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ABSTRACT
Many industrial and research datasets su�er from an unavoidable
issue of missing values. One of the most common approaches to
solving classi�cation with incomplete data is to use an imputation
method to �ll missing values with plausible values before applying
classi�cation algorithms. Multiple imputation is a powerful ap-
proach to estimating missing values, but it is very expensive to use
multiple imputation to estimate missing values for a single instance
that needs to be classi�ed. Genetic programming (GP) has been
widely used to construct classi�ers for complete data, but it seldom
has been used for incomplete data. �is paper proposes an approach
to combining multiple imputation and GP to evolve classi�ers for
incomplete data. �e proposed method uses multiple imputation to
provide a high quality training data. It also searches for common
pa�erns of missing values, and uses GP to build a classi�er for each
pa�ern of missing values. �erefore, the proposed method gener-
ates a set of classi�ers that can be used to directly classify any new
incomplete instance without requiring imputation. Experimental
results show that the proposed method not only can be faster than
other common methods for classi�cation with incomplete data but
also can achieve be�er classi�cation accuracy.

CCS CONCEPTS
•Computing methodologies→ Genetic programming; Super-
vised learning by regression; Classi�cation and regression trees;

KEYWORDS
Incomplete Data, Missing Data, Genetic Programming, Classi�ca-
tion, Multiple Imputation

ACM Reference format:
Cao Truong Tran, Mengjie Zhang, Peter Andreae and Bing Xue . 2017.
Multiple Imputation and Genetic Programming for Classi�cation with In-
complete Data. In Proceedings of GECCO ’17, Berlin, Germany, July 15-19,
2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3071178.3071181

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 ACM. 978-1-4503-4920-8/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3071178.3071181

1 INTRODUCTION
Classi�cation is one of main tasks in machine learning and data
mining. Classi�cation has been widely applied to many scienti�c
areas like computer science, engineering, biology, ect. Due to its
importance, di�culty and complexity, classi�cation has received a
great a�ention over many decades, but there are still open issues
in classi�cation, one of the issues is incomplete data [8].

An incomplete dataset is a dataset which does not have values in
some �elds. Many real-world datasets have an unavoidable problem
of missing values. One clear example is that 45% of datasets in
the UCI machine learning repository [15] have missing values [8].
�ere are various reasons behind the severe de�ciency. For example,
medical datasets frequently contain missing values because not all
possible tests can be run on all patients [6]; datasets collected from
social surveys o�en lack some values because respondents usually
ignore some questions [16]; industrial datasets are o�en missing
because of mechanical failures [8].

Missing values cause some serious issues for classi�cation. First
of all, missing values result in the non-applicability of most classi�-
cation algorithms because most classi�cation algorithms require
their input to be complete. Moreover, missing values o�en lead to
large classi�cation errors [2, 8] .

One of the most common approaches to classi�cation with in-
complete data is to use imputation methods to �ll missing values
with plausible values before applying classi�cation algorithms. For
example, mean imputation replaces all missing values in each fea-
ture by the average of all complete values in the feature. Imputation
methods can transform incomplete data into complete data which
then can be used by any classi�cation algorithm. An ordinary obvi-
ous way to use an imputation method for classi�cation is that the
imputation needs to be performed both in the training process to
generate a classi�er and in the application process of applying the
classi�er to a new incomplete instance [8].

Multiple imputation is a powerful approach to dealing with
incomplete data by �nding multiple suitable values for each missing
values. In statistical analysis, multiple imputation has become
increasingly popular thanks to its convenience and �exibility [16].
Multiple imputation also has been a powerful method to address
classi�cation with incomplete data [6, 21, 22, 26]. Although multiple
imputation is suitable for batch imputation tasks, it is o�en very
expensive to impute missing values for a single incomplete instance,
as is required in classi�cation problems. �e main reason is that
to impute missing values for a single instance, it must rebuild the
imputation models from all the training data combined with the
new instance [24, 25]. �erefore, how to e�ciently and e�ectively
use multiple imputation for classi�cation with incomplete data
should be investigated.
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Genetic programming (GP) is an evolutionary technique [14].
�e capability of GP in learning the de�nition of a function from
examples makes it a good choice for evolving good classi�ers. �ere-
fore, GP has been widely used to classi�cation tasks [4].

