
Visualisation and Optimisation of Learning
Classifier Systems for Multiple Domain Learning

Yi Liu(B), Bing Xue, and Will N. Browne

Victoria University of Wellington, Wellington, New Zealand 6014
liuyi4@myvuw.ac.nz

Abstract. Learning classifier system (LCSs) have the ability to solve
many difficult benchmark problems, but they have to be applied indi-
vidually to each separate problem. Moreover, the solutions produced,
although accurate, are not compact such that important knowledge
is obscured. Recently a multi-agent system has been introduced that
enables multiple, different LCSs to address multiple different problems
simultaneously, which reduces the need for human system set-up, recog-
nises existing solutions and assigns a suitable LCS to a new problem.
However, the LCSs do not collaborate to solve a problem in a compact
or human observable manner. Hence the aim is to extract knowledge
from problems by combining solutions from multiple LCSs in a com-
pact manner that enables patterns in the data to be visualised. Results
show the successful compaction of multiple solutions to a single, optimum
solution, which shows important feature knowledge that would otherwise
have been hidden.

Keywords: Learning classifier systems · Multiple domain learning

1 Introduction

Learning Classifier Systems (LCSs) are a family of evolutionary computation
techniques that evolve a population of ‘condition-action’ heuristics that coop-
erate to address classification tasks. They have the ability to provide solutions
in domains exhibiting epistasis (e.g. non-linear feature interaction) and hetero-
geneity (e.g. different combinations of features producing the same class). The
transparent nature of the heuristic (rule) format enables humans to interrogate
the knowledge discovered.

LCSs have been shown to be accomplished at solving many different and
difficult problem domains [11], such as salient object detection, game policy
design, patient care and so forth [16]. However, as with many artificial intelli-
gence approaches, they require humans to carefully set the parameters for each
pre-selected problem domain. Furthermore, the solutions produced, albeit accu-
rate, often require post-processing to obtain the most compact (condensed) solu-
tion. This reduces the transparency of knowledge to human users, although the
additional time for processing and memory storage for the non-condensed solu-
tion is minimal nowadays.
c© Springer International Publishing AG 2017
Y. Shi et al. (Eds.): SEAL 2017, LNCS 10593, pp. 448–461, 2017.
https://doi.org/10.1007/978-3-319-68759-9_37



Visualisation and Optimisation of LCSs for Multiple Domain Learning 449

Recently, the advances in fast and large memory computation have enabled
system comprising of multiple LCSs to be realised [13]. This has the advantage
of allowing multiple LCS setups to coexist so that one suited to an individual
problem can be selected autonomously and quickly. Moreover, problem types
can be identified, best matches to past solutions determined and new problems
assigned to appropriate LCS setups. However, the problem remains of storing
the best solution to a problem in a compact and human understandable manner.

The research question addressed here is whether each solution to one prob-
lem from multiple different setup LCSs can be combined into a single solution,
improving both the understanding (i.e. visualisation) and compactness (i.e. con-
densation). The objectives are to generate novel algorithms/methods to combine
multiple LCS populations together into a single solution for the first time. Sec-
ondly, to design methods for human understanding of the knowledge from mul-
tiple LCS solutions in order to aid transparency of the knowledge discovered.

LCSs have been applied to many types of problem including Boolean, integer,
real-valued and categorical encoded domains. This can be coupled with either
supervised or reinforcement learning and instantaneous or delayed reward envi-
ronmental interaction. As an initial investigation of the novel methods, Boolean
domains are selected as the solutions are well understood, varied and straight-
forward to visually judge the worth of evolved solutions. Stimulus-response (i.e.
instantaneous) learning is often used in knowledge discovery tasks so is appropri-
ate here. As the multi-agent system can contain both supervised and reinforce-
ment learning based LCSs, reinforcement learning was selected as arguably the
more complex problems due to the absence of a known class. It is worth noting
that although the system has been tested up to and including 70-bit problems,
only 6-bit results are presented due to space restrictions (26 vs. 270 long optimal
solutions) and (6 feature wide graphs vs. 70 wide graphs).

