feature clusters, where each feature cluster is a set of feature indices

1 begin
2 randomly initialise the position and velocity of each particle in the swarm (Swarm);
3 while Maximum Iterations has not been met do
4 Evaluate the fitness of each particle according to its classification performance;
5 for i=1 to Swarm Size do
6 | update pbest and gbest of particle i ;
7 end
8 for i=1 to Swarm Size do
9 update the velocity v; of particle i according to Equation (2.2);
10 update the position p; of particle i according to the selected PPU algorithm;
11 end
12 calculate the training and testing classification accuracy of the evolved feature subset return the position of
gbest, the training and testing classification accuracies.
13 end
14 end

3.1.1 Maximum Probability PPU

The Maximum Probability PPU (MPPPU) algorithm is proposed to take advantage of the
swarm intelligence that PSO provides, guiding particles towards promising regions of the
search space. The MPPPU algorithm uses the velocity vector of a particle to update its po-
sition through selection of features with the highest velocities. As a larger velocity value
v; represents a greater probability for selection of feature i in BPSO, the MPPPU algorithm
guides particles within the swarm towards promising features in the search space. Algo-
rithm 2 can be used to show the pseudo-code of the MPPPU algorithm by replacing line 7
with the following line.

numCompetitors <— numFeatures (3.1)

The MPPPU algorithm starts by erasing the given particle’s position. Following this, the
algorithm iterates over each feature cluster and discovers the feature with the maximum

14

probability (highest velocity) within the feature cluster and includes it in the particle’s po-
sition. This algorithm allows BPSO to select a small number of features, where each feature
has the maximum probability within its associated feature cluster.

The MPPPU algorithm selects features based entirely upon the probability of each fea-
ture. This results in particles quickly swarming to gbest with minimal needed computing
time for convergence. However, a quick progression to this optimum skips over many good
solutions in between the particle’s current position and gbest. Furthermore, due to a lack
of bias and randomness, the swarm quickly loses diversity within only a small number of
iterations with all particles swarming to gbest. This results in premature convergence with
other promising regions of the search space going unexplored.

3.1.2 Maximum Probability PPU with Tournament Feature Selection

Due to a lack of stochasticity when selecting features in the MPPPU algorithm, particles
quickly swarm to gbest which can result in promising regions of the search space going un-
explored. To resolve this problem, the maximum probability PPU with tournament feature
selection (MPTSPPU) introduces a tournament selection over each feature cluster that se-
lects a random subgroup of features for consideration of selection within each cluster. This
introduces more stochasticity to the evolutionary process, counteracting the loss of swarm
diversity that leads to premature convergence in the MPPPU algorithm. The pseudo-code
of the MPTSPPU algorithm is shown in Algorithm 2.

Algorithm 2: Pseudocode of MPTSPPU

Input : Particle;: the ith Particle; FC: a set of feature clusters, where each feature cluster is a set of feature indices

1 begin

2 set all elements in the position vector of Particle; equal to 0;

3 foreach cluster in FC do

4 featurelndex «+ -1;

5 maxVelocity < —oo;

6 numFeatures < |FC[cluster]| ;

7 numCompetitors < fw-‘ ; /* Considers 50% of features in each feature cluster */
8 featurelndices < get numCompetitors random feature indices from the interval [0, numFeatures] ;

9 foreach feature in featurelndices do

10 featureVelocity < velocity of feature at index FC[cluster][feature] ;

1 if featureVelocity > maxVelocity then

12 maxVelocity < featureVelocity

13 featurelndex <— FC[cluster][feature | ;

14 end

15 end

16 Particle;.position| featurelndex | =1; /* Include the selected feature in the position of Particle;
*/

17 end

18 end

The MPTSPPU algorithm first erases the given particle’s position. For each feature clus-
ter, a tournament selection is used to select a feature. The tournament selection starts by
selecting a random subgroup of features for consideration within the given cluster. The fea-
ture with the maximum probability (highest velocity) from this subgroup is then included
in the particle’s position.

It was discovered early in testing that a static number of competitors lead to a significant
amount of deviation in the classification accuracies of the learned classifiers using the dis-
covered feature subsets. This is because the number of competing features within a given
feature cluster determines the stochasticity of the MPTSPPU algorithm and a static number
of competitors leads to differing amounts of stochasticity for feature clusters differing in
size. For example, if a number of random competitors are chosen equal to the number of

15

features within each cluster, the MPTSPPU algorithm acts like the MPPPU algorithm. i.e.
selecting the feature with the highest velocity in each cluster. On the other hand, if a single
feature is chosen as the subgroup of features for consideration from each cluster, the MPT-
SPPU algorithm essentially ignores feature velocities. i.e. selecting a random feature from
each cluster. For this reason, the number of features considered in the tournament selection
is chosen as 50% of the size of the given feature cluster. If this is not a discrete value, the
number of competitors is rounded up to the nearest discrete value. As an example, a feature
cluster with 5 features result in [g} = 3 competitors. The consideration of 50% of features
within the given feature cluster maintains consistent stochasticity regardless of the feature
cluster size. This allows the swarm diversity to be maintained and avoids the problem of
premature convergence in the MPPPU algorithm

3.1.3 Roulette Wheel Feature Selection PPU and Incremental Maximum Proba-
bility PPU

The Roulette Wheel Feature Selection (RWSPPU) algorithm introduces a roulette wheel se-
lection to select a feature from each feature cluster based on its normalised probability within
its associated cluster. This gives features that are unlikely to be selected a small chance of
selection, allowing the exploration of regions in the search space that may go ignored when
using the MPPPU and MPTSPPU algorithms. The Incremental Maximum Probability PPU
(IMPPPU) algorithm combines the advantages of the MPPPU, MPTSPPU and RWSPPU al-
gorithms with a linearly decreasing stochastic approach that selects a feature from a feature
cluster either randomly or with the highest probability (highest velocity). The detailed de-
sign and implementation of RWSPPU and IMPPPU can be viewed in Sections 1 and 2 of
Appendix A.

3.2 Experimental Design

In the experiments, the classification performance of the four newly proposed PPU algo-
rithms (MPPPU, MPTSPPU, RWSPPU and IMPPPU) are compared against the classification
performance of using all features and a baseline Greedy forward selection algorithm (GFS).
The GFS algorithm is designed by Bing Xue that uses a set of feature clusters to select a single
feature from each cluster. The GFS algorithm first starts with an empty set of features. The
classification performance of each feature is then evaluated through the chosen evaluation
method. Following this, GFS selects a single feature with the highest evaluated classification
performance from any feature cluster. All features contained within the feature cluster asso-
ciated with the selected feature are then removed. Following this, the algorithm sequentially
selects the feature that has the highest evaluated classification performance combined with
the set of selected features so far from any remaining feature cluster and then removes all
other features from its associated cluster.

Eight benchmark datasets chosen from the UCI machine learning repository [44] are
used in the experiments, which can be seen in Table 3.1. These datasets are selected as they
exhibit a range of different numbers of features, classes and instances. For each dataset, the
features are clustered into a number of feature clusters which are used as input to each of
the four new feature selection approaches. The instances in each dataset are split randomly
into a training set and a test set with each set containing 70% and 30% of the instances,
respectively. In order to examine the performance of the proposed algorithms, K-Nearest
Neighbour (K-NN) is used as the classification algorithm with K=5 (5-NN). The classifi-
cation accuracy of each solution is evaluated by 5NN implemented in the Java machine
learning library (Java-ML) [45].

16

The parameters of BPSO are set as follows: inertia weight w = 0.7298, acceleration con-
stants c; = ¢y = 1.49618, minimum velocity v,,;, = -6.0, maximum velocity v, = 6.0, popu-
lation size s = 30, Iterations i = 100. The fully connected topology is used in BPSO. These
values are chosen based on the common settings in the literature [46]. As the GFS algorithm
is deterministic, only 1 run is needed to establish the performance of the algorithm. BPSO is
a stochastic approach that needs a greater number of runs to establish an accurate measure
of performance. Therefore, each PPU algorithm is run 50 independent times within BPSO
on each dataset.

Table 3.1: Datasets

Dataset #Features #Feature clusters # Classes # Instances
Australian Credit Approval 14 7 2 690
Vehicle 18 5 4 846
German 24 10 2 1000
World Breast Cancer Diagnostic (WBCD) 30 8 2 569
Lung Cancer 56 7 3 32
Sonar 60 10 2 208
Musk1 166 12 2 476
Multiple Features 649 4 10 2000

3.3 Experimental Results

Experimental results of the proposed PPU algorithms on the eight datasets are shown in Ta-
ble 3.2. In this table, “All” means that all of the available features are used for classification.
“GFS” is the greedy forward selection algorithm proposed by Bing Xue. “MPPPU”, “MPT-
SPPU”, “RWSPPU” and “IMPPPU” are the four newly proposed PPU algorithms. “Num-
Features” represents the number of features selected by each technique which is the same
as the number of clusters. All of the PPU algorithms and the GFS algorithm result in solu-
tions that contain the same number of features as each algorithm must select a single feature
from each feature cluster. “Ave-Train-Acc, Ave-Test-Acc, Best-Train-Acc and Best-Test-Acc”
represent the average and best training and test accuracies of the feature subsets selected by
each approach in the 50 runs. ”Std-Train-Acc” and ”Std-Test-Acc” represent the standard
deviation of the 50 training and testing accuracies, respectively. “T1” represents the re-
sults of a T-Test with a 95% confidence interval between the testing classification accuracies
achieved by each of the four new algorithms (GFS, MPPPU, MPTSPPU, RWSPPU) and the
classification accuracy when using all features. “T2” represents the results of a T-Test with a
95% confidence interval between the testing classification accuracies achieved by each of the
four PPU algorithms and the classification accuracy achieved by the GFS algorithm.

3.3.1 Results of MPPPU

The results in Table 2 show that in five out of the eight datasets, the feature subsets selected
by the MPPPU algorithm result in a higher average testing accuracy than using all features.
Furthermore, all the evolved feature subsets contain a reduced number of features. For
example, the MPPPU algorithm selected 7 out of a total of 14 features from the Australian
Credit Approval dataset and improved testing accuracy by 3.38% over using all features.
In one of the remaining datasets (Musk1), the MPPPU algorithm selected 12 features and
achieved higher training accuracy than using all of the 166 features. Although, the average
testing accuracy was lower than using all of the 166 features, its best test accuracy is better
than using all features.

Compared to the GFS algorithm, the MPPPU algorithm discovered feature subsets with
higher average testing accuracy in four out of the eight datasets. For example, in the WBCD

17

Table 3.2: Experimental Results

Dataset Method Num- Ave-Train-Acc Std- Ave-Test-Acc Std-Test- T1 T2
features (Best-Train- Train- (Best-Test- Acc
Acc) Acc Acc)

All 14 67.08 70.05

Australian GFS 7 73.71 70.53 +

Credit MPPPU 7 74.92 (74.92) 0.00 73.43 (73.43) 0.00 + +

Approval MPTSPPU 7 74.92 (74.92) 0.00 73.43 (73.43) 0.00 + +
RWSPPU 7 74.92 (74.92) 0.00 73.43 (73.43) 0.00 + +
IMPPPU 7 74.92 (74.92) 1.11E-16 73.43 (73.43) 2.22E-16 + +
All 18 81.5 83.86
GFS 5 82.85 84.84 +

Vehicle MPPPU 5 83.17 (83.19) 3.30E-4 84.41 (84.84) 8.13E-3 +
MPTSPPU 5 83.19 (83.19) 0.00 84.84 (84.84) 1.00E-15 + =
RWSPPU 5 83.19 (83.19) 0.00 84.84 (84.84) 1.00E-15 +
IMPPPU 5 83.19 (83.19) 3.33E-16 84.84 (84.84) 5.55E-16 + =
All 24 70.00 68.33
GFS 10 71.29 68.67 +

German MPPPU 10 75.87 (76.14) 3.93E-3 69.67 (72.00) 4.67E-3 + +
MPTSPPU 10 76.14 (76.14) 0.00 69.67 (69.67) 1.00E-15 + +
RWSPPU 10 76.14 (76.14) 0.00 69.67 (69.67) 1.00E-15 + +
IMPPPU 10 76.14 (76.14) 1.11E-16 69.67 (69.67) 5.55E-16 + +
All 30 93.22 92.98
GFS 8 92.71 89.47 -

WBCD MPPPU 8 95.03 (95.21) 1.04E-3 93.91 (94.74) 5.74E-3 + +
MPTSPPU 8 95.21 (95.21) 1.00E-15 92.98 (92.98) 0.00 = +
RWSPPU 8 95.20 (95.21) 3.32E-4 93.01 (94.15) 1.64E-3 +
IMPPPU 8 95.21 (95.21) 6.66E-16 92.98 (92.98) 1.11E-16 +
All 56 81.82 70.00
GFS 7 90.91 90.00 +

Lung Cancer MPPPU 7 98.90 (100.00) 1.90E-2 80.20 (90.00) 4.24E-2 + -
MPTSPPU 7 100 (100.00) 0.00 80.80 (90.00) 3.37E-2 + -
RWSPPU 7 99.93 (100.00) 4.67E-3 80.00 (90.00) 3.46E-2 + -
IMPPPU 7 100 (100) 0EO 79.4 (90) 3.69E-2 + -
All 60 74.48 76.19
GFS 10 77.93 76.19 =

Sonar MPPPU 10 81.95 (84.86) 1.18E-2 75.65 (82.54) 3.22E-2 = =
MPTSPPU 10 83.07 (84.86) 6.79E-3 76.29 (85.71) 3.37E-2 = =
RWSPPU 10 83.04 (84.86) 7.31E-3 76.44 (82.54) 3.12E-2 = =
IMPPPU 10 83.18 (84.86) 70.6E-4 76.6 (82.54) 2.97E-2 = =
All 166 81.68 83.92
GFS 12 83.48 79.02 -

Musk1 MPPPU 12 87.48 (89.18) 8.82E-3 80.8 (86.01) 2.33E-2 - +
MPTSPPU 12 88.37 (90.68) 7.46E-3 81.62 (87.41) 2.66E-2 - +
RWSPPU 12 87.45 (89.47) 6.49E-3 81.38 (88.11) 2.45E-2 - +
IMPPPU 12 89.76 (91.28) 84.8E-4 82.06 (87.41) 2.13E-2 - +
All 649 99.01 98.60

Multiple GFS 4 95.63 95.30 -

Features MPPPU 4 93.65 (95.77) 9.33E-3 93.48 (95.43) 9.61E-3 - -
MPTSPPU 4 95.47 (95.97) 3.22E-3 95.12 (96.17) 4.66E-3 - -
RWSPPU 4 94.00 (95.16) 5.87E-3 93.82 (95.00) 5.99E-3 - -
IMPPPU 4 95.54 (95.76) 27.8E-4 95.15 (95.47) 33.4E-4 - -

dataset, the MPPPU algorithm achieved an average testing accuracy of 93.91%, which is
4.44% higher than that of the GFS algorithm. In the Lung Cancer dataset, the MPPPU algo-
rithm discovered a higher average training accuracy (98.90%) than GFS’s training accuracy
(90.91%). However, the feature subset evolved by the GFS algorithm resulted in a higher
test accuracy (90.00%) than MPPPU’s average test accuracy of 80.2%, but achieves the same
best accuracy.