Although GP has been successfully used to learn classi�ers, it
has been mainly applied to complete data. Since standard GP can-
not work directly with incomplete data, imputation methods are
o�en required to transform incomplete data into complete data
before using GP [23]. However, the combination of GP and a sim-
ple imputation method such as mean imputation o�en leads to a
weak classi�er. �erefore, GP needs be combined with a sophis-
ticated imputation method such as multiple imputation to evolve
a good classi�er. Unfortunately, applying multiple imputation to
classi�cation with incomplete data in the ordinary obvious way is
very ine�cient [24]. �erefore, how to e�ectively and e�ciently
combine GP and multiple imputation also should be investigated.

1.1 Research goals
�e goal of this paper is to propose a method combining multiple
imputation with GP to evolve classi�ers for incomplete data that
allow e�cient and e�ective classi�cation. To achieve this goal,
multiple imputation is used to transform the training incomplete
data to the training complete data. Furthermore, the proposed
method identi�es all common pa�erns of missing values. A�er
that, GP is used to learn a classi�er for each pa�ern of missing
values. As a result, the proposed method builds a set of classi�er
which can be then used to directly classify incomplete instances
without using any imputation. �e proposed method is compared
with other common combinations of GP and imputation methods
which use imputation methods to estimate missing values for both
the training set and the test set. Experimental results are used to
show that:

(1) �e proposed method can achieve be�er classi�cation ac-
curacy than the other combinations of GP and imputation
methods, and

(2) �e proposed method can be faster to classify incomplete
instances than the other combinations of GP and imputa-
tion methods.

1.2 Organisation
�e rest of the paper is organised as follows. Section 2 discusses
related work. Section 3 shows the proposed method. Section 4
presents the experiment design. Section 5 states experimental re-
sults and analysis. Finally, section 6 makes conclusions and men-
tions future work.

2 RELATEDWORK
�is section presents related work including imputation methods
and GP for classi�cation.

2.1 Imputation Methods
�e purpose of imputation methods is to transform incomplete
data into complete data by replacing missing values with plausible
values. Because a majority of classi�cation algorithms require
complete data, using imputation methods is a main approach to
addressing classi�cation with incomplete data. A traditional way to

use an imputation method for classi�cation with incomplete data is
that the imputation method is used to estimate missing values for
both the training data and a new incomplete instance that needs
be classi�ed in the application process [8].

Imputation methods can be divided into single imputation meth-
ods and multiple imputation methods. While single imputation
methods estimate one value for each missing value, multiple im-
putation methods estimate multiple values for each missing value
[16].

2.1.1 Single imputation. Single imputation methods try to �nd
one suitable value for each missing value. Two single common
imputation methods are hot deck imputation and Knn-based impu-
tation [5].

Hot deck imputation replaces missing values for an incomplete
instance by searching the most similar with the incomplete instance,
and then �lling missing values with the complete values in the most
similar instance. �is method can replace missing values by real
values. However, it only uses the information of one instance;
therefore, it ignores global properties of the data [1].

Knn-based imputation is based on K-nearest neighbors algorithm.
To replace missing values for each incomplete instance, �rstly, it
searches the K most similar instances with the incomplete instance,
and then replaces missing values of the incomplete instance with
the average of complete values in the K most similar instances. Knn-
based imputation o�en performs be�er than hot deck imputation.
However, this method is o�en computationally intensive because
it has to search through all instances to �nd the K most similar
instances for each incomplete instance [2].

2.1.2 Multiple imputation. Multiple imputation methods try
to �nd a set of suitable values for each missing value. Multiple
imputation is o�en computationally more expensive than single
imputation. However, multiple imputation has becomes more and
more popular. �e main reason is that multiple imputation o�en re-
�ects be�er the uncertainty of missingness [6, 21, 22, 26]. Moreover,
many recent so�ware developments have based on the multiple
imputation framework [10].

