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ABSTRACT

Missing values are an unavoidable problem in many real-world
datasets. Dealing with incomplete data is an crucial requirement
for classification because inadequate treatment of missing values
often causes large classification error. Feature construction has
been successfully applied to improve classification with complete
data, but it has been seldom applied to incomplete data. Genetic
programming-based multiple feature construction (GPMFC) is a
current encouraging feature construction method which uses ge-
netic programming to evolve new multiple features from original
features for classification tasks. GPMFC can improve the accuracy,
and reduce the complexity of many decision trees and rule-based
classifiers; however, it cannot directly work with incomplete data.
This paper proposes IGPMFC which is extended from GPMFC to
tackle with incomplete data. IGPMFC uses genetic programming
with interval functions to directly evolve multiple features for clas-
sification with incomplete data. Experimental results reveal that not
only IGPMFC can substantially improve the accuracy, but also can
reduce the complexity of learnt classifiers facing with incomplete
data.
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1 INTRODUCTION

Classification is one of the most important tasks in machine learn-
ing and data mining [13]. The input space is of key importance
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in most classifiers. Many classifiers such as decision trees and
rule-based classifiers cannot achieve adequate predictive perfor-
mance facing difficult problems. One of the main reasons is that the
classifiers cannot transform the input space to obtain good class
separability. Feature construction is a data preprocessing process
which transforms data from its original space to a new space having
better separability between classes [25].

An incomplete dataset is a dataset which contains missing val-
ues in some features. Missing values are a common problem in
many datasets [17]. For instance, in the UCI repository [1], one
of the most popular data repositories for benchmarking machine
learning tasks, 45% of the datasets contain missing values. Incom-
plete data causes a number of serious problems for classification.
One of the most severe problems is non-applicability of classifiers
since almost all existing classifiers require complete data. Conse-
quently, these classifiers are not able to directly work with original
incomplete data. Furthermore, incomplete data often leads to large
classification error [8].

The problem of incomplete data has been addressed extensively
in the statistical analysis field [9, 17] and also, but with less effort,
in the classification literature. There are two main approaches to
classification with incomplete data. One approach is to use impu-
tation methods that fill plausible values into missing fields before
using classifiers [8, 28, 30]. For example, mean imputation fills all
missing fields in each feature with the mean of complete values in
the same feature. Another approach is to use classifiers that can
directly classify incomplete data without using imputation methods
[22, 29]. For example, C4.5 [22] can directly classify incomplete data
without using imputation methods. Despite the fact that the two
approaches are able to deal with incomplete data to a certain level,
they often lead to large classification error [7]. Therefore, further
approaches to improving classification accuracy of incomplete data
should be investigated.

Feature construction is a process of constructing better features
from original features for classifiers. Genetic programming (GP) is a
popular evolutionary technique inspired by biological evolution to
search a solution for a problem in the form of a computer program
[15]. GP is able to learn the definition of a function itself from
example data, so GP is an excellent choice for feature construction,
and has been widely applied [6, 27, 31].

Although there are many GP based feature construction methods,
most of them construct only a single feature, which needs combine
with the original feature set, but will lead to a higher dimension-
ality and a more complex classifier [6]. GP-based multiple feature
construction (GPMFC) [21] is a recent promising filter approach
using GP for feature construction. GPMFC is able to evolve multiple
high-level features from the original features. The empirical results
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show that, in almost all cases, GPMFC can not only improve the
classification performance, but can also reduce the complexity of
many decision trees and rule-based classifiers.

However, GPMFC is not able to deal with incomplete data. As a
result, to use GPMFC for incomplete data, imputation methods are
required to transform incomplete data into complete data before
using GPMFC [27]. In order to obtain good performance, GPMFC
has to be combined with sophisticated imputation methods such
as MICE imputation [32]. Unfortunately, sophisticated imputation
methods such as MICE are often suitable for batch imputation, but
computationally intensive for imputing missing values in a single
instance in the unseen set for classification [30]. Therefore, the
ability of GPMFC to directly deal with incomplete data should be
investigated.