The results suggest that the MPPPU algorithm can successfully evolve feature subsets
through selection of a single feature from each feature cluster within BPSO. The evolved
feature subsets achieved higher training accuracy than using all features and the GFS al-
gorithm in almost all datasets (except for the Multiple Features dataset). This results in
maintaining or improving the testing accuracy over that of using all features and the GFS
algorithm in over half of the datasets.

18

3.3.2 Results of MPTSPPU, RWSPPU and IMPPPU

According to the results shown in Table 2, The MPTSPPU, RWSPPU and IMPPPU algo-
rithms discovered feature subsets with higher average testing accuracies than using all fea-
tures in four out of the eight datasets. In two out of the eight datasets (WBCD and Sonar),
the three algorithms achieved competitive average testing accuracy compared to that of all
features with a much smaller number of features in both datasets, but their best test accura-
cies are the same or better than using all features.

In comparison to the GFS algorithm, the MPTSPPU, RWSPPU and IMPPPU algorithms
achieved higher average test accuracies in four out of the eight datasets. The algorithms
achieved higher training accuracies, but similar testing accuracies for 2 of the remaining
datasets (Vehicle and Sonar). Similarly, the three algorithms achieved a higher training ac-
curacy than the GFS algorithm on the Lung Cancer dataset, but a lower average test accuracy
and the same best accuracy.

Compared to the MPPPU algorithm, the MPTSPPU algorithm achieved a higher aver-
age testing accuracy in five out of the eight datasets, whilst the RWSPPU and IMPPPU al-
gorithms achieved a higher average testing accuracy in four out of the eight datasets. In
two other datasets (Australian Credit Approval and German), all algorithms achieved the
same average testing accuracy. On another dataset (WBCD), the MPTSPPU, RWSPPU and
IMPPPU algorithms achieved an average training accuracy of 95.21%, 95.20% and 95.21%,
respectively. This is greater than the average training accuracy of the MPPPU algorithm
which is 95.03%. However, the MPTSPPU, RWSPPU and IMPPPU algorithms achieved an
average testing accuracy of 92.98%, 93.01% and 92.98%, respectively, which is lower than
that of the MPPPU’s average testing accuracy of 93.91%. These results suggest that the
MPTSPPU, RWSPPU and IMPPPU algorithms have the potential to improve the classifica-
tion performance of the MPPPU algorithm through a greater amount of stochasticity.

The performance of the MPTSPPU, RWSPPU and IMPPPU algorithms are similar on
most datasets. However, on three out of the four datasets that contain large numbers of
features (Lung Cancer, Muskl and Multiple Features), the MPTSPPU algorithm achieved
higher training and testing accuracies than the RWSPPU algorithm. For example, on the
Multiple Features dataset, the MPTSPPU achieved an average testing accuracy of 95.12%
which is 1.30% greater than that of the RWSPPU algorithm. Furthermore, the IMPPPU al-
gorithm outperformed the RWSPPU and MPTSPPU algorithms on the 3 datasets that con-
tain the largest number of features (Sonar, Muskl and Multiple Features) in terms of both
average training and testing accuracy. For example, on the Muskl dataset, the IMPPPU
algorithm achieves an average training accuracy that is 2.31% greater than the RWSPPU al-
gorithm and 1.39% greater than the MPTSPPU algorithm. It achieved an average testing
accuracy that is 0.68% greater than the RWSPPU algorithm and 0.44% greater than the MPT-
SPPU algorithm. These results suggest that the MPTSPPU and IMPPPU algorithms have
a better search ability than the RWSPPU algorithm on datasets with a greater number of
features. Furthermore, the results suggest that the IMPPPU algorithm can improve classifi-
cation performance over the MPTSPPU algorithm.

The results show that the MPTSPPU, RWSPPU and IMPPPU algorithms can use a set of
feature clusters to evolve feature subsets with a reduced number of features within BPSO
that maintain or improve the classification accuracy. The results suggest that a greater
amount of stochasticity within these algorithms provide a better search strategy that main-
tains greater swarm diversity. This allows the MPTSPPU, RWSPPU and IMPPPU algorithms
to achieve higher classification accuracy than the MPPPU algorithm in most cases.

19

3.3.3 Further Analysis

The two datasets in which the GFS and PPU algorithms both achieved lower test accuracies
(Musk1 and Multiple Features) contain a significantly large number of features, whilst the
number of feature clusters used for feature selection in each dataset are relatively small. This
constrains the feature subsets discovered through the GFS and PPU algorithms to contain a
small number of features compared to the total number of features within the Musk1 and
Multiple Features datasets (12 out of 166 and 4 out of 649 features, respectively). This small
percentage of features was found to be incapable of providing enough information to accu-
rately describe the instances in each dataset. Resultantly, the GFS and PPU algorithms failed
to discover feature subsets that could achieve competitive classification accuracy compared
to using all features on these two datasets. In both datasets, a greater number of feature clus-
ters is needed for the GFS and PPU algorithms to achieve better classification performance
than using all features. Within all PPU algorithms, the standard deviation of classification
accuracies are found to be small (less than 0.05). This means that all PPU algorithms are
stable and can be used to produce consistent results.

3.4 Summary

The goal of Objective 1 was to develop a single-objective PSO-based approach that selects
a subset of features from a set of feature clusters with the constraint of selecting a single
feature from each cluster. This approach was expected to evolve feature subsets that are
significantly reduced in size and that provide competitive classification accuracy compared
to that of using all features. The goal of Objective 1 was achieved by developing four new
algorithms which are MPPPU, MPTSPPU, RWSPPU and IMPPPU. The performance of each
algorithm was compared to one another, the GFS algorithm and to that of all features using
the overall classification performance of the evolved feature subsets on eight datasets with
varying numbers of features, classes and instances.

The results suggest that selecting a single feature from each feature cluster can effec-
tively reduce the number of features selected in the GFS, MPPPU, MPTSPPU, RWSPPU and
IMPPPU algorithms. By doing so, a smaller number of features are used when training clas-
sifiers, resulting in a reduction in computing time. It was also observed that in most cases,
the classification accuracy is either maintained or improved through the removal of redun-
dant and irrelevant features. Incorporating the search over feature clusters into BPSO with
the MPPPU algorithm has resulted in a feature selection approach that uses the swarm intel-
ligence within BPSO to provide an effective global search over a set of feature clusters. The
MPPPU algorithm was found to make substantial improvements over the GFS algorithm by
achieving higher classification accuracies with the same number of features in most datasets.
By introducing a greater amount of stochasticity with the MPTSPPU, RWSPPU and IMPPPU
algorithms, the classification performance is improved over the MPPPU algorithm on most
datasets with feature subsets of equal size.

20

Chapter 4

Single-Objective PSO for Feature
Selection

As features in a feature cluster are relatively similar, a single feature can be selected as a
representative for its associated cluster. However, a number of similar features can be com-
plementary to each other which can potentially be part of the best subset of features [2] and
hence, are desired for selection. Therefore, selecting one feature from each cluster in Objec-
tive 1 may limit the classification performance of the selected feature subset. Furthermore,
some clusters may contain only useless features. In these cases, we want to select no fea-
tures from a cluster. This chapter explores Objective 2 which aims to address these issues
by developing a new PSO-based feature selection approach that allows the selection of zero
or multiple features from each feature cluster. This approach is expected to evolve feature
subsets that contain complimentary features and can achieve a higher classification accu-
racy than the approaches developed in Objective 1. Objective 2 is broken down into two key
sub-objectives:

e Sub-objective A is to develop a PSO-based feature selection approach that can auto-
matically select zero or more features from each cluster and evolve feature subsets
that can improve the classification accuracy over the PSO-based feature selection ap-
proaches developed in Objective 1.

e Sub-objective B is to develop a new heuristic that leads particles to evolve feature
subsets containing a minimal number of features from each cluster.

4.1 Development of PSO-based Feature Selection Approaches

The PSO-based feature selection approaches developed in Objective 2 use the binary rep-
resentation for particles, the velocity update equation shown in Equation (2.2) for updat-
ing particle velocities, and newly developed PPU algorithms to update particle positions.
Unlike Objective 1, multiple features may be selected by a particle. To achieve this, two
new PPU algorithms are developed which can select zero or multiple features per cluster:
the Multiple Feature PPU (MFPPU) and the Gaussian Multiple Feature PPU (GMFPPU). To
achieve Objective 2, three novel feature selection algorithms are developed. Firstly, BPSO us-
ing the MFPPU algorithm to update particle positions. Secondly, two new Gaussian BPSO-
based feature selection algorithms (GPSO1 and GPSO2) which use the GMFPPU algorithm
to update particle positions. Each of the new feature selection approaches are designed to
discover complex feature interactions, allowing the evolution of feature subsets that con-

21

tain complimentary features. These feature subsets are expected to maintain or improve the
classification accuracy over the feature selection approaches developed in Objective 1.

4.1.1 Multiple Feature PPU

The MFPPU algorithm uses the statistical information provided by the feature clusters to
evolve feature subsets that contain no more than half of the features from each feature clus-
ter. As most features in each cluster are relatively similar, selection of up to half of these
features is expected to provide more than enough information about each of the clusters.
Algorithm 8 (page 51 of Appendix 2) can be used to show the pseudo-code of the MFPPU
algorithm by removing lines 11 - 18 and inserting a statement thereafter that includes at

most (‘Cluzﬂ} features with the highest probabilities from the set of sorted features from
each cluster in the position of Particle;.

The MFPPU algorithm starts by erasing the given particle’s position. It then iterates
over each feature cluster in order to select zero or more features from each cluster. In this
inner loop, a set is used to hold a subset of features from a given cluster that are considered
for selection. This is known as the ‘desired feature set’. Within the inner loop, the desired
feature set for a given particle and cluster is filled with the features selected from the particle
position update step in BPSO, using only the features held within the given feature cluster
in Equation (2.3). The probability of selection for each feature is also included alongside the
feature in the desired feature set which is calculated using the feature’s associated velocity
value in the sigmoid function shown in Equation (2.4). After establishing a set of desired

features, half of the features from the given cluster (['Cl”i;ter‘]) with the highest probabilities
are included in the position of the given particle.

In most cases, selecting more than half of the features within a cluster that groups similar
features is likely to introduce a number of redundant features, which could potentially harm
the classification performance [3, 4]. MFPPU prevents this from happening by disallowing
the selection of more than half of the features from each cluster. This allows the MFPPU al-
gorithm to remove a number of redundant features that standard BPSO for feature selection
(BPSOFS) would include in particle positions. With this constraint, the MFPPU algorithm is
expected to evolve feature subsets that contain a smaller number of features than the feature
subsets evolved by BPSOFS, whilst maintaining the classification accuracy.

4.1.2 Gaussian PSO for Feature Selection

The MFPPU algorithm disallows the selection of more than half of the features from each
feature cluster, which can help eliminate a number of redundant features. However, this
constraint only implicitly uses the statisistical information provided by a set of feature clus-
ters and allows the MFPPU algorithm to select a number of redundant features that belong
to the same cluster. Furthermore, maintaining a constant maximum number of features se-
lected regardless of the feature cluster size has negative effects. For example, when selecting
features from a cluster containing 2 features, a maximum of [1] = 1 feature may be chosen.
However, these two features may be complimentary, providing a valuable improvement in
classification performance when selected together [2]. On the other hand, a large feature
cluster used within MFPPU containing 25 features limits the selection to [] = 13 features
from that cluster. However, the selection of up to 13 features from a single cluster without a
penalty allows MFPPU to evolve feature subsets that contain a large number of redundant
features that could harm the classification performance.
To solve these issues, two novel BPSO-based Gaussian feature selection approaches (GPSO1

and GPSO2) are developed to explicitly use the statisistical information provided by a set

22

of feature clusters to evolve feature subsets that contain a minimal number of features from
each cluster. GPSO1 uses the newly developed Gaussian Multiple Feature PPU (GMFPPU)
algorithm in the particle position update step of BPSO, which aims to minimise the number
of features selected per cluster. The GMFPPU algorithm is discussed in detail in Section 1 of
Appendix B. The pseudo-code of GPSO1 is shown in Algorithm 3.

