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ABSTRACT
Missing values are an unavoidable problem in many real-world
datasets. Dealing with incomplete data is an crucial requirement
for classi�cation because inadequate treatment of missing values
o�en causes large classi�cation error. Feature construction has
been successfully applied to improve classi�cation with complete
data, but it has been seldom applied to incomplete data. Genetic
programming-based multiple feature construction (GPMFC) is a
current encouraging feature construction method which uses ge-
netic programming to evolve new multiple features from original
features for classi�cation tasks. GPMFC can improve the accuracy,
and reduce the complexity of many decision trees and rule-based
classi�ers; however, it cannot directly work with incomplete data.
�is paper proposes IGPMFC which is extended from GPMFC to
tackle with incomplete data. IGPMFC uses genetic programming
with interval functions to directly evolve multiple features for clas-
si�cation with incomplete data. Experimental results reveal that not
only IGPMFC can substantially improve the accuracy, but also can
reduce the complexity of learnt classi�ers facing with incomplete
data.
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1 INTRODUCTION
Classi�cation is one of the most important tasks in machine learn-
ing and data mining [13]. �e input space is of key importance
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in most classi�ers. Many classi�ers such as decision trees and
rule-based classi�ers cannot achieve adequate predictive perfor-
mance facing di�cult problems. One of the main reasons is that the
classi�ers cannot transform the input space to obtain good class
separability. Feature construction is a data preprocessing process
which transforms data from its original space to a new space having
be�er separability between classes [25].

An incomplete dataset is a dataset which contains missing val-
ues in some features. Missing values are a common problem in
many datasets [17]. For instance, in the UCI repository [1], one
of the most popular data repositories for benchmarking machine
learning tasks, 45% of the datasets contain missing values. Incom-
plete data causes a number of serious problems for classi�cation.
One of the most severe problems is non-applicability of classi�ers
since almost all existing classi�ers require complete data. Conse-
quently, these classi�ers are not able to directly work with original
incomplete data. Furthermore, incomplete data o�en leads to large
classi�cation error [8].

�e problem of incomplete data has been addressed extensively
in the statistical analysis �eld [9, 17] and also, but with less e�ort,
in the classi�cation literature. �ere are two main approaches to
classi�cation with incomplete data. One approach is to use impu-
tation methods that �ll plausible values into missing �elds before
using classi�ers [8, 28, 30]. For example, mean imputation �lls all
missing �elds in each feature with the mean of complete values in
the same feature. Another approach is to use classi�ers that can
directly classify incomplete data without using imputation methods
[22, 29]. For example, C4.5 [22] can directly classify incomplete data
without using imputation methods. Despite the fact that the two
approaches are able to deal with incomplete data to a certain level,
they o�en lead to large classi�cation error [7]. �erefore, further
approaches to improving classi�cation accuracy of incomplete data
should be investigated.

Feature construction is a process of constructing be�er features
from original features for classi�ers. Genetic programming (GP) is a
popular evolutionary technique inspired by biological evolution to
search a solution for a problem in the form of a computer program
[15]. GP is able to learn the de�nition of a function itself from
example data, so GP is an excellent choice for feature construction,
and has been widely applied [6, 27, 31].

Although there are many GP based feature construction methods,
most of them construct only a single feature, which needs combine
with the original feature set, but will lead to a higher dimension-
ality and a more complex classi�er [6]. GP-based multiple feature
construction (GPMFC) [21] is a recent promising �lter approach
using GP for feature construction. GPMFC is able to evolve multiple
high-level features from the original features. �e empirical results
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show that, in almost all cases, GPMFC can not only improve the
classi�cation performance, but can also reduce the complexity of
many decision trees and rule-based classi�ers.

However, GPMFC is not able to deal with incomplete data. As a
result, to use GPMFC for incomplete data, imputation methods are
required to transform incomplete data into complete data before
using GPMFC [27]. In order to obtain good performance, GPMFC
has to be combined with sophisticated imputation methods such
as MICE imputation [32]. Unfortunately, sophisticated imputation
methods such as MICE are o�en suitable for batch imputation, but
computationally intensive for imputing missing values in a single
instance in the unseen set for classi�cation [30]. �erefore, the
ability of GPMFC to directly deal with incomplete data should be
investigated.