2 Background

Learning Classifier Systems (LCSs) produce cooperative solutions of ‘if condi-
tion then action’ rules as specified by the Michigan approach adopted here [16].
Evolutionary search is used for global exploration for the best forms of solution
for an environmental niche (an area of solution space that has common charac-
teristics). While reinforcement learning is used to fine tune the parameter values,
such as rule fitness, in order to guide this local search. When an environmental
state is passed to an LCS it searches its population of rules to determine while
rules match this input in order to form the match set [M ]. Initially, [M ] may be
empty, such that the covering method is called to generate a rule with generality
to cover the input space.

Not all rules will match an input, hence the need for a cooperating popula-
tion. Alternating between deterministic and guided stochastic selection an action
(e.g. proposed class of data) will be selected from those advocated in [M ]. All
rules (termed classifiers when supporting parameters are included) advocating
this action are placed in the action set [A]. Once the action is effected on the



450 Y. Liu et al.

environment (e.g. the proposed class is checked for appropriateness) then the
parameters of classifiers in [A] are updated through reinforcement learning (e.g.
a recency-weighted filter or a Q-learning like policy update for multistep prob-
lems). Once the classifiers in a niche have been tested sufficiently to obtain their
relative worth to the system an evolutionary search algorithm is used, often in
this niche (e.g. only classifiers currently in [A] are evolved).

This project is based on two assumptions. Firstly, LCS can extract informa-
tion from Boolean problems [9], which is plausible from previous results [12].
According to Iqbal [6–8,10], reinforcement based LCS [2], e.g. XCS [18], can
solve many complex Boolean problems, but they often express the target solu-
tion in a rich way making knowledge hard to observe. Secondly, the solutions can
be non-optimal if the parameters are poorly set-up, such that different partially
correct information is discovered in different runs [5].

Recently, different LCSs have been combined into a multi-agent system, affec-
tionately known as Original Intelligence System (OIS) as it approaches the task
of learning multiple problems in a novel manner [13]. This is different to the
GALE system [1] for individual problems as OIS seeks continuous learning using
multiple agents for multiple problems, see Fig. 1.

Fig. 1. Original Intelligence System [13]

OIS forms the base of the novel methods, which are related to compaction
[3,4] and visualisation [15,17] of extracted knowledge, although unusually as a
combination of multiple agents rather than one. These techniques are also not
competitors as they can be used within OIS without loss of benefits.

3 Method

The novel contribution is split into three main parts. The first part uses different
versions of standard LCSs (in this case different XCSs) to learn a benchmark
problem several times. The second part selects reasonably high fitness rules from
all the trained agents. The last part is using our novel search technique, termed



Visualisation and Optimisation of LCSs for Multiple Domain Learning 451

attribute-search to discover the unique best classifier set among the whole good
performance rules.

To collect the candidate classifiers, four strategies are employed in sequence.
1. Elite selection, 2. Experience assessment 3. Consistency assessment and 4. Cor-
rectness Partition. Therefore, the acronym for these four strategies is EECC, see
Fig. 2.

Fig. 2. EECC and Attribute search: firstly, multiple agents produce final classifiers
which EECC sub-selects to send to attribute search. Currently, the best operation
combination for a specific problem domain is set manually, e.g. for the even-parity
problem, all the EECC selected classifiers will undergo operator2 and operator1 in
turn.

Elite Selection. The elite selection algorithm firstly ranks all classifiers in an
agent according to their value of numerosity (a parameter that stores the number
of duplicates of a unique classifier) from high to low. The classifiers are selected
according to their rank above a threshold based on population size and training
number.

Experience Assessment. In XCS, the parameter experience indicates the
number of training instances for every classifier. We only consider classifiers
with an experience greater than the average to remove poorly tested rules.