Algorithm 3: Pseudocode of GPSO1

Input : Training set, Test set, FC: a set of feature clusters, where each feature cluster is a set of feature indices

1 begin

2 randomly initialise the position and velocity of each particle in the swarm (Swarm);
3 while Maximum Iterations has not been met do

4 Evaluate the fitness of each particle according to its classification performance;
5 for i=1 to Swarm Size do

6 | update pbest and gbest of particle i ;

7 end

8 for i=1 to Swarm Size do

9 update the velocity v; of particle i according to Equation (2.2);

10 update the position p; of particle i according to the GMFPPU algorithm shown in Algorithm 8 in
Section 1 of Appendix B;

1 end

12 calculate the training and testing classification accuracy of the evolved feature subset return the position of
gbest, the training and testing classification accuracies.

13 end

14 end

GPSO2 is a variant of GPSOL1 that introduces the Gaussian fitness function, which is a
newly developed fitness function that uses the feature cluster information as well as the
classification performance. The Gaussian fitness function is discussed in detail in Section 2
of Appendix B. The pseudo-code of GPSO2 can be viewed in Algorithm 3 by replacing line
4, with the evaluation of a each particle’s fitness according to the Gaussian fitness function
given by Equation (B.4) in Section 2 of Appendix B. GPSO1 and GPSO2 make significant
changes to standard BPSO for feature selection with the newly developed GMFPPU algo-
rithm and Gaussian fitness function. The changes made help guide the swarm towards
selecting a minimal number of features from each cluster that can achieve high classification
performance and are discussed in depth in Appendix B.

4.2 Experimental Design

To examine the performance of the proposed algorithms, a set of experiments have been
conducted. The experimental design is the same as in Objective 1 apart from the datasets
used. Compared with Objective 1, more datasets that contain a large number of features are
used in the experiments. These datasets are chosen as they resemble the types of problems
that the feature selection approaches developed in Objective 2 can solve. The datasets are
shown in Table 4.1.

Table 4.1: Datasets

Dataset Number of features Number of feature clusters Number of classes Number of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
Ionosphere 34 11 2 351
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

23

4.3 Experimental Results

Experimental results of the proposed feature selection approaches on the eight datasets are
shown in Table 4.2. “T1” represents the results of a T-Test with a 95% confidence interval
between the testing classification accuracies achieved by each of the four feature selection
algorithms (IMPPPU, MFPPU, GPSO1, GPSO2) and the classification accuracy of using all
features. "T2” represents the results of a T-Test between the testing classification accuracies
achieved by each of the three feature selection approaches developed in Objective 2 (MF-
PPU, GPSO1, GPSO2) and the IMPPPU algorithm developed in Objective 1.

Table 4.2: Experimental Results

Dataset Method Ave- Ave-Train- Std- Ave-Test- Std-Test- T1| T2
Num- Acc (Best- Train- Acc (Best- Acc
features Train-Acc) Acc Test-Acc)
Wine All 13 87.63 76.54
IMPPPU 6 95.13 (95.13) 7.77E-16 100 (100) 0EO +
MFPPU 5.48 96.71 (96.71) 7.77E-16 95.8 (98.77) 3.08E-2 + -
GPSO1 54 96.71 (96.71) 7.77E-16 96.59 (98.77) 2.76E-2 + -
GPSO2 5.6 96.71 (96.71) 7.77E-16 97.04 (98.77) 2.77E-2 + -
Vehicle All 18 88.18 83.86
IMPPPU 6 84.45 (84.45) 2.22E-16 83.46 (83.46) 5.55E-16 -
MFPPU 8.74 85.96 (86.06) 13.1E-4 84.36 (85.83) 29E-4 + +
GPSO1 8.94 86.11 (86.31) 19.7E-4 84.3 (85.24) 62E-4 + +
GPSO2 8.56 86.15 (86.31) 18.8E-4 83.93 (85.83) 48.3E-4 = +
Ionosphere All 34 85.77 83.81
IMPPPU 11 90.16 (90.67) 36.1E-4 90 (92.38) 1.48E-2 +
MFPPU 9.56 90.64 (92.7) 78E-4 88.95 (93.33) 1.9E-2 + -
GPSO1 7.66 91.59 (92.35) 46.9E-4 89.5 (94.29) 1.68E-2 + =
GPSO2 8.6 91.46 (92.73) 49.9E-4 89.77 (92.38) 1.67E-2 + =
Sonar All 60 83.45 76.19
IMPPPU 12 85.22 (87) 74.2E-4 76.76 (85.71) 3.5E-2 =
MFPPU 23.7 86.06 (89.05) 92.9E-4 79.81 (87.3) 3.16E-2 + +
GPSO1 17.64 86.74 (89) 93.9E-4 78.19 (87.3) 4.14E-2 + =
GPSO2 16.22 86.94 (88.38) 86.3E-4 77.68 (82.54) 3.13E-2 + =
Musk1 All 166 92.19 83.92
IMPPPU 14 86.18 (87.97) 62.8E-4 80.18 (86.01) 2.8E-2 -
MFPPU 76.3 90.12 (91.6) 64.2E-4 84.7 (90.91) 24E-2 + +
GPSO1 39.64 90.02 (91.29) 59.7E-4 84.95 (91.61) 2.73E-2 + +
GPSO2 35.82 89.88 (91.29) 64.9E-4 84.2 (88.81) 2.61E-2 = +
Arrhythmia All 278 94.79 94.46
IMPPPU 15 94.51 (94.69) 9.24E-4 94.51 (95.48) 43.1E-4 =
MFPPU 128.66 94.79 (94.98) 8.61E-4 94.58 (95.02) 27.7E-4 + =
GPSO1 455 94.87 (95.08) 9.14E-4 94.85 (95.7) 34.1E4 + +
GPSO2 26.94 94.39 (94.89) 19.8E-4 94.51 (95.25) 41.2E4 = =
Madelon All 500 83.24 70.9
IMPPPU 11 66.72 (73.46) 2.45E-2 66.77 (75.64) 3.28E-2 -
MFPPU 238.12 78.34 (79.78) 49E-4 77.35 (79.1) 1.02E-2 + +
GPSO1 36.08 85.45 (86.98) 72.6E-4 85.68 (87.82) 1.1E-2 + +
GPSO2 31.32 85.32 (87.03) 70.2E-4 85.91 (88.97) 1.14E-2 + +
Multiple All 649 99.36 98.63
Features IMPPPU 15 97.87 (98.37) 19.3E-4 97.52 (98.07) 27.8E-4 -
MFPPU 305.72 99.4 (99.46) 1.78E-4 99.01 (99.17) 7.99E-4 + +
GPSO1 91.4 99.38 (99.46) 3.75E-4 99.01 (99.27) 12.5E-4 + +
GPSO2 54.76 99.09 (99.4) 22.6E-4 98.75 (99.27) 26E-4 + +

4.3.1 Results of MFPPU

The results in Table 4.2 show that the MFPPU algorithm evolved feature subsets that achieve
higher classification accuracy than using all features on all of the datasets. Along with this,
the evolved feature subsets are considerably smaller, containing less than half of the original
number of features in all cases.

24

Compared with IMPPPU, MFPPU achieved a higher classification accuracy in five out of
the eight datasets and has similar performance on one other. On the other two datasets, the
MFPPU algorithm achieved a higher training accuracy but a lower testing accuracy com-
pared to IMPPPU. As these two datasets contain a small number of features, the result is
likely due to overfitting.

The results suggest that disallowing the selection of more than half of the features from
each cluster allows MFPPU to discover complex feature interaction which results in feature
subsets that are high in classification accuracy and of reduced size. In effect, the MFPPU
algorithm achieved better classification performance with a smaller number of features than
that of using all features and in most cases, it outperformed the IMPPPU algorithm in terms
of the classification accuracy. Of course, the MFPPU algorithm selected more features than
the IMPPPU algorithm which is the intention.

4.3.2 Results of GPSO1

Table 4.2 shows that the feature subsets selected by GPSO1 result in significantly higher
classification accuracy than using all features on all datasets. Furthermore, on each dataset,
GPSOL1 selected fewer than half of the original features. In the datasets containing a larger
number of features, GPSOL1 selected a significantly small number of features, whilst mak-
ing substantial improvements in classification performance. For example, on the Madelon
dataset, GPSOL1 selected on average only 47.62% of the original features (238.12 out of 500)
and achieved an increase in classification accuracy of 6.44%.

In comparison with IMPPPU, GPSO1 achieved a higher classification performance in five
out of the eight datasets and has similar performance on two others. The only dataset that
the IMPPPU algorithm outperformed GPSO1 was the Wine dataset which contains a very
small number of features. Even though GPSOL1 achieved a higher classification accuracy
than the IMPPPU algorithm, its testing accuracy was not as high as the IMPPPU algorithm
which achieved a testing accuracy of 100%.

On all datasets except for the Vehicle dataset, GPSO1 evolved feature subsets that contain
a smaller number of features than the MFPPU algorithm, whilst achieving higher testing
accuracies on five out of the eight datasets. In all cases, the reduction in the number of
features is significant, whilst in many cases, the classification performance increase is also
significant. For example, on the Madelon dataset, GPSO1 selects on average 202.04 fewer
features than the MFPPU algorithm, for a total of only 7.22% of the original features (36.08
features out of 500). With these small feature subsets, GPSO1 dramatically improved the
classification accuracy over the MFPPU algorithm by 8.33%. In two of the remaining three
datasets (Vehicle and Multiple Features), both approaches achieved a similar classification
accuracy. However, in the Multiple Features dataset, GPSO1 selects on average less than one
third of the features selected by the MFPPU algorithm (91.4 features compared to 305.72).

The results suggest that by introducing a heuristic that helps to minimise the number
of features selected per cluster, GPSO1 can significantly reduce the number of redundant
features introduced into solutions obtained by the MFPPU algorithm. This reduction in
features leads to a much shorter classification time and reduced classifier complexity. Most
importantly, the evolved feature subsets achieve higher classification accuracies than the
feature subsets evolved by the MFPPU algorithm in most cases.

4.3.3 Results of GPSO2

Table 4.2 shows that the feature subsets selected by GPSO2 result in a higher classification
accuracy than using all features on five out of the eight datasets and contain a significantly

25

smaller number of features. On the three remaining datasets, GPSO2 evolves feature sub-
sets that contain a significantly smaller number of features and achieved similar accuracies
compared to using all features.

Compared to the IMPPPU algorithm, GPSO2 achieved higher classification accuracy on
four out of the eight datasets and similar accuracy on 3 of the remaining datasets. Like
GPSO1, GPSO2 achieved a higher training accuracy than the IMPPPU algorithm for the
Wine dataset, but cannot achieve a testing accuracy as high as the 100% benchmark set by
the IMPPPU algorithm. This is likely due to the small number of features selected by GPSO2
in the Wine dataset.

Like GPSO1, GPSO2 outperforms MFPPU in terms of the number of features selected in
almost all datasets. This becomes a significant advantage of GPSO2 when selecting features
from datasets containing a large number of features. This significant reduction in features
lead to a slight trade off in classification accuracy, which resulted in GPSO2 achieving a
slightly lower classification accuracy on half of the datasets. On the other half of the datasets,
GPSO2 achieved a higher classification accuracy with much smaller feature subsets.

Compared to GPSO1, GPSO2 further reduced the number of features in most datasets. In
particular, it makes a significant reduction of features on the larger datasets. For example, in
the Multiple Features dataset, GPSO2 selected on average 36.64 features less than GPSOL1. In
most cases, the significant reduction in features leads to a small decrease in the classification
accuracy achieved by GPSO2 compared to GPSO1. On two other datasets, both GPSO1
and GPSO2 achieve similar accuracies. However, on two of the remaining datasets, GPSO2
achieved a higher classification accuracy than GPSO1.

The results suggest that the addition of the Gaussian fitness function has helped guide
the swarm in GPSO2 towards the selection of a minimal number of features per cluster. On
three of the largest datasets, GPSO2 selects less than 10% of the total number of features
which allows a shorter classification training time and reduced classifier complexity. How-
ever, the results suggest that on large datasets, the reduction in features comes at the cost of
a small reduction in classification accuracy. Therefore, when choosing between GPSO1 and
GPSO2 for feature selection, GPSO?2 is preferred if a minimal number of features is desired
for efficiency and reduced classifier complexibility, whilst GPSOL1 is preferred if having the
best classification performance is paramount.

4.3.4 Further Analysis

In order to examine the differences and similarities between the feature subsets evolved by
IMPPPU, MFPPU, GPSO1 and GPSO2, we take a typical run from each of the four different
feature selection approaches on the Ionosphere dataset and analyse the selected features. In
the typical run, the number of features selected by IMPPPU, MFPPU, GPSO1 and GPSO2
are 11, 9, 7 and 8, respectively, out of a total of 34 features in the Ionosphere dataset. With
Fi representing the ith feature, IMPPPU selects F1, F2, F5, F7, F8, F11, F15, F16, F18, F23 and
F27. The features selected by MFPPU are F2, F5, F8, F11, F13, F16, F19, F27 and F29. The
features selected by GPSO1 are F2, F5, F8, F11, F13, F19 and F27. The features selected by
GPSO2 are F2, F5, F8, F11, F15, F23, F25 and F27. With these feature subsets, it can be ob-
served that approximately half of the features selected by MFPPU and IMPPU are the same.
Most of the features selected by GPSO1 and GPSO2 are also selected by IMPPPU, with a few
different features selected by each algorithm. This suggests that by allowing the selection of
multiple features per cluster, the algorithms in Objective 2 select some alternative features
that can achieve a higher training accuracy than the features selected by IMPPPU. We can
see that GPSO1 selectes 2 fewer features than MFPPU and all of the features selected by
GPSOl1 are contained within the features selected by MFPPU. In this example, GPSO1 has

26

successfully reduced the number of redundant features which has lead to higher training
and testing accuracies as can be seen in the results. Out of the eight features selected by
GPSQO2, seven are contained within the 11 features selected by IMPPPU and 5 are contained
within the 7 features selected by GPSO1. This suggests that GPSO2 evolves similar feature
subsets to GPSO1, whilst reducing the number of redundant features selected by IMPPPU.