1.1 Research goals
�e overall goal of this paper is to demonstrate a new method that
uses GP to directly construct multiple features for classi�cation with
incomplete data without using imputation methods. To achieve
this goal, we develop an extension of GPMFC, called IGPMFC,
that uses GP with interval functions as the function set to directly
construct multiple features. To evaluate the impact of IGPMFC
on classi�cation with incomplete data, the experiments will be
conducted to answer the following questions:

(1) Whether IGPMFC can improve classi�cation performance
and reduce the complexity of classi�ers with incomplete
data compared to using original features; and

(2) Whether IGPMFC can improve classi�cation performance
and reduce the complexity of classi�ers with incomplete
data compared to using GPMFC combined with imputation
methods.

1.2 Organisation
�e rest of the paper is organised as follows. Section 2 discusses
related work. Section 3 presents the IGPMFC algorithm which
performs multiple feature construction for classi�cation with in-
complete data using GP with interval functions. Section 4 outlines
experiment design. Section 5 presents empirical results and analysis.
Section 6 draws conclusions and proposes future work.

2 RELATEDWORK
�is section presents related work including classi�cation with
incomplete data, GP for feature construction and GP-based multiple
feature construction.

2.1 Classi�cation with Incomplete data
�e main approaches to classi�cation with incomplete data include
deletion approach, imputation approach, model-based approach
and machine learning approach [8].

2.1.1 Deletion approach. �is approach removes all incomplete
instances before using classi�ers. �e main advantage of this ap-
proach is to provide complete data that can be then classi�ed by
any classi�ers. However, incomplete instances are not participated
in the classi�cation process [8].

2.1.2 Imputation approach. �is approach uses imputation meth-
ods to put plausible values into missing �elds before using classi�ers.
For example, one simple imputation method is mean imputation
that �lls missing �elds in each feature with the average of the com-
plete values in the same feature. One of the most sophisticated
imputation methods is multivariate imputation by chained equa-
tions (MICE) [32]. MICE uses a set of regression models to build
regression functions that are then used to estimate missing values.
Initially, missing values in each feature are randomly �lled with
complete values in the feature. A�er that, each feature containing
missing values is regressed on other features to compute a be�er
estimate for the feature. �e process is repeated several times for
all features containing missing values to generate one imputed
dataset. �e whole procedure is repeated N times to generate N
imputed datasets. A�er that, the N imputed datasets are combined
to provide the �nal imputed data.

�e main advantage of using imputation approach is to provide
complete data for classi�cation. �erefore, both complete and in-
complete instances are participated in the classi�cation process.
Consequently, using imputation methods is a major approach to
classi�cation with incomplete data. However, the quality of clas-
si�cation using imputed data strongly depends on the quality of
imputation methods. Using simple imputation methods such as
mean imputation o�en results in large classi�cation error. In con-
trast, using more sophisticated imputation methods such as MICE
imputation results in smaller classi�cation error, but they are com-
putationally intensive [30].

2.1.3 Model-based approach. �is approach builds the data dis-
tribution model from input data. A�er that, the data distribution
model is used to classify both complete and incomplete instances by
using the Bayesian decision theory [2]. Although this approach is
able to classify both complete and incomplete instances, it requires
making assumptions about the joint distribution of all features in
the model [8].

2.1.4 Machine learning approach. �is approach builds classi-
�ers that can directly classify incomplete data without using im-
putation methods. For example, C4.5 can handle missing values in
both the training set and test set by using a probabilistic approach.
In the training stage, each feature value is assigned a weight: if a
feature value is known, then the weight is assigned one; otherwise,
the weight of any other values for that feature is the frequency of
that values. In the test stage, if a test case is unknown, from the
current node, it �nds all the available branches and decides the class
label by using the most probable value [22]. Some other decision
trees can deal with incomplete data including CART [4], REPTree
[3] and BFTree [23].

2.2 GP for Feature Construction
Feature construction is a process of creating a set of new features
which can provide a new input space for classi�cation that is be�er
than the original input space. Constructed features are typically
mathematical expressions of the original features. �e original
purpose of GP is to evolve computer programs that perform a
user-de�ned task. �erefore, GP is an ideal choice for evolving
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constructed features, and using GP for feature construction has
been a research trend in recent years [6].

