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Abstract
Often large numbers of features are introduced into data to describe patterns,

because of this it can be difficult to extract and construct relevant features to per-
form a particular class, such as classification. Particle swarm optimisation has
been shown to be a promising search strategy in feature selection. This project
aims to test the effectiveness of rough set theory as a fitness function in a filter
approach in conjunction with single and multi-objective particle swarm optimi-
sation. Probabilistic rough set theory has been tested and combined with addi-
tional measures aimed to reduce the number of features further. Experimental
results have shown that the number of features can be reduced down to 33% of
the total number, while improving accuracy. Where overall improvement was
not possible, it was possible to maintain the classification performance while
reducing the number of features further. Multi-objective particle swarm optimi-
sation can further improve upon the single objective approach. This project rep-
resents the first work using particle swarm optimisation and probabilistic rough
set theory in a filter approach to feature selection.
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Chapter 1

Introduction

Classification is an important task in machine learning and data mining, which involves
classifying a set of instances as one of a number of potential classes. Each instance is repre-
sented by a number of features that will be used by a machine learning algorithm to learn a
relationship, or a function or classifier, between these features and the class labels. This clas-
sifier can then be given to unseen instances for which the true class is not known. In order
to better describe these instances and to facilitate the discovery and extraction of patterns,
large numbers of features are introduced. This can, however, lead to ”the curse of dimen-
sionality“ [11] and poorly chosen features have a negative impact. For example, noisy and
irrelevant features can degrade the classification performance while redundant features can
increase computation cost with no significant gain.

Feature selection (FS), also called dimension reduction and attribute reduction, aims to
reduce the noisy, irrelevant and redundant features while preserving or improving the clas-
sification performance [14]. By removing the unnecessary attributes, dimension reduction
can reduce the training time of a learning algorithm and simplify the learnt classifier [8, 46].
Feature selection is a difficult task, where the size of the search space grows exponentially
along with the number of attributes in the dataset. In order to select the best feature sub-
set an efficient search technique is needed to explore the solution space and an evaluation
criterion needs to be defined to rate and select the best feature subset.

Many different search techniques have been applied to feature selection. Simple greedy
approaches such as forward selection and backward elimination [8] have been proposed.
Forward selection starts with an empty set of features and greedily chooses the next best
feature, while backward elimination starts with the full set of features and removes fea-
tures gradually [8]. These greedy approaches suffer from the problem of stagnation in local
optima, alternate brute force approaches also suffer from being computationally expensive
[8, 55]. In order to better address dimension reduction problems, an efficient global search
technique is needed. Evolutionary computation (EC) techniques are well-known for their
global search ability. Particle swarm optimisation (PSO) [17, 42] is a relatively recent EC
technique, which is computationally less expensive than other EC algorithms. Therefore,
PSO has been used as an effective technique in dimension reduction [46, 26, 30].

Based on whether a learning/classification algorithm is included in the fitness evalu-
ation, existing FS algorithms can be broadly classified into two categories: wrapper ap-
proaches and filter approaches [8, 6]. Wrapper approaches embed a classification algorithm
as part of the evaluation criterion while filter approaches operate independently of a learn-
ing algorithm. It has been argued that because of the difference, wrapper approaches can
often achieve better results than filter approaches, but they are computationally more ex-
pensive and less general in comparison [19]. PSO has been successfully applied to address
dimension reduction problems. However, most of the existing PSO based feature selec-
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tion algorithms rely on a wrapper approach. Although wrappers can achieve better perfor-
mance, the use of such algorithms is limited in real-world applications because of their high
computational cost. The development of PSO based filter feature selection approaches still
remains an open issue.

Numerous mathematical theories have been applied to filter fitness functions, including
information measures [10], dependency measures [53], consistency measures [54] and dis-
tance measures [24]. Rough set theory has been applied to attribute reduction [47] as a filter
approach. However, traditional rough set theory has certain limitations [52]. Probabilistic
rough set can overcome such limitations and from a theoretical point of view, Yao and Zhao
[52] have shown that probabilistic rough set can be a good measure in attribute reduction,
but its performance for dimension reduction has not been reported.

1.1 Goals

This project aims to investigate a new filter approach to feature selection for classification
using particle swarm optimisation and rough set theory. The main goal is to develop new fit-
ness functions that can be used to reduce the number of features and improve classification
performance. Specific milestones in the project are:

1. Develop a single objective filter algorithm to FS based on PSO and RS, and investigate
whether such a measure can outperform the conventional information gain measures
for feature selection.

2. Propose a multi-objective method for filter FS based on PSO and rough set theory,
and investigate whether the multi-objective PSO method can select a small number of
features and achieve a similar or even better classification performance.

1.2 Major Contributions

This work shows how a novel filter based single objective feature selection approach based
on PSO and rough set can be developed. Two algorithm are proposed that linearly combines
two objectives, maximising the classification performance and minimising the number of
features, into one fitness function. A rough set measure is used in both algorithms as a
filter fitness measure to estimate the goodness of the features. The first algorithm considers
the count of the number of selected features as the second objective. The second algorithm
uses the definitions of rough set theory to minimise the number of features rather than a
direct count. In several benchmark datasets the number of features used in analysis could
be decreased while maintaining or improving the classification performance. In the Chess
and Dermatology datasets it was possible to reduce the number of features to 33% of the
original size while improving the performance across different classification algorithms.

The single objective approach has been accepted by 25th Australasian Joint Conference
on Artificial Intelligence:

• Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. “A Dimension Reduction
Approach to Classification Based on Particle Swarm Optimisation and Rough Set The-
ory”. Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence. Lecture
Notes in Artificial Intelligence. Springer. Sydney, Australia, December 2012. (To appear)

This work also shows how a new filter based multi-objective feature selection approach
based on PSO and rough set. Two algorithms are again proposed, these are based on the
single objective approaches. Both multi-objective approaches share the rough set measure
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of fitness as one objective. The first algorithm uses the number of features as the second
objective, while the second uses the definitions of rough set theory to measure the number
of features. The multi-objective approaches return a set of solutions rather than the single
solution returned by the single objective approach. This set can be used to trade off between
performance and efficiency. The best performing solutions returned by the multi-objective
approach can be used if classification performance is the key issue. The multi-objective ap-
proaches further lower the number of features in solutions, beyond the reduction achieved
by the single objective approach.

Another paper is under preparation for EvoStar entitled “A Multi-Objective Feature Se-
lection Approach using Particle Swarm Optimisation and Rough Set Theory for Classifica-
tion”. This paper will present the results of the multi-objective approaches

1.3 Organisation

The report is organised as follows. Chapter 2 presents from theoretical and mathematical
background to classification, rough set theory and evolutionary computing. This chapter
also presents some related work on feature selection using approaches based in multiple
areas. Chapter 3 presents the single objective algorithms that linearly combine two objec-
tives. Provided is the experimental design and results of using these algorithms. Chapter
4 presents the multi-objective approaches that search and return a pareto front. Chapter 5
concludes the report and presents a small section on possible future work. The bibliography
and appendices follow.
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Chapter 2

Background

This chapter provides background information about machine learning, particle swarm op-
timisation, rough set theory, typical feature selection algorithms, and existing work closely
related to this project.

2.1 Machine Learning and Classification

Classification problems are usually solved by supervised learning techniques. The precise
and correct output for a given input is known, in the case of classification the class labels
of the instances are known [40, 29]. Typically classification algorithms are trained using a
training set to produce a classifier or learned model. This learned model can then be passed
to new and unseen instances and attempt to classify them. The performance of a classifica-
tion algorithm can be evaluated on a testing set, which contains a set of never before seen
instances.

There are many types of machine learning and classification algorithms. The k-nearest
neighbour (kNN) classifier can be considered an instance-based learning algorithm [20]. In-
stances within a dataset that exist in close proximity will share similar properties. The un-
seen instances can be classified based on the instances they are close to in the training set,
based on some distance measure such as Euclidean distance. kNN is considered an instance-
based algorithm because a model or classification function is not produced in training, the
instances in the training set are used directly. The naive Bayes classifier produces a model
than can be used to classify the instances in the testing set [20]. The produced model is
based on Bayesian probability, what is the likelihood of an instance being a certain class
based on the values of the attributes.

The decision tree algorithm [40] will build a tree that can be used to evaluate instances.
The leaves of a decision tree then return a particular class label. The tree is built using the
training set, when an unseen instance is to be evaluated the tree can be traced down based
on the attribute values in the unseen instance. When the trace reaches a leaf the class label of
the leaf is returned as the class of the instance. A measure of impurity or uncertainty, such as
Shannon’s entropy [41], can be used to decide on which attributes to consider at each node.
The attributes that provide the most information about a given class should be considered
earlier to minimise the size of the tree. Decision tree classifiers are simple to understand
and interpret and have the ability to perform internal feature selection. Not all attributes are
guaranteed to be used in the decision tree.

Machine learning is the process of developing an algorithm or parameters to an algorithm
over time [40]. Typically it involves three steps.

1. The generation of a solution to a problem
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2. The evaluation of the solution

3. The solution, if it is not good enough, is improved in some way and step (2) is repeated.

Machine learning can be applied to classification problems. The performance of the built
classifier can be evaluated, and if the classification performance was not adequate the pa-
rameters or algorithm can be changed slightly to improve performance further.

Feed-forward neural networks are an example of a machine learning technique [39], based
on the model of a biological brain. In classification the feature values will be passed to some
input nodes, the input layer, of the network. Each node in the network has parameters that
are to perform transformation to the input before they are passed to the next set of nodes.
The layers pass the input parameters along applying transformation at each stage. The
output of the final nodes are used to interpret as the final classification label, typically for an
n class classification problem there will be n output nodes, the output node with the largest
value is the final classification of the input.

2.2 Evolutionary Computation

Evolutionary Computation (EC) techniques rely on Darwinian principles for automated
problem solving. In evolutionary computation a population of potential solutions, called
individuals, are generated. These individuals then interact with each other to explore differ-
ent solutions and return the best. Some examples of evolutionary computation are provided
here.

Genetic algorithms (GAs) attempt to mimic the process of natural evolution [12, 13, 16].
Solutions are encoded into bit strings and evolutionary concepts such as inheritance, muta-
tion and crossover are then applied to the population. The solutions are evaluated and the
best solutions, as measured by a fitness function, are selected to move into the breeding pool.
These solutions are used to generate the next generation by the evolutionary concepts men-
tioned above, points in the bit string can be selected and mutated or swapped with other
solutions. The evaluation is then repeated, in this way the best individuals are selected
and improved upon until the preferred solution is found. GAs can be naturally applied to
feature selection, the bit strings can represent which features have been selected and the fit-
ness would be the classification performance of the selected features using a classification
algorithm.

Genetic Programming (GP) is a specialisation of genetic algorithm where each individual
is a computer program rather than a bit string [23, 22, 21]. The progams are evaluated using
a fitness function as for GAs. The evolutionary concepts of GAs are also applied, but the
process is somewhat more complex given the representation of a solution in GP is more
complex than the GA bit strings. Traditionally GP solutions are represented as tree based
structures [7]. Nodes and leaves can then be selected randomly for the breeding process,
rather than points in the bit string.

Evolutionary algorithms, as mentioned above, typically use concepts inspired by evo-
lution. Swarm intelligence involves the solutions interacting locally with each other and
the environment. Rather than individuals merging and producing offspring, the individ-
uals update themselves based on their surroundings and other individuals. The concepts
involved in swarm intelligence are inspired by the social interactions of biological creatures.
Examples of natural swarm intelligence include ant colonies, birds flocking and fish school-
ing.