MICE [27] is one of the most advanced multiple imputation
methods. MICE uses some regression models to predict missing
values. Firstly, each missing �eld is randomly replaced with one
complete value in the same feature. Next, each incomplete feature
is estimated on other features to build a be�er estimation for the
feature. �e process is done several times for all incomplete features
to produce one imputed dataset. �e whole procedure is done N
times (N > 1) to produce N imputed datasets. Finally, the N imputed
datasets are averaged to make the �nal imputed dataset.

Multiple imputation is originally designed for statistical analysis
tasks [16]. Multiple imputation also has been demonstrated as a
powerful imputation approach to estimating missing values for
classi�cation with incomplete data [6, 26]. Multiple imputation
is suitable for batch imputation, so it is e�cient to estimate miss-
ing values for the training data. However, multiple imputation is
computationally expensive to estimate missing values for single
incomplete instance that needs be classi�ed in the application pro-
cess [24]. �erefore, an e�ective and e�cient way to apply multiple
imputation for classi�cation with incomplete data should be more
investigated.
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2.2 Genetic Programming for Classi�cation
GP has been widely used to construct discriminant functions for
classi�cation tasks. A discriminant function is a mathematical
expression that represents a combination of the features of an
instance which needs be classi�ed. �e value returned by the
discriminant function determines the predicted class by using a
single threshold or a set of thresholds. �e obvious way to construct
discriminant functions by using GP is that each individual in GP
population represents one discriminant function. �e function set
of GP is able to contain any type of functions and operations which
is able to work on the data. GP has been used to construct both
binary discriminant functions and multiple discriminant functions
[4].

With binary classi�cation problems, one discriminant function
is adequate to distinguish two classes. When the function output of
an instance is less than a given threshold, the instance is classi�ed
to a particular class, otherwise it is classi�ed to the other one. �e
threshold is usually set zero, so a positive output of the function
associates with a certain class, and a non-positive output of the
function associates with the other one. In [20], a zero-threshold
discriminant function is constructed, where a multi-objective ap-
proach is used to simultaneously optimise the class distribution
posteriori entropy and classi�cation accuracy. In [28], a single
threshold discriminant function is evolved, where a �tness function
is the combination of size penalty and classi�cation accuracy. In
[11], a single threshold function is also built, where a �tness func-
tion is the combination of classi�cation accuracy and a measure
of certainty. In [18], a discriminant function with single threshold
is constructed, where class imbalance is addressed by two special
�tness functions.

With multi-class classi�cation, two main methods can be fol-
lowed. One method is to solve a n-class classi�cation problem by
solving n-1 binary classi�cation problems; therefore, n-1 binary
discriminant functions are able to use to distinguish the n classes
[13, 19]. �e other method is only to construct one discriminant
function for discriminating all the classes. In this approach, n-1
threshold values are needed to make n intervals, and then each
interval associates with one class [29, 30]. In [13], an n-class classi-
�cation problem is considered as n-1 binary classi�cation problems,
and classi�cation accuracy is considered as the �tness measure.
In [19], an n-class classi�cation problem is also considered as n-1
binary classi�cation problems, but a �tness function is designed to
estimate the overlapping between classes given by classi�ers. In
[29, 30], multiclass classi�cation is tacked by constructing a mul-
tiple threshold discriminant function. �e function discriminates
the di�erences between n classes by n-1 threshold values. �ese
thresholds de�nes n intervals, and each interval is used to represent
a particular class. In [29], two methods are proposed to dynami-
cally determine thresholds for classes. In this approach, instead of
using static boundaries to discriminate di�erent classes, the two
methods gradually construct the boundaries during evolutionary
process. �e experimental results showed that the two dynamic
methods can perform much be�er than static methods, especially
with di�cult classi�cation problems.

GP cannot directly work with incomplete data. �erefore, GP
needs to combine with an imputation method to build classi�ers

for incomplete data. However, a combination of GP and a simple
imputation method usually leads to a weak classi�er. In contrast, a
combination of GP and a multiple imputation method o�en results
in a smaller classi�cation error, but it is computationally expensive
[24]. �erefore, an e�ective and e�cient combination of GP and
multiple imputation should be investigated.