1.1 Research goals

The overall goal of this paper is to demonstrate a new method that
uses GP to directly construct multiple features for classification with
incomplete data without using imputation methods. To achieve
this goal, we develop an extension of GPMFC, called IGPMFC,
that uses GP with interval functions as the function set to directly
construct multiple features. To evaluate the impact of IGPMFC
on classification with incomplete data, the experiments will be
conducted to answer the following questions:

(1) Whether IGPMFC can improve classification performance
and reduce the complexity of classifiers with incomplete
data compared to using original features; and

(2) Whether IGPMFC can improve classification performance
and reduce the complexity of classifiers with incomplete
data compared to using GPMFC combined with imputation
methods.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 discusses
related work. Section 3 presents the IGPMFC algorithm which
performs multiple feature construction for classification with in-
complete data using GP with interval functions. Section 4 outlines
experiment design. Section 5 presents empirical results and analysis.
Section 6 draws conclusions and proposes future work.

2 RELATED WORK

This section presents related work including classification with
incomplete data, GP for feature construction and GP-based multiple
feature construction.

2.1 Classification with Incomplete data

The main approaches to classification with incomplete data include
deletion approach, imputation approach, model-based approach
and machine learning approach [8].

2.1.1  Deletion approach. This approach removes all incomplete
instances before using classifiers. The main advantage of this ap-
proach is to provide complete data that can be then classified by
any classifiers. However, incomplete instances are not participated
in the classification process [8].
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2.1.2  Imputation approach. This approach uses imputation meth-
ods to put plausible values into missing fields before using classifiers.
For example, one simple imputation method is mean imputation
that fills missing fields in each feature with the average of the com-
plete values in the same feature. One of the most sophisticated
imputation methods is multivariate imputation by chained equa-
tions (MICE) [32]. MICE uses a set of regression models to build
regression functions that are then used to estimate missing values.
Initially, missing values in each feature are randomly filled with
complete values in the feature. After that, each feature containing
missing values is regressed on other features to compute a better
estimate for the feature. The process is repeated several times for
all features containing missing values to generate one imputed
dataset. The whole procedure is repeated N times to generate N
imputed datasets. After that, the N imputed datasets are combined
to provide the final imputed data.

The main advantage of using imputation approach is to provide
complete data for classification. Therefore, both complete and in-
complete instances are participated in the classification process.
Consequently, using imputation methods is a major approach to
classification with incomplete data. However, the quality of clas-
sification using imputed data strongly depends on the quality of
imputation methods. Using simple imputation methods such as
mean imputation often results in large classification error. In con-
trast, using more sophisticated imputation methods such as MICE
imputation results in smaller classification error, but they are com-
putationally intensive [30].

2.1.3 Model-based approach. This approach builds the data dis-
tribution model from input data. After that, the data distribution
model is used to classify both complete and incomplete instances by
using the Bayesian decision theory [2]. Although this approach is
able to classify both complete and incomplete instances, it requires
making assumptions about the joint distribution of all features in

the model [8].

2.1.4 Machine learning approach. This approach builds classi-
fiers that can directly classify incomplete data without using im-
putation methods. For example, C4.5 can handle missing values in
both the training set and test set by using a probabilistic approach.
In the training stage, each feature value is assigned a weight: if a
feature value is known, then the weight is assigned one; otherwise,
the weight of any other values for that feature is the frequency of
that values. In the test stage, if a test case is unknown, from the
current node, it finds all the available branches and decides the class
label by using the most probable value [22]. Some other decision
trees can deal with incomplete data including CART [4], REPTree
[3] and BFTree [23].

2.2 GP for Feature Construction

Feature construction is a process of creating a set of new features
which can provide a new input space for classification that is better
than the original input space. Constructed features are typically
mathematical expressions of the original features. The original
purpose of GP is to evolve computer programs that perform a
user-defined task. Therefore, GP is an ideal choice for evolving
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constructed features, and using GP for feature construction has
been a research trend in recent years [6].

In a GP-based feature construction approach, a new constructed
feature is often represented by a tree-like individuals, where internal
nodes are arithmetic operators or functions, and leaf nodes are
original features or constants. GP acts as a search technique that
combines with a fitness function evaluation method that guides GP
for searching new constructed features [6].