In a GP-based feature construction approach, a new constructed
feature is o�en represented by a tree-like individuals, where internal
nodes are arithmetic operators or functions, and leaf nodes are
original features or constants. GP acts as a search technique that
combines with a �tness function evaluation method that guides GP
for searching new constructed features [6].

Two main ways to evaluate constructed features are the wrap-
per approach and the �lter approach. In the wrapper approach,
constructed features are evaluated by the performance of a classi-
�er [16], [24], [26]. Every evaluation requires training a classi�er
and then testing its performance; hence, the search process of the
wrapper approach is typically computationally intensive, but the
classi�cation accuracy is o�en be�er than �lter approach. In the
�lter approach, constructed features are evaluated by a measure
such as information gain, the gini index, chi-square [19] and Fisher
criterion [10]. None of classi�ers is included in the evaluation of
constructed features; hence, the search of the �lter approach is
expected to be more e�cient and the results are expected to be
more general [24].

2.3 GP-based Multiple Feature Construction
GPMFC is a �lter approach to feature construction that uses GP for
constructing multiple features [21]. GPMFC uses GP to evolve new
features, and the purity of class intervals as a measure to evaluate
new features.

Algorithm 1 shows the main body of the GPMFC algorithm. �e
input data for GPMFC includes two parts. �e �rst part is a matrix
containing values of original features. �e second part is an array
containing class labels corresponding observations in the matrix.
For each class label, GPMFC evolves the best constructed feature
that maximise the purity of the corresponding class interval. As a
result, the output of GPMFC is a set of constructed features equal
to the number of classes in the problem. �e detail of GPMFC can
be seen in [21].

In order to apply GPMFC, �rstly, GPMFC uses the training data
to build a set of constructed features that then forms a transfor-
mation. Next, the training data is put into the transformation to
generate transformed training data. A�er that, a classi�er uses the
transformed training data to build a classi�cation model that is
then used to classify the transformed unseen data.

�e experimental results show that in almost all cases, GPMFC
greatly improves classi�cation accuracy of decision trees and rule-
based classi�ers. Furthermore, GPMFC helps to reduce the com-
plexity of the learnt classi�ers. However, GPMFC is not able to
directly deal with incomplete data. �erefore, the ability of GPMFC
to directly deal with incomplete data should be investigated.

3 GP WITH INTERVAL FUNCTIONS FOR
MULTIPLE FEATURE CONSTRUCTION

Although GPMFC is a powerful feature construction method for
complete data, it cannot directly work with datasets containing
missing values. To tackle this problem, we proposes IGPMFC which
is an extension of GPMFC. IGPMFC uses GP with interval func-
tions to evolve new multiples features for incomplete data. �e

Algorithm 1: GPMFC [21]
Input:
D: a matrix containing values of original features
C: an array containing class values corresponding
observations in D
Output: CF– a set of constructed features

1 CF ← {}
2 for c ∈ C do
3 P ← InitialPopulation

4 bestFitness← +∞
5 while ¬maxGenerations ∧ bestFitness , 0 do
6 for ϕ ∈ P do
7 ϕf itness ← Fitness(D,ϕ, c)
8 if ϕf itness < bestFitness then
9 bestProдram ← ϕ

10 bestFitness← ϕf itness
11 end
12 end
13 Perform selection
14 Perform genetic operators
15 end
16 CF ←− CF ∪ {bestProgram}
17 end
18 return CF

underlying idea of IGPMFC is that it uses interval functions as the
function set of GP to deal with missing values. If a feature value
is missing, it will be substituted by an interval associated with the
feature. If a feature value is complete, it will still be substituted by
an interval such that both the lower bound and upper bound are
equal to the feature value. �e purpose of using interval functions
is that missing �elds are unknown; hence replacing a missing �eld
with an interval instead of a single value may re�ect be�er the
uncertainty of the missingness.

�e interval associated with each feature must represent the
range of possible values of the feature and needs to be estimated
by the algorithm. Furthermore, the interval function set of GP also
needs to be de�ned.

3.0.1 Finding the Interval of a Feature. A feature interval is the
range which covers the most occurrence values of the feature. �e
interval of a feature should be estimated from the distribution of
the feature values. A simple way to �nd the interval of a feature is
to consider that the range between the minimum and maximum of
the feature which is the interval of the feature. However, this kind
of interval possibly contains outliers which are not desired [21].