3 PROPOSED METHOD
Multiple imputation is a powerful approach to estimating missing
values for incomplete data. It was originally designed for batch
imputation, and is therefore suitable for estimating missing values
for training data. However, multiple imputation is computationally
intensive when estimating missing values for a single incomplete
instance that needs be classi�ed. �erefore, this paper proposes an
e�cient and e�ective way to use multiple imputation for classi�ca-
tion with incomplete data.

�e proposed method has two key ideas. �e �rst key idea is to
identify common pa�erns of missing values in the training data.
A�er that, a classi�er is built for each of these pa�erns that does
not use the missing features in that pa�ern. �is means that any
new incomplete instance with the same pa�ern of missing values
can be classi�ed by the classi�er without using imputation. �e
second key idea is to build classi�ers using GP which is able to do
further feature selection by only using a subset of original features
in the classi�ers. �e result is that frequently more than one of
the classi�ers will apply for a new incomplete instance and the
multiple predictions can be combined to give a be�er result.

Figure 1: Classi�cation with incomplete data by using mul-
tiple imputation only in the training process.
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Fig. 1 shows main steps of the proposed method. �e proposed
method has two phases: the training process and the application
process. �e training process combines multiple imputation and GP
to construct a set of classi�ers. �e application process classi�es an
incomplete instance by choosing a subset of applicable classi�ers
from the set of classi�ers to directly classify the incomplete instance
without using any imputation.

In the training process, the training incomplete data is put into a
multiple imputation method to generate the training imputed data
which is complete. �e training incomplete data is also searched to
identify all missing pa�erns from the training incomplete data. A
missing pa�ern is a feature subset such that there is at least one
instance in the training data that is missing data for exactly the fea-
tures in the feature subset. Subsequently, for each missing pa�ern,
a training selected data is created from the training imputed data by
removing features which appear in the missing pa�ern. A�er that,
GP uses the training selected data to build a classi�er that is appli-
cable to all incomplete instances with the same missing pa�ern. As
a result, the training process generates a set of classi�ers.

In the application process, to classify a new instance, the pro-
posed method �rst identi�es all applicable classi�ers which do not
require �elds that are missing in the instance. A�er that, the in-
stance is classi�ed by the applicable classi�ers, and then a majority
vote is used to decide the �nal class label.

A similarity between the proposed method and the tradition
method to use imputation for classi�cation with incomplete data
is that both of them use the imputation to estimate missing values
for the training data. In the application process, the traditional
method also requires the imputation to estimate missing values for
a new incomplete instance that needs be classi�ed. However, the
proposed method builds a set of classi�ers that can directly classify
the new incomplete instance without requiring the imputation.

4 EXPERIMENT DESIGN
�is section shows detailed experiment design including the com-
parison method, datasets, the imputation methods used in the ex-
periments and GP se�ings.

4.1 �e Comparison Method
�e experiments are designed to evaluate the ability of the pro-
posed method to classify incomplete data. To achieve this objective,
the experiments are designed to compare the proposed method as
shown in Fig.1 with a common approach using GP for classi�cation
with incomplete data as shown in Fig. 2. Fig. 2 shows the common
approach to classi�cation with incomplete data by using GP. In the
benchmark approach, an imputation method is used to estimate
missing values in both the training process and the application
process. In training process, the incomplete data is put into to an
imputation method to generate training imputed data which is then
used by GP to build a classi�er. In the application process, to clas-
sify an incomplete instance, the incomplete instance is �rstly put
into the imputation method to generate imputed instance which
is then classi�ed by the classi�er. Both multiple imputation and
single imputation are used in the benchmark approach.

�e proposed method also uses a multiple imputation method to
estimate missing values of the training incomplete data. However,

Figure 2: Classi�cation with incomplete data by using an
imputationmethod in both the training and testing process.

in the application process, instead of using an imputation method
to estimate missing values, the proposed method constructs a set of
classi�ers which can directly classify incomplete instances without
using any imputation.

4.2 Datasets
�e experiments compared the proposed methods with the other
methods on eight datasets. �e datasets were chosen from the
University of California at Irvine Machine Learning repository
(UCI) [15]. �e main characters of the selected datasets are shown
in Table 1 including name, the number of features, the number of
instances, the number of classes and the percentage of instances
containing at least one missing �eld.