Ant colony optimization (ACO) is a swarm intelligence graph search technique inspired
by the behaviour of ants searching for a source of food [9]. A searcher ant will find a source
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of food and return to the colony, leaving a trail of pheromones for other ants to follow.
Over time other searcher ants may find the same food source by a different route, leading to
two paths to the same food source. Ants searching for food follow these pheromone trails,
when food is found they return and strengthen them. As the pheromone trail is volatile,
the shorter route will gain a stronger pheromone trail. The longer trail will lose pheromone
faster as the ants take longer to leave additional pheromones. This will encourage more ants
to follow the shorter route, optimizing the path to the food source. This behaviour can be
used to search for the ideal route in a graph search problem.

2.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an evolutionary computation technique inspired by so-
cial behaviours of birds flocking and fish schooling [17, 42]. In PSO, each candidate solution
is represented as a particle in the swarm and PSO starts with a number of randomly gen-
erated particles. All the particles move in the search space to find the optimal solutions.
During the movement, each particle (i.e., particle i) has a position and velocity, which are
represented by vectors xi = (xi1, xi2, ..., xiD) and vi = (vi1, vi2, ..., viD), respectively, where D
is the dimensionality of the search space. A particle can remember the best positions it visits
so far, which is called personal best pbest. The best position obtained by the population thus
far is called the global best gbest, based on which a particle can share information with its
neighbours. A particle iteratively updates its position and velocity to search for the optimal
solutions based on pbest and gbest according to the following equations:

xt+1
id = xt

id + vt+1
id (2.1)

vt+1
id = w ∗ vt

id + c1 ∗ r1 ∗ (pid − xt
id) + c2 ∗ r2 ∗ (pgd − xt

id) (2.2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents the dth
dimension in the D-dimensional search space. w is the inertia weight, which can balance the
local search and global search abilities of the algorithm. c1 and c2 are acceleration constants.
r1 and r2 are random constants uniformly distributed in [0, 1]. pid and pgd denote the values
of pbest and gbest in the dth dimension. vt+1

id is limited by a predefined maximum velocity,
vmax and vt+1

id ∈ [−vmax, vmax]. The algorithm stops when a predefined criterion is met,
which could be a good fitness value or a predefined maximum number of iterations.

PSO is an example of swarm intelligence, the particles learn from their neighbours the
location of gbest and update their position internally based on the above equations. The
particles do not produce offspring by crossover or mutation as an evolutionary algorithm
approach would require. PSO differs from ACO because rather than optimising a path from
A to B, PSO searches for the optimal point in the search space.

2.3.1 Binary Particle Swarm Optimisation

PSO was originally proposed to address problems in real-number continuous search spaces.
In order to extend PSO to address discrete problems Kennedy and Eberhart [18] developed
binary particle swarm optimisation (BPSO). In BPSO, xid, pid and pgd are restricted to 1 or 0. The
velocity is still updated according to Equation (2.2), but it indicates the probability of the
position in the corresponding dimension taking value 1, rather than changing the current
position based on the velocity. Therefore, a sigmoid function is used to transform vid to
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the range of (0, 1). BPSO updates the position of each particle according to the following
formula:

xid =

{
1, if rand() < s(vid)
0, otherwise (2.3)

where

s(vid) =
1

1 + e−vid
(2.4)

and rand() is a random number selected from a uniform distribution in [0,1].

2.4 Rough Set Theory

Take a set of objects, called the universe, that can be partitioned. It may not always be
possible to distinguish these objects from each other under certain conditions because they
may share similar traits and features. Rough set theory (RS) developed by Pawlak [36]
provides a way of describing a conventional set in the above situation. The rough set is
described by the lower and upper bounds of the conventional set, the lower bound contains
all objects definitely in the set and the upper bound contains the objects that may be in the
set. In this way the rough set can describe the set of objects that are definitely in and those
that may possibly be in a given partion. Let U be the universe, the set of instances (objects),
and let A be the set of attributes that describe these instances. Also, let a(x) specify the
value of attribute a ∈ A in instance x ∈ U.

For any P ⊆ A, a subset of the total available attributes, it is possible to decide on sets
of objects that are indistinguishable, this gives the equivalence relation IND(P):

IND(P) = {(x, y) ∈ U2 | ∀a ∈ P. a(x) = a(y)} (2.5)

If (x, y) ∈ IND(P) then x and y are indistinguishable according to P. The above relation
can define equivalence classes, these are denoted [x]P. This means that y ∈ [x]P ⇔ (x, y) ∈
IND(P).

2.4.1 Deterministic Rough Set Theory

Let X ⊆ U be the set we want to represent with P, the target set. We can define the lower
and upper bounds of X according to P, PX and PX respectively, as

PX = {x | [x]P ⊆ X} (2.6)

PX = {x | [x]P ∩ X 6= ∅} (2.7)

The rough set is then the tuple: 〈PX, PX〉. We can quantify the accuracy of the rough set
using

αP(X) =
|PX|
|PX|

which effectively measures how well the attributes in P separate the target set, X, from the
rest of U. If P is poorly chosen then few instances will be in the lower bound while many
will be in the upper bound.
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2.4.2 Probabilistic Rough Set Theory

Deterministic rough set theory, as defined above, specifies strict criteria for entry into the
lower and upper bounds. For an instance to gain entry into the lower bound, everything
in the equivalence class of that instance must also be in the target set. For it to gain entry
into the upper bound only one instance in the equivalence class needs to be in the target set.
It is possible that a minority of instances could share identical attributes but have different
class labels. In practice this could happen due to minorities that are exceptions to common
patterns or even human error in inputing the data. This being the case having even one
instance labeled differently means that it becomes impossible to find a satisfying assignment
because of one mistake. To overcome this problem we can introduce probabilistic rough set
approximations [51]. Rather than having a strict lower bound, we can relax it with varying
degree using a value α. The same applies to the upper bound, we can relax it with varying
values for β.

In probabilistic rough set theory, µP[x] (See Equation 2.8) is defined as a way to measure
the fitness of a given instance x ∈ X.

µP[x] =
|[x]P ∩ X|
|[x]P|

(2.8)

The lower approximation is defined as Equation 2.9 and the upper approximation as Equa-
tion 2.10.

apr
P

X = {x|µP[x] ≥ α} (2.9)

aprPX = {x|µP[x] > β} (2.10)

where α and β can be adjusted to restrict or relax the lower or upper approximations. apr
P

X
and aprPX loosen the boundaries of the rough set. If a large number of instances are in the
target set X but a small number are not in a given equivalence class, it will include/exclude
them in the lower/upper approximations. Note that when α = 1.0 and β = 0.0, these
definitions become the same as the strict bounds defined in Section 2.2.1.

2.5 Multi-objective Optimisation

Multi-objective optimisation involves minimising or maximising conflicting objectives. For
k-objectives we want to

minimise F(x) = [ f1(x), f2(x), . . . , fk(x)] (2.11)

where x is the vector of decision variables, a potential solution, and fi(x) is a function on x.
It is these functions that should be optimised.

The quality of a solution is then explained by trade-offs between the objectives. Given
two solutions, y and z, in the above k-objective minimisation problem, we can only decide
that y dominates z if

∀i : fi(y) ≤ fi(z) ∧ ∃j : f j(y) < f j(z)

that is y is superior to z in at least one objective and equal to z in all objectives it is not su-
perior in, that is to say that y dominates z. When y is not dominated by any other solutions,
y is a Pareto-optimal solution. The set of all Pareto-optimal solutions, known as the Pareto
front, contains solutions that are not dominated by any others. Multi-objective optimisation
is the search for the Pareto front.
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2.6 Related Work

A number of feature selection algorithms have been proposed in recent years [8, 11, 26].
Typical feature selection algorithms are reviewed in this section.

2.6.1 Traditional Feature Selection Approaches

A traditional filter dimension reduction approach is principal components analysis (PCA),
which constructs a low-dimensional representation of the data by finding a few orthogo-
nal linear combinations of the original variables with the largest variance [1]. Due to its
conceptual simplicity and being relatively efficient, PCA has been widely used in practice.
However, PCA increases the dimensionality of the data in some cases due to its unsuper-
vised nature. Decision trees (DT) use only relevant attributes that are required to completely
classify the training set and remove all other attributes. Cardie [2] proposes a filter based
dimension reduction algorithm that uses a decision tree algorithm to remove unnecessary
attributes for a nearest neighbourhood algorithm.

Two commonly used wrapper methods are SFS [48] and SBS [27]. SFS (SBS) starts with
no attributes (all attributes), then candidate attributes are sequentially added to (removed
from) the initial attribute subset until the further addition (removal) does not increase the
classification performance. However, both SFS and SBS suffer from the problem of nesting
effect, because if an attribute is selected (eliminated) it cannot be eliminated (selected) later
[55]. The “plus-l-take away-r” method proposed by Stearns [45] could overcome this lim-
itation by performing l times forward selection followed by r times backward elimination.
However, the determination of the optimal values of (l, r) is a difficult problem. To address
this challenge, two floating attribute reduction algorithms are proposed by Pudil et al. [37],
namely sequential forward floating selection (SFFS) and sequential backward floating se-
lection (SBFS). SFFS and SBFS are developed to automatically determine the values for (l,
r). These two floating methods are regarded to be at least as good as the best sequential
method, but they also suffer from the problem of stagnation in local optima [55].

2.6.2 EC Algorithms (non-PSO) for Attribute Selection

Evolutionary computation techniques have been applied to address attribute reduction prob-
lems, such as GAs, GP, ant colony optimisation (ACO) and PSO.

Based on GAs, Chakraborty [3] proposes a attribute reduction algorithm using a fuzzy
sets based fitness function. However, PSO with the same fitness function in [4] achieve better
performance than this GA based algorithm. Hamdani et al. [15] developed a multi-objective
FS algorithm using non-dominated sorting based multi-objective genetic algorithms (NS-
GAII), but its performance has not been compared to alternate FS algorithms. Also based
on GA, Yuan et al. [54] propose a two-phase feature selection method using both filter and
wrapper methods. In the filter phase, GA is employed with an inconsistency criterion to
evaluate the fitness of solutions to remove irrelevant features. The wrapper phase starts
with a feedforward neural network whose input nodes are features obtained in the filter
phase. However, without considering feature interaction, features that would form the best
feature subset may be removed in the filter phase.

Muni et al. [31] develop a multi-tree GP algorithm to simultaneously select a feature
subset and design a classifier using the selected features called GPmtfs. For a c-class prob-
lem, each classifier requires c trees. Comparisons suggest this can achieve better results
than simpler methods such as SFS and SBS but the number of features selected increases
when dealing with a large amount of noise. Also based on GP, and using naı̈ve Bayes (NB),
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Kourosh and Zhang [32] propose a feature selection algorithm, where a bit-mask represen-
tation is used for feature subsets and a set of operators are used as primitive functions. GP
is used to combine feature subsets and operators together to find the optimal subset of fea-
tures. Kourosh and Zhang [33] also propose a GP relevance measure (GPRM) to evaluate
and rank subsets of features in binary classification tasks, and GPRM is also efficient in terms
of feature selection.

Ming [28] proposes an attribute reduction method based on ACO and rough set theory.
Experimental results show that the proposed algorithm achieves better classification perfor-
mance with fewer attributes than a C4.5 based attribute reduction algorithm.