44 Summary

The goal of Objective 2 was to develop a single-objective PSO-based feature selection ap-
proach that allows the selection of multiple features from each feature cluster. This goal was
achieved through the development of the MFPPU algorithm, GPSO1 and GPSO2, which
are three new BPSO-based feature selection algorithms that allow the selection of multiple
features from each cluster.

The results from the three new feature selection algorithms (MFPPU, GPSO1, GPSO2)
suggest that through the selection of multiple features from each cluster, a number of com-
plimentary features can be discovered and included in the evolved solutions throughout the
evolutionary process. In effect, the evolved feature subsets achieve a higher classification
accuracy with a smaller number of features than using all features. Furthermore, MFPPU,
GPSO1 and GPSO2 all achieved higher classification accuracies than the IMPPPU algorithm
which represents the best feature selection approach from Objective 1.

By introducing a heuristic that aims to minimise the number of features selected per
cluster, GPSO1 dramatically reduces the number of redundant features selected over the
MFPPU algorithm on datasets containing a large number of features. This resulted in a
significant increase in classification performance, outperforming the MFPPU algorithm in
most cases.

GPSO2 further minimises the number of features selected per cluster by introducing the
gaussian fitness function which penalises feature subsets that contain more than 1 feature
per cluster. The addition of the gaussian fitness function reduced the classification perfor-
mance by a small amount, providing a clear distinction between the benefits of the GPSO1
and GPSO2 approaches for feature selection. GPSO2 was found to be better at selecting
a minimal number of features which reduces the classifier training time and improves the
classifier understandability. On the other hand, GPSOL1 is better at achieving a very high
classification accuracy which is of utmost importance for accurately identifying class labels
of instances in classification tasks.

27

28

Chapter 5

A Multi-Objective PSO-based
Approach to Feature Selection

Feature selection is a multi-objective problem, where the two objectives are to minimise
the classification error rate and the dimensionality of the solution (the number of features
selected). However, these two objectives often conflict with each other as the classification
error rate is likely to increase when fewer features can be used to distinguish the correct class
label of a given instance. Multi-objective feature selection can obtain a set of non-dominated
feature subsets rather than a single feature subset. An appropriate feature subset can then be
selected by a user in terms of their desired trade off between the classification error rate and
the dimensionality of the feature subset. This chapter addresses Objective 3, building upon
the single-objective algorithms developed in Objective 2 and existing work in the area of
multi-objective feature selection with PSO [42, 47, 41] by developing a new multi-objective
PSO-based approach that uses statistical clustering information. By doing so, a new area of
research is explored in which the statistical information obtained from clustering is used to
solve feature selection as a multi-objective task with PSO. Objective 3 is broken down into
two key sub-objectives:

e Sub-Objective A is to develop a multi-objective PSO-based approach that uses non-
dominated sorting and statistical clustering information to evolve a Pareto front of
non-dominated solutions from which the user can select an optimal feature subset.

e Sub-objective B is to develop a new multi-objective PSO-based approach that includes
an external leader set, binary tournament selection of a particle’s gbest and mutation
operators in PSO to further minimise the dimensionality and/or classification error
rate of the evolved solutions.

5.1 Development of PSO-based Feature Selection Approaches

The PSO-based feature selection approaches developed in Objective 3 use the binary repre-
sentation for particles, the velocity update equation shown in Equation (2.2) for updating
particle velocities and the GMFPPU algorithm to update particle positions using a set of
feature clusters. The GMFPPU algorithm is chosen for use within the new multi-objective
feature selection approaches as it was successfully used in GPSO1 and GPSO2 to evolve
feature subsets that achieve high classification accuracy with a small number of features.
The feature selection approaches developed in Objective 3 must minimise two objec-
tives: the number of features selected and the classification error rate. To achieve this, two
new multi-objective PSO-based feature selection approaches are developed that maintain a

29

Pareto front of non-dominated solutions: Non-dominated Sorting Gaussian Particle Swarm
Optimisation for Feature Selection (NSGPSO) and NSGPSO2 which introduces an external
leader set, a binary tournament selection of a particle’s gbest and mutation operators to the
NSGPSO feature selection approach. By maintaining a Pareto front of non-dominated so-
lutions, the two new approaches are expected to provide a range of optimal solutions that
improve the classification accuracy and/or reduce the number of features over the feature
selection approaches developed in Objective 2.

5.1.1 NSGPSO

As standard PSO was originally developed as a single objective algorithm, it cannot be di-
rectly applied to the exploration of the Pareto front of feature subsets in terms of classifica-
tion accuracy and dimensionality. In order to achieve this, NSGPSO is developed as a multi-
objective PSO-based feature selection approach that is based on the idea of non-dominated
sorting in NSGA-II [17]. Algorithm 4 shows the pseudo-code of NSGPSO.

Algorithm 4: Pseudocode of NSGPSO
Input : Training set, Test set, FC: a set of feature clusters, where each feature cluster is a set of feature

indices
1 begin
2 randomly initialise the position and velocity of each particle in the swarm (Swarm);
3 while Maximum Iterations has not been met do
4 evaluate the two objective values of each particle (classification error rate on the training set and
number of features);
5 nonDomParticles < identify the particles in Swarm that have non-dominated solutions;
6 calculate the crowding distance of each particle in nonDomParticles;
7 sortedParticles < sort the particles in nonDomParticles by their crowding distance ;
8 archive < initialise an archive to contain all particles in Swarm ;
9 for i=1 to Swarm Size do
10 update the pbest of particle i ;
1 randomly select a gbest for particle i from the first half of sortedParticles (the top 50% of the
least crowded solutions in the Pareto front) ;
12 update the velocity v; of particle i according to Equation (2.2);
13 update the position p; of particle i according to the GMFPPU algorithm shown in
Algorithm 8 in Section 1 of Appendix B;
14 add particle i to archive
15 end
16 empty the current Swarm for the next iteration ;
17 paretoFronts < identify the set of non-dominated fronts in archive;
18 i+1;
19 while |Swarm| < populationSize do
20 if (|Swarm| + |paretoFronts;| <populationSize) then
21 | add the particles in |paretoFronts;| to Swarm
22 else
23 ‘ add the (populationSize —|Swarm|) least crowded particles from |paretoFronts;| to
Swarm
2 end
25 i<—i+1;
26 end
27 calculate the training and testing classification accuracy of the evolved feature subsets in
paretoFronts; (the non-dominated solutions);
28 return the feature subsets in paretoFrontsy, the training and testing classification accuracies.
29 end
30 end

NSGPSO starts by randomly initialising the velocities and positions of each particle in

30

the swarm. After this, each iteration of NSGPSO starts by evaluating the two objectives for
each particle: the classification error rate on the training set and the number of selected fea-
tures. NSGPSO uses this information to identify the non-dominated particles in the swarm,
forming the set of potential gbest solutions for each particle in the swarm. The crowding dis-
tance for each non-dominated particle in this set is then calculated with the crowded com-
parison operator described in NSGA-II [17], which is then used to sort the particles by their
crowding distance such that the least crowded solution is at the start of the list. An archive
is then initialised to contain all particles in the swarm. This archive is used to store the par-
ticles from the previous and current iteration of PSO from which only the non-dominated
particles will be included in the swarm for the next iteration. Following this, each particle
updates its pbest. Then for each particle, a gbest is selected randomly from the top 50% of the
least crowded particles in the sorted non-dominated solutions. The velocity of each particle
is then updated according to the original velocity update Equation (2.2). Using the GMF-
PPU algorithm, the position of each particle is then updated and the new particle is added
to the archive as to have a chance to be included in the swarm for the next iteration. At this
stage, the swarm is emptied and the archive which contains the particles from the current
and previous iterations is then used to identify the set of Pareto fronts. This starts from the
tirst Pareto front and iterates over the Pareto fronts until the swarm has reached the prede-
termined population size. All particles contained in the current Pareto front are added to
the swarm if by doing so, the swarm size does not exceed the population size. Otherwise,
the particles in the current Pareto front are sorted via their crowding distance and the least
crowded particles are included in the swarm such that the number of particles in the new
swarm equals the desired population size. The new swarm is then used in the next itera-
tion, continuing the process described above until the maximum number of iterations is met.
Lastly, the training and testing classification accuracy is calculated for the non-dominated
feature subsets contained in the first Pareto front.

In the original single-objective PSO, the pbest of each particle in the swarm is updated if
and only if the new position dominates the old position. i.e the fitness of the new position
is better than the fitness of the old position. However, in order to increase the diversity of
the search within the new multi-objective PSO approach (NSGPSO), the pbest updating rule
described in [27] is used in which the pbest of a particle is updated if either the new position
dominates the old position or if both positions are non-dominated with respect to each other.

When determining the crowding distance of solutions in a particular Pareto front, the
crowded comparison operator described in NSGA-II [17] is used. This operator evaluates
the crowding distance of a solution based on the sum of its normalised distance between
each objective value of its two nearest neighbours. The implementation of this operator
can be viewed in detail in [17]. The crowded comparison operator is used in NSGPSO to
evaluate the goodness of each particle within the same Pareto front such that particle i is
evaluated as better than particle j if the crowded comparison operator evaluates particle i
to be less crowded than particle j. This information is then used for determining the least
crowded particles in the Pareto front to obtain a set of potential gbest particles during each
iteration of the evolutionary process. By randomly selecting a gbest for each particle from the
top 50% of these least crowded solutions, half of the most crowded solutions along the non-
dominated Pareto front are discarded, whilst the random gbest selection from the remaining
non-dominated solutions for each particle helps guide the search towards different areas of
the non-dominated Pareto front where the non-dominated solutions are sparse. The crowd-
ing distance operator is also used in the process of selecting particles to include in the swarm
for the next iteration as to determine the least crowded particles to select from a Pareto front
that contains too many particles to include as a whole in the swarm. Both of these uses of
the crowding comparison operator help to increase the spread of the final non-dominated

31

Pareto front, which is desired as it gives the user more choice in selecting an appropriate
non-dominated feature subset.

For the particle position update step in NSGPSO, the GMFPPU algorithm is used which
allows the use of the statistical information provided by the feature clusters to evolve feature
subsets containing complimentary features within the Pareto front of non-dominated solu-
tions. Combined with the non-dominated sorting mechanism, pbest and gbest update rules,
NSGPSO is expected to be able to search the solution space and establish a Pareto front of
non-dominated feature subsets that achieve high classification accuracy with a relatively
small number of features.

5.1.2 NSGPSO2

By sorting the particles in the swarm via their values for each objective (classification error
rate and number of features), a set of non-dominated feature subsets is obtained. This al-
lows NSGPSO to be applied to multi-objective feature selection. However, with the direct
application of the ideas from NSGA-II to PSO, maintaining an appropriate degree of diver-
sity in the swarm becomes an issue. The lack of swarm diversity in NSGPSO arises from
its use of elitism in which the swarm’s particles for the next iteration are selected from the
current particle” positions and the updated particle” positions such that the non-dominated
particles are selected first. This means that any non-dominated particles from the last iter-
ation that are not dominated by any particle in the current iteration are selected to remain
in the swarm for the next iteration. As the chances of a particle becoming a non-dominated
solution in its next position update is small, only a small number of particles and their po-
sitions will be updated throughout the swarm. This issue of low swarm diversity might
harm the search in PSO as particles are likely to become stuck in local optima. NSGPSO2
is developed to overcome the lack of swarm diversity found in NSGPSO by introducing an
external leader set that holds the non-dominated particles, a binary tournament selection
of a particle’s gbest and mutation operators which are applied to particles throughout the
evolutionary process. Each of these changes aim to diversify the swarm in PSO and hence,
aims to improve the search abilities of PSO for multi-objective feature selection using a set
of feature clusters. The pseudo-code of NSGPSO?2 is shown in Algorithm 5.

NSGPSO2 starts by randomly initialising the velocities and positions of each particle
in the swarm. At the start of each iteration of NSGPSO2, the crowding distance for each
non-dominated particle in the LeaderSet is calculated and used in the binary tournament
selection for the selection of a gbest for each particle. Following this, for each particle in
the swarm, the pbest is updated if either the new position dominates the old position or
if both positions are non-dominated with respect to each other. The gbest is then selected
from the LeaderSet by using a binary tournament selection based on the crowding distance
of the non-dominated particles. Like NSGPSO, the velocity and position of each particle
are then updated according to the original velocity update Equation (2.2) and the GMFPPU
algorithm, respectively. The uniform and non-uniform mutation operators are then applied
to two sets of particles in the swarm with each set containing a third of the swarm’s particles.
The remaining third of particles in the swarm do not have any mutation operator applied to
them. This process is repeated until the maximum number of iterations is met. Lastly, the
training and testing classification accuracy is calculated for the final non-dominated feature
suets from the LeaderSet.