Table 1: Datasets used in the experiments

Dataset #Features #Inst #Classes

Incomplete

Inst

(%)

Automobile 25 205 6 26.83

Bands 19 539 2 32.28

Hepatitis 19 155 2 48.39

Horsecolic 23 368 2 98.1

Ecoli 7 336 2 0

Parkinsons 22 197 2 0

Seedst 7 210 3 0

Wine 13 178 3 0

�e �rst four datasets are “natural” incomplete datasets. �ese
datasets have high percentages of incomplete instances such as
Horsecolic dataset containing 98.1% incomplete instances. To eval-
uate the proposed methods on incomplete datasets with di�erent
levels of missing values, we used the four complete datasets, and re-
moved some values in some features to create “arti�cial” incomplete
datasets. To more precisely test the proposed methods, we only
introduced missing values into important features. �e correlation-
based feature selection method (CFS) [9] was used to select the
important features. Six levels of missing values: 5%, 10%, 15%, 20%,
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25% and 30% were randomly introduced into the important features
to generate incomplete datasets with di�erent levels of missing
values. For each level of missing values, we generated 30 incom-
plete datasets by randomly introduce the level of missing values in
the important features. �erefore, from one complete dataset, 180
(30 × 6) arti�cial incomplete datasets were conducted. As a results,
there are 720 (180 × 4) arti�cial incomplete datasets used in the
experiments.

None of the datasets were separated into a training set and a test
set. Furthermore, some datasets have a small number of instances.
�erefore, a ten-fold cross-validation method was used to divide
the datasets into training sets and test sets. �e ten-fold cross-
validation method was done 30 times on each dataset containing
natural missing values. With arti�cial datasets, with each level of
missing values, the ten-fold cross-validation method was done the
30 incomplete datasets. �erefore, 300 pairs of training and test
sets were conducted.

4.3 Imputation algorithms
�e proposed method was compared with imputation methods com-
bined with GP. �ree imputation methods were used to combine
with GP including two single imputations: hot deck imputation,
Knn-based imputation, and a multiple imputation: MICE. Hot deck
imputation and Knn-based imputation were in-house implementa-
tion. With KNN-based imputation, the number of neighbors K was
set 10. MICE’s implementation in [3] was used for multiple impu-
tation. In MICE, random forest was used as a regression method
to estimate missing values. Each incomplete feature was repeat-
edly regressed 20 times on other features. With each incomplete
dataset, the multiple imputation was repeatedly done 10 times to
generate 10 imputed datasets before averaging them to generate a
�nal imputed dataset.

4.4 GP settings
We used the ECJ package [17] to implement GP. Table 2 shows the
parameters of GP used in all the experiments.

Table 2: GP parameters.

Parameter Value

Function set +, -, x, / (protected division)

Variable terminals {f1 , f2 , .., fn}

Population size 1024

Initialization Ramped half-and-half

Generations 50

Crossover probability 60%

Mutation probability 30%

Reproduction rate 10%

Selection type Tournament(size=7)

5 RESULTS AND ANALYSIS
�is section shows the comparison between the proposed meth-
ods and the other methods on accuracy and computation time.
Moreover, a comprehensive analysis is done to demonstrate the
advantage of the proposed method.

5.1 Classi�cation Accuracy
Table 3 presents the average of classi�cation accuracy along with
standard deviation of the proposed method and the other methods
on the �rst four datasets. �e average of classi�cation accuracy in
Table 3 was calculated based on accuracies of each method on 30
times performing ten-fold cross-validation on each dataset. Table 4
shows the average of classi�cation accuracy along with standard
deviation of the proposed method and the other methods on the last
four datasets with six levels of missing values. With each dataset
and each level of missing values, the averages of classi�cation
accuracy in Table 4 was calculated based on accuracies of each
method on 30 generated incomplete datasets by using ten-fold
cross-validation on each incomplete dataset.