Two main ways to evaluate constructed features are the wrap-
per approach and the filter approach. In the wrapper approach,
constructed features are evaluated by the performance of a classi-
fier [16], [24], [26]. Every evaluation requires training a classifier
and then testing its performance; hence, the search process of the
wrapper approach is typically computationally intensive, but the
classification accuracy is often better than filter approach. In the
filter approach, constructed features are evaluated by a measure
such as information gain, the gini index, chi-square [19] and Fisher
criterion [10]. None of classifiers is included in the evaluation of
constructed features; hence, the search of the filter approach is
expected to be more efficient and the results are expected to be
more general [24].

2.3 GP-based Multiple Feature Construction

GPMEFC is a filter approach to feature construction that uses GP for
constructing multiple features [21]. GPMFC uses GP to evolve new
features, and the purity of class intervals as a measure to evaluate
new features.

Algorithm 1 shows the main body of the GPMFC algorithm. The
input data for GPMFC includes two parts. The first part is a matrix
containing values of original features. The second part is an array
containing class labels corresponding observations in the matrix.
For each class label, GPMFC evolves the best constructed feature
that maximise the purity of the corresponding class interval. As a
result, the output of GPMFC is a set of constructed features equal
to the number of classes in the problem. The detail of GPMFC can
be seen in [21].

In order to apply GPMFC, firstly, GPMFC uses the training data
to build a set of constructed features that then forms a transfor-
mation. Next, the training data is put into the transformation to
generate transformed training data. After that, a classifier uses the
transformed training data to build a classification model that is
then used to classify the transformed unseen data.

The experimental results show that in almost all cases, GPMFC
greatly improves classification accuracy of decision trees and rule-
based classifiers. Furthermore, GPMFC helps to reduce the com-
plexity of the learnt classifiers. However, GPMFC is not able to
directly deal with incomplete data. Therefore, the ability of GPMFC
to directly deal with incomplete data should be investigated.

3 GP WITH INTERVAL FUNCTIONS FOR
MULTIPLE FEATURE CONSTRUCTION

Although GPMFC is a powerful feature construction method for
complete data, it cannot directly work with datasets containing
missing values. To tackle this problem, we proposes IGPMFC which
is an extension of GPMFC. IGPMFC uses GP with interval func-
tions to evolve new multiples features for incomplete data. The

Algorithm 1: GPMFC [21]
Input:
D: a matrix containing values of original features
C: an array containing class values corresponding
observations in D
Output: CF- a set of constructed features

1 CF « {}

2 force Cdo

3 P « InitialPopulation

4 bestFitness «— +0co

5 while —maxGenerations A bestFitness # 0 do
6 for ¢ € P do

7 d’fitness < Fitness(D, ¢, c)

8 if @firness < bestFitness then
9 bestProgram «— ¢
10 bestFitness < ¢rispess
11 end
12 end
13 Perform selection
14 Perform genetic operators
15 end
16 CF «— CF U {bestProgram}
17 end

18 return CF

underlying idea of IGPMFC is that it uses interval functions as the
function set of GP to deal with missing values. If a feature value
is missing, it will be substituted by an interval associated with the
feature. If a feature value is complete, it will still be substituted by
an interval such that both the lower bound and upper bound are
equal to the feature value. The purpose of using interval functions
is that missing fields are unknown; hence replacing a missing field
with an interval instead of a single value may reflect better the
uncertainty of the missingness.

The interval associated with each feature must represent the
range of possible values of the feature and needs to be estimated
by the algorithm. Furthermore, the interval function set of GP also
needs to be defined.

3.0.1 Finding the Interval of a Feature. A feature interval is the
range which covers the most occurrence values of the feature. The
interval of a feature should be estimated from the distribution of
the feature values. A simple way to find the interval of a feature is
to consider that the range between the minimum and maximum of
the feature which is the interval of the feature. However, this kind
of interval possibly contains outliers which are not desired [21].