If the values of feature f is normally distributed, the interval
(µf − 3σf , µf + 3σf ) could cover 99% of the feature values, where
µf and σf are the mean and the standard deviation of the feature f,
respectively [21]. Unfortunately, the values of a feature are not nec-
essarily normally distributed; therefore, the interval might include
too many values, or too few values. Hence, it would be essential
to �nd a method of estimating the interval of a feature which is
able to apply to all kinds of distribution. One simple method to
perform the task is to sort all feature values and then remove a few
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lowest and highest values from both ends of the data range. A more
advanced method is to use the introselect algorithm proposed in
[20]. We used the algorithm in [21] for estimating the interval of a
feature.

3.0.2 Interval Functions. Assuming the interval of feature a is
represented by the range between the lower bound al and the upper
bound au , and the interval of feature b is represented by the range
between the lower bound bl and the upper bound bu . In IGPMFC,
the function set of GP uses four interval arithmetic operations
de�ned as follows [14]:

a + b =

{
lower : al + bl
upper : au + bu

a − b =
{
lower : al − bu
upper : au − bl

a ∗ b =
{
lower : min(al ∗ bl ,al ∗ bu ,au ∗ bl ,au ∗ bu )
upper : max(al ∗ bl ,al ∗ bu ,au ∗ bl ,au ∗ bu )

a/b =
{
lower : min(al /bl ,al /bu ,au/bl ,au/bu )
upper : max(al /bl ,al /bu ,au/bl ,au/bu )

It is important to notice that the division operation is not right
if the lower and upper bounds of denominator have di�erent signs.
�erefore, it requires an assumption that the denominator lower
bound has the same sign with the denominator upper bound. Nev-
ertheless, we permit GP search to remove trees which break the
assumption.

3.1 Estimating the Real Output of an
Individual

�e output of an individual evolved by GP with interval functions is
an interval. Nevertheless, to use constructed features for classi�ca-
tion, single values are required. Hence, in IGPMFC, the real output
of an individual is calculated as the middle point of the interval.
Assuming that [outl ,outu ] is the output of an individual, the real
output can be de�ned as follows:

out =
outl + outu

2

4 EXPERIMENT DESIGN
�is section shows detailed experiment design including the com-
parison methods, datasets, the imputation methods used in the
experiments, GP se�ings and classi�cation algorithms.

4.1 Comparison Method
�e experiments are designed to evaluate the impact of IGPMFC to
construct new features for classi�cation with incomplete data. To
achieve this, three experimental setups are designed, as shown in
Fig.1, Fig.2 and Fig.3. �e Fig.1 shows classi�cation with incomplete
data by using a classi�er that is able to directly classify incomplete
data. �e Fig.2 shows classi�cation with incomplete data by using
an imputation method to transfer incomplete data into complete
data that is then used by GPMFC to construct new features before
using a classi�er. �e Fig.3 shows classi�cation with incomplete

data by using IGPMFC to construct new features from incomplete
data before using a classi�er.

Figure 1: Classi�cation with incomplete data by using a clas-
si�er able to classify incomplete data.

Figure 2: Classi�cation with incomplete data by using an
imputation method and GPMFC before using a classi�er.

Figure 3: Classi�cation with incomplete data by using
IGPMFC before using a classi�er.

In the three experimental setups, �rstly, incomplete data is di-
vided into training incomplete data and testing incomplete data. In
the �rst setup, as shown in Fig.1, the training incomplete data is
directly put into a classi�cation algorithm to build a classi�er that
is then used to classify testing incomplete data. In the second setup,
as shown in Fig.2, both training incomplete data and testing incom-
plete data are put into an imputation method to generate training
imputed data and testing imputed data, and then, the training im-
puted data is put into GPMFC to build a data transformation. �e
data transformation is then used to transform the training imputed
data and the testing imputed data into training transformed data
and testing transformed data, respectively. In the third setup, as
shown in Fig.3, IGPMFC directly uses training incomplete data to
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construct new features that is then used to build a data transforma-
tion. �e data transformation is then used to transform the training
incomplete data and the testing incomplete data into training trans-
formed data and testing transformed data, respectively. A�er that,
in both the second and third setups, the training transformed data
is then put into a classi�cation algorithm to build a classi�er that
is then used to classify the testing transformed data.