The external leader set is a major change in NSGPSO2 as it uncouples the elitism aspect
from the search process, holding and updating up to n of the best non-dominated particles
throughout the evolutionary process, where n is the number of particles in the swarm. This
is in contrast to NSGPSO which halts the positions of the non-dominated particles in the

32

Algorithm 5: Pseudocode of NSGPSO2

Input : Training set, Test set, FC: a set of feature clusters, where each feature cluster is a set of feature

indices
1 begin
2 randomly initialise the position and velocity of each particle in the swarm (Swarm);
3 initialise the set of leaders (LeaderSet);
4 while Maximum Iterations has not been met do
5 calculate the crowding distance of each particle in LeaderSet ;
6 swarmSize — the number of particles in the swarm;
7 for i=1 to swarmSize do
8 update the pbest of particle i ;
9 select a ghest for particle i from LeaderSet by using a binary tournament selection based on
the crowding distance ;
10 update the velocity v; of particle i according to Equation (2.2);
1 update the position p; of particle i according to the GMFPPU algorithm shown in
Algorithm 8 in Section 1 of Appendix B;
12 if (i > 2xswarmSize) then
13 | apply uniform mutation operator to particle i
14 end
15 else if (i > SwarmSize) then
16 ‘ apply non-uniform mutation operator to particle 7
17 end
18 end
19 nonDomParticles < identify the particles contained in LeaderSet and Swarm that have
non-dominated solutions;
20 calculate the crowding distance of each particle in nonDomParticles;
21 Update the LeaderSet with up to swarmSize of the least crowded particles in nonDomParticles
22 end
23 calculate the training and testing classification accuracy of the evolved feature subsets in LeaderSet
(the non-dominated solutions);
24 return the feature subsets in LeaderSet, the training and testing classification accuracies.
25 end

swarm until a better solution is obtained, disallowing the movement of these particles in
PSO and hence, coupling the elitism aspect with the search process. The particles held in
the leader set belong to the non-dominated Pareto front where a binary tournament selection
and the crowding distance are used to select the gbest for each particle in the swarm. This
external leader set eliminates the need for maintaining the best non-dominated particles
in the swarm for subsequent iterations as these particles are accessed and updated in the
external leader set. Hence, NSGPSO2 provides better search abilities than NSGPSO as it
allows each particle to search the solution space over a number of iterations, heuristically
guided by its corresponding pbest and a chosen gbest from the external leader set.

Two mutation operators are introduced to further diversify the search process in PSO.
Firstly, the uniform mutation operator is used in which the variability range for each feature
is kept constant at %, where f represents the number of features. Secondly, the non-uniform
mutation operator is used in which the variability range for each feature decreases over the
evolutionary process linearly from % to 0. NSGPSO2 splits the particles in the swarm evenly
into three distinct sets in which the first set has no mutation applied to it, the second set has
the uniform mutation operator applied to it and the third set has the non-uniform mutation
operator applied to it. By doing this, three sets of particles with different search abilities are
used to search the solution space. The first set represents the normal particles found in PSO,
the second set which contains exploratory particles, providing better global search ability
through the uniform chance of mutation, and the the third set which can provide better

33

local search ability as the evolutionary process continues through the decreasing chance of
mutation.

As the major changes in the NSGPSO?2 algorithm are aimed at increasing the diversity
and search ability of the swarm, NSGPSO2 is expected to discover a wider range of non-
dominated solutions in the search space, further minimising both the dimensionality and
classification error rate of the evolved solutions over NSGPSO.

5.2 Experimental Design

To examine the performance of the proposed algorithms, a set of experiments have been
conducted. The experimental design is the same as in Objectives 1 and 2 apart from minor
changes to the dataset. Seven of the datasets have been reused from Objective 2, whilst the
WBCD dataset has been introduced, replacing the Ionosphere dataset used in Objective 2 as
it was found to provide more distinctive results when used in Objective 1. The datasets are
shown in Table 5.1.

Table 5.1: Datasets

Dataset Number of features Number of feature clusters Number of classes Number of instances
Wine 13 6 3 178
Vehicle 18 6 4 846
WBCD 30 6 2 569
Sonar 60 12 2 208
Musk1 166 14 2 476
Arrhythmia 279 15 16 452
Madelon 500 11 2 4400
Multiple Features 649 15 10 2000

5.3 [Experimental Results

For each dataset, BPSO and GPSOL1 obtain a single solution in each of the 50 indepen-
dent runs. The multi-objective algorithms, NSGPSO and NSGPSO2 obtain a set of non-
dominated solutions in each run. In order to compare these two kinds of results, for each
multi-objective algorithm, 50 sets of feature subsets from the 50 independent runs are com-
bined into one union set. From this union set, the non-dominated solutions are identified
and presented on the charts to compare with the solutions achieved by the two single objec-
tive algorithms, BPSO and GPSOL1.

The experimental results for NSGPSO, NSGPSO2, BPSO and GPSO1 are shown in Figure
5.1, where each chart corresponds to one of the datasets used in the experiments. On the
top of each chart, the total number of features are shown for the given dataset as well as
the classification error rate achieved by using all features. In each chart, the classification
error rate is shown along the vertical axis, whilst the number of features selected are shown
along the horizontal axis. The legend of each chart shows the color used to represent the
solutions for a particular algorithm. “NSGPSO” and “NSGPSO2” show the non-dominated
solutions in the Pareto front evolved by NSGPSO and NSGPSO2 over the 50 independent
runs, respectively. “GPSO1” and “BPSO” show the 50 solutions evolved by GPSO1 and
BPSO respectively. It is to be noted that the same feature subset can be obtained on different
runs on a single dataset and these are shown as the same point in the associated chart. This
explains why, in most cases there are fewer than 50 data points plotted for GPSO1 and BPSO.

34

Wine (13, 23.46%)

Vehicle (18, 16.14%)

—=— NSGPSO 221 —=— NSGPSO
—m— NSGPSO02 —=— NSGPSO2
* GPSO1 * GPSO1
* BPSO * BPSO
Q \ Q
T \ Il
4 \ o4
5 \ S
i x ' i L.
\ 16,
\ * * .
\ * *
* *
\ .
0 L] .
1 3 5 i 3 5 7 9 11
Number of features Number of features
WBCD (30, 7.02%) Sonar (60, 23.81%)
b —=— NSGPSO 30 * —=— NSGPSO
134 \ —=— NSGPS02 —=— NSGPSO02
\ # GPSO1 * GPSO1
\ « BPSO * * |« BPSO
\ 25 * . oxe = .
— \ —~ *K kKKK kNow o .
X \ S
~ \ :}/ l\ I] .
Q
E \\ § 207 \ .k * e Kk . s s e
- 94 \. - & ¥ %% es e s6 .
2 S \ i e e e
w B L 15 \- * * *ew
* * * * - \ o e
\ N X
5 . 10 Y
1 3 5 7 1 5 10 15 20 25 30
Number of features Number of features
Musk1 (166, 16.08%) Arrhythmia (278, 5.54%)
1 —=— NSGPSO 6.2 b . —=— NSGPSO
al | T e L T
[t * BPSO [« BPSO
| * 5.8
_ | T _ -
X 18 “‘ * % * . . X * ok .
~ e ~ 4 DT
% " * % m N .- %’ 54 I .
i._: 15 \\:‘ i ;:‘; : * ST ?_: L‘: i*ﬁfﬂé -. ’
o ‘i\ j *;* . 5 5.0 r - . .
= N S = AU e
121 XLt Lt : Lo
. * ok . 4.6 N
\ AN :
9 : . 4.2 \-
1 10 20 30 40 50 60 70 80 90 1 25 s0 75 100 125 150
Number of features Number of features
Madelon (500, 29.10%) Multiple Features (649, 1.37%)
54 | ' —=— NSGPSO 481 b —=— NSGPSO
—m— NSGPSO02 | —— NSGPSO2
. * GPSO1 4.2+ | * GPSO1
48 . « BPSO | « BPSO
= 42 | = 3.6
S S
3,
Q 4 Q
5 30 5 2.4+
P . Y18
184 1.2+ s te
. 331-?—' o
127 T T T 067 T T T T T : T
i 60 220 240 260 i 30 60 90 120 310 340
Number of features Number of features

Figure 5.1: Experimental Results of NSGPSO, NSGPSO2, GPSO1 and BPSO

35

5.3.1 Results of NSGPSO

As can be seen in Figure 5.1, in all datasets, NSGPSO evolves at least two non-dominated
solutions that contain a significantly small number of features and achieve a lower classifica-
tion error rate than using all features. For example, on the Musk1 dataset, a non-dominated
solution evolved in NSGPSO contains only 26.5% of the available features (44 from 166) and
reduces the classification error rate more than twofold (from 16.08% to 7.69%). In seven out
of the eight datasets, there exists at least one non-dominated solution that contains less than
10% of the the available features. In most cases, the non-dominated solution(s) that contain
less than 10% of the available features also achieve a lower classification rate than using all
features.

Compared to BPSO, the classification error rates of the evolved solutions in BPSO and in
the non-dominated Pareto front in NSGPSO are similar in most cases. However, the number
of features contained in feature subsets evolved by NSGPSO is significantly smaller. In six
out of the eight datasets, NSGPSO includes at least one feature subset that has fewer fea-
tures and achieves a lower classification error rate than any of the feature subsets evolved
by BPSO. In the two remaining datasets, the feature subset containing the lowest classifi-
cation error rate evolved in BPSO achieved a classification error rate which was less than
0.25% lower than the feature subset containing the lowest classification error rate evolved
by NSGSPO. For example, in the MultipleFeatures dataset, BPSO evolved a feature subset
that achieved a classification error rate of 0.733% with 324 features, whilst in NSGPSO, the
non-dominated solution with the lowest classification error rate contained only 75 features
and achieved a classification error rate of 0.833% which is only 0.1% worse than that of the
best solution evolved by BPSO.

Compared to GPSO1, most of the non-dominated solutions in NSGPSO contain a smaller
number of features in all datasets. In most of the datasets containing a smaller number
of features, the classification error rates of GPSO1 and NSGPSO are similar. However, in
two of the datasets containing a larger number of features, GPSO1 evolves feature subsets
that achieve lower classification error rates than NSGPSO. This is likely due to the swarm
diversity in NSGPSO which limits the algorithms search ability on datasets containing a
large number of features. In most cases, NSGSPO evolves at least one solution that achieves
a lower classification error rate with a smaller number of features than GPSOL1.

The results suggest that by using non-dominated sorting and statistical clustering in-
formation within a PSO-based approach, NSGPSO can effectively explore the Pareto front
and obtain a range of feature subsets that achieve better classification performance with
a smaller number of features than BPSO for feature selection. Furthermore, as a multi-
objective feature selection approach, NSGPSO can effectively evolve feature subsets that
contain a smaller number of features than GPSO1 and is found to be competitive with
GPSOl1 in terms of classification performance, despite GPSO1 being a single-objective al-
gorithm that maximises the classification performance of its evolved feature subsets.

5.3.2 Results of NSGPSO2

As can be seen in Figure 5.1, the majority of the evolved non-dominated solutions in NSG-
PSO2 achieve a lower classification error rate than using all features and contain a signifi-
cantly smaller number of features. For example, on the Madelon dataset, a non-dominated
solution evolved by NSGPSO2 contains only 5.2% of the available features (26 from 500) and
reduces the classification error rate significantly, by 15.67%. (from 29.10% to 13.33%). In all
datasets, there exists at least one non-dominated solution that contains less than 10% of the
the available features and in most cases, these non-dominated solution achieve a lower clas-
sification rate than using all features. On some datasets, NSGPSO2 evolves feature subsets

36

that contain significantly small numbers of features and achieve significantly better classifi-
cation performance than using all features. For example, on the Wine dataset, NSGPSO2
evolves a feature subset containing only 3 out of 13 features that can accurately classify ev-
ery instance of the dataset with 100% accuracy. This is in comparison to the accuracy of
76.54% when using all 13 features.

Comparing NSGPSO2 to BPSO, the classification error rates of the evolved solutions
in BPSO and in the non-dominated Pareto front in NSGPSO2 are similar in most datasets.
However, the non-dominated solutions in NSGPSO2 contain a significantly smaller num-
ber of features than in BPSO. In most cases, NSGPSO2 includes at least one feature subset
that contains a significantly smaller number of features and a lower classification error rate
than any of the solutions evolved by BPSO. For example, in the Musk1 dataset, NSGPSO2
contains a feature subset that achieves a classification error rate of 9.09% with only 29 out
of the 166 available features. In comparison, in BPSO, the best feature subset in terms of
classification error rate is 11.19% with 89 features, whilst the best feature subset in terms of
the number of selected features is 67, which achieved a classification error rate of 18.58%.

Compared to GPSO1, most of the non-dominated solutions in NSGPSO2 contain a smaller
number of features in all datasets. In most cases, the non-dominated solutions evolved by
NSGPSO?2 achieve a lower classification error rate than GPSO1 with less features. The two
exceptions are in the Madelon and Multiple Features dataset, where GPSOL1 evolves a fea-
ture subset that contains a slightly lower classification error rate than in NSGPSO2.

In comparison to NSGPSO, the classification error rates and the numbers of features in
the evolved solutions of NSGPSO2 are similar to NSGSPO in three of the datasets (Wine,
Vehicle, Sonar). However, in most of the remaining datasets, NSGPSO2 evolves a set of
non-dominated solutions that achieve a lower classification error rate and a smaller number
of features than that of the non-dominated solutions evolved by NSGPSO. For example, for
every non-dominated solution evolved by NSGPSO in the Multiple Features dataset, NSG-
PSO2 evolved a non-dominated solution that achieves a lower classification error rate with
the same or smaller number of features than the feature subset evolved by NSGPSO. Fur-
thermore, on most of the datasets containing a larger number of features (Arrhythmia and
Multiple Features), NSGPSO2 achieves a greater number of solutions and a better spread
than NSGPSO along its Pareto front of non-dominated solutions. This is best seen on the
Multiple Features dataset where NSGPSO2 evolves 14 non-dominated feature subsets com-
pared to the 11 non-dominated feature subsets evolved by NSGPSO.