2.6.3 PSO Based Approaches to Feature Selection

As an evolutionary computation technique, PSO has recently gained more attention for solv-
ing attribute reduction problems. Wang et al. [47] propose a filter attribute reduction algo-
rithm based on an improved binary PSO and rough set. However, the classification per-
formance of the reduct was only tested on one learning algorithm, the LEM2 algorithm,
which originally is specific used for rough set and have some bias for the proposed rough
set based algorithm. Meanwhile, only using one learning algorithm cannot show the ad-
vantage that filter algorithms is more general. Lin et al. [25] propose a wrapper attribute
reduction algorithm (PSO+SVM) using PSO and SVM to optimise the parameters in SVM
and search for the best attribute subset simultaneously. Mohemmed et al. [30] propose a hy-
brid method (PSOAdaBoost) that incorporates PSO with an AdaBoost framework for face
detection. PSOAdaBoost aims to search for the best attribute subset and determine the deci-
sion thresholds of AdaBoost simultaneously, which speeds up the training and increase the
accuracy of weak classifiers in AdaBoost.

Chuang et al. [6] apply the so-called catfish effect to PSO for attribute reduction, which
is to introduce new particles into the swarm by initialising the worst particles when gbest
has not improved for a number of iterations. The introduced catfish particles could help
PSO avoid premature convergence. Another approach presented by Chuang et al. [5] is to
simply reset gbest if it maintains the same value after several iterations. Yang et al. [49] also
propose a strategy to renew the gbest during the search process to keep the diversity of the
population in BPSO. When the gbest is identical after three iterations, a Boolean operator
‘and(.)’ will ‘and’ each bit of the pbest of all particles in an attempt to create a new gbest.
Experimental results illustrate that the proposed method usually achieves higher classifica-
tion accuracy with fewer features than GA and standard BPSO.

Liu et al. [26] introduce a multi-swarm PSO (MSPSO) algorithm to search for the optimal
attribute subset and optimise the parameters of SVM simultaneously. Experiments show
that MSPSO could achieve higher classification accuracy than grid search, standard PSO
and GA. However, MSPSO is computationally more expensive than the other three meth-
ods because of the large population size and complicated communication rules between
different subswarms. Based on PSO, Unler and Murat [46] propose a attribute reduction
algorithm with an adaptive selection strategy, where an attribute is chosen not only accord-
ing to the likelihood calculated by PSO, but also to its contribution to the attributes already
selected. Experiments suggest that the proposed method outperforms the tabu search and
scatter search algorithms.

PSO has been shown to be an efficient search technique for feature selection and di-
mension reduction by many existing studies. However, most of the existing approaches
are wrappers, which are computationally expensive and less general than filter approaches.
Therefore, investigation of an effective PSO based filter dimension reduction algorithm is
still an open issue. Probabilistic rough set was claimed to be a good way for dimension
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reduction problems [52], but its real performance has not been investigated. Therefore, it is
thought to investigate the performance of probabilistic rough set and PSO for filter dimen-
sion reduction.
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Chapter 3

Single Objective Feature Selection
Algorithms based on PSO and RS

3.1 Introduction

This chapter presents how RS theory can be used as an evaluation criteria for a filter ap-
proach, and investigates its effectiveness. Two new algorithms are presented, RSPSO1 and
RSPSO2, based on RS and PSO. Both algorithms use a RS based approach to measure the
fitness of a given set of features. This rough set measure is linearly combined with addi-
tional objectives in an attempt to remove additional numbers of features, without lowering
the classification accuracy further.

The chapter is laid out as follows. Fitness measures using deterministic and probabilistic
rough set theory are presented in Section 3.2. Section 3.2. then presents the RSPSO1 and
RSPSO2 algorithms. Pseudo-code of the proposed algorithms is provided in Section 3.2.5.
Section 3.3 describes and discusses the experimental design and results. Section 3.3. presents
the overall results achieved, before highlighting how changing the parameters of the new
algorithms can affect performance. The last part of Section 3.3. compares RSPSO1 and
RSPSO2 with some traditional approaches while Section 3.4 concludes the chapter.

3.1.1 Chapter Objectives

This chapter has the following objectives.

1. Investigate the applicability of both deterministic RS and probabilistic rough set and
PSO for filter feature selection problems.

2. Investigate whether additional components combined with the RS theory approach
can reduce the number of features further.

3. Investigate whether the RS and PSO can perform better than traditional FS approaches.

3.2 Rough Set Theory for FS

This section presents rough set theory as an evaluation criteria for feature selection. The
new proposed algorithms, RSPSO1 and RSPSO2, are presented.
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3.2.1 Deterministic Rough Set Theory for Feature Selection

Rough set theory provides a natural way to evaluate feature sets, given the definitions. Par-
tition the universe using the class labels, each partition becomes a target set. The lower
bound of each target set then measures the number of instances that have been completely
separated from instances of other classes, remember the lower bound of a target set is the
set of instances that definitely know are in that target set. Assume the universe, U, has been
partitioned into target sets using the class labels: {U1, ..., Un}, each target set contains only
the instances that are in the same class. An evaluation criterion for a subset of features,
G ⊆ F, is then:

Fitness1(G, U) =
∑n

i=1 |GUi|
|U| (3.1)

The evaluation criterion measures the number of instances that have been separated from
instances of other classes by the features, a score of 1.0 means that G completely divides the
classes. We do not consider the upper bound in our measurement as we use the size of the
universe as the upper bound and we want to see what proportion of instances can/cannot
be separated from others of differing classes in the whole universe across all target sets.

3.2.2 Probabilistic Rough Set Theory for Feature Selection

As discussed in the previous chapter, Section 2.2.2, the definitions of lower approximation
and upper approximation limit the application of rough set theory. In classification prob-
lems, it may happen that two or more instances might have the same attribute values but be
classified in different classes. This is possibly because incorrect values are entered or one in-
stance is an exception to a class. Therefore, it is impossible to achieve the Fitness1(G) = 1.0
in Equation 3.1. A set of attributes could be adequate, but erroneous or unusual values pre-
vent certain instances being included in the lower bound. This problem can be addressed by
relaxing the definitions of lower and upper approximations in probabilistic rough set theory.
Therefore, a new filter feature selection algorithm based on BPSO and probabilistic rough
set theory [26] is proposed.

The same thoery as in deterministic RS can be applied to probabilistic RS.

PotentialFitness2(G, U) =
∑n

i=1 |apr
G

Ui|
|U| (3.2)

Probabilistic rough set theory is equal to the original definition when α = 1.0, this means we
can include a test for the first fitness function while using only the probabilistic definition.

3.2.3 New Algorithm: RSPSO1

The fitness measures defined in the previous section have quite a significant drawback when
taken in isolation. Consider two sets of features that each achieve a perfect score of 1.0 using
the above fitness functions. Assume that one of these does so using fewer features, this
is clearly the preferred selection, one of our primary goals is to select as small a subset as
possible. The simple fitness functions above do not consider this information.

A simple way to achieve this goal is to add additional components into the fitness func-
tion, with new components representing a check on the number of features. A potential
fitness function would be:

RSPSO1(G, U) = γ ∗
∑n

x=1 |apr
G

Xi|
|U| + (1− γ) ∗ (1− # f eatures

#totalFeatures
) (3.3)
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where γ ∈ [0, 1] shows the relative importance of the representation power of the purity
while 1− γ shows the relative importance of the number of attributes. This is a typical way
to combine two attributes into one single fitness function. RSPSO1 means that given two
sets of features some consideration will be given to the number of features selected, leading
to a feature-minimising fitness function.

3.2.4 New Algorithm: RSPSO2

While this would achieve the goal of minimising the number of features there is large poten-
tial for a drop in classification accuracy on the testing set. The first component is essentially
a measure of purity in the equivalence classes. A score of 1.0 means that each equivalence
class is pure, that is every instance in each equivalence class are of the same class. Consider
a situation where each equivalence class is very small, it is quite likely these small equiv-
alence classes will be either pure or have little impurity. Such a situation could still score
highly in RSPSO1, a small number of features could reasonably describe a large number of
equivalence classes.

If lots of small equivalence classes are extracted it is likely that these same patterns do not
exist in the population, only in the training data. If however several large equivalence class
with low impurity is extracted that information is likely to exist in the population, because
a lot of instances obey that rule. To this end a better second component would be one that
attempts to maximise the size of the equivalence classes. Note that larger equivalence classes
imply fewer features, because more features mean it is easier for instances to differ.

RSPSO2(G, U) =
∑n

x=1 |apr
G

Xi|
|U| +

∑x∈{the equivalence classes}
|x|
|U|

# o f equivalence classes
(3.4)

The second measure in the above equation attempts to maximise the size of the equivalence
classes by finding the average proportion of instances in each equivalence class.

3.2.5 Summary of the New Algorithms

Both the two algorithms, RSPSO1 and RSPSO2 attempt to linearly combine two objectives.
The first objective uses RS to measure how good a set of features are. The second objective
attempts to bring the number of selected features into consideration. The γ parameter in
RSPSO1 allows the original RS criteria to be evaluated independently. With γ = 1.0 the
second component is not considered. RSPSO2 attempts to use the theory behind the RS
component to minimise the number of features, which considers the size of the equivalence
classes that the training set is broken into.

Algorithm 1 presents the pseudo code of the proposed algorithms RSPSO1 and RSPSO2,
which can be used in conjunction with the two evaluation criteria. The data is firstly split
into training and testing sets, before the particles are then initialised with random velocities
and and positions. These positions are then evaluated using the training set and pbest for
each particle and gbest are assigned. The evolution process can then begin, at each stage
the velocity and position are updated using the equations in the previous chapter before the
new positions and pbest and gbest are again updated.

3.3 Experiments and Results

This section presents the experimental design and results of RSPSO1 and RSPSO2 approaches
described above. The experimental design discusses the parameters used for the PSO equa-
tions. Following the experimental design section the overall results are discussed, before the
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Algorithm 1: BPSO feature selection algorithm

1 begin
2 divide the data into train and test sets ;
3 initialise particles;
4 for i = 0 to number o f particles do
5 for d = 0 to number o f f eatures do
6 v0

id = rand();
7 x0

id = rand();

8 evaluate fitness of each particle on train using Equation RSPSO1 or RSPSO2 ;
9 initialise pid for each particle ;

10 initialise pgd for each particle ;
11 for t = 0 to maxIteration do
12 for i = 0 to number o f particles do
13 for d = 0 to number o f f eatures do
14 update vt

id using Equation 2.2. ;
15 update xt

id using Equation 2.3. ;

16 evaluate fitness of each particle on train using Equation RSPSO1 or RSPSO2 ;
17 for i = 0 to number o f particles do
18 for d = 0 to number o f f eatures do
19 update pid ;
20 update pgd ;

21 accuracy← classifaction accuracy of gbest on test ;
22 return 〈accuracy, gbest〉 ;

effects of varying the RSPSO parameters are evaluated. The proposed algorithms are finally
compared with some traditional approaches.

3.3.1 Experimental Design

In order to test the algorithms described above, 7 datasets were taken from the UCI repos-
itory. Statlog and Waveform were discretized using the Weka discretize filter while the re-
maining datasets were in discrete form when accessed. Each dataset was split into 2

3 training
and 1

3 testing data. Three classification algorithms were used to test the classification accu-
racy of the selected features, decision tree (DT), Naive Bayes (NB), and 5-Nearest Neighbour
(NN). The reported classification performance is the performance of the classification al-
gorithms on the unseen testing data using only the selected features. The evolution and
learning process was completed using only the training data. The datasets are described in
Table 3.1.