4.2 Datasets
�e experiments used six benchmark datasets selected from the
UCI machine learning repository [1]. Table 1 summarises the main
characteristics of each dataset including the number of instances,
the number of features, the number of classes and the percentage
of incomplete instances.

Table 1: �e Datasets Used in the Experiments

Dataset #Instances #Features #Classes

Incomplete

instances

(%)

Bands 205 25 6 26.38

Breast 286 9 2 3.15

Hepatitis 155 19 2 48.39

Balance 625 4 3 0

Iris 150 4 3 0

Liver 345 6 2 0

�e �rst three datasets su�er from missing values in a “natural”
way. To evaluate more precisely the performance of IGPMFC on
the incomplete data, “arti�cial” missing values were introduced
into important features in the last three complete datasets. �e
important features were selected using the correlation-based feature
selection method (CFS), where subsets of features that are highly
correlated with the class while having low intercorrelation are
preferred [12]. With each dataset, �rstly, use CFS to choose the
relevant features, and then perform 30 times: put randomly 20%
missing values into the relevant features. �erefore, for each dataset,
30 incomplete datasets were generated, and a total of 90 (30 × 3)
arti�cial incomplete datasets were used in the experiments.

None of the datasets in the experiments comes with a speci�c test
set. Moreover, in some datasets, the number of instances is relatively
small. �erefore, the ten-fold cross-validation method was used to
measure the performance of the learned classi�ers. With the �rst
three incomplete datasets, the ten-fold cross-validation method
was performed 30 times. With each of the last three complete
datasets, the ten-fold cross-validation method was performed on
the 30 incomplete datasets. Consequently, for each dataset, 300
pairs of training and testing sets were generated.

4.3 Imputation algorithms
�e experiment used three imputation methods which are mean im-
putation, KNN-based imputation and MICE imputation [32]. Mean
imputation and KNN-based imputation were in-house implemen-
tation. �e experiment used MICE’s implementation in [5] for

multiple imputation using random forest for regression by se�ing
their parameters as the default values.

4.4 GP settings
�e experiments used the ECJ package [18] to implement GP. �e
parameters of GP were the same in all experiments and are shown in
Table 2. For each pair of training set and test set, GPMFC combined
with mean imputation, GPMFC combined with KNN-based imputa-
tion, GPMFC combined with MICE imputation and IGPMFC run a
number of times, each constructing a new feature for a particular
class. �erefore, on each dataset, GP runs 300×NumberOfClasses×4
times. Consequently, for the six datasets, the total number of ex-
periments is 300×(6+2+2+3+3+2)×4 = 21600.

Table 2: GP parameters.

Parameter Value

Function set Interval functions, +, -, x, / (protected division)

Variable terminals Interval of the original features {f1 , f2 , .., fn}

Constant terminals Random �oat values

Population size 1024

Initialization Ramped half-and-half

Generations 50

Crossover probability 60%

Mutation probability 30%

Reproduction rate 10%

Selection type Tournament(size=7)

4.5 Classi�cation algorithms
�e experiments used four decision trees that are able to classify
incomplete data: C4.5 [22], CART [4], REPTree [3] and BFTree [23].
For all the classi�ers, WEKA’s implementation was used and all
parameters set to WEKA’s defaults [11].

5 RESULTS AND ANALYSIS
Table 3 and Table 4 present the average of classi�cation accuracy
along with standard deviation and the average of size of the decision
trees (the number of nodes in the trees), respectively. In both the
tables, the averages were calculated on 30 times performing ten-fold
cross-validation on each dataset. Baseline column indicates results
from the �rst experimental setup in Fig.1; MeGPMFC, KNNGPMFC
and MiGPMFC columns indicate results from the second experimen-
tal setup in Fig.2 by using mean imputation, KNN-based imputation
and MICE imputation combined with using GPMFC, respectively;
IGPMFC column indicates results from the third experimental setup
in Fig.3. In order to compare the classi�cation accuracy of IGPMFC
with the other methods, the Wilcoxon signed-ranks tests at 95%
con�dence level have been conducted. “T” columns in Table 3 indi-
cate signi�cant tests of the columns before them against IGPMFC,
where “+” means IGPMFC was signi�cantly more accuracy, “=”
means not signi�cantly di�erent and “-” means signi�cantly less
accuracy.
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Table 3: Average of Classi�cation Accuracy on the Test Set