In Table 3 and Table 4, the MiceFSGP column presents results
from the proposed method as shown in Fig.1. �e MiceGP, HotGP
and KnnGP columns present results from the benchmark experimen-
tal setup as shown in Fig.2 by combining GP with MICE imputation,
hot deck imputation and Knn-based imputation, respectively.

For each incomplete dataset, Friedman test [7], which is a non-
parametric test for multiple comparisons, is used to statistical test
the null hypothesis in classi�cation accuracies over 300 times at
a 5% level of signi�cance. �e test shows that for all tasks, there
is a signi�cant di�erence in classi�cation accuracies for the four
methods, so the null hypothesis is rejected. �erefore, a post hoc
multiple comparisons test using the Holm method [12] is used to
determine the statistically signi�cant di�erences between group
means. “T” in the two tables show signi�cant tests of the columns
before them against MiceFSGP, where “+” means MiceFSGP is sig-
ni�cantly more accurate, “=” means not signi�cantly di�erent and
“-” means signi�cantly less accurate.

It can be seen clearly from Table 3 that with the natural incom-
plete datasets, MiceFSGP can achieve signi�cantly be�er classi�ca-
tion accuracy than the other methods in almost all cases. MiceFSGP
is signi�cantly more accurate than MiceGP on three datasets, and
similar to MiceGP on one dataset. Moreover, MiceFSGP is signi�-
cantly more accurate than both HotGP and KnnGP in all cases.

It also can be seen clearly from Table 4 that with the arti�cial
incomplete datasets, MiceFSGP can achieve signi�cantly be�er ac-
curacy than all the other methods on all cases. MiceFSGP achieves
signi�cantly be�er classi�cation accuracy than all the other meth-
ods on all the 24 cases.

In order to con�rm if the proposed methods are really signi�-
cantly be�er than the other methods, we perform the Friedman
test on the average of accuracies of all the algorithms in all incom-
plete datasets as shown in Table 3, and Table 4. �e test indicates
that there is a signi�cant di�erence in classi�cation accuracies in
the four methods, so the null hypothesis is rejected. �erefore,
the Holm method [12] is used to determine the statistically signi�-
cant di�erences between pairs of algorithms on all the incomplete
datasets. Table 5 shows the signi�cance comparison between all
pairs of algorithms. As demonstrated from Table 5, on all the in-
complete datasets, MiceFSGP is signi�cantly more accurate than
the other methods. As also can be seen from Table 5 that MiceGP is
signi�cantly be�er than single imputation methods combined with
GP showing that multiple imputation generates a more reliable
imputed dataset. Table 6 shows the ranking of the algorithms using



GECCO ’17, July 15-19, 2017, Berlin, Germany Cao Truong Tran, Mengjie Zhang, Peter Andreae and Bing Xue

Table 3: Classi�cation accuracy with datasets containing natural missing values.

Dataset MiceFSGP MiceGP T HotGP T KnnGP T

Automobile 50.31±2.79 46.64±3.06 + 45.01±2.66 + 45.76±3.15 +

Bands 68.31±0.78 67.73±1.27 = 61.12±2.18 + 61.25±1.58 +

Hepatitis 82.47±1.28 81.01±1.83 + 80.20±2.69 + 80.33±2.58 +

Horsecolic 85.45±0.37 84.36±0.74 + 81.56±2.38 + 81.75±2.41 +

Table 4: Classi�cation accuracy with datasets containing arti�cial missing values.

Dataset

Missing

rate

(%)