The results suggest that with an external leader set, binary tournament selection of a
particle’s gbest and mutation operators, the diversity of the swarm in NSGPSO2 is increased
which leads to a more efficient and effective search process. In turn, NSGPSO2 outperforms
BPSO in all cases and further lowers the classification error rate of its evolved feature sub-
sets over NSGPSO. NSGPSO2 also outperforms GPSO1 in all cases in terms of the number of
features selected and in most cases in terms of classification performance. For these reasons,
NSGPSQO2 is found to be an effective method that can evolve a range of non-dominated fea-
ture subsets that achieve high classification performance with a significantly small number
of features.

54 Summary

The goal of this chapter was to develop a multi-objective PSO-based feature selection ap-
proach that can explore the Pareto front of non-dominated feature subsets. This goal was
achieved by developing NSGPSO and NSGPSO2, which are two BPSO-based multi-objective
feature selection approaches that can explore the Pareto front of non-dominated feature sub-
sets.

37

By using non-dominated sorting and statistical clustering information together within
a multi-objective PSO-based approach, NSGPSO is able to effectively explore the Pareto
front, evolving a range of feature subsets that achieve high classification performance with
a small number of features. The results show that NSGPSO outperforms standard BPSO for
feature selection and GPSOL1 in terms of the dimensionality of solutions. NSGPSO was also
found to outperform BPSO and perform similarly to GPSOL1 in terms of the classification
performance.

NSGPSO?2 further increases the classification performance of its evolved feature subsets
by introducing an external leader set, binary tournament selection of a particle’s gbest and
mutation operators into a multi-objective PSO-based feature selection approach that uses
statistical clustering information. These additions were found to improve swarm diver-
sity, leading to a significant increase in the search ability of NSGPSO2 over NSGPSO. In
effect, NSGPSO2 outperformed both BPSO and GPSO1, proving to be an effective multi-
objective feature selection approach that can explore the Pareto front and find a range of
non-dominated feature subsets that achieve high classification performance with a signfi-
cantly small number of features.

38

Chapter 6

Conclusions and Future Work

The work conducted in this project is the first research that investigates the use of a set of
statistically clustered features in PSO-based feature selection approaches for general clas-
sification problems. Specifically, three main objectives were focused upon. Firstly, the de-
velopment of a single-objective PSO-based approach that selects a subset of features from
a set of feature clusters with the constraint of selecting a single feature from each cluster.
Secondly, the development of a single-objective PSO-based feature selection approach that
allows the selection of multiple features from each feature cluster. Thirdly, the development
of a multi-objective PSO-based feature selection approach that can explore the Pareto front
of non-dominated feature subsets in terms of their classification accuracy and dimensional-
ity.

The first Objective was achieved by developing the MPPPU, MPTSPPU, RWSPPU and
IMPPPU algorithms, which are used within BPSO to select a single feature from each feature
cluster during the particle position update step. Experimental results show that by using the
statistical information to select a single feature from each feature cluster, the newly devel-
oped algorithms can significantly reduce the number of features in the datasets. In most
cases, this led to either maintaining or improving the classification performance over using
all features. By introducing a greater amount of stochasticity in the MPTSPPU, RWSPPU and
IMPPPU algorithms, the swarm diversity was greatly improved compared to the MPPPU
algorithm, further improving the classification performance on most datasets with feature
subsets of equal size.

To achieve the second Objective, three new PSO-based feature selection algorithms were
developed (MFPPU, GPSO1 and GPSO2) that can select multiple features from each feature
cluster. The experimental results show that by allowing the selection of multiple features
from each cluster, a number of complimentary features can be discovered and included in
the evolved solutions. In effect, the evolved feature subsets achieve a higher classification
accuracy with a smaller number of features than using all features. By introducing a heuris-
tic that aims to minimise the number of features selected per cluster, GPSO1 dramatically
reduces the number of redundant features selected over the MFPPU algorithm, resulting in
a significant increase in classification performance. The newly developed Gaussian fitness
function which is used in GPSO2 is found to trade a small amount of classification accu-
racy for a smaller number of features. In turn, GPSO2 was found to be better at selecting
a minimal number of features, providing shorter classifier training time and better classi-
tier understandability. On the other hand, GPSO1 was found to be better at achieving high
classification performance which is of utmost importance in classification tasks.

For the third objective, two new multi-objective PSO-based feature selection algorithms
were developed (NSGPSO and NSGPSO2). By using non-dominated sorting and statistical
clustering information together within a multi-objective PSO-based approach, NSGPSO and

39

NSGPSO?2 are found to be able to effectively explore the Pareto front, evolving a range of
feature subsets that achieve high classification performance with a small number of features.
NSGPSO2 introduces an external leader set, binary tournament selection of a particle’s gbest
and mutation operators into a multi-objective PSO-based feature selection approach that
uses statistical clustering information. These additions were found to improve swarm diver-
sity over NSGPSO, leading to a significant increase in the search ability of NSGPSO2 over
NSGPSO. In effect, NSGPSO2 outperformed NSGPSO in terms of the classification perfor-
mance and dimensionality of the evolved non-dominated feature subsets. Both NSGPSO
and NSGPSO2 were found to outperform standard BPSO for feature selection, evolving a
range of non-dominated feature subsets that achieve high classification performance with a
significantly small number of features.

6.1 Future Work

The feature selection algorithms of objective 2 (MFPPU, GPSO1 and GPSO2) automatically
evolve solutions that contain a range of different features. Some of these features are com-
plimentary to one another which can greatly improve the classification accuracy when in-
cluded into a solution [2]. However, unless we have sufficient domain knowledge, it is
particularly challenging to pinpoint which features in a dataset are complimentary to one
another due to the complex interactions between features [2]. By analyzing the evolution of
the selected features within MFPPU, GPSO1 and GPSO2 over a series of iterations, it may be
possible to uncover information about the interactions between features. This could help in
discovering heuristics that could lead the swarm in PSO towards selecting complimentary
features, whilst avoiding conflicting features. Due to the scope of this project, the analysis of
feature interaction within the MFPPU, GPSO1 and GPSO2 algorithms is left for future work.

The Gaussian fitness function is developed and used in GPSO2 to penalise solutions that
select a large number of features per cluster. The results show that the Gaussian fitness
function guides GPSO2 towards evolving feature subsets that have fewer features, but this
achieves a slightly lower classification performance. Although the resulting effects of the
Gaussian fitness function on the feature selection approach are known, the effects upon the
swarm diversity and search abilities within PSO due to the parameter setup of the Gaussian
fitness function are unknown and need to be explored in detail. By doing so, a relation-
ship between the parameters of the Gaussian fitness function and the trade-off between the
dimensionality of the feature subset and its classification performance may be able to be
discovered. From this, an optimal set of parameters could be revealed which maximize clas-
sification performance and minimise the number of features selected. The analysis of the
effects of the Gaussian fitness function parameters are left for future work.

NSGPSO2 introduces three new aspects to the multi-objective PSO-based feature selec-
tion approach. These additions include an external leader set, binary tournament selection
of a particle’s gbest and mutation operators. Together, these additions are found to improve
the swarm diversity over NSGPSO and result in the evolution of feature subsets that achieve
higher classification performance with a smaller number of features. However, the individ-
ual effects of each addition on the search abilities of the swarm are unknown. In further
research, the individual impact of the three new additions in NSGPSO2 needs to be ex-
plored as to ascertain which additions are necessary /unnecessary and which additions can
be removed or improved.

40

Bibliography

[1] I. A. Gheyas and L. S. Smith, “Feature subset selection in large dimensionality do-
mains,” Pattern Recogn., vol. 43, pp. 5-13, Jan. 2010.

[2] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The Jour-
nal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

[3] M. Dash and H. Liu, “Feature selection for classification,” Intelligent data analysis, vol. 1,
no. 1-4, pp. 131-156, 1997.

[4] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial intelligence, vol. 97, no. 1, pp. 245-271, 1997.

[5] R.Kohaviand G. H. John, “Wrappers for feature subset selection,” Artificial intelligence,
vol. 97, no. 1, pp. 273-324, 1997.

[6] A.W.Whitney, “A direct method of nonparametric measurement selection,” Computers,
IEEE Transactions on, vol. 100, no. 9, pp. 1100-1103, 1971.

[7] T. Marill and D. Green, “On the effectiveness of receptors in recognition systems,” In-
formation Theory, IEEE Transactions on, vol. 9, no. 1, pp. 11-17, 1963.

[8] H. Yuan, S.-S. Tseng, W. Gangshan, and Z. Fuyan, “A two-phase feature selection
method using both filter and wrapper,” in Systems, Man, and Cybernetics, 1999. IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Conference on, vol. 2, pp. 132—
136, IEEE, 1999.

[9] K. Neshatian and M. Zhang, “Dimensionality reduction in face detection: A genetic
programming approach,” in Image and Vision Computing New Zealand, 2009. IVCNZ'09.
24th International Conference, pp. 391-396, IEEE, 2009.

[10] H. Ming, “A rough set based hybrid method to feature selection,” in Knowledge Acqui-
sition and Modeling, 2008. KAM'08. International Symposium on, pp. 585-588, IEEE, 2008.

[11] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, “Feature selection based on rough sets
and particle swarm optimization,” Pattern Recognition Letters, vol. 28, no. 4, pp. 459471,
2007.

[12] C.-S. Yang, L.-Y. Chuang, J.-C. Li, and C.-H. Yang, “Chaotic maps in binary particle
swarm optimization for feature selection,” in Soft Computing in Industrial Applications,
2008. SMCia’08. IEEE Conference on, pp. 107-112, IEEE, 2008.

[13] L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, “Improved binary PSO for fea-
ture selection using gene expression data,” Computational Biology and Chemistry, vol. 32,
no. 1, pp. 29-38, 2008.

41

[14] C.-S. Yang, L.-Y. Chuang, C.-H. Ke, and C.-H. Yang, “Boolean binary particle swarm
optimization for feature selection,” in Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE Congress on, pp. 2093-2098, IEEE,
2008.

[15] L.-Y. Chuang, S.-W. Tsai, and C.-H. Yang, “Improved binary particle swarm optimiza-
tion using catfish effect for feature selection,” Expert Systems with Applications, vol. 38,
no. 10, pp. 12699-12707, 2011.

[16]]J. Kennedy and W. M. Spears, “Matching algorithms to problems: an experimental test
of the particle swarm and some genetic algorithms on the multimodal problem gener-
ator,” in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computa-
tional Intelligence., pp. 78-83, IEEE, 1998.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” Evolutionary Computation, IEEE Transactions on, vol. 6,
no. 2, pp. 182-197, 2002.

[18] D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto envelope-based selection
algorithm for multiobjective optimization,” in Parallel Problem Solving from Nature PPSN
VI, pp. 839-848, Springer, 2000.

[19] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and L. Thiele, “SPEA2:
Improving the strength Pareto evolutionary algorithm,” 2001.

[20] T. M. Hamdani, J.-M. Won, A. M. Alimi, and F. Karray, “Multi-objective feature se-
lection with NSGA 1I,” in Adaptive and Natural Computing Algorithms, pp. 240-247,
Springer, 2007.

[21] X.Li, “A non-dominated sorting particle swarm optimizer for multiobjective optimiza-
tion,” in Genetic and Evolutionary Computation—GECCO 2003, pp. 37-48, Springer, 2003.

[22] F.R. Bach and M. I. Jordan, “A probabilistic interpretation of canonical correlation anal-
ysis,” 2005.

[23] S. Pledger and R. Arnold, “Multivariate methods using mixtures: Correspondence
analysis, scaling and pattern-detection,” Computational Statistics & Data Analysis, 2013.

[24] E. Matechou, I. Liu, S. Pledger, and R. Arnold, “Biclustering models for ordinal data,”
Presentation at the NZ Statistical Assn. Annual Conference, University of Auckland
(2011).

[25] B. Sahu and D. Mishra, “A Novel Feature Selection Algorithm using Particle Swarm
Optimization for Cancer Microarray Data,” Procedia Engineering, vol. 38, pp. 27-31,
2012.

[26] “26th Australasian Joint Conference on Artificial Intelligence,” 2013.
http:/ /ai2013.otago.ac.nz/accepted-papers/.

[27] M. R. Sierra and C. A. C. Coello, “Improving PSO-Based multi-objective optimization
using crowding, mutation and-dominance,” in Evolutionary Multi-Criterion Optimiza-
tion, pp. 505-519, Springer, 2005.

[28] “Evo* 2014.” http://www.evostar.org/.

42

[29] R. D. King, C. Feng, and A. Sutherland, “Statlog: comparison of classification algo-
rithms on large real-world problems,” Applied Artificial Intelligence an International Jour-
nal, vol. 9, no. 3, pp. 289-333, 1995.

[30] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction accuracy, complex-
ity, and training time of thirty-three old and new classification algorithms,” Machine
learning, vol. 40, no. 3, pp. 203-228, 2000.

[31] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning classifier systems: from foundations
to applications, vol. 1813. Springer, 2000.

[32] B. Baharudin, L. H. Lee, and K. Khan, “A review of machine learning algorithms for
text-documents classification,” Journal of advances in information technology, vol. 1, no. 1,
pp. 4-20, 2010.

[33] V. C. Gandhi and J. A. Prajapati, “Review on Comparison between Text Classification
Algorithms,” International Journal, 2012.

[34] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995.
Proceedings., IEEE International Conference on, vol. 4, pp. 1942-1948, IEEE, 1995.

[35] M. M. Millonas, “Swarms, phase transitions, and collective intelligence,” tech. rep., Los
Alamos National Lab., NM (United States), 1992.

[36] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algo-
rithm,” in Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation.,
1997 IEEE International Conference on, vol. 5, pp. 4104-4108, IEEE, 1997.

[37] H. Almuallim and T. G. Dietterich, “Learning boolean concepts in the presence of many
irrelevant features,” Artificial Intelligence, vol. 69, no. 1, pp. 279-305, 1994.