If the values of feature f is normally distributed, the interval
(pf =30, puf + 3crf) could cover 99% of the feature values, where
y and of are the mean and the standard deviation of the feature f,
respectively [21]. Unfortunately, the values of a feature are not nec-
essarily normally distributed; therefore, the interval might include
too many values, or too few values. Hence, it would be essential
to find a method of estimating the interval of a feature which is
able to apply to all kinds of distribution. One simple method to
perform the task is to sort all feature values and then remove a few
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lowest and highest values from both ends of the data range. A more
advanced method is to use the introselect algorithm proposed in
[20]. We used the algorithm in [21] for estimating the interval of a
feature.

3.0.2 Interval Functions. Assuming the interval of feature a is
represented by the range between the lower bound a; and the upper
bound a, and the interval of feature b is represented by the range
between the lower bound b; and the upper bound b,,. In IGPMFC,
the function set of GP uses four interval arithmetic operations
defined as follows [14]:

ay + bl
upper :  ay + by

{lower :oa;—by
a-b=
upper :  ay — by

min(aj * by, aj * by, ay * by, ay * by)

upper :  max(ay * by, ay * by, ay * by, ay * by)

a/b = lower :  min(a; /by, a;/by,ay /by, ay/by)
upper : max(ay /by, ay /by, au /by, ay /bu)

It is important to notice that the division operation is not right
if the lower and upper bounds of denominator have different signs.
Therefore, it requires an assumption that the denominator lower
bound has the same sign with the denominator upper bound. Nev-
ertheless, we permit GP search to remove trees which break the
assumption.

3.1 Estimating the Real Output of an
Individual

The output of an individual evolved by GP with interval functions is
an interval. Nevertheless, to use constructed features for classifica-
tion, single values are required. Hence, in IGPMFC, the real output
of an individual is calculated as the middle point of the interval.
Assuming that [out;, out, ] is the output of an individual, the real
output can be defined as follows:

out; + outy,

2

4 EXPERIMENT DESIGN

This section shows detailed experiment design including the com-
parison methods, datasets, the imputation methods used in the
experiments, GP settings and classification algorithms.

out =

4.1 Comparison Method

The experiments are designed to evaluate the impact of IGPMFC to
construct new features for classification with incomplete data. To
achieve this, three experimental setups are designed, as shown in
Fig.1, Fig.2 and Fig.3. The Fig.1 shows classification with incomplete
data by using a classifier that is able to directly classify incomplete
data. The Fig.2 shows classification with incomplete data by using
an imputation method to transfer incomplete data into complete
data that is then used by GPMFC to construct new features before
using a classifier. The Fig.3 shows classification with incomplete
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data by using IGPMFC to construct new features from incomplete
data before using a classifier.
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Figure 1: Classification with incomplete data by using a clas-
sifier able to classify incomplete data.
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Figure 2: Classification with incomplete data by using an
imputation method and GPMFC before using a classifier.
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Figure 3: Classification with incomplete data by using
IGPMFC before using a classifier.
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In the three experimental setups, firstly, incomplete data is di-
vided into training incomplete data and testing incomplete data. In
the first setup, as shown in Fig.1, the training incomplete data is
directly put into a classification algorithm to build a classifier that
is then used to classify testing incomplete data. In the second setup,
as shown in Fig.2, both training incomplete data and testing incom-
plete data are put into an imputation method to generate training
imputed data and testing imputed data, and then, the training im-
puted data is put into GPMFC to build a data transformation. The
data transformation is then used to transform the training imputed
data and the testing imputed data into training transformed data
and testing transformed data, respectively. In the third setup, as
shown in Fig.3, IGPMFC directly uses training incomplete data to
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construct new features that is then used to build a data transforma-
tion. The data transformation is then used to transform the training
incomplete data and the testing incomplete data into training trans-
formed data and testing transformed data, respectively. After that,
in both the second and third setups, the training transformed data
is then put into a classification algorithm to build a classifier that
is then used to classify the testing transformed data.

4.2 Datasets

The experiments used six benchmark datasets selected from the
UCI machine learning repository [1]. Table 1 summarises the main
characteristics of each dataset including the number of instances,
the number of features, the number of classes and the percentage
of incomplete instances.