MiceFSGP MiceGP T HotGP T KnnGP T

Ecoli

5 68.69±1.26 65.40±2.35 + 63.60±2.25 + 63.96±2.18 +

10 69.70±1.16 65.83±1.85 + 62.19±1.88 + 62.44±1.76 +

15 70.11±1.40 65.52±1.99 + 58.59±2.50 + 60.98±2.28 +

20 69.77±1.45 65.14±2.15 + 56.86±2.43 + 59.74±2.18 +

25 69.03±1.36 63.82±2.33 + 54.10±3.16 + 57.74±2.50 +

30 67.98±1.91 63.25±2.91 + 52.74±2.94 + 56.04±2.76 +

Parkinsons

5 89.09±0.80 86.46±2.01 + 84.93±1.77 + 84.76±1.75 +

10 88.75±0.87 86.39±1.50 + 84.02±1.78 + 84.68±2.16 +

15 88.42±1.17 86.46±1.47 + 81.45±2.07 + 83.40±1.96 +

20 88.50±1.40 86.19±1.53 + 80.71±2.49 + 81.50±2.75 +

25 88.22±1.08 85.31±2.17 + 79.22±2.74 + 80.14±2.79 +

30 87.60±1.45 85.45±2.10 + 77.16±2.71 + 79.79±3.27 +

Seedst

5 91.73±1.18 86.06±2.65 + 79.22±2.98 + 79.79±2.60 +

10 91.46±1.45 84.44±2.63 + 75.31±2.54 + 75.93±3.38 +

15 91.36±1.28 84.98±2.37 + 71.22±2.91 + 72.11±2.96 +

20 90.79±1.08 85.31±2.07 + 68.63±3.27 + 69.50±2.75 +

25 89.63±1.33 83.42±2.70 + 64.84±4.49 + 66.63±3.17 +

30 88.98±1.62 83.46±2.30 + 61.14±3.90 + 64.80±3.27 +

Wine

5 90.46±1.35 85.87±2.54 + 82.14±3.46 + 82.33±3.32 +

10 89.97±1.63 86.20±2.78 + 78.43±4.26 + 78.90±4.14 +

15 89.20±1.30 83.91±2.20 + 72.90±3.97 + 74.48±3.55 +

20 88.36±2.17 84.66±3.17 + 67.87±3.86 + 70.94±4.36 +

25 87.22±1.87 85.07±2.79 + 66.16±4.34 + 68.89±3.80 +

30 87.09±1.76 84.29±2.57 + 62.30±3.36 + 66.15±4.27 +
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the Friedman test (smaller means be�er). As is evident from Table 6
that the proposed methods are the best algorithms.

In summary, the proposed method can achieve be�er accuracy
than the other methods not only with natural incomplete datasets,
but also with di�erent levels of arti�cial incomplete datasets.

Table 5: �e signi�cant comparison between some methods
on all incomplete datasets (Holm’s procedure rejects those hy-
potheses that have a p-value <= 0.05).

Algorithms p-value
MiceFSGP vs MiceGP 0.0038
MiceFSGP vs HotGP 0.0000
MiceFSGP vs KnnGP 0.0000
MiceGP vs HotGP 0.0027
MiceGP vs KnnGP 0.0000
HotGP vs KnnGP 0.0071

Table 6: �e ranking of the methods on all incomplete
datasets using Friedman test (smaller means better.).

MiceFSGP MiceGP HotGP KnnGP

1.0 2.0 3.03 3.96

5.2 Computation time
In order to compare the computation time of the proposed method
and the other methods in the application process, the average of
computation time to classify one instance on the �rst four “natural”
incomplete datasets is estimated. Table 7 shows the average of
computation time to classify one instance of the �rst four datasets.

Table 7: �e average of computation time for classifying one
(complete/incomplete) instance in the testing process (mil-
lisecond)

Dataset MiceFSGP MiceGP HotGP KnnGP

Automobile 0.006 3.59 × 103 0.05 0.13

Bands 0.03 1.21 × 104 0.05 0.18

Hepatitis 0.02 7.98 × 103 0.10 0.23

Horsecolic 0.11 5.87 × 104 0.06 0.08

It is clear from Table 7 that the proposed method is faster than
the other methods in almost all cases. MiceFSGP is faster than
both HotGP and KnnGP on the �rst three datasets. �e underlying
reason is that in the application process, to classify an incomplete
instance, although MiceFSGP has to spend time to classify the
instance by more than one classi�er, it does not have to spend time
for estimating missing �elds. In contrast, the other methods have
to spend time for estimating missing �elds before classifying the
incomplete instance. With Horsecolic dataset, MiceFSGP is slightly
more expensive than the two single imputation methods combined
with GP. It is likely thatHorsecolic dataset contains 98.1% incomplete
instances so MiceFSGP has to build a large number of classi�ers;
therefore, in application process, to classify an incomplete instance,

MiceFSGP has to spend a long time to search suitable classi�ers for
classifying the incomplete instance.