[38] S.C. Yusta, “Different metaheuristic strategies to solve the feature selection problem,”
Pattern Recognition Letters, vol. 30, no. 5, pp. 525-534, 2009.

7

[39] S. D. Stearns, “On selecting features for pattern classifiers,” in Proceedings of the 3rd
International Joint Conference on Pattern Recognition, pp. 71-75, 1976.

[40] P. Pudil, J. Novovicovéd, and J. Kittler, “Floating search methods in feature selection,”
Pattern recognition letters, vol. 15, no. 11, pp. 1119-1125, 1994.

[41] B. Xue, L. Cervante, L. Shang, W. N. Browne, and M. Zhang, “A multi-objective par-
ticle swarm optimisation for filter-based feature selection in classification problems,”
Connection Science, vol. 24, no. 2-3, pp. 91-116, 2012.

[42] B. Xue, M. Zhang, and W. N. Brown, “New fitness functions in binary particle
swarm optimization for feature selection,” IEEE Congress on Evolutionary Computa-
tion(CEC’2012), pp. 2145-2152, 2012.

[43] A. Unler and A. Murat, “A discrete particle swarm optimization method for feature
selection in binary classification problems,” European Journal of Operational Research,
vol. 206, no. 3, pp. 528-539, 2010.

[44] K. Bache and M. Lichman, “UCI Machine Learning Repository,” 2013.

[45] T. Abeel, Y. Van de Peer, and Y. Saeys, “Java-ML: A machine learning library,” The
Journal of Machine Learning Research, vol. 10, pp. 931-934, 2009.

43

[46] F. Van Den Bergh, An analysis of particle swarm optimizers. PhD thesis, University of
Pretoria, 2006.

[47] B. Xue, M. Zhang, and W. N. Browne, “Particle Swarm Optimization for Feature Selec-
tion in Classification: A Multi-Objective Approach,” IEEE Transactions on Systems, Man,
and Cybernetics (Part B), 2012.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Abstraction and
reuse of object-oriented design,” in ECOOP 93, pp. 406431, Springer-Verlag, 1993.

44

Appendix A

A.1 Roulette Wheel Feature Selection PPU

The Roulette Wheel Feature Selection (RWSPPU) algorithm selects features from a set of
feature clusters proportional to their probability within their associated clusters, providing
features with low probabilities a chance for selection. As each feature within a cluster has at
least a small chance for selection, particles are unlikely to prematurely converge on a local
optimum, maintaining swarm diversity throughout the evolutionary process. The pseudo-
code of the RWSPPU algorithm is shown in Algorithm 6.

Algorithm 6: Pseudocode of RWSPPU

10
11
12

13

14
15

16
17

18

19
20

Input :

begin

end

end

Particle;: the ith Particle; FC: a set of feature clusters, where each feature cluster is a set of
feature indices

set all elements in the position vector of Particle; equal to 0;
foreach cluster in FC do

numFeatures < |FC[cluster]| ;
probabilitySum <0 ;
unNormalisedProbabilities <— {P}, P}, ..., Py reatures) ;
normalisedProbabilities «— { Py, P,, ..., PaumFeatures } ;
foreach feature in FC|[cluster] do
unNormalisedProbabilities [feature] <— the unnormalised probability of the current feature
using Equation (A.1) ;
probabilitySum <— probabilitySum + unNormalisedProbabilities [feature | ;
end

foreach feature in FC|cluster| do
unNormalisedProbabilities|feature]

normalisedProbabilities [feature | <

probabilitySum ’
end
featurelndexRanges «— divide the interval [0, 1] into ranges proportional to
normalisedProbabilities ; /* each feature index is associated to a single range */

randomValue < draw a random value uniformly from the interval [0,1] ;

featurelndex <— get the feature index that is associated with the range in featurelndexRanges that
contains randomValue;

Particle;.position[featurelndex] =1; /* Include the selected feature in the position
of Particle; */

The RWSPPU algorithm starts by erasing the given particle’s position. Following this,
the algorithm iterates over each feature cluster in order to select a single feature from each
cluster. The first step of the inner loop calculates the unnormalised feature probabilities for
all features within the given feaure cluster. The unnormalised probability ¢; of feature i is
obtained through pushing its corresponding velocity value v; through the following sigmoid

45

function.
1

$i =T a2 yp (A1)

The unnormalised feature probabilities are then normalised over all features in the given fea-
ture cluster into the range between 0 and 1 that represents its probability of being selected. A
value is then randomly chosen from a uniform distribution between 0 and 1, which is found
to match a particular feature that is then included as part of the given particle’s position.

The sigmoid function shown in Equation (2.4) was originally used for transforming the
velocity vector to a probability vector. However, the gradient of the sigmoid function was
found not to be steep enough through the range of given particle velocities. The effect of
this is a small difference in probability between features significantly differing in velocity.
In order to increase the gradient of the sigmoid function, the velocity value used in the expo-
nential factor is doubled in Equation (A.1). This provided a greater difference in probability
between features differing in velocity. Another issue in the standard sigmoid function is that
it calculates an unnormalised feature selection probability of 50% for features with neutral
velocity (v; = 0). The combination of many of these values significantly disadvantage the
chance of selection for features with higher velocities. As to reduce the chances of selec-
tion for features with smaller velocity values, the entire exponential value is quadrupled in
Equation (A.1). This decreases the chances for selection of features with lower velocities,
whilst increasing the chances for selection of features with higher velocities.

The RWSPPU algorithm stochastically guides particles towards promising solutions with
the consideration of features proportional to their probability within their associated feature
cluster. This gives features with low probabilities a small chance of selection, allowing the
exploration of unique regions in the search space that are likely to go ignored using the
MPTSPPU and MPPPU algorithms.

A.2 Incremental Maximum Probability PPU

The increased stochasticity in the MPTSPPU and RWSPPU algorithms allow particles to ef-
fectively search a wide region of the search space. However, as the amount of stochasticity
remains relatively consistent throughout the evolutionary process, particles in the swarm
do not converge to a final solution. Contrastingly, due to the small amount of stochastic-
ity in the MPPPU algorithm, particles in the swarm quickly converge to a nonoptimal final
solution. The Incremental Maximum Probability PPU (IMPPPU) combines the advantages
of the MPPPU, MPTSPPU and RWSPPU algorithms with a stochastic maximum probabil-
ity approach that selects a feature from a given feature cluster either randomly or with the
highest probability (highest velocity). At iteration one, the chances of selecting the feature
with the highest probability from a given feature cluster is very small. This chance increases
linearly throughout the evolutionary process untill the very last iteration in which there is
a 100% chance that the feature from each feature cluster with the highest probability (high-
est velocity) will be chosen. The IMPPPU algorithm allows the swarm’s particles to initially
search a wide region of the search space in order to find many different optimas. As the evo-
lutionary process continues, the stochasticity decreases which narrows the search towards
features with maximum probability, allowing the convergence of the swarm to an optimal
solution. The pseudo-code of the IMPPPU algorithm is shown in Algorithm 7.

The IMPPPU algorithm starts by calculating the chance of selection for the feature with
the highest probability (highest velocity) from the given feature cluster in the current iter-
ation. This becomes the Temperature (T) and is calculated using the following equation
where T,,,;, = 0.1 and T}, = 1.

46

Algorithm 7: Incremental Maximum Probability PPU

Input : Particle;: the ith Particle; FC: a set of feature clusters, where each feature cluster is a set of
feature indices; Ty;;;, = 0.1; Tipax = 1; Iterationcyrrent = thecurretiteration

1 begin

2 set all elements in the position vector of Particle; equal to 0;

3 temperature <— the temperature of Iterationc,rrent using Equation (A.2);

4 foreach cluster in FC do

5 numFeatures < |FC[cluster]| ;

6

7

8

9

featurelndex + -1 ;
randomValue <— draw a random value uniformly from the interval [0,1] ;
if randomValue > temperature then
feature <— get a random discrete feature index from the interval [0, numFeatures] ;
10 featurelndex < FC[cluster][feature | ;
1 else
12 maxVelocity - —o0 ;
13 for feature = 0 to numFeatures do
14 featureVelocity < velocity of feature at index FC[cluster][feature] ;
15 if featureVelocity > maxVelocity then
16 maxVelocity < featureVelocity;
17 featurelndex <— FC| cluster][feature | ;
18 end
19 end
20 end
21 Particle;.position[featurelndex] =1; /* Include the selected feature in the position
of Particle; */
2 end
23 end

Iterationcurrent

min + (max mln) Itemtionwml

(A2)
Secondly, the given particle’s position is erased. Following this, the algorithm iterates over
each feature cluster in order to select a feature from each cluster. Within this inner loop,
the feature with maximum velocity within the given feature cluster is selected and included
in the particle’s position with a chance proportional to the calculated Temperature. Oth-
erwise, a random feature is selected and included in the particle’s position. The IMPPPU
algorithm starts off with a selection of features that are almost completely random, allowing
the algorithm to discover a wide range of good starting positions. Throughout the search,
the IMPPPU algorithm stochastically guides particles towards optimal solutions and as the
iterations increase, the stochasticity decreases. This allows the continuous narrowing of the
search throughout the evolutionary process, ruling out less optimal solutions in favour of
better ones.

A.3 PPU Design and Implementation

Each PPU algorithm was first implemented as a separate method incorporated within the
Particle class. For each PPU algorithm, there existed a unique constant that represented it. A
variable is then assigned to match one of these constants depending on the PPU algorithm
desired for use. At each iteration, the PPU algorithm found to match the variable would then
be invoked on each particle during the position update step. Although this implementation
worked fine in practice, it presented a number of undesirable software characteristics as
discussed next.

47

A.3.1 Reuse and Understandability Issues

Each particle contained multiple PPU algorithms defined in methods within its class defini-
tion. These methods are similar to one another, resulting in a failure to reuse code effectively.
Furthermore, as the number of different PPU methods increased, the Particle class became
more cluttered. This baggage introduces understandability issues within the Particle class
as there becomes multiple methods to choose from for the particle position update step. The
placement of methods in the particle class implies that any PPU algorithm could be used at
any iteration during a run in PSO. However, only a single PPU algorithm should be used to
update a particle’s position during an entire run as to maintain consistency when testing.

A.3.2 Coupling and Maintenance Issues

At each iteration, a PPU algorithm is invoked on each particle in order to update its posi-
tion. The algorithm invoked is determined by a method in the Swarm class that uses a set of
unique PPU algorithm constants in a large messy if/else statement. This increases the cou-
pling between the Swarm and Particle classes as the Swarm class has to maintain knowledge
of all PPU algorithms available in the Particle class. Through this coupling, maintenance is-
sues arise in which every time a new PPU algorithm is created, multiple areas of the code
have to be updated. Firstly, the new PPU algorithm is constructed as a method in the Particle
class. Secondly, a constant corresponding to the algorithm has to be produced and assigned
a value. Lastly, the if/else statement has to be updated in order to be able to invoke the new
PPU algorithm.

A.3.3 Improving Software Design with the Strategy Pattern

As each PPU method accepts the same parameters and performs a similar job, an oppor-
tunity arose to use the strategy pattern [48] to improve upon the current software design.
Firstly, a PPU interface is designed consisting of a single position update method that re-
quires a particle and a set of feature clusters as parameters. Secondly, each PPU algorithm is
extracted from the Particle class into a single concrete implementation of the PPU interface.
This reduces the amount of unused code within the Particle class which helps resolve un-
derstandability issues. Furthermore, an improved reuse of code is obtained by factoring out
common code within different methods. Thirdly, the if/else statements used for determin-
ing which PPU method to invoke are collapsed into a single statement that asks the particle
to update its position. The corresponding method in the particle class then simply uses its
associated concrete PPU strategy object to update its position. This reduces the coupling
observed between the Swarm and Particle classes. It also improves the maintenance of soft-
ware as any problems encountered during the particle position update process can be traced
to a single method inside a single strategy class.

Refactoring using the Strategy pattern significantly improves software design and pro-
vides substantial benefits for further development. Firstly, the construction of new PPU’s are
kept simple through a standard contract defined in the PPU interface. After construction,
each PPU can easily evolve through subclassing in order to effectively reuse code, whilst
providing additional functionality. Testing also becomes easier as different PPU algorithms
can be tested with a simple switch of a particle’s Strategy object used in position updating.

48

Appendix B

B.1 Gaussian Multiple Feature PPU

GPSO1 and GPSO2 are BPSO-based feature selection approaches which differ from BPSO
in the particle position update process. Both algorithms use the newly developed GMFPPU
algorithm. GMFPPU uses a Gaussian distribution over each feature cluster when updating
particle positions to determine the chances of selecting a certain number of desired features
from a given cluster. The parameters of the Gaussian distribution are defined to penalise the
selection of a large number of features from each cluster which helps guide the GMFPPU
algorithm towards selecting a minimal number of features from each cluster. As shown in
Objective 1, a single feature can be used to represent a given cluster. Therefore, a mean
of 1 is chosen for the Gaussian distribution which ensures the selection of a single feature
from a cluster is given a higher probability than the selection of more than one feature. The
standard deviation of the Gaussian distribution is calculated using the following equation:

Log(10 x |cluster|) (B.1)

As each cluster must contain at least one feature and Log(10 x 1) = 2.303, the equation
evaluates the standard deviation to be greater than 2 for feature clusters of any size. This
enforces a very small penalty for selecting 2 or 3 features from a cluster which allows the
GMFPPU algorithm to easily select more than 1 feature from a given cluster, regardless of
its size. In turn, this allows the GMFPPU algorithm to discover complex feature interaction,
even within feature clusters that contain a small number of features.