Table 1: The Datasets Used in the Experiments

Incomplete
Dataset | #Instances | #Features | #Classes instances
(%)

Bands 205 25 6 26.38
Breast 286 9 2 3.15
Hepatitis 155 19 2 48.39
Balance 625 4 3 0

Iris 150 4 3 0
Liver 345 6 2 0

The first three datasets suffer from missing values in a “natural”
way. To evaluate more precisely the performance of IGPMFC on
the incomplete data, “artificial” missing values were introduced
into important features in the last three complete datasets. The
important features were selected using the correlation-based feature
selection method (CFS), where subsets of features that are highly
correlated with the class while having low intercorrelation are
preferred [12]. With each dataset, firstly, use CFS to choose the
relevant features, and then perform 30 times: put randomly 20%
missing values into the relevant features. Therefore, for each dataset,
30 incomplete datasets were generated, and a total of 90 (30 X 3)
artificial incomplete datasets were used in the experiments.

None of the datasets in the experiments comes with a specific test
set. Moreover, in some datasets, the number of instances is relatively
small. Therefore, the ten-fold cross-validation method was used to
measure the performance of the learned classifiers. With the first
three incomplete datasets, the ten-fold cross-validation method
was performed 30 times. With each of the last three complete
datasets, the ten-fold cross-validation method was performed on
the 30 incomplete datasets. Consequently, for each dataset, 300
pairs of training and testing sets were generated.

4.3 Imputation algorithms

The experiment used three imputation methods which are mean im-
putation, KNN-based imputation and MICE imputation [32]. Mean
imputation and KNN-based imputation were in-house implemen-
tation. The experiment used MICE’s implementation in [5] for

multiple imputation using random forest for regression by setting
their parameters as the default values.

4.4 GP settings

The experiments used the ECJ package [18] to implement GP. The
parameters of GP were the same in all experiments and are shown in
Table 2. For each pair of training set and test set, GPMFC combined
with mean imputation, GPMFC combined with KNN-based imputa-
tion, GPMFC combined with MICE imputation and IGPMFC run a
number of times, each constructing a new feature for a particular
class. Therefore, on each dataset, GP runs 300xNumberOfClassesx4
times. Consequently, for the six datasets, the total number of ex-
periments is 300X(6+2+2+3+3+2)x4 = 21600.

Table 2: GP parameters.

Parameter Value

Function set Interval functions, +, -, x, / (protected division)

Variable terminals Interval of the original features {fi, fo, ... fn }

Constant terminals Random float values

Population size 1024

Initialization Ramped half-and-half
Generations 50

Crossover probability 60%

Mutation probability 30%

Reproduction rate 10%

Selection type Tournament(size=7)

4.5 Classification algorithms

The experiments used four decision trees that are able to classify
incomplete data: C4.5 [22], CART [4], REPTree [3] and BFTree [23].
For all the classifiers, WEKA’s implementation was used and all
parameters set to WEKA’s defaults [11].

5 RESULTS AND ANALYSIS

Table 3 and Table 4 present the average of classification accuracy
along with standard deviation and the average of size of the decision
trees (the number of nodes in the trees), respectively. In both the
tables, the averages were calculated on 30 times performing ten-fold
cross-validation on each dataset. Baseline column indicates results
from the first experimental setup in Fig.1; MeGPMFC, KNNGPMFC
and MiGPMFC columns indicate results from the second experimen-
tal setup in Fig.2 by using mean imputation, KNN-based imputation
and MICE imputation combined with using GPMFC, respectively;
IGPMFC column indicates results from the third experimental setup
in Fig.3. In order to compare the classification accuracy of IGPMFC
with the other methods, the Wilcoxon signed-ranks tests at 95%
confidence level have been conducted. “T” columns in Table 3 indi-
cate significant tests of the columns before them against IGPMFC,
where “+” means IGPMFC was significantly more accuracy, “="
means not significantly different and “-” means significantly less
accuracy.
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Table 3: Average of Classification Accuracy on the Test Set