For each dataset, the algorithm was conducted for 30 independent runs. In each run, the
fully connected topology is used, vmax = 6.0, the population size is 30 and the maximum it-
eration is 500. w = 0.7298, c1 = c2 = 1.49618. These values are chosen based on the common
settings in the literature [42]. The tables at the end of this section provide information about
the output of the algorithm. The values reported represent the mean ± standard deviation
(maximum) across all 30 runs with the average number of features also reported.

The experiments were performed using a cycle-stealing computational grid provided
by the School of Engineering and Computer Science (ECS). The gird is managed by the Sun

16



Dataset #Attributes #Classes #Instances
Lymphography (Lymph) 18 4 148
Spect 22 2 267
Dermatology (Derm) 33 6 366
Soybean Large (Soy) 35 19 307
Chess 36 2 3196
Statlog (Stat) 36 6 6435
Waveform (Wave) 40 3 5000

Table 3.1: Datasets

Grid Engine (SGE) and compirses of approximately 200 Dell Optiplex 990 Arch Linux work-
stations with 4096 MBytes RAM and Intel Core i5 2400 CPU @ 310 GHz 4 core processors.
The propgrams were written and compiled using Java6, Linux bash and shell scripts were
used to distribute jobs to the grid. For both algorithms, different values of α needed to be
considered as they rely on the probabilistic rough set theory. When α is set to 1.0 the proba-
bilistic rough set theory will perform in the same way as the deterministic approach, in this
way we can test the traditional rough set theory. RSPSO1 also requires values for γ, to set
the relative importance of the two components.

3.3.2 Overall Results
Table 3.2. presents the results for the general parameters. RSPSO1(1.0) and RSPSO1(0.5)
presents the results using RSPSO1 with α = 1.0 and γ as 1.0 and 0.5 respectively. This allows
for a comparison of the RS measure without the second component, as γ = 1.0. RSPSO2
considers with α = 1.0. As both RSPSO1(0.5) and RSPSO2 are giving equal weights to the
two components, the effects of the second components can be evaluated. As α = 1.0, it is
the traditional rough set approach that is tested, not the probabilistic measures.

The results can be evaluated from the perspective of the two key goals in feature selec-
tion, the first one is too reduce the number of features and the second one is too improve
the classification accuracy. In some cases, reducing the number of features did not lead to
an improved performance. With the DT classifier it is possible to reduce the number of
features and at least maintain or improve performance, in the Chess, Dermatology, Spect
and Waveform datasets, the best classification performance was achieved using RSPSO1 in
only the Waveform dataset, in the remaining three RSPSO2 achieved the best best perfor-
mance. In the remaining datasets RSPSO1(1.0) and RSPSO2 achieved similar performance,
but RSPSO2 often did so with fewer features and a more stable final solution. Consider
the Soybean dataset, RSPSO1(1.0) achieved an average accuracy of 0.803 using 21.5 fea-
tures while RSPSO2 achieved 0.802 but with 17.5 features. The standard deviation for the
RSPSO1 approaches are also larger, suggesting a greater spread in the results, RSPSO2 pro-
vided greater stability.

In the remaining classifiers, NB and NN, different trends are evidenced. The difference
between the NB and DT classifiers are that DT do further feature selection while NB makes
the assumption that the features are not dependent on each other. As fewer features are
selected, the assumption of NB could come closer to being true, while the feature selection
ability of DT are reduced. If we consider the Chess dataset, RSPSO1(0.5) achieves the best
performance in the NB classifier, with an average of only 11.2 features. The features selected
by RSPSO1(0.5) could share little correlation meaning the assumption in the NB classifier
is correct. The Spect dataset shares this trait with the Chess dataset. RSPSO2 performs
strongly on the DT classifier but is outperformed by RSPSO1(0.5) when the NB classifier is
used. Of the seven datasets, only Chess and Spect make improvements over the baseline
of all features uniformly across the 3 classifiers. The Dermatology and Waveform datasets
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Algorithm # Features DT NB NN

Chess

All 36 0.985 0.879 0.932
RSPSO1(1.0) 30.7 0.983 ± 0.003 (0.987) 0.885 ± 0.015 (0.917) 0.941 ± 0.008 (0.959)
RSPSO1(0.5) 11.2 0.972 ± 0.006 (0.979) 0.908 ± 0.017 (0.939) 0.918 ± 0.018 (0.945)

RSPSO2 28.3 0.985 ± 0.001 (0.987) 0.895 ± 0.022 (0.923) 0.946 ± 0.005 (0.960)

Derm

All 33 0.828 0.959 0.951
RSPSO1(1.0) 21.0 0.860 ± 0.048 (0.975) 0.935 ± 0.032 (0.984) 0.919 ± 0.033 (0.975)
RSPSO1(0.5) 6.9 0.701 ± 0.080 (0.967) 0.763 ± 0.057 (0.926) 0.731 ± 0.057 (0.869)

RSPSO2 9.8 0.92 ± 0.028 (0.959) 0.923 ± 0.021 (0.959) 0.898 ± 0.036 (0.975)

Lymph

All 18 0.755 0.878 0.816
RSPSO1(1.0) 11.7 0.724 ± 0.068 (0.796) 0.846 ± 0.035 (0.918) 0.776 ± 0.046 (0.857)
RSPSO1(0.5) 5.0 0.673 ± 0.000 (0.673) 0.776 ± 0.000 (0.776) 0.755 ± 0.000 (0.755)

RSPSO2 6.6 0.722 ± 0.063 (0.796) 0.814 ± 0.014 (0.837) 0.772 ± 0.025 (0.857)

Spect

All 22 0.809 0.764 0.820
RSPSO1(1.0) 17.5 0.810 ± 0.023 (0.843) 0.773 ± 0.018 (0.809) 0.811 ± 0.018 (0.854)
RSPSO1(0.5) 7.8 0.801 ± 0.010 (0.831) 0.824 ± 0.017 (0.843) 0.830 ± 0.009 (0.843)

RSPSO2 14.5 0.82 ± 0.000 (0.82) 0.777 ± 0.006 (0.798) 0.812 ± 0.008 (0.831)

Soy

All 35 0.819 0.903 0.907
RSPSO1(1.0) 21.5 0.803 ± 0.046 (0.872) 0.848 ± 0.031 (0.899) 0.802 ± 0.052 (0.868)
RSPSO1(0.5) 7.7 0.706 ± 0.039 (0.846) 0.741 ± 0.037 (0.859) 0.663 ± 0.034 (0.775)

RSPSO2 17.5 0.802 ± 0.032 (0.85) 0.811 ± 0.025 (0.859) 0.74 ± 0.032 (0.793)

Stat

All 36 0.864 0.826 0.901
RSPSO1(1.0) 25.7 0.855 ± 0.006 (0.871) 0.821 ± 0.004 (0.827) 0.893 ± 0.0040 (0.902)
RSPSO1(0.5) 9.0 0.836 ± 0.007 (0.85) 0.803 ± 0.0070 (0.814) 0.865 ± 0.0070 (0.882)

RSPSO2 19.9 0.854 ± 0.008 (0.87) 0.82 ± 0.004 (0.83) 0.888 ± 0.004 (0.897)

Wave

All 40 0.748 0.797 0.791
RSPSO1(1.0) 24.5 0.748 ± 0.019 (0.772) 0.777 ± 0.020 (0.813) 0.752 ± 0.026 (0.803)
RSPSO1(0.5) 7.0 0.702 ± 0.022 (0.744) 0.709 ± 0.021 (0.744) 0.667 ± 0.028 (0.710)

RSPSO2 18.4 0.726 ± 0.036 (0.767) 0.748 ± 0.046 (0.813) 0.72 ± 0.050 (0.792)

Table 3.2: Comparison of classification accuracy on the test set using all features,
RSPSO1(γ), and RSPSO2 with α = 1.0 and γ = 0.5 or 1.0

at least maintain, if not improve, accuracy using the DT classifier but not the NN and NB
classifiers.

While the average classification performance is not always greater than the baseline of
all features. The PSO search did find better subsets in at least one of the 30 runs in all
cases except the Soybean dataset. Since PSO is a stochastic approach, each run may find a
different set after a certain number of iterations. Some of the runs producing superior sets
suggests that the RS measure is valuing good sets of feature highly, or these would not have
been found in any of the searches. Even when in some cases, the classification accuracy
achieved by the proposed algorithm is lower, the number of features has been significantly
reduced. In many cases the corresponding decrease in accuracy was small in comparison.
The classification accuracy of the Statlog dataset is slightly reduced. 0.864, 0.826 and 0.901, in
the DT, NB and NN classifiers respectively, to 0.855, 0.821 and 0.893 with RSPSO1(1.0). This
drop in accuracy corresponded with the number of features dropping from 36 to 25.7. In
some cases this increase in efficiency may be acceptable at such a cost. The results discussed
so far, only considered simple parameters. By varying the values of α and γ the search
capabilities may be extended further.

3.3.3 Varying Parameters for RSPSO1

The parameters can be further refined, α and γ can be used to change the relative importance
of components to improve the accuracy in RSPSO1. By relaxing α we can get higher fitnesses
when using smaller sets of features, and by increasing γ we can give higher importance to
the purity of the equivalence classes. Tables 3.3 and 3.4. show the results of changing the
values for α and γ across both RSPSO1.
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α γ # Features DT NB NN

Chess Dataset
1.0 1.0 30.7 0.983 ± 0.003 (0.987) 0.885 ± 0.015 (0.917) 0.941 ± 0.008 (0.959)
1.0 0.75 16.8 0.979 ± 0.003 (0.985) 0.914 ± 0.012 (0.945) 0.937 ± 0.013 (0.955)
1.0 0.5 11.2 0.972 ± 0.006 (0.979) 0.908 ± 0.017 (0.939) 0.918 ± 0.018 (0.945)

0.75 1.0 30.3 0.985 ± 0.001 (0.987) 0.884 ± 0.015 (0.911) 0.942 ± 0.006 (0.951)
0.75 0.75 7.7 0.961 ± 0.019 (0.977) 0.932 ± 0.009 (0.953) 0.821 ± 0.114 (0.921)
0.75 0.5 4.9 0.931 ± 0.013 (0.938) 0.931 ± 0.013 (0.941) 0.602 ± 0.198 (0.892)
0.5 1.0 28.8 0.981 ± 0.005 (0.987) 0.885 ± 0.017 (0.915) 0.941 ± 0.006 (0.953)
0.5 0.75 7.0 0.955 ± 0.020 (0.977) 0.927 ± 0.018 (0.957) 0.798 ± 0.161 (0.912)
0.5 0.5 5.1 0.933 ± 0.013 (0.959) 0.932 ± 0.014 (0.941) 0.643 ± 0.186 (0.928)

Dermatology Dataset
1.0 1.0 21.0 0.860 ± 0.048 (0.975) 0.935 ± 0.032 (0.984) 0.919 ± 0.033 (0.975)
1.0 0.75 7.7 0.732 ± 0.074 (0.926) 0.780 ± 0.054 (0.910) 0.748 ± 0.047 (0.836)
1.0 0.5 6.9 0.701 ± 0.080 (0.967) 0.763 ± 0.057 (0.926) 0.731 ± 0.057 (0.869)

0.75 1.0 21.0 0.860 ± 0.048 (0.975) 0.935 ± 0.032 (0.984) 0.919 ± 0.033 (0.975)
0.75 0.75 7.7 0.743 ± 0.085 (0.926) 0.786 ± 0.064 (0.910) 0.766 ± 0.073 (0.893)
0.75 0.5 6.4 0.752 ± 0.093 (0.951) 0.783 ± 0.075 (0.959) 0.725 ± 0.083 (0.943)
0.5 1.0 20.7 0.860 ± 0.051 (0.975) 0.925 ± 0.045 (0.984) 0.912 ± 0.036 (0.975)
0.5 0.75 6.3 0.698 ± 0.059 (0.836) 0.742 ± 0.055 (0.869) 0.702 ± 0.054 (0.828)
0.5 0.5 5.6 0.652 ± 0.079 (0.910) 0.705 ± 0.057 (0.902) 0.661 ± 0.051 (0.762)