Consistency Assessment. We delete any classifiers whose prediction error is
higher than 0 as they are not considered accurate. This could be tuned for noisy
domains.



452 Y. Liu et al.

Correctness Partition. In XCS, both completely correct and incorrect clas-
sifiers can reduce their prediction error to 0. We employ the best action map
strategy to only use correct classifiers [14].

Attribute-Search: In Boolean problems, every bit can be considered as an
attribute according to their location. Therefore, an m-bit Boolean problem can
be considered as [Attribute0, Attribute1, . . . Attributem]. The number of spec-
ified (not don’t care) attributes ranges from 0 (general) to m (specific). The
number of unique classifiers is 2 ∗ 3m for binary classification. The number of
optimum classifiers varies with the problem domain.

The aim is to reduce the amount of the introduced unique classifiers that
are redundant to solving the problem. Since the classifiers are distinguished by
the introduced attributes, we cluster the EECC collected classifiers according to
the number of specific attributes they contain. We group the whole correspond-
ing classifiers space into m + 1 sub-spaces. For example, sub-space 0 means all
the classifiers in this space contain no specified attribute, e.g. in 6-bit Boolean
problems ######:0 is a typical member in that space.

Algorithm 1. Find the best none-overlap combination of classifiers from
the best subspace
1 begin
2 Input: S ← a set of classifier n rules;
3 Output: BestSubset ← a subset of classifiers;
4 BestSubset ← an empty classifier set;
5 MaximumNumerosity ← 0;
6 Rank the n rules in S in a descending order, according to their numerosity

values;
7 foreach s ∈ S do
8 Stemp ← S ;
9 Subset ← an empty rule set;

10 Add s to Subset ; // every rule has a chance to be a priority

rule to be returned

11 Remove s from Stemp;
12 foreach s′ ∈ Stemp do
13 if s′ does not have overlap with any rule in Subset then
14 Add s′ to Subset ;

15 TotalNumerosity ← calculate the total Numerosity of rules in Subset ;
16 if TotalNumerosity > MaximumNumerosity then
17 Update MaximumNumerosity ← TotalNumerosity ;
18 Update BestSubset ← Subset ;

19 Return BestSubset ;



Visualisation and Optimisation of LCSs for Multiple Domain Learning 453

Attribute-search is an umbrella name for a set of simple operations, which
focus on search a reasonable classifiers combination among the EECC selected
classifiers. This search technique includes 6 operations:

1. Error detection operation
2. Correct and incorrect group merge operation
3. Most reasonable sub-search space detection operation
4. Best none-overlap classifiers combination detection
5. Removal of over-general and over-specific rules
6. Subsumption operation.

Error Detection Operation. This operation focus on detecting the potential
over-general classifiers in EECC selected classifiers. The basic idea of this oper-
ation is to compare each classifier (termed the target) with the classifiers in the
higher sub-search space. The sum of the numerosity of any contrasting classifiers
in the higher sub-search space that have an overlapping condition, but different
action, with the target classifier is termed the conflict value. When the conflict
value surpasses the target classifier’s numerosity, we define the target classifier
as an over-general classifier and delete this classifier.

Correct and Incorrect Group Merge Operation. A best action map is
formed by flipping the action of any completely incorrect classifier (i.e. 0 predic-
tion) then merge into the correct classifier set. Any classifiers having the same
condition and action are combined into one classifier with summed numerosity.

Most Reasonable Sub-space Detection. The process of this strategy is to
firstly cluster the EECC selected classifiers according to the number of attributes
contained in the condition part. To solve an m-bit Boolean problem, we create
m+1 sub-search spaces from minimum 0 to maximum m. For example, in 6-bit
multiplexer problem, the attribute interval we obtained is [3, 5]. Then we cal-
culate the total numerosity value for every remaining sub-space in the attribute
interval, e.g. [5832, 17, 36] corresponding to sub-spaces [3, 4, 5]. We select the
most important sub-spaces, e.g. sub-space 3, by a percentage threshold.