Dataset | Classifier | IGPMFC Baseline | T | MeGPMFC | T | KNNGPMFC | T | MiGPMFC | T
C4.5 68.67£1.13 | 68.45+1.88 | = 68.33+1.70 = 62.06+2.00 + 64.05+2.48 +
Bands CART 68.59+£1.32 | 65.99+£1.69 | + 68.80+1.35 = 63.38+1.54 + 67.86+1.35 +
REPTree 67.84+1.16 | 65.82+1.71 + 67.95+1.77 = 62.79+1.34 + 67.22+1.56 =
BFTree 67.81£1.37 | 66.66£1.94 | + 66.83+1.71 + 61.55+1.94 + 63.46+2.08 +
C4.5 95.68+0.51 | 94.83+0.46 | + 95.76+0.50 = 95.79+0.52 = 95.65+0.50 =
Breast CART 96.07+£0.49 | 94.42+0.44 | + 96.12+0.44 = 96.20+0.42 = 96.10+0.48 =
REPTree 96.04+£0.50 | 94.35+£0.65 | + 95.99+0.51 = 96.15+0.46 = 96.12+0.43 =
BFTree 95.32+£0.86 | 94.49+0.54 | + 95.59+0.86 = 95.44+0.93 = 95.63+0.86 =
C4.5 80.52+2.41 79.21+1.75 | + 80.20+2.62 = 80.50+2.65 = 80.80+2.08 =
Hepatitis CART 80.94+2.59 | 77.47+£1.45 | + 80.59+2.05 = 80.97+2.22 = 81.10+2.30 =
REPTree 80.37+£2.39 | 79.32+2.17 | = 80.50+2.31 = 80.10+2.41 = 81.03+2.38 =
BFTree 79.93+2.36 | 78.55+1.80 | + 79.51+2.71 = 79.85+2.24 = 80.51+2.45 =
C4.5 94.41+0.92 77.41+1.26 + 92.45+1.45 + 92.04+1.46 + 93.02+1.36 +
Balance CART 94.37+£0.89 | 77.97£1.19 | + 92.20+1.53 + 91.80+1.74 + 92.75+1.49 +
REPTree 94.31+£0.88 | 77.23+1.70 | + 91.74+1.68 + 91.64+1.70 + 92.46+1.44 +
BFTree 93.99+1.01 77.44+0.99 | + 91.80+1.59 + 91.38+1.78 + 92.52+1.51 +
C4.5 91.77£1.97 | 89.35£2.10 | + 89.93+2.38 + 88.06+2.67 + 93.53+1.66 -
Iris CART 92.33+£2.00 | 89.62+1.76 | + 90.13+2.50 + 88.42+2.57 + 94.02+2.26 -
REPTree 92.24+1.85 | 86.15+£2.26 | + 89.42+2.88 + 88.19+2.43 + 94.22+1.43 -
BFTree 92.33+1.84 | 89.73+1.80 | + 89.95+2.37 + 88.48+2.41 + 94.33+1.45 -
C4.5 64.27+£1.89 | 61.56+£2.15 | + 64.06+1.67 = 64.67+1.60 = 65.41+1.99 -
Liver CART 64.49+£2.07 | 63.27+£2.20 | + 63.56+2.10 = 64.52+2.06 = 65.72+2.15 =
REPTree 64.36+£2.40 | 63.38+2.61 = 63.20+2.70 + 63.87+2.20 = 65.51+2.29 =
BFTree 64.20+£2.37 | 62.88+2.33 | = 63.33+£2.19 = 63.77+1.98 = 64.65+2.25 =