Spect Dataset
1.0 1.0 17.5 0.810 ± 0.023 (0.843) 0.773 ± 0.018 (0.809) 0.811 ± 0.018 (0.854)
1.0 0.75 12.8 0.811 ± 0.011 (0.820) 0.795 ± 0.016 (0.809) 0.796 ± 0.019 (0.831)
1.0 0.5 7.8 0.801 ± 0.010 (0.831) 0.824 ± 0.017 (0.843) 0.830 ± 0.009 (0.843)

0.75 1.0 15.6 0.818 ± 0.008 (0.820) 0.759 ± 0.016 (0.787) 0.811 ± 0.011 (0.843)
0.75 0.75 7.1 0.798 ± 0.012 (0.831) 0.797 ± 0.029 (0.843) 0.805 ± 0.040 (0.843)
0.75 0.5 4.6 0.786 ± 0.026 (0.843) 0.796 ± 0.025 (0.843) 0.739 ± 0.248 (0.843)
0.5 1.0 16.6 0.800 ± 0.021 (0.843) 0.767 ± 0.021 (0.820) 0.813 ± 0.021 (0.843)
0.5 0.75 3.6 0.842 ± 0.006 (0.843) 0.754 ± 0.040 (0.843) 0.843 ± 0.000 (0.843)
0.5 0.5 2.0 0.843 ± 0.000 (0.843) 0.838 ± 0.024 (0.843) 0.815 ± 0.151 (0.843)

Table 3.3: RSPSO1 performance on Chess, Dematology and Spect datasets with varying
values for α and γ

While uniform improvement was achieved across all classifiers in the Chess and Spect
datasets in Table 3.2, this often required the use of RSPSO2. Table 3.3 shows the results of the
different parameters in these two datasets. The Chess dataset, RSPSO1 with α = 0.75 and
γ set to 1.0, so no second component, matches the accuracy of 0.985 achieved by RSPSO2
although it does select more features. With α = γ = 0.5 the NB classifier hits a high of
0.932 with an average of only 5.1 features, a large improvement over the accuracy in Table.
3.2. The Spect dataset experiences the same changes, but to a greater extent, the DT and
NB classifiers hit the largest classification performance with α = γ = 0.5 of 0.843 and 0.838
respectively, using only 2 features. A number this low is only possible because the Spect
dataset has a low number of instances. The Dermatology dataset demonstrates that this
trend is not always the case, across all 3 classifiers the peak is always at α = γ = 1.0. This
indicates adding the additional components is not always beneficial.

Table 3.4 presents the in depth results of the remaining datasets. The Lymph and Statlog
datasets show improvement when α is reduced but γ is kept at 1.0. A small drop in perfor-
mance can sometimes lead to a large drop in the number of features, consider the difference
between γ = 1.0 and γ = 0.75 in the Lymph dataset when α = 1.0, the DT classification
accuracy falls from 0.727 to 0.712, but the feature count drops from 11.37 to only 4.0. The
same can be seen in the Statlog dataset. If the primary concern is efficiency, reducing γ can
vastly improve this while having only a small impact on the classification accuracy.
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α γ # Features DT NB NN

Lymph Dataset
1.0 1.0 11.7 0.724 ± 0.068 (0.796) 0.846 ± 0.035 (0.918) 0.776 ± 0.046 (0.857)
1.0 0.75 5.00 0.673 ± 0.000 (0.673) 0.776 ± 0.000 (0.776) 0.755 ± 0.000 (0.755)
1.0 0.5 5.00 0.673 ± 0.000 (0.673) 0.776 ± 0.000 (0.776) 0.755 ± 0.000 (0.755)
0.75 1.0 11.8 0.723 ± 0.068 (0.796) 0.846 ± 0.035 (0.918) 0.776 ± 0.047 (0.857)
0.75 0.75 5.00 0.673 ± 0.000 (0.673) 0.776 ± 0.000 (0.776) 0.755 ± 0.000 (0.755)
0.75 0.5 4.00 0.714 ± 0.000 (0.714) 0.816 ± 0.000 (0.816) 0.796 ± 0.000 (0.796)
0.5 1.0 11.4 0.727 ± 0.040 (0.796) 0.836 ± 0.042 (0.918) 0.778 ± 0.045 (0.857)
0.5 0.75 4.00 0.712 ± 0.047 (0.735) 0.792 ± 0.037 (0.857) 0.722 ± 0.052 (0.796)
0.5 0.5 3.00 0.680 ± 0.015 (0.714) 0.711 ± 0.038 (0.796) 0.687 ± 0.030 (755)

Soybean Dataset
1.0 1.0 21.5 0.803 ± 0.046 (0.872) 0.848 ± 0.031 (0.899) 0.802 ± 0.052 (0.868)
1.0 0.75 8.7 0.715 ± 0.038 (0.775) 0.752 ± 0.047 (0.833) 0.670 ± 0.034 (0.749)
1.0 0.5 7.7 0.706 ± 0.039 (0.846) 0.741 ± 0.037 (0.859) 0.663 ± 0.034 (0.775)
0.75 1.0 21.6 0.804 ± 0.043 (0.872) 0.849 ± 0.029 (0.899) 0.806 ± 0.043 (0.868)
0.75 0.75 8.8 0.713 ± 0.043 (0.775) 0.747 ± 0.031 (0.811) 0.668 ± 0.033 (0.749)
0.75 0.5 7.5 0.713 ± 0.039 (0.802) 0.761 ± 0.042 (0.833) 0.670 ± 0.033 (0.727)
0.5 1.0 20.4 0.801 ± 0.042 (0.868) 0.839 ± 0.029 (0.890) 0.792 ± 0.047 (0.859)
0.5 0.75 7.13 0.690 ± 0.054 (0.806) 0.728 ± 0.075 (0.846) 0.646 ± 0.054 (0.731)
0.5 0.5 6.27 0.664 ± 0.058 (0.775) 0.706 ± 0.071 (0.802) 0.619 ± 0.056 (0.700)

Waveform Dataset
1.0 1.0 24.5 0.748 ± 0.019 (0.772) 0.777 ± 0.02 (0.813) 0.752 ± 0.026 (0.803)
1.0 0.75 8.0 0.697 ± 0.025 (0.741) 0.709 ± 0.028 (0.753) 0.658 ± 0.038 (0.723)
1.0 0.5 7.0 0.702 ± 0.022 (0.744) 0.709 ± 0.021 (0.744) 0.667 ± 0.028 (0.71)
0.75 1.0 24.5 0.748 ± 0.019 (0.772) 0.777 ± 0.02 (0.813) 0.752 ± 0.026 (0.803)
0.75 0.8 8.0 0.701 ± 0.037 (0.763) 0.712 ± 0.038 (0.779) 0.668 ± 0.044 (0.738)
0.75 0.5 7.0 0.702 ± 0.025 (0.736) 0.71 ± 0.025 (0.756) 0.667 ± 0.031 (0.722)
0.5 1.0 24.5 0.748 ± 0.019 (0.772) 0.777 ± 0.02 (0.813) 0.752 ± 0.026 (0.803)
0.5 0.75 6.0 0.706 ± 0.03 (0.755) 0.708 ± 0.031 (0.755) 0.666 ± 0.042 (0.724)
0.5 0.5 6.0 0.704 ± 0.032 (0.756) 0.712 ± 0.029 (0.768) 0.667 ± 0.039 (0.743)

Statlog Dataset
1.0 1.0 25.7 0.855 ± 0.006 (0.871) 0.821 ± 0.004 (0.827) 0.893 ± 0.004 (0.902)
1.0 0.75 11.5 0.842 ± 0.009 (0.855) 0.809 ± 0.007 (0.825) 0.876 ± 0.007 (0.887)
1.0 0.5 8.9 0.836 ± 0.007 (0.85) 0.803 ± 0.007 (0.814) 0.865 ± 0.007 (0.882)
0.75 1.0 25.5 0.856 ± 0.006 (0.871) 0.82 ± 0.003 (0.825) 0.894 ± 0.004 (0.902)
0.75 0.75 10.3 0.846 ± 0.009 (0.864) 0.808 ± 0.008 (0.823) 0.877 ± 0.007 (0.891)
0.75 0.5 7.0 0.839 ± 0.010 (0.859) 0.801 ± 0.011 (0.817) 0.859 ± 0.010 (0.888)
0.5 1.0 23.5 0.857 ± 0.007 (0.867) 0.820 ± 0.004 (0.827) 0.892 ± 0.005 (0.899)
0.5 0.9 10.1 0.84 ± 0.008 (0.855) 0.803 ± 0.007 (0.816) 0.871 ± 0.005 (0.881)
0.5 0.5 5.6 0.834 ± 0.009 (0.858) 0.798 ± 0.009 (0.811) 0.843 ± 0.013 (0.865)

Table 3.4: RSPSO1 performance on Lymph, Soybean, Waveform and Statlog datasets with
varying values for α and γ
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3.3.4 Varying Parameters for RSPSO2

Table 3.5. shows the performance of RSPSO2 with different values for α. There is no weight-
ing on the components in RSPSO2 which means the only parameter is the value for α.
Changing the value for α did not always reduces the number of features further. In many
datasets the number of features increases as α is set to 0.75, but drops when it is lowered fur-
ther. Changing α will result in a different search, and it is possible that alternate solutions
with a stronger second component may now have a higher ranking in the first component
that means it becomes favourable. The reduction effect of relaxing α can sometimes have a
positive effect.