Dataset Classi�er IGPMFC Baseline T MeGPMFC T KNNGPMFC T MiGPMFC T

Bands

C4.5 68.67±1.13 68.45±1.88 = 68.33±1.70 = 62.06±2.00 + 64.05±2.48 +
CART 68.59±1.32 65.99±1.69 + 68.80±1.35 = 63.38±1.54 + 67.86±1.35 +
REPTree 67.84±1.16 65.82±1.71 + 67.95±1.77 = 62.79±1.34 + 67.22±1.56 =
BFTree 67.81±1.37 66.66±1.94 + 66.83±1.71 + 61.55±1.94 + 63.46±2.08 +

Breast

C4.5 95.68±0.51 94.83±0.46 + 95.76±0.50 = 95.79±0.52 = 95.65±0.50 =
CART 96.07±0.49 94.42±0.44 + 96.12±0.44 = 96.20±0.42 = 96.10±0.48 =
REPTree 96.04±0.50 94.35±0.65 + 95.99±0.51 = 96.15±0.46 = 96.12±0.43 =
BFTree 95.32±0.86 94.49±0.54 + 95.59±0.86 = 95.44±0.93 = 95.63±0.86 =

Hepatitis

C4.5 80.52±2.41 79.21±1.75 + 80.20±2.62 = 80.50±2.65 = 80.80±2.08 =
CART 80.94±2.59 77.47±1.45 + 80.59±2.05 = 80.97±2.22 = 81.10±2.30 =
REPTree 80.37±2.39 79.32±2.17 = 80.50±2.31 = 80.10±2.41 = 81.03±2.38 =
BFTree 79.93±2.36 78.55±1.80 + 79.51±2.71 = 79.85±2.24 = 80.51±2.45 =

Balance

C4.5 94.41±0.92 77.41±1.26 + 92.45±1.45 + 92.04±1.46 + 93.02±1.36 +
CART 94.37±0.89 77.97±1.19 + 92.20±1.53 + 91.80±1.74 + 92.75±1.49 +
REPTree 94.31±0.88 77.23±1.70 + 91.74±1.68 + 91.64±1.70 + 92.46±1.44 +
BFTree 93.99±1.01 77.44±0.99 + 91.80±1.59 + 91.38±1.78 + 92.52±1.51 +

Iris

C4.5 91.77±1.97 89.35±2.10 + 89.93±2.38 + 88.06±2.67 + 93.53±1.66 -
CART 92.33±2.00 89.62±1.76 + 90.13±2.50 + 88.42±2.57 + 94.02±2.26 -
REPTree 92.24±1.85 86.15±2.26 + 89.42±2.88 + 88.19±2.43 + 94.22±1.43 -
BFTree 92.33±1.84 89.73±1.80 + 89.95±2.37 + 88.48±2.41 + 94.33±1.45 -

Liver

C4.5 64.27±1.89 61.56±2.15 + 64.06±1.67 = 64.67±1.60 = 65.41±1.99 -
CART 64.49±2.07 63.27±2.20 + 63.56±2.10 = 64.52±2.06 = 65.72±2.15 =
REPTree 64.36±2.40 63.38±2.61 = 63.20±2.70 + 63.87±2.20 = 65.51±2.29 =
BFTree 64.20±2.37 62.88±2.33 = 63.33±2.19 = 63.77±1.98 = 64.65±2.25 =

Table 4: Average of Size of classi�ers

Dataset Classi�er IGPMFC Baseline MeGPMFC KNNGPMFC MiGPMFC

Bands

C4.5 5.21±0.83 85.10±4.23 5.36±0.77 5.60±0.91 4.94±0.96
CART 9.28±3.26 57.05±13.93 10.50±3.84 19.37±5.81 18.94±7.81
REPTree 22.56±4.71 43.50±3.35 25.20±5.55 28.10±4.54 29.74±5.05
BFTree 28.90±8.88 99.38±13.87 30.07±11.69 30.46±11.26 22.12±10.53