Best None-Overlap Classifiers Combination Detection. In string based
condition, the overlap space between two classifiers can be calculated. There-
fore, the overlapping classifiers can be detected. We search each rank from top
to bottom and delete the classifiers that have overlap between the previous kept
classifiers. Then we calculate the total numerosity value of each ranked com-
bination of the remaining classifiers. The ranked combination with the highest
numerosity is returned.



454 Y. Liu et al.

Removal of Over-General and Over-Specific Rules. The next step is to
remove the over-general classifiers in the lower sub-search space, and the over-
specific classifiers in the higher sub-search space. We can calculate the over-lap
space between classifiers and detect a non-overlapping classifier in the best sub-
space. Therefore, we detect whether a classifier-rule in the lower sub-search space
can be expressed in the best sub-space.

Any classifier that has over-lap between a classifier in the best non-overlap
classifier combination in the condition part and their action is different will be
considered as an over-general classifier and it will be deleted. For example, in
Table 3 the number 3 classifier (i.e. 000###:0) which belongs to the best sub-
search space 3. We detect a classifier in the lower sub-search space, which is
00####:1 where its condition over-laps and its action is different so it will be
removed.

Subsumption Operation. The subsumption operation in Attribute-search is
the same as the subsumption in the XCS - if we can find a more general accurate
classifier in a lower sub-space then we can directly delete a matching higher sub-
space classifier.

4 Results and Discussion

In our experiment, standard XCSs are employed to generate the 360 agents for
6-bit problems, i.e. 30 runs (to statistically reduce variability) of three different
XCSs were used for four problems. The three different versions of standard XCS
only differed by the probability of generating don‘t care symbol, P#, see Fig. 3.
Importantly, the training runs had a limited number of iterations in order to
generate a variety of populations for the EECC system to merge, see Fig. 4.

(a) Carry problem (b) Even parity problem

Fig. 3. Example training plots showing deliberately compromised performance

Imperfect agents were introduced to test whether our strategy can select the
optimal classifiers when there are poor classifiers in the whole classifier set. This
is because in real problems there is no guarantee that every trained agent can
completely solve the target problem.



Visualisation and Optimisation of LCSs for Multiple Domain Learning 455

Fig. 4. The distribution of global agents’ accuracy.

Table 1. XCS (accuracy)

Problems XCS1 XCS2 XCS3 EECC and
attribute-
search

Even parity [94.5%, 100%] [43.8%, 54.5%] [46.4%, 56.3%] [100%, 100%]

Carry [95.5%, 100%] [76.3%, 98.7%] [89.4%, 100%] [100%, 100%]

Majority on [95.9%, 100%] [66.9%, 94.2%] [74.3%, 96.2%] [100%, 100%]

Multiplexer [97.2%, 100%] [72.7%, 100%] [94.5%, 100%] [100%, 100%]

Table 2. XCS (classifiers)

Problems XCS1 XCS2 XCS3 EECC and attribute-search

Even parity [845, 913] [215, 288] [322, 455] 64

Carry [214, 262] [135, 196] [168, 223] 18

Majority on [421, 480] [209, 264] [235, 332] 35

Multiplexer [243, 258] [130, 161] [140, 154] 8

The performance results in terms of training accuracy and number of rules
produced are shown in Tables 1 and 2 respectively. Note that as the purpose of
LCSs is extraction of patterns through classification that a separate test set is
not used as no claims on predictive ability to unseen data are being made. The
tables show that non-optimal knowledge has been combined to generate optimal
and compact rule sets, which can be interrogated, using the introduced methods.



456 Y. Liu et al.

4.1 Attribute Importance

The Attribute intervals following the sub-space clustering of the EECC collected
classifiers are shown in Fig. 5 for the 90 agents of each problem. Essentially, for a
given attribute level, how likely is a given attribute to be specified. This clearly
visualises the different underlying patterns in each problem domain.