It is also clear from Table 7 that MiceFSGP is thousand times
faster than MiceGP. �e key reason is that in application process,
to classify an incomplete instance, MiceGP require rebuilding the
regression functions using all the training data and the incomplete
instance. In contrast, MiceFSGP does not require estimating missing
�elds, and only spends time for classifying the incomplete instance.

In summary, the proposed method not only is more accurate but
also faster than the other methods.

5.3 Further Analysis
In order to know how MiceFSGP can achieve be�er classi�cation
accuracy than the other methods, we further analysed classi�ers
evolved by MiceFSGP. Table 8 shows the average of total number
of classi�ers evolved by MiceFSGP on the �rst four “natural ” in-
complete datasets. Table 9 shows the average of number classi�ers
evolved by MiceFSGP which are chosen to classify one incomplete
instance in the application process.

Table 8: �e average of the total number of classi�ers
evolved by MiceFSGP.

Automobile Bands Hepatitis Horsecolic

6.8 36.7 19.8 70.2

Table 9: �e average of number of suitable classi�ers
evolved by MiceFSGP for classifying one incomplete in-
stance.

Automobile Bands Hepatitis Horsecolic

5.4 17.9 14.9 40.1

In training process, for each missing pa�ern, MiceFSGP only
constructs one classi�er. However, it is clear from Table 8 and Table
9 that more than half of classi�ers evolved by MiceFSGP are used to
classify each incomplete instance in the application process. �e key
reason is that when GP constructs a classi�er, it can select some
relevant features and remove some redundant features. �anks
to removing some features, a classi�er evolved GP can be used
to classify any incomplete instance which can contain missing
values in the removed features. �erefore, a classi�er evolved
by MiceFSGP for one missing pa�ern can be used to classify for
other missing pa�erns. By evolving a set of suitable classi�ers for
classifying incomplete instances, MiceFSGP not only can save time
for estimating missing values in the application process, but also
can achieve be�er classi�cation accuracy than the other methods.

In order to demonstrate the ability of GP in feature selection, we
analysed a tree generated by MiceFSGP on the Hepatitis dataset.
�e Hepatitis dataset which has 19 features { f1, .. f20} was cho-
sen because trees generated on Hepatitis are not too big to anal-
yse. Fig. 3 shows a tree evolved by MiceFSGP on Hepatitis using
the full training set. Although the tree is constructed by MiceF-
SGP using full training set the tree only contains �ve features:
{ f2, f11, f12, f13, f15}. As a results, the tree can be used to classify
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any incomplete instance which contains missing values in the rest
14 features.

Figure 3: A tree evolved byMiceFSGPusing full trainingHep-
atitis data.

In summary, by suitably combining a powerful multiple impu-
tation method and the ability of GP for evolving classi�ers, the
proposed method can achieve be�er performance than the other
methods.

6 CONCLUSIONS AND FUTUREWORK
�is paper proposed an e�ective system to combine multiple impu-
tation and GP to evolve classi�ers for classi�cation with incomplete
data. Multiple imputation is used to estimate missing values for
the training incomplete data. Furthermore, the proposed method
searches for all common missing pa�erns, and then GP is used to
build a set of classi�ers, one for each missing pa�ern. To classify
an incomplete instance, a subset of applicable classi�ers is used
to classify the incomplete instance without requiring any impu-
tation. �e proposed method was compared with other common
methods for classi�cation with incomplete data which combine
GP with imputation methods in both the training process and the
application process. Experimental results showed that the proposed
method can achieve be�er classi�cation accuracy than the bench-
mark methods, and can be faster to classify incomplete data than
the benchmark methods. Further analysis shows that the ability
of GP to do feature selection during evolving classi�ers helps the
proposed method to have multiple classi�ers for classifying each
incomplete instance to give be�er accuracy.

Some other kinds of classi�cation algorithms such as decision
trees can automatically perform feature selection during building
classi�ers like GP. �erefore, a future work could investigate a
combination of multiple imputation and the kinds of classi�cation
algorithms for constructing classi�ers for incomplete data.
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