α # Features DT NB NN
Chess

1.0 28.3 0.985 ± 0.0010 (0.987) 0.895 ± 0.022 (0.923) 0.946 ± 0.005 (0.96)
0.75 28.9 0.985 ± 0.0010 (0.987) 0.892 ± 0.02 (0.923) 0.946 ± 0.006 (0.956)
0.5 24.4 0.985 ± 0.0010 (0.987) 0.908 ± 0.017 (0.93) 0.945 ± 0.010 (0.963)

Dermatology
1.0 9.8 0.920 ± 0.028 (0.959) 0.923 ± 0.021 (0.959) 0.898 ± 0.036 (0.975)
0.75 10.0 0.922 ± 0.029 (0.959) 0.93 ± 0.020 (0.975) 0.909 ± 0.039 (0.975)
0.5 9.0 0.909 ± 0.045 (0.951) 0.918 ± 0.037 (0.975) 0.864 ± 0.040 (0.943)

Spect
1.0 14.5 0.820 ± 0.000 (0.82) 0.777 ± 0.006 (0.798) 0.812 ± 0.008 (0.831)
0.75 14.1 0.820 ± 0.000 (0.82) 0.775 ± 0.003 (0.775) 0.812 ± 0.005 (0.820)
0.5 11.9 0.818 ± 0.010 (0.843) 0.801 ± 0.020 (0.82) 0.822 ± 0.010 (0.843)

Lymph
1.0 6.567 0.722 ± 0.063 (0.796) 0.814 ± 0.014 (0.837) 0.772 ± 0.025 (0.857)
0.75 6.533 0.722 ± 0.063 (0.796) 0.816 ± 0.012 (0.837) 0.773 ± 0.028 (0.857)
0.5 1.633 0.565 ± 0.106 (0.735) 0.582 ± 0.131 (0.816) 0.184 ± 0.296 (0.796)

Soybean
1.0 17.467 0.802 ± 0.032 (0.85) 0.811 ± 0.025 (0.859) 0.74 ± 0.032 (0.793)
0.75 17.8 0.804 ± 0.033 (0.85) 0.813 ± 0.024 (0.855) 0.742 ± 0.026 (0.797)
0.5 13.7 0.789 ± 0.033 (0.833) 0.792 ± 0.044 (0.863) 0.72 ± 0.032 (0.767)

Waveform
1.0 18.433 0.726 ± 0.036 (0.767) 0.748 ± 0.046 (0.813) 0.72 ± 0.05 (0.792)
0.75 18.433 0.726 ± 0.036 (0.767) 0.748 ± 0.046 (0.813) 0.72 ± 0.05 (0.792)
0.5 11.1 0.697 ± 0.041 (0.758) 0.713 ± 0.049 (0.789) 0.681 ± 0.058 (0.786)

Statlog
- 36 0.864 0.826 0.901

1.0 19.9 0.854 ± 0.0080 (0.87) 0.82 ± 0.0040 (0.83) 0.888 ± 0.0040 (0.897)
0.75 19.933 0.855 ± 0.0080 (0.868) 0.822 ± 0.0040 (0.83) 0.89 ± 0.0060 (0.899)
0.5 16.5 0.849 ± 0.0070 (0.866) 0.818 ± 0.0070 (0.832) 0.883 ± 0.0060 (0.897)

Table 3.5: RSPSO2 performance on all datasets with varying values for α

Consider the Chess dataset, with α = 0.5 an average of 24.4 features are selected. The

21



DT classification accuracy stays at 0.985 and the NN average classification accuracy drops
by 0.001 to 0.945. The best performance in the NN classifier, however, increased to 0.963
suggesting the potential for a positive impact. In the NB classifier the average performance
improved to 0.908 while selecting fewer features. In all cases the accuracy has stayed above
the performance of both all features and the independent RS measure while reducing the
number of features even further.

The Lymph dataset experiences a large drop in performance suggesting that having α too
low can have very negative effects, despite this the performance peaks slightly at α = 0.75
before dropping. In most of the datasets the value for α can be used to improve performance
a small amount. The Spect dataset peaks in the NB and NN classifiers at α = 0.5. The
Soybean and Dermatology datasets peak at α = 0.75, in these cases the number of features
increased as α is lowered. By changing α solutions that performed poorly before become
more viable. A set that scores well in the second component could be held back by the strict
criteria of α = 1.0. When α is relaxed the set improves the score in the first component
making it a valid option. This could explain the increase in the number of features. The
changes in performance again demonstrate probabilistic rough sets can be used to improve
performance.

3.3.5 Comparison of RSPSO1 and RSPSO2

An argument could be made that RSPSO2 is better than RSPSO1 as a feature selection al-
gorithm. RSPSO1 performs very strongly on the Spect dataset, however, the other datasets
nearly all experience the strongest performance when γ = 1.0. This means that the second
component of the RSPSO1 evaluation criterion is often hindering the performance. Note,
however, that RSPSO2 can often match or outperform RSPSO1 with γ = 1.0 in fewer fea-
tures. The second component of RSPSO2 is having a positive effect on the algorithm. Take
the Chess dataset as an example, RSPSO2 maintains an accuracy of 0.985 in the DT classifier
and 0.945-0.946 in the NN classifier. Only in the NB classifier does RSPSO1 do well, and
this is an exception to the pattern outside of the Spect dataset, as with the Spect dataset we
see an improvement when the additional component is added. The Dermatology dataset
peaks at 0.86, 0.885 and 0.919, for the DT, NB and NN classifiers respectively, in the RSPSO1
approach, this is using an average of 21.0 features and it is all when γ = 1.0. RSPSO2 peaks
at 0.92, 0.93 and 0.909 using only 10 features, the second component of RSPSO2 has halved
the total number of features at little cost to the classification accuracy, the DT accuracy even
improved. This does occur sometimes in RSPSO1, as seen above, but is much more frequent
in RSPSO2.

It is noticeable that RSPSO1 vastly reduces the number of total features when the second
component is added, more so than RSPSO2. In only the Spect dataset does this have a
positive effect, in RSPSO2 we see that the size of the subset does not drop so significantly
from RSPSO1 with γ = 1.0 which is when only the first component is considered. There is
often a trade-off between number of selected features and the classification accuracy. There
is an optimal subset of features that achieves the highest performance. This will often not
include all features but reducing beyond this number leads to a decline. As way to enable the
trade off between these two objectives we can introduce the additional measures. Sometimes
the additional measure can have a positive effect on performance, the original component
may not be finding an optimal subset. However, as a way to reduce the size beyond the
optimal set with regards to classification RSPSO2 provides a gradual way of doing this. The
drop in the number of features is not so dramatic as with RSPSO1.

While adding the second component in RSPSO2 only led to an improvement in the Chess
and Spect datasets, it provides a much better feature count reduction approach than the sec-
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ond component in RSPSO1. Adding a γ measurement into RSPSO2 could further improve
the dimension reduction aspect, given greater control to the size of the feature subset.

3.3.6 Comparison with Traditional FS Methods

Tables 3.7 and 3.7. present the results using forward selection and backward elimination
algorithms as implemented by the Weka tool kit. The performance are the accuracy of the
selected features using a DT classifier. Both approaches performed better than all features on
the Dermatology and Waveform datasets. The backward elimination also performed better
on the Soybean dataset. The results of these traditional algorithms can be compared with
the RSPSO approaches.

Dataset Chess Derm Lymph Spect
Method Size Accuracy Size Accuracy Size Accuracy Size Accuracy

CfsF 5 0.781 17 0.873 8 0.733 4 0.7
CfsB 5 0.781 17 0.873 8 0.733 4 0.7

Table 3.6: Peformance of Traditional Algorithms on the Chess, Derm, Lymph and Soy
datasets

Dataset Soy Stat Wave
Method Size Accuracy Size Accuracy Size Accuracy

CfsF 12 0.805 22 0.833 17 0.749
CfsB 14 0.854 22 0.833 17 0.749

Table 3.7: Performance of Traditional Algorithms on the Spect, Stat and Wave datasets

The RSPSO approaches approaches outperform the traditional approaches on the fol-
lowing datasets: Chess, Spect and Statlog. RSPSO2 also gets a higher accuracy on the Der-
matology datasets. In the remaining datasets, while the average accuracy was not greater in
at least one of the 30 runs PSO was able to find a better performing subset based on the best
accuracy. This indicates the traditional methods are not finding the optimal subset in any of
the datasets, while the PSO approaches can get closer to the optimal solution.

3.4 Chapter Summary

In this chapter, two new single objective feature selection algorithms were proposed. These
are RSPSO1 and RSPSO2 based on probabilistic rough set theory and particle swarm opti-
misation. RSPSO2 considers an aspect of rough set theory in the second component, while
RSPSO1 uses only a count of the number of selected features. Experimental results show
that the single objective approach can find good subsets of features, and the use of additional
components can further reduce the features. In some cases it can lead to an improvement in
performance but often to reduce the size of the set further leads to a drop in performance.
RSPSO2 can reduce the size without a great impact on performance.

With different parameters RSPSO1 can achieve improved performance in the Spect dataset.
In the remaining datasets, different parameters in RSPSO1 led to a pronounced drop in the
number of features selected, this was often accompanied by a drop in the classification per-
formance. RSPSO2 was largely more successful at reducing the number of features than
RSPSO1. In some cases it maybe beneficial to lower the number of features providing the
performance is not heavily impacted. RSPSO2 often dropped the total number of features
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without having the same large impact on the performance of RSPSO1. Multi-objective opti-
misation, the search for the pareto front, should be able to improve this approach further by
returning the pareto front. Solutions could then be selected from the pareto front based on
the relative importance of accuracy and efficiency.

When being compared to traditional approaches, the PSO approaches suffer from being
stochastic approaches. The search does not always find the same subset, given long enough
different searches may trend to the same solution but if the training time does not continue
for an extended period of time the sets may not be found. In all cases at least one of the
PSO runs was able to find a better set of features than the traditional approaches. The av-
erage maybe brought down by searches that did not return the same datasets, but given
longer search times these would have found the better subsets. The traditional approaches
would always return the non-optimal subset, it is not optimal as the PSO approaches did
find superior solutions.
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Chapter 4

Multi-Objective FS Based on PSO and
RS

4.1 Introduction

This section introduces multi-objective particle swarm optimisation. Two multi-objective
algorithms are introduced RSMOPSO1 and RSMOPSO2 as multi-objective extensions to
RSPSO1 and RSPSO2. Rather than being forced to linearly combine the two objectives, as
in Chapter 3., they are considered and evaluated separately. The search aims to find the
Pareto front of non-dominated solutions which can then be used to select a balance between
performance and efficiency.

This chapter is laid as follows. Section 4.2 presents the multi-objective particle swarm
optimisation approach and introduces the new algorithms RSMOPSO1 and RSMOPSO2,
pseudo-code and a background to the OMOPSO algorithm is also provided. The remaining
sections discuss and present the results and experimental design of the investigation before
the final section concludes the chapter.

4.1.1 Chapter Objectives

This chapter has the following objectives.

1. Investigate whether the probabilistic RS and the number of features in OMOPSO for
feature selection can achieve a set of non-dominated solutions, which can achieve bet-
ter classification performance than using all features.

2. Investigate whether using the probabilistic RS and the number of equivalence classes
in OMOPSO for feature selection can achieve a set of non-dominated solutions and
outperform the single objective algorithm and the above multi-objective algorithm.

4.2 Proposed Multi-objective Feature Selection Algorithm

The single objective fitness functions attempt to take the two objectives and combine them,
in the first approach weights are applied to each component to balance the importance of
the multiple objectives. As mentioned in the background chapter multi-objective optimisa-
tion allows for multiple objectives to be considered without needing to combine them into
one. The objectives from the single objective evaluation criterion can be taken and used to
design objectives for a multi-objective approach. These objectives are not identical to the
components in the single objective approach. The components used in the single objective
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fitness functions are scaled to be between 0 and 1, the number of selected features is divided
by the total number of features as an example. This scaling puts the components into the
same range as the purity measure so that they be combined without the result of one being
more powerful than the other. This is not a consideration for the multi-objective approach
as the objectives are considered and evaluated separate of each other.

Given that the search is no longer for a single global solution there are certain consider-
ations to consider in the transformation from single objective to multi-objective. In MOPSO
[38], first, gbest is replaced with a set of leaders, called the external archive. This is an archive
in which all the non-dominated solutions are stored. Upon updating its position a particle
will consult this archive, rather than a single gbest value. It is also this archive that is re-
turned as the result of the algorithm, the set of all non-dominated solutions found in the
search.

In traditional PSO the particles use the gbest solution as a guide when being evolved.
As the gbest has been replaced with the external archive there is no longer one solution to
use as the guide. One question is how can it be ensured that diversity is maintained by
the swarm. The swarm should not converge to only one non-dominated solution. There is
also the issue of when to replace pbest for each particle, as new solutions could represent
non-dominated solutions. The first issue can be solved by selecting one particular solution
from the archive to act as a gbest for each particle. Diversity can be ensured by selecting
good solutions from the external archive. Usually, pbest is replaced when we find a new
solution that is incomparable to the current pbest (both non-dominated with respective to
each other).