Multiplexer Problem. We cannot find any classifiers in the sub-space 0, 1,
2, 4, 5 and 6. Thus, the number of attributes in a single classifier is limited to
[3]. It is well-known that the global optimal classifiers are indeed in the sub-
space3. When we combine EECC and sub-space clustering together, the system
can automatically find the best attribute interval for us.

Multiplexer problem Carry problem

Majority on problem Even parity problem

Fig. 5. The attribute importance change according to different attribute space in
attribute-search selected classifiers for certain problem

Carry Problem. The parameter settings for EECC used to analyze the Carry
problem were the same as the setting in the multiplexer problem. Firstly, the
methods reduced the number of introduced classifiers from 150 to 18. Secondly,
according to the results in Table 6, the attribute interval of Carry problem is [2,
4]. Thus the attribute-space for the Carry problem is narrowed by the EECC.
Thirdly, the attribute importance distribution for the most reasonable sub-search
space, i.e. based on highest numerosity, was [1 0 0 1 0 0]. This shows the impor-
tance of the most significant bits in the Carry problem, which autonomously
shows the nature of the problem.



Visualisation and Optimisation of LCSs for Multiple Domain Learning 457

Majority on Problem. A sample of the rule set produced, which is optimal, is
shown in Table 5. Again the attribute interval, Fig. 5, shows the distribution of
attribute importance, where no rules with attribute [0, 1, 2, 5, 6] are present. This
demonstrates that both over-general and over-specific rules have been eliminated.

Even Parity Problem. When generating the result for the Even parity prob-
lem, the EECC needed three adjustments. Firstly, the Elite selection threshold
was increased to 0.8 from the standard 0.35 as low numerosity classifiers were
being produced by the agents. Moreover, if we set the threshold to 0.3, none of
the classifiers were selected from EECC indicating a too strict threshold that
needed relaxing. Secondly, in the Experience assessment part, we need to dis-
count the experience threshold (or run the experiments for more iterations).
Thirdly, in the Consistency assessment part, the prediction error was set raised
to 1 as the lack of experience meant the parameter value had not converged.

The correct total of 64 classifiers was discovered where, as necessary, all
are in sub-search space6, i.e. fully specified (table not shown due to length as
fully enumerated 6-bit Boolean domain). Therefore the attribute interval for the
Even parity problem is [6], see Fig. 5. This discovery supports that LCS can not
generate any general classifiers suitable for this problem. EECC can detect the
nature of the Even parity problem.

4.2 Specific Search

Since XCS generated classifiers can be grouped based on the number of attributes
contained by the condition. Then we create the sub-search space for each XCS.
In a m-bit Boolean problem, each of the m + 1 sub-space has the ability to
express the whole problem domain. The extended OIS can detect which sub-
space is more reasonable for solving the target problem. Also which sub-spaces
are too over-general and which sub-spaces are too specific. Thus, it is practical
for extended OIS to limit the search space. Thus, three strategies are introduced
to complete the attribute-search. First one is the most reasonable attribute-space
detection, we achieved this goal by finding the sub-space which has the high-
est totally numerosity value among all the sub-spaces detected in the attribute
interval. Then we implement a strategy named as best non-overlap classifiers
combination detection. Since in a string-based condition, we can calculate the
overlap between classifiers, if no overlap classifiers combination can be detected,
among all the non-overlap classifiers combination, we select the best one means
the one has the highest total numerosity value. After this step, all the classi-
fiers in the higher search space (greater number of attributes) we implement the
decomposed operation, then any of the classifiers, which can be expressed in
the best classifiers combination will be deleted. For any classifiers in the lower
sub-search space (less number of attributes) we implement the conflict operation
if a conflict occurs this classifier will be deleted (Table 4).