Breast

C4.5 6.28±0.95 23.20±1.38 6.91±1.25 7.04±1.43 6.84±1.01
CART 5.01±1.17 16.57±2.69 4.73±1.03 5.10±1.38 4.83±0.95
REPTree 5.25±1.39 13.14±1.96 5.27±1.10 5.07±1.23 5.46±1.04
BFTree 11.70±1.94 29.82±4.15 11.34±1.34 11.56±1.64 11.58±1.94

Hepatitis

C4.5 7.07±0.83 17.04±1.03 7.09±1.04 7.24±1.06 7.54±0.87
CART 6.78±1.30 7.38±2.65 7.29±1.60 7.01±1.20 6.68±1.18
REPTree 6.89±1.11 7.08±1.28 6.78±0.92 6.90±1.18 6.58±1.01
BFTree 11.16±2.14 22.23±4.74 11.30±1.57 11.33±1.84 11.19±1.39

Balance

C4.5 9.76±1.72 57.48±3.47 17.39±3.79 18.34±4.44 16.52±3.36
CART 8.28±1.84 68.70±9.11 15.78±4.32 15.72±4.49 13.60±3.94
REPTree 8.36±1.42 43.03±2.30 13.25±2.34 14.46±2.83 11.84±2.41
BFTree 16.94±3.96 156.1±15.35 29.34±5.51 32.18±7.58 24.51±4.81

Iris

C4.5 7.04±0.75 14.01±1.33 8.49±1.08 8.20±0.96 5.11±0.27
CART 5.62±0.51 17.10±1.81 7.46±0.93 7.26±1.01 4.99±0.13
REPTree 5.48±0.45 9.51±0.95 6.82±0.77 6.74±0.68 5.03±0.09
BFTree 7.28±0.75 23.56±2.67 9.18±1.18 9.21±1.14 5.72±0.54

Liver

C4.5 5.13±1.37 34.80±3.16 4.95±0.78 5.37±0.77 5.76±0.79
CART 15.10±4.76 39.27±7.77 13.74±3.48 14.94±4.69 13.24±4.02
REPTree 19.58±4.21 28.58±3.00 20.04±3.35 19.14±4.33 20.16±4.08
BFTree 32.54±10.0 65.32±8.10 32.06±9.30 35.36±8.01 30.74±7.60
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5.1 E�ect of Constructed Features on
Classi�cation Accuracy

Fig.4 summarises classi�cation accuracy improvement of the classi-
�ers by using constructed features generated by IGPMFC compared
to using original features. It is clear from Fig.4 that in almost all
cases, IGPMFC substantially improves classi�cation accuracy of
the classi�ers. However, the classi�cation accuracy improvement
is di�erent among datasets. For example, on the Balance Scale, the
improvement is much higher than in the other datasets. Moreover,
the classi�cation accuracy improvement in each classi�er is also
di�erent on di�erent datasets.

Figure 4: Classi�cation improvement by using IGPMFC com-
pared to Baseline

Fig. 5 summarises the accuracy comparison of IGPMFC with
Baseline, MeanGPMFC, KNNGPMFC and MiceGPMFC. It is clear
from Fig. 5 that IGPMFC achieves signi�cantly be�er classi�cation
accuracy than Baseline in almost all cases. Moreover, in half cases,
IGPMFC achieves signi�cantly be�er classi�cation accuracy than
MeanGPMFC and KNNGPMFC and similar on the other half cases.
Furthermore, in 24 cases, IGPMFC achieves signi�cantly be�er
classi�cation accuracy than MiceGPMFC in seven cases, similar
accuracy in 12 cases and signi�cantly worse in �ve cases .

Figure 5: Accuracy comparison of IGPMFC with Baseline,
MeanGPMFC and MiceGPMFC

In summary, in almost all cases, IGPMFC not only can achieve
be�er classi�cation accuracy compared to using original features,
but also can achieve be�er classi�cation accuracy than using GPMFC
combined with mean imputation or KNN-based imputation in most

cases. Moreover, IGPMFC is comparable with GPMFC combined
with using Mice Imputation that is expensive for classi�cation tasks.