4.2.1 New Algorithm: RSMOPSO1

The first objective to consider is the component that is constant across all prior fitness mea-
surements, that is Equation 2.12.

Obj1 = 1−
∑n

x=1 |apr
G

Xi|
|U|

As with the single objective approaches in the previous chapter, the impact of the number of
features needs to be measured. The first approach directly considers the number of features
in a solution, this can be used as one of objectives.

Obj2 = # o f Selected Features (4.1)

As with the single objective approach, the first evaluation criterion will consider the
rough set measure against the number of selected features, as with RSPSO1.

RSMOPSO1 = [Obj1, Obj2] (4.2)

4.2.2 New Algorithm: RSMOPSO2

The second single-objective approach, RSPSO2, considers the size of the equivalence classes,
we want larger numbers of instances in the equivalence classes. Larger equivalence classes
means there will be fewer in total.

Obj3 = # o f Equivalence Classes (4.3)

The multi-objective search can aim to minimise a set of these objectives. Obj2 and Obj3 are
not exclusive, increasing one does not mean a decrease in the other which is likely to be
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the case when comparing both to Obj1. It is implied that a smaller number of equivalence
classes will lead to a larger average number of instances in each equivalence class.

The second evaluation criterion considers the rough set measure against the number of
equivalence classes, as with RSPSO2.

RSMOPSO2 = [Obj1, Obj3] (4.4)

Algorithm 2: MOPSO feature selection algorithm

1 begin
2 divide the data into train and test sets ;
3 initialise particles;
4 for i = 0 to number o f particles do
5 for d = 0 to number o f f eatures do
6 v0

id = rand();
7 x0

id = rand();

8 initialise the set of leaders, leader set ;
9 initialise the external archive ;

10 for t = 0 to maxIteration do
11 for i = 0 to number o f particles do
12 gbest← select leader from leader set ;
13 update vt

id for all d using Equation 2.2. ;
14 update xt

id for all d using Equation 2.3. ;
15 apply bit-flip mutation ;
16 evaluate the two objectives ;
17 update pid ;

18 identify the non-dominated solutions to update leader set ;
19 send leaders to external archive ;
20 calculate the crowding distance of each member in leader set ;

21 calculate the classification accuracy of the solutions in the external archive ;
22 return the solutions in the external archive and their classification accuracy ;

4.2.3 Summary of New Algorithms
The algorithm used for the MOPSO approach is known as OMOPSO [44, 38]. OMOPSO
attempts to solve several of the questions presented by multi-objective PSO, highlighted in
the previous paragraphs. OMOPSO uses two external archives, a leader set and an external
archive, to store the current set of leaders from which gbest is selected and the archive to
store the final solutions. A crowding factor is used to filter out the leaders when the set
becomes too large, crowding is used to measure how similar solutions are to each other so
similar/identical solutions can be identified [44]. This allows the external archive to store
all the best solution, while the leader set can still be restrained in size. This crowding is
also used in the selection of gbest for each particle, aiding the goal of maintaining diversity.
Finally, mutation factors are introduced to further increase the search capacity of the swarm.
OMOPSO has shown favourable performance over other multi-objective approaches such
as PSO approaches derived from NSGAII [38].

Algorithm 2. provides the pseudo-code for OMOPSO approach, this can be used with
the objectives above to measure the performance. The first steps are as with the BPSO ap-
proach described above, the dataset is split first into training and test data and the swarm
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Dataset #Attributes #Classes #Instances
Lymphography (Lymph) 18 4 148
Spect 22 2 267
Dermatology (Derm) 33 6 366
Soybean Large (Soy) 35 19 307
Chess 36 2 3196
Waveform (Wave) 40 3 5000

Table 4.1: Datasets

is initialised. Next, the external archives are initialised by introducing the non-dominated
solutions into the leader set. With the swarm and external archives initialised we can begin
the search. At each iteration for every particle we select a leader from the leader set to act
as gbest before updating the position and velocity of each dimension. The mutation factors
are then applied before the two objectives are evaluated using our choice of RSMOPSO1
and RSMOPSO2. After each particle has been evaluated we can update pbest for each par-
ticle and handle the external archives. First, the leader set is updated from the population.
Next, we update the external archive containing the final solutions from the leader set and
then remove particles from the leader set using the crowding factor. Finally, the classification
accuracy for the solutions in the external archive is calculated and returned.

4.3 Experiments and Results

This section presents the experimental design and results of the new algorithms, RSMOPSO1
and RSMOPSO2.

4.3.1 Experimental Design

The experiments were carried out using the jMetal framework, while the above algorithm
is not provided it is relatively straight forward to extend the NSPSO algorithms that are
provided. As was suggested by the authors of the OMOPSO algorithm the following pa-
rameters were used [44]. The acceleration constants, c1 and c2, are given a random number
in the range of [1.5, 2.0], note this is different to the constant value in single objective ap-
proach, c1 = c2 = rand(1.5, 2.0). The inertia was given a random value in the range of
[0.1, 0.5], again instead of a single constant value, w = rand(0.1, 0.5). Finally vmax = 6.0,
the same as for the single objective approach. Similar datasets were used as for the RSPSO
approach. 30 independent runs were executed for each experiment, the results shown are
the combined external archives of each of these 30 runs. For each experiment the same ECS
SGE Grid was used as for the single objective approaches.

4.3.2 Overall Results

The results cannot be presented in the same format as the single objective approach. RSMOPSO
returns the external archive, a set of non-dominated solutions, which should represent the
Pareto front. Each solution will have a score for both the objectives, and the solutions can
then be put through a classifier to test their performance on the training set. The results will
be presented in graph form, with the objectives graphed against each other and the classifi-
cation performance of the naive Bayes classifier graphed against the number of features in
each solution.

The alternate classifiers are not shown as they would take up too much space. Naive
Bayes was selected as decision trees perform additional feature selection as they are being
built, it is easier to see the goodness of the selected features on a naive Bayes classifier as
some are not being ignored. Nearest Neighbour was not used as the naive Bayes classifier
is better suited to discrete data.
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Figure 4.1: RSMOPSO1 with α = 1.0

Figure 4.1. presents the results using RSMOPSO1 with α = 1.0 while Figure 4.2. presents
the same α values but with RSMOPSO2. It is also important to note that both the Lymphog-
raphy and Spect datasets have a wider spread of values than the other datasets. This could
be because the Spect and Lymphography datasets have fewer total attributes and instances
than the others, making the patterns harder to extract. Another important aspect of the
results is that in nearly all circumstances the results peaked before dropping at higher num-
bers of features. In RSMOPSO1 only the Dermatology dataset does not show this trend.

The results for the RSMOPSO2 show the same trends as RSMOPSO1, but to a greater ex-
tent. The Dermatology dataset now displays the same behaviour, the objectives in RSMOPSO2
found a wider spread of results. This is also shown by the change in the Lymph dataset,
the graph produced by RSMOPSO1 was sparse in comparison to the graph resulting from
RSMOPSO2. RSMOPSO2 also found better performing subsets than RSMOPSO1 in the
Lymph dataset. There is also improvement in the Soybean dataset, the curve is much more
pronounced in RSMOPSO2.

One thing to remember is that RSMOPSO2 is considering the number of equivalence
classes as the second objective while RSMOPSO1 is considering the number of features.
The number of equivalence classes could be any where up to the number of instances, if
each instance was unique using the set of features, whereas the number of features is far
more constrained. It seems likely then that RSMOPSO2 has a greater potential for finding
additional results, since the second objective can take a lot more values in RSMOPSO2.
This could account for the larger number of results returned by the RSMOPSO2 approach
when compared to the RSMOPSO1 approach and explain the more pronounced curve in
the Soybean and Dermatology datasets.

In the Spect dataset, the above appears to not have been an issue. If a lot of the instances
share similarities this reduces the potential for a large number of equivalence classes. It
is clear that the RSPSO2 has been returning a greater number of results overall. When
the objectives are converted into count and accuracy, neither of the algorithms consider

29



0.1 0.2 0.3 0.4

5
10

15
20

25
30

error

co
un

t

(a) Chess

0.0 0.1 0.2 0.3 0.4 0.5

2
4

6
8

10
12

14
16

error

co
un

t

(b) Derm

0.2 0.3 0.4 0.5

0
2

4
6

8
10

error

co
un

t

(c) Lymph

0.15 0.20 0.25

5
10

15

error

co
un

t

(d) Spect

0.1 0.2 0.3 0.4 0.5 0.6

5
10

15
20

25

error

co
un

t

(e) Soy

0.2 0.3 0.4 0.5 0.6

3
4

5
6

7
8

9
10

error

co
un

t

(f) Waveform

Figure 4.2: RSMOPSO2 with α = 1.0

the accuracy only the RS estimate, what could have been a wide range of results along
the number of equivalence classes becomes smaller as the two different solutions with a
different number of equivalence class could have been using the same number of features.

Revisiting the shape of the curve, the data often peaks in classification accuracy before
dropping in the sets with large features. This highlights that often there may exist an optimal
set of features, that doesn’t contain all features, and removing features from this will only
lower performance. The Chess dataset using RSMOPSO1 and α = 1.0 is a good example, it
peaks at an error rate of 0.049 using 11 features. More features have a negative impact, using
all features achieved a larger error rate of 0.121. But when the number of features decreased
below this set, the accuracy again began to drop. The same can be seen in RSMOPSO2, also
in the Chess dataset.

4.3.3 Varying Parameters for RSMOPSO1

Again the potential for change in α needs to be considered. There is no γ to be considered,
weights are not being assigned to the objectives. Figures 4.3 and 4.4. show the results for
alpga equalling 0.75 and 0.5 respectively when RSMOPSO1 is used. Relaxing the value for α
appears to bring the Dermatology dataset closer to the shape seen in RSMOPSO2, the curve
is more noticeable. Also when α = 0.75 the Dermatology dataset found the strongest per-
forming dataset, Table 4.2. (below) goes into more detail on the best performing solutions.

Of the datasets the large datasets, Chess was the least affected. There are two noticeable
clusters in the Chess data plot which have remained largely untouched when alpha = 0.75.
Sets that place in between the clusters begin to appear when α is 0.5, one could argue that
this lower value of α has performed better because the search entered a space that was not
searched by the other values. In general, however, α = 0.75 appeared to add additional
features at the extremes of the curves, making them more pronounced. Reducing α to 0.5
often increases the confusion, results are not added at the extremes but behind the front.
This highlights, again, that the value for α is important.

30



0.1 0.2 0.3 0.4

5
10

15
20

25
30

error

co
un

t

(a) Chess

0.1 0.2 0.3 0.4 0.5 0.6

2
4

6
8

10

error

co
un

t

(b) Derm

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
1

2
3

4
5

error

co
un

t

(c) Lymph

0.12 0.14 0.16 0.18 0.20 0.22 0.24

0
2

4
6

8
10

12
14

error

co
un

t

(d) Spect

0.2 0.3 0.4 0.5 0.6

4
6

8
10

12
14

error

co
un

t

(e) Soybean

0.3 0.4 0.5 0.6

2
3

4
5

6
7

8
9

error

co
un

t

(f) Waveform

Figure 4.3: RSMOPSO1 with α = 0.75
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Figure 4.4: RSMOPSO1 with α = 0.5
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4.3.4 Varying Parameters for RSMOPSO2

Figures 4.5 and 4.6 show RSMOPSO2 with α equalling 0.75 and 0.5 respectively. Similar
trends can be seen in RSMOPSO2 as in RSMOPSO1. The multi-objective approach provides
a set of returned solutions. The set allows for multiple aims to be met. If efficiency is the
primary goal, the solution that achieves the most acceptable trade off between efficiency and
classification performance will be selected. That lowering α increase the number of outliers
means the Pareto front is extended, providing greater choice. The aim of the multi-objective
search is to maximise the spread along the Pareto front. Relaxing α can increase the spread
but, as the Dermatology dataset demonstrated, too far can have a negative effect. This was
true in the single objective approaches and this effect can be seen in RSMOPSO2 as well as
RSMOPSO1.
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Figure 4.5: RSMOPSO2 with α = 0.75

4.3.5 Comparison of RSMOPSO1 and RSMOPSO2

The main aim of multi-objective searches is to return a Pareto front, a solution can be chosen
from this Pareto front that best suits the needs of the user. The searches for RSMOPSO2
found a larger number of potential solutions. This is a potential advantage for RSMOPSO2,
the second objective in RSMOPSO2 has a larger range than the second objective in RSMOPSO1
allowing a greater spread of solutions. This demonstrated well by the Soybean dataset, the
curve is much more pronounced in the results for RSMOPSO2 because of the presence of
solutions further from the centre. This can also be seen in the Dermatology dataset.