Table 4: Average of Size of classifiers

Dataset | Classifier | IGPMFC Baseline MeGPMFC | KNNGPMFC | MiGPMFC
C4.5 5.21+0.83 85.10+4.23 5.36+0.77 5.60+0.91 4.94+0.96
Bands CART 9.28+3.26 57.05+13.93 10.50+3.84 19.37+5.81 18.94+7.81
REPTree 22.56+4.71 43.50+3.35 25.20%5.55 28.10+4.54 29.74+5.05
BFTree 28.90+8.88 | 99.38+13.87 30.07+11.69 30.46+11.26 22.12+10.53
C4.5 6.28+0.95 23.20+1.38 6.91+1.25 7.04+1.43 6.84+1.01
Breast CART 5.01%+1.17 16.57+2.69 4.73+1.03 5.10+1.38 4.83+0.95
REPTree 5.25+1.39 13.14+1.96 5.27+1.10 5.07+1.23 5.46+1.04
BFTree 11.70+1.94 29.82+4.15 11.34+1.34 11.56+1.64 11.58+1.94
C4.5 7.07+0.83 17.04+1.03 7.09+1.04 7.24+1.06 7.54+0.87
Hepatitis CART 6.78+1.30 7.38+2.65 7.29+1.60 7.01+1.20 6.68+1.18
REPTree 6.89+1.11 7.08+1.28 6.78+0.92 6.90+1.18 6.58+1.01
BFTree 11.16+2.14 22.23+4.74 11.30+1.57 11.33+1.84 11.19+1.39
C4.5 9.76+1.72 57.48+3.47 17.39+3.79 18.34+4.44 16.52+3.36
Balance CART 8.28+1.84 68.70+9.11 15.78+4.32 15.72+4.49 13.60+3.94
REPTree 8.36+1.42 43.03+£2.30 13.25+2.34 14.46+2.83 11.84+2.41
BFTree 16.94+3.96 | 156.1+15.35 29.34+5.51 32.18+7.58 24.51+4.81
C4.5 7.04+0.75 14.01+1.33 8.49+1.08 8.20+0.96 5.11+0.27
Iris CART 5.62+0.51 17.10+1.81 7.46+0.93 7.26+1.01 4.99+0.13
REPTree 5.48+0.45 9.51+0.95 6.82+0.77 6.74+0.68 5.03+0.09
BFTree 7.28%0.75 23.56+2.67 9.18+1.18 9.21+1.14 5.72+0.54
C4.5 5.13+1.37 34.80+3.16 4.95+0.78 5.37+0.77 5.76+0.79
Liver CART 15.10+4.76 39.27+7.77 13.74+3.48 14.94+4.69 13.24+4.02
REPTree 19.58+4.21 | 28.58+3.00 20.04+3.35 19.14+4.33 20.16+4.08
BFTree 32.54+£10.0 | 65.32+8.10 32.06+9.30 35.36+8.01 30.74+7.60
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5.1 Effect of Constructed Features on
Classification Accuracy

Fig.4 summarises classification accuracy improvement of the classi-
fiers by using constructed features generated by IGPMFC compared
to using original features. It is clear from Fig.4 that in almost all
cases, IGPMFC substantially improves classification accuracy of
the classifiers. However, the classification accuracy improvement
is different among datasets. For example, on the Balance Scale, the
improvement is much higher than in the other datasets. Moreover,
the classification accuracy improvement in each classifier is also
different on different datasets.
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Figure 4: Classification improvement by using IGPMFC com-
pared to Baseline

Fig. 5 summarises the accuracy comparison of IGPMFC with
Baseline, MeanGPMFC, KNNGPMFC and MiceGPMFC. It is clear
from Fig. 5 that IGPMFC achieves significantly better classification
accuracy than Baseline in almost all cases. Moreover, in half cases,
IGPMEC achieves significantly better classification accuracy than
MeanGPMFC and KNNGPMFC and similar on the other half cases.
Furthermore, in 24 cases, IGPMFC achieves significantly better
classification accuracy than MiceGPMFC in seven cases, similar
accuracy in 12 cases and significantly worse in five cases .
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Figure 5: Accuracy comparison of IGPMFC with Baseline,
MeanGPMFC and MiceGPMFC

In summary, in almost all cases, IGPMFC not only can achieve
better classification accuracy compared to using original features,
but also can achieve better classification accuracy than using GPMFC
combined with mean imputation or KNN-based imputation in most

cases. Moreover, IGPMFC is comparable with GPMFC combined
with using Mice Imputation that is expensive for classification tasks.