5.2 E�ect of Constructed Features on the
Complexity of Classi�ers

�e complexity of the classi�ers is evaluated by the average number
of nodes in the decision trees. A decision tree with a small num-
ber of nodes is preferred because having too many nodes is o�en
a symptom for poor generalisation, especially in nonrectangular
decision spaces [21].

Fig.6 shows the percentage of size reduction by using the con-
structed features generated by IGPMFC over using the original
features (reduction= sizeBasel ine−sizeIGPMFC

sizeBasel ine
). As can be seen from

Fig.6 that using the constructed features generated by IGPMFC
helps to decrease considerably the complexity of the learned clas-
si�ers. In all of the datasets, except for REPtree achieving about
30% size reduction in some datasets, the complexity of the other
three classi�ers reduces around 50%. Especially, on the Balance
Scale dataset, the decrease in complexity is around 90%.

Fig. 7 shows the average of ratio tree size of the other methods
over IGPMFC. On average, Baseline generates about 4.0 times bigger
trees than those using IGPMFC, and all MeanGPMFC, KNNGPMFC
and MiceGPMFC generate bigger trees than IGPMFC.

Figure 6: Size reduction by using IGPMFC compared to Base-
line

Figure 7: �e average of ratio tree sizes of Baseline,
MeanGPMFC and MiceGPMFC over IGPMFC

In summary, in all cases, IGPMFC can dramatically reduce the
complexity of the classi�ers by using original features. Furthermore,
IGPMFC can be�er reduce the complexity of the classi�ers than
GPMFC with both simple and sophisticated imputations.



GECCO ’17, July 15-19, 2017, Berlin, Germany Cao Truong Tran, Mengjie Zhang, Peter Andreae and Bing Xue

Table 5: Computation time of di�erent methods for con-
structing multiple features (millisecond).

Dataset IGPMFC MeGPMFC KNNGPMFC MiGPMFC

Bands 5.3 × 10−6 1.3 × 10−6 1.7 × 10−1 1.6 × 104

Breast 2.7 × 10−6 9.1 × 10−7 8.1 × 10−1 2.3 × 102

Hepatitis 1.2 × 10−5 1.8 × 10−6 3.8 × 10−1 1.5 × 104

Balance 5.3 × 10−6 2.4 × 10−6 7.2 × 10−2 2.4 × 103

Iris 6.6 × 10−6 2.2 × 10−6 4.6 × 10−2 3.3 × 103

Liver 2.3 × 10−6 8.5 × 10−7 1.9 × 100 1.1 × 103

5.3 Computation Time
Table 5 shows the average computation time of IGPMFC and the
other methods for constructing new features in the testing process.

It is clear from Table 5 that the combination of GPMFC with
mean imputation is the fastest method and following GPMFC with
interval functions, KNN-based imputation and MICE imputation.
Especially, GPMFC with MICE imputation is million times slower
than the other methods. �e main reason is that MICE requires
rebuilding the regression functions using all the training data and
the new instance each time when it needs to estimate missing values
in a new instance.

In summary, IGPMFC is as quick as other simple imputations
combined with GPMFC and can achieve be�er accuracy than the
other methods.

6 CONCLUSIONS
�is paper proposed IGPMFC which is a GP-based feature construc-
tion for classi�cation with incomplete data. IGPMFC is extended
from GPMFC which is a recent promising feature construction
method, but it cannot directly work with incomplete data. IGPMFC
uses interval functions as the GP function set to tackle with miss-
ing values by replacing each missing feature value by the feature
interval. �ree experimental setups are designed to evaluate the
impact of IGPMFC on classi�cation with incomplete data: clas-
si�cation with incomplete data by using classi�ers able to deal
with incomplete data; classi�cation with incomplete data by using
imputation methods combined with GPMFC before using classi-
�ers, and classi�cation with incomplete data by using IGPMFC to
construct new features from incomplete data before using classi-
�ers. Experimental results show that IGPMFC can achieve be�er
accuracy than using original features or combining GPMFC with
simple imputation methods. Moreover, the accuracy of IGPMFC
is comparable with combining GPMFC with expensive imputation
methods. Furthermore, IGPMFC can be�er reduce the complexity
of learnt classi�ers than all the other methods.

�e majority of other GP-based feature construction methods
cannot deal with incomplete data. Hence, future work could inte-
grate interval functions into the methods to deal with incomplete
data.
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