Table 4.2. presents the peaks in the datasets from the perspective of classification accu-
racy, the error is proportion of incorrectly classified instances. RSMOPSO2 found superior
subsets in the Chess, Dermatology, Soybean and Waveform datasets. RSMOPSO1 found the
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Figure 4.6: RSMOPSO2 with α = 0.5

best set in the Lymph dataset. The two approaches achieved the same accuracy on the Spect
dataset, but RSMOPSO1 used fewer features. Often, the peaks in the RSMOPSO1 results
used fewer features than the peaks in RSMOPSO2. However, given that there exists a set of
potential results, RSMOPSO2 can adjust the number of features down and select a different
result to match the required

Overall, RSMOPSO2 appears to be the better algorithm. A wider range of results are
found, stretching out the Pareto front. In most cases RSMOPSO2 also found better perform-
ing feature sets, giving additional options in terms of the trade off between classification
performance and efficiency.

4.3.6 Comparison with Single-Objective Approach

To compare the single and multi-objective approaches the average performance of the so-
lutions found by the single objective search and where it places in the Pareto front can be
considered. In all cases the average performance of the single objective approach did not
place ahead of the Pareto front returned by the MOPSO searches. Consider the Dermatology
dataset, RSPSO1 achieved an average performance of 0.935 with 21 features when α = 1.0.
This is an error rate of 0.065, so were this a result in a MOPSO search it would have been
plotted at (0.065, 21). When this is compared to Figure 4.1. it is much higher on the y-axis
than any other of the other solutions. The performance is also lower than the best perform-
ing subset, as such it would not have dominated any of the solutions in the MOPSO Pareto
front. This trend is evidenced across all datasets.

The multi-objective approach gives the ability to select how much importance should
be given to the number of features versus the classification performance. Given that the
average result found in the single objective approach would not place ahead of the Pareto
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Dataset α numFeatures Error

Chess

- 36 0.121
1.0 11 0.049

0.75 12 0.053
0.5 18 0.054

Derm

- 33 0.041
1.0 10 0.041

0.75 8 0.025
0.5 8 0.057

Lymph

- 18 0.122
1.0 4 0.204

0.75 3 0.204
0.5 4 0.143

Spect

- 22 0.236
1.0 10 0.124

0.75 10 0.112
0.5 10 0.124

Soy

- 35 0.097
1.0 8 0.128

0.75 10 0.154
0.5 9 0.163

Wave

- 40 0.203
1.0 7 0.236

0.75 7 0.236
0.5 7 0.247

Dataset α numFeatures Error

Chess

- 36 0.121
1.0 15 0.051
0.75 18 0.051
0.5 13 0.046

Derm

- 33 0.041
1.0 9 0.008
0.75 12 0.016
0.5 12 0.016

Lymph

- 18 0.122
1.0 6 0.163
0.75 6 0.163
0.5 3 0.184

Spect

- 22 0.236
1.0 6 0.124
0.75 12 0.112
0.5 7 0.146

Soy

- 35 0.097
1.0 16 0.110
0.75 14 0.106
0.5 17 0.115

Wave

- 40 0.203
1.0 9 0.214
0.75 9 0.211
0.5 7 0.215

Table 4.2: Best Performing Subsets on RSMOPSO1 (left) and RSMOPSO2 (right)

front found in the multi-objective approach, it is clear the multi-objective approach is a better
option. Multi-objective optimisation claims to be better than equivalent single objective
approaches for 2 reasons.

• A set of results is returned.

• The performance across the objectives is superior to the single objective approach.

For two objectives there are then three things to consider. First, the multi-objective approach
does return a set of possible solutions, allowing for better choice. Second, the classification
performance as one of the objectives. The peak along the Pareto front is often better than the
results found in the single objective search. Third, the number of features selected as one of
the objectives. The multi-objective approach often achieved the highest performance in the
fewer features relative to the single objective approach.

4.4 Chapter Summary

This chapter presents two multi-objective algorithms, RSMOPSO1 and RSMOPSO2, based
on particle swarm optimisation and rough set theory. Each algorithm attempts to optimise
two objectives by finding the Pareto front, a set of solutions that are non-dominated by each
other. The first objective of both algorithms is a rough set measure, estimating the good-
ness of a set of features using rough set theory. The second objective measures the number
of features selected by a potential solutions. RSMOPSO1 uses the number of features as
the objective, while RSMOPSO2 uses the number of equivalence classes the features break
the training set into. The multi-objective features are developed from the single objective
algorithms, RSPSO1 and RSPSO2.
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RSMOPSO2 finds a larger number of solutions than RSMOPSO1. The second objective
of RSMOPSO2 can take more values than the second objective in RSMOPSO1 as two sets
of features of equal size can describe a different number of equivalence classes. One of the
major strengths of multi-objective optimisation is that the number of solutions it returns so
RSMOPSO2 could be considered stronger. The shape of the returned results also indicates
the the second objective is a good estimation of the number of features, as it shows the
same shape as RSMOPSO1 which actually uses the number of features. Relaxing the value
for α can be used to further spread the Pareto front. Relaxing α gives additional space to
search, since new subsets can score highly. Relaxing α too far did not always have favourable
results.

The multi-objective approach performs well when compared with the single objective,
the choice of solutions give a greater ability to trade off between efficiency and performance.
The best performing solution is capable of outperforming the single objective approaches
and does so in fewer features. Overall, the multi-objective approach can be used to greater
effect than the single-objective approach.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This project aimed to use rough set theory and particle swarm optimisation as a feature se-
lection technique. The algorithms presented aimed to minimise the number of features used
in analysis and improve the classification performance. Two approaches were successfully
developed and tested, single objective particle swarm optimisation and multi-objective par-
ticle swarm optimisation. The approaches made use of probabilistic rough set theory as an
evaluation criteria.

5.1.1 Single Objective Particle Swarm Optimisation

Two algorithms were presented, RSPSO1 and RSPSO2, with the aim of solving the problem
of feature selection. The algorithms linearly combine a rough set measure of the fitness of
a set of features with a measure designed to minimise the number of selected features. The
rough set measure itself gave no consideration to the size of the subset, hence the need for
the additional components. RSPSO1 added a direct count of the number of features, while
RSPSO2 made use of rough set theory and measured the size of the equivalence classes.

Results showed that the new algorithms could compete with traditional methods, and
improve the classification performance in some datasets. The additional components were
successful in reducing the number of features beyond the sets returned by the simple rough
set measure. The performance would sometimes drop along with the reduction of features,
in many cases the trade off between efficiency and performance might make this beneficial.
It could be claimed that as an additional feature reduction technique RSPSO2 was superior.
RSPSO1 often lead to a large drop in performance along with a large drop in the number of
features. The change in RSPSO2 was often less drastic, making it more suited as a feature
reduction technique.

Using probabilistic rough set theory was also found to be beneficial. By relaxing the
criteria for entry into the upper and lower bounds, patterns could be extracted in fewer
features improving the feature reduction aspect further. In some cases, reducing the value
for α could also lead to an improvement in performance. In 30 runs the average performance
was not always better than traditional methods, but the PSO search did often successfully
find better sets at least once. The traditional methods were not finding the optimal subsets,
where PSO could. Some of the alternate search methods for particle swarm optimisation,
as presented in the related work section of the background, could make this search more
reliable.

37



5.1.2 Multi-Objective Particle Swarm Optimisation

Once again two algorithms were presented, RSMOPSO1 and RSMOPSO2, based on RSPSO1
and RSPSO2 respectively. As with the single objective approach, RSMOPSO1 used a direct
count of the number of features while RSMOPSO2 used the equivalence classes as the sec-
ond objective. These algorithms were built on the OMOPSO search technique, using a set of
non-dominated solutions as a guide and returning this set upon completion. The returned
set can be used to fine tune requirements. If a drop in classification performance is accept-
able, the set can be searched for a different solution using fewer features.

When compared with the single objective approach, the multi-objective approach could
find smaller sets of features with better performance. The set of solutions would maximise
the classification performance without needing such a large number of features. These solu-
tions were competing with the larger sets of features in terms of performance. RSMOPSO2
often found a larger number of results, as the second objective had a larger range of possible
values, which gave RSMOPSO2 the potential to find more solutions, an advantage in multi-
objective searches. Again the effects of probabilistic rough set theory were tested, relaxing
α gave a wider spread of results along the pareto front but again reducing it too far could
negatively affect the performance.

5.2 Future Work

This section presents some potential future work using rough set theory and particle swarm
optimisation.

• The datasets used to test the algorithms are reasonably small. The largest, Statlog,
uses 6435 while Waveform has the most features at 40. The results could be further
extended using larger datasets. The UCI repository contains the Connect4 dataset, a
discretely valued dataset with 67557 instances and 42 features. There is the option of
using discretization algorithms, as applied to Waveform and Statlog, on larger contin-
uous datasets. The conclusions could be made more concrete with testing on larger
datasets.

• Continuously valued datasets are far more common that discretely valued datasets.
Dataset generation techniques would allow for additional large discretely valued datasets
to be created and tested.

• The current algorithms require the value for α to be set. As has been demonstrated
the correct value for α can have a positive effect on performance. Decision-theoretic
rough set models have been presented [50] which can predict the required value for α
through Bayesian decision procedure. This could simplify the algorithm and improve
it by removing one of the required parameters.

• Feature selection is only one technique to overcome some of the problems seen in
classification tasks. Feature construction is a second approach [43]. Feature construction
attempts to build new high level features from the provided low level features. The
approach is useful for when the existing features have been poorly chosen. Feature
construction has been well researched using genetic programming [35, 34] but from a
particle swarm optimisation perspective it has yet to be tested.
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Appendix A

Summer Research

My summer research focused on investigating the applicability of Information Gain and
Mutual Information based on Shannon’s entropy as a filter based feature selection result.
The following paper was accepted in IEEE 2012 Congress on Evolutionary Computation.

Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. “Binary Particle Swarm Opti-
misation for Feature Selection: A Filter Based Approach”. Proceedings of 2012 IEEE Congress
on Evolutionary Computation. IEEE Press. Brisbane, Australia, June 2012.

The goals of the paper are highlighted as follows.

• Develop a filter feature selection algorithm based on PSO and the mutual information
between pairs of features

• Develop a filter feature selection algorithm based on PSO and the group entroy of sets
of features

The research undertaken over summer differs from the research presented in this report as
the summer research focused on a different measure of fitness, information gain and entropy
not rough set theory. The goals are different from the goals presented in the introduction.
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