5.2 Effect of Constructed Features on the
Complexity of Classifiers

The complexity of the classifiers is evaluated by the average number
of nodes in the decision trees. A decision tree with a small num-
ber of nodes is preferred because having too many nodes is often
a symptom for poor generalisation, especially in nonrectangular
decision spaces [21].

Fig.6 shows the percentage of size reduction by using the con-
structed features generated by IGPMFC over using the original
features (reduction= sxzeBaiei’;g;;::lZii‘;GPMFc ). As can be seen from
Fig.6 that using the constructed features generated by IGPMFC
helps to decrease considerably the complexity of the learned clas-
sifiers. In all of the datasets, except for REPtree achieving about
30% size reduction in some datasets, the complexity of the other
three classifiers reduces around 50%. Especially, on the Balance
Scale dataset, the decrease in complexity is around 90%.

Fig. 7 shows the average of ratio tree size of the other methods
over IGPMFC. On average, Baseline generates about 4.0 times bigger
trees than those using IGPMFC, and all MeanGPMFC, KNNGPMFC
and MiceGPMFC generate bigger trees than IGPMFC.
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Figure 6: Size reduction by using IGPMFC compared to Base-
line

»
]

[
o

Proportion Size with IGPMFC

I I —
Baseline MeanGPMFC KnnGPMFC MiceGPMFC

Figure 7: The average of ratio tree sizes of Baseline,
MeanGPMFC and MiceGPMFC over IGPMFC

In summary, in all cases, IGPMFC can dramatically reduce the
complexity of the classifiers by using original features. Furthermore,
IGPMFC can better reduce the complexity of the classifiers than
GPMFC with both simple and sophisticated imputations.
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Table 5: Computation time of different methods for con-
structing multiple features (millisecond).

Dataset | IGPMFC | MeGPMFC | KNNGPMFC | MiGPMFC
Bands 5.3x107% | 1.3x107° 1.7x 107! 1.6 x 10*
Breast 2.7x107% | 9.1x 1077 8.1x 107! 2.3 x 10
Hepatitis | 1.2x 107 | 1.8 x 107 3.8x 107! 1.5 x 10*
Balance | 5.3x107% | 2.4x107° 7.2x 1072 2.4x 10
Iris 6.6x107° | 2.2x107° 4.6x 1072 3.3 x 10°
Liver 2.3x107% | 8.5x 1077 1.9 x 10° 1.1x 10

5.3 Computation Time

Table 5 shows the average computation time of IGPMFC and the
other methods for constructing new features in the testing process.

It is clear from Table 5 that the combination of GPMFC with
mean imputation is the fastest method and following GPMFC with
interval functions, KNN-based imputation and MICE imputation.
Especially, GPMFC with MICE imputation is million times slower
than the other methods. The main reason is that MICE requires
rebuilding the regression functions using all the training data and
the new instance each time when it needs to estimate missing values
in a new instance.

In summary, IGPMFC is as quick as other simple imputations
combined with GPMFC and can achieve better accuracy than the
other methods.

6 CONCLUSIONS

This paper proposed IGPMFC which is a GP-based feature construc-
tion for classification with incomplete data. IGPMFC is extended
from GPMFC which is a recent promising feature construction
method, but it cannot directly work with incomplete data. IGPMFC
uses interval functions as the GP function set to tackle with miss-
ing values by replacing each missing feature value by the feature
interval. Three experimental setups are designed to evaluate the
impact of IGPMFC on classification with incomplete data: clas-
sification with incomplete data by using classifiers able to deal
with incomplete data; classification with incomplete data by using
imputation methods combined with GPMFC before using classi-
fiers, and classification with incomplete data by using IGPMFC to
construct new features from incomplete data before using classi-
fiers. Experimental results show that IGPMFC can achieve better
accuracy than using original features or combining GPMFC with
simple imputation methods. Moreover, the accuracy of IGPMFC
is comparable with combining GPMFC with expensive imputation
methods. Furthermore, IGPMFC can better reduce the complexity
of learnt classifiers than all the other methods.

The majority of other GP-based feature construction methods
cannot deal with incomplete data. Hence, future work could inte-
grate interval functions into the methods to deal with incomplete
data.
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