The standard deviation of the Gaussian distribution increases with the feature cluster
size at a logarithmic scale which can be seen from the blue line in Figure B.1. This is pre-
ferred over a constant value shown as the yellow line in Figure B.1 as it provides a greater
chance for selecting more features from a cluster that contains a large number of features.
The logarithmic scaling is also used as opposed to a linear scaling shown as the red line in
Figure B.1 as it guides the GMFPPU algorithm towards selecting fewer features from large
feature clusters as can be seen from Figure B.1. This is beneficial as it minimises the chance
of introducing redundant features into solutions. The effects of the standard deviation func-
tions upon a Gaussian distribution of a typical feature cluster containing 5 features and a
large feature cluster containing 30 features can be seen in Figures B.2(a) and B.2(b). Fig-
ure B.2(a) shows that the logarithmic standard deviation function (shown as the blue line)
provides a chance of selecting 1, 2, 3 or 4 features that is more even than the linear stan-
dard deviation function (shown as the yellow line) which favors selecting 1 or 2 features
from small clusters. Hence, when used for the Gaussian distribution within the GMFPPU
algorithm, the logarithmic standard deviation function is likely to discover more feature in-
teraction within small feature clusters. In Figure B.2(b), the logarithmic standard deviation
function (shown as the blue line) provides a much smaller chance for selecting more than 10
features from a large feature cluster than the other two standard deviation functions. Hence,

49

m— S0 = Log(10x)
S0 = X5+ 2
SD=4

Standard Deviation
[=>

1 9 10 15 20 25 30 35 40 45 a0

Cluster Size

Figure B.1: Standard deviation functions for feature clusters containing up to 50 features

as many features are similar within a cluster, less redundant features will be introduced into
solutions when the logarithmic standard deviation function is used for the Gaussian distri-
bution within the GMFPPU algorithm.

0.14 012
012 01

0.1
o \ m— l\iean = 1, SD = Log(10x)
Mean =1, 5D =x/5+2
0.06

m— ean = 1, SD =4

0.08
—ean = 1, SD = Log(10x)

0.06 Mean=1,SD=x5+2
mlean = 1, 8D =4

0.04 0.04

0.02

o} 0 N
1 2 3 4 5 15 10 15 20 25 30

Probability for selection
Probahility for selection

0.02

Number of features Mumber of features

(a) Gaussian distributions for a feature cluster with 5 (b) Gaussian distributions for a feature cluster with 30
features features

Figure B.2: The effects of the standard deviation functions upon two Gaussian distributions

The Gaussian distribution function used to calculate the probabilty of selecting x features
from a given cluster is shown in Equation (B.2) where the mean = 1, x is the number of
features selected for a given cluster and the standard deviation is calculated according to
Equation (B.1). The pseudo-code for the GMFPPU algorithm is shown in Algorithm 8.

—1)2
exp(— grzrrso Ty

glx) = Vv27log(10 x |cluster|)

Like the MFPPU algorithm, the GMFPPU algorithm first erases a particle’s position and
then for each feature cluster, a set of desired features is constructed and includes the fea-
tures selected by the particle in the BPSO position update process using only the features
held within the given feature cluster in Equation (2.3). These features are then sorted by
their associated probabilities for selection (given by Equation 2.4) so that the first feature
has the highest probability. Only a subset of the features contained in the desired set will
be selected by the given particle in the next part of the algorithm which determines which
subset of features will be selected from the features contained in the desired set. The GMF-
PPU algorithm allows the next part of the algorithm to be skipped if no features are desired
within a given cluster. This allows a particle’s position to contain zero features from a cluster
that contains only useless features. The next part of the algorithm which focuses on select-
ing a subset of the features from the set of desired features starts by calculating the standard
deviation of the Gaussian distribution for the given feature cluster according to Equation

(B.2)

50

Algorithm 8: Pseudocode of GMFPPU

Input : Particle;: the ith Particle; FC: a set of feature clusters, where each feature cluster is a set of feature indices

1 begin
2 set all elements in the position vector of Particle; equal to 0;
3 foreach cluster in FC do
4 desiredFeatures <— initialise an empty map of desired features and their probabilities ;
5 foreach feature in FC[cluster| do
6 featureProbability < the probability of feature using the feature’s velocity in Equation (2.4)
7 include feature and featureProbability into desiredFeatures if the BPSO position update equation given
by Equation (2.3) evaluates to 1 given the feature ;
8 end
9 if desiredFeatures is not empty then
10 sortedFeatures < sort desiredFeatures by ascending probability ;
11 gaussianDistribution < construct a Gaussian distribution with mean = 1 and standardDeviation
calculated using cluster in Equation (B.1)
12 numDesiredFeatures <— |desiredFeatures| ;
13 normalisedProbabilities <— {Py, Py, ..., PhumDesiredFeatures | ; /* Entry i holds the normalised
probability of selecting i features from cluster */
14 for numFeatures = 1 to numDesiredFeatures do
15 normalisedProbabilities [numFeatures] <— calculate the normalised probability of selecting
numFeatures features from cluster using gaussianDistribution
16 end
17 numFeatures < Select a number of features for selection proportional to their associated probabilities
given by normalisedProbabilities
18 include numFeatures sortedFeatures in the position of Particle; ;
19 end
20 end
21 end

(B.1). The Gaussian distribution g(x) which is shown in Equation (B.2) is then constructed
with the calculated standard deviation and mean of 1. ¢(x) is used to individually calculate
the Gaussian score of selecting a single feature, two features, three features and so on up
to the number of features contained in the desired feature set for the given cluster. These
Gaussian scores are then normalised and resemble a set of probabilities that sum to 1. In
this set, entry i is the normalised probability of selecting i features from the given cluster.
Examples of the sets of normalised probabilities for two different feature clusters can be
seen in Figures B.3(a) and B.3(b). Each segment of each pie chart resembles the probability
of a certain number of features being selected from the given cluster. For example, Figure
B.3(a) shows that there is a 14.2% chance of selecting five features when five features are
desired from a feature cluster containing five features. A number of features X is then cho-
sen proportional to the set of normalised probabilities. After this, the X features with the
highest probabilities are included in the position of Particle;. It is to be noted, that if the de-
sired feature set contains a single feature, it is automatically included in the particle position
as its normalised probability is 1.0 regardless of its unnormalised probability given by the
Gaussian distribution.

An example of a typical run-through of feature selection from a single feature cluster
with the GMFPPU algorithm is outlined below. In this example, we focus only on the inner
loop of the GMFPPU algorithm where we select a subset of features from a single feature
cluster that contains five features.

e Step 1: The desired set of features is constructed and includes each of the five features
if and only if Equation (2.4) in the particle position update of BPSO evaluates to 1 for
the given feature using its associated velocity. In this example, we assume Equation
(2.4) evaluates each feature is equal to 1 and therefore the desired feature set contains
all five features.

e Step 2: A Gaussian distribution g(x) is constructed using Equation (B.2), with mean =

51

(a) The probability of selecting X fea- (b) The probability of selecting X fea-

tures from a feature cluster containing tures from a feature cluster containing
5 features and a desired feature set con- 30 features and a desired feature set con-
taining 5 features taining 10 features

Figure B.3: Normalised probabilities for selecting X features from two feature clusters of
differing size

1 and standard deviation according to Equation (B.1).

e Step 3: The Gaussian scores of selecting x features are calculated using g(x) from x =
ltox=>5.

e Step 4: The Gaussian scores are normalised as to sum to 1. The probabilities of select-
ing x features can be seen in Figure B.3(a). e.g. The chances of selecting three features
is 21%.

e Step 5: A number of features X is chosen via a roulette wheel selection. In this example,
we assume that the roulette wheel selection determines that 2 features (X = 2) should
be selected in the next step. (the chances of this happening is proportional to 23.1%).

e Step 6: The X features (2, in this case) with the highest probabilities are included in the
position of Particle;.

Used within BPSO, the GMFPPU algorithm can select a minimal number of features that
are representatives of the features from each cluster. In turn, the GMFPPU algorithm is
expected to select fewer features than the MFPPU algorithm on datasets containing a large
number of features, whilst maintaining or improving the classification accuracy.

B.2 Gaussian Fitness Function

GPSO2 is a variant of GPSO1 which introduces the Gaussian fitness function. The Gaussian
fitness function evaluates the fitness of a particle by its classification performance and a
Gaussian distance measure between the number of features selected by the particle and the
total number of feature clusters. This new fitness function aims to further minimise the
number of features selected per cluster by evaluating the fitness of a solution based in part
on how close the solution is to a single feature per cluster.

52

The classification accuracy of the feature subset is a common performance measure to
use as the fitness of a particle in PSO for feature selection. Choosing the classification ac-
curacy as the fitness of a particle leads the swarm towards a pbest and gbest that have high
training classification accuracies, which in general, implies a high classification accuracy on
the unseen data. However, as the fitness function evaluates a feature subset solely on its
classification performance, a feature subset with high fitness may contain a number of re-
dundant features. These unneeded features increase the amount of time needed to construct
classification algorithms, whilst they may even decrease the classification accuracy on the
unseeen data [2]. The Gaussian fitness function addresses this issue by including a Gaussian
distance measure in the fitness function which evaluates how close the feature subset is to
containing a single feature from each cluster with a score of 1 representing the best score and
0 representing the worst score. For example, a feature subet that contains a single feature per
cluster has a perfect Gaussian distance measure score, evaluating the solution as equal to 1.
Contrastingly, a feature cluster that contains many features per cluster has a bad Gaussian
distance measure score, evaluating the solution as close to 0. The reasoning behind the con-
struction and inclusion of the Gaussian distance measure in the fitness function is because
the results of Objective 1 suggest that a single feature from each cluster provides most of the
information needed to describe the entire dataset with high classification performance and
low redundancy. Therefore, the Gaussian distance measure aims to promote the selection of
a minimal number of features per cluster.

To calculate the Gaussian distance of a solution, a multivariate Gaussian distribution is
constructed and used. As a desired solution contains a single feature per cluster, a mean of 1
is chosen on every dimension of the multivariate Gaussian distribution. In order to be con-
sistent with the GMFPPU algorithm, the logarithmic standard deviation function defined in
Equation (B.1) is used to define the standard deviation along each dimension. This provides
a small penalty for selecting a small number of features from any cluster and a large penalty
for selecting a large number of features from large clusters. As the Gaussian distribution
is multivariate, a covariance matrix is needed to establish the variances along each dimen-
sions. To achieve this, the standard deviation values along each dimension are squared as
to equal the variances and are placed on the diagonal entries of a N x N covariance ma-
trix where N is the number of feature clusters. By using the logarithmic standard devation
function to calculate the variance values used in the covariance matrix, we ensure the vari-
ance along each dimension scales with the size of the particular feature cluster. By assigning
all non-diagonal entries the value of 0, we also ensure that the selection of features from
each cluster is independent from one another. An example of the transformation between a
set of feature clusters for the Wine dataset: {1,4,9,12},{0,3,11},{5,7},{6,8}, {10}, {2} to
the covariance matrix of the multivariate Gaussian distribution used in the Gaussian fitness
function is shown below.

1361 O 0 0 0 0
0 1157 0 0 0 0
0 0 897 0 0 0
0 0 0 897 0 0
0 0 0 0 530 O
0 0 0 0 0 530

As we can see, the feature clusters containing more features have a higher variance and
hence, allow a greater amount of variation in the number of features selected from those
clusters compared to smaller feature clusters. In effect, there is a greater chance of selecting
more features from large feature clusters than from smaller feature clusters.

After determaining the set of features selected by a given particle, a vector x can be con-

53

structed which denotes the number of features selected per cluster. This process is achieved
by counting the number of features selected within each of the feature clusters and for each
feature cluster i, assigning the ith entry in x to the number of features contained in feature
cluster i. The vector x is then used within the multivariate Gaussian distribution to calculate
the Guassian distance measure. This function is shown in Equation (B.3) where x is the vec-
tor with each entry i corresponding to the number of features selected from the ith feature
cluster, m is the mean vector in which the ith dimension represents the optimal number of
features to be selected from the ith feature cluster which is 1 along each dimension, Cov
is the multidimensional covariance matrix for the feature cluster, Cov~! is its inverse and
|Cov| is its determinant. A value of 1 along each dimension in the mean vector m ensures
that a solution containing 1 feature per cluster is evaluated by the multivariate Gaussian
distribution to be equal to 1, a perfect solution. On the other hand, a solution that contains
many features per cluster will have a Gaussian distance measure score close to 0 which is
the worst score. In effect, the higher the Gaussian distance measure score, the greater the
fitness of the solution.

exp(—3(x —m)TCov~!(x —m))

27 \clu;fer\ \/m

The fitness of a particle using the Gaussian fitness function is given in Equation (4.4).
As the classification performance is assumed to be much more important than the number
of features selected per cluster, the classification accuracy determines 98% of a particle’s fit-
ness. The other 2% is evaluated by the Gaussian distance measure. Even though this is a
relatively small percentage, it can make a dramatic difference as it allows 2% of the clas-
sification accuracy to be sacrificed for the minimisation of the number of features selected
per cluster. Like the classification accuracy, a value close to 1.0 for the Gaussian distance
measure represents a near perfect fit in which a single feature is chosen from each cluster.

Gaussian Distance(x, m) = (B.3)

Fitness = (0.98 x Classification Accuracy) + (0.02 x Gaussian Distance) (B.4)

Due to the Gaussian fitness function evaluating a particle’s fitness based partly on the
distance between the number of selected features per cluster and a single feature per cluster,
the swarm’s pbest and gbest have a higher chance of containing a smaller number of fea-
tures per cluster. As the pbest and gbest are used to guide the swarm towards solutions, the
Gaussian fitness function is expected to guide the swarm towards selecting solutions with a
minimal number of features per cluster. In turn, this is expected to allow GPSO2 to remove
a small number of redundant features from solutions obtained in GPSO1 on large feature
clusters.

54