458 Y. Liu et al.

Table 3. Raw classifiers after EECC is
applied in 6-bit multiplexer problem

ID Condition Action Numerosity

0 01#1## 1 624

1 001### 1 593

2 10##1# 1 526

3 000### 0 486

4 11###0 0 452

... ... ... ...

21 110#00 0 7

22 01#010 0 6

23 #00101 0 6

24 #00001 0 5

Table 4. The final result for the Multi-
plexer problem

ID Condition Action Numerosity

0 01#1## 1 624

1 001### 1 593

2 10##1# 1 526

3 000### 0 486

4 11###0 0 452

5 11###1 1 451

6 01#0## 0 394

7 10##0# 0 311

Time. Using XCS to train one 6-bit Boolean problem with maximum iterations
as 3000 and maximum population 500 needs 1 to 2 min. By utilizing GRID
computing, training 90 agents only take us 5 to 10 min. EECC and attribute-
specific only spend 40 s to finish their tasks. Compared with the previous XCSs,
we only introduce 4 to 8 addition minutes in the training step, but we can reduce
more than 100 classifiers in our final result. In addition, our agent is much more
compressed than the agents trained from previously XCSs. Therefore, when we
reuse them to solve problems, they compute much more quickly than the previous
agents speeding-up OIS.

5 Discussion

The Attribute-search for the Multiplexer problem is operation 3, operation 4 and
operation 5. Firstly, we find the most reasonable sub-search space. Secondly,
we find the best unique classifiers combination to obtain a unique classifiers
combination in the best sub-search space. The reason is that the Multiplexer
problem does not need any overlapping classifiers to solve the problem. Lastly,
we run the decompose operation to delete all the classifiers in the higher sub-
search space, which can be expressed totally in the most-reasonable sub-search
space.

The Attribute-search for the Carry problem and the Majority on problem is
operation 2, operation 1, and operation 6. Firstly, we merged the incorrect classi-
fier set and correct classifier set from EECC selected classifiers. Then implement
the error detect to delete the noise classifiers. Lastly, we run the subsumption
operation to delete any classifiers in the higher sub-search space that can be
subsumed by the classifiers that are in the lower sub-search space. The reason
for the Carry problem and the Majority on problem use the same Attribute-
search process is that they all need overlapping classifiers to address the target
problem.



Visualisation and Optimisation of LCSs for Multiple Domain Learning 459

Table 5. Sample rules for the Majority
on problem

Condition Action Numerosity

0 00###0 22

0 #0#00# 22

0 #000## 13

0 ##0#00 8

1 #1#111 63

1 1#11#1 63

1 #11#11 59

1 #111#1 55

Table 6. The final result of the Carry
problem, the attribute interval is [2, 4]

Condition Action Numerosity

1 1##1## 1312

0 0##0## 923

1 11##1# 215

1 #1#11# 185

0 0###00 156

0 0#0#0# 124

0 00##0# 75

0 ###000 61

0 00###0 59

0 #0#0#0 58

0 000### 58

0 #000## 57

0 #0#00# 46

0 ##000# 28

1 ##1111 29

1 #111#1 23

1 1#1#11 21

1 111##1 13

The Attribute-search for the Even parity problem only uses the operation
1 and operation 2. We merge the correct and incorrect classifier sets and then
detect the erroneous classifiers. A very interesting phenomenon is that almost all
the EECC selected classifiers are in the incorrect classifier set. It appears that
the system tends to solve the Even parity problem by combining over-general
classifiers and incorrect specific classifiers.

6 Conclusion

The novel methods demonstrate that it is both practical and beneficial to com-
bine the results of multiple LCSs as they have differing viewpoints into the same
problem. This is related to ensembles of ‘weak classifiers’, albeit each LCS may
be a collection of powerful classifiers in its own right. Results show the successful
compaction of multiple solutions to a single, optimum solution, which highlights
important feature knowledge that would otherwise have been hidden.

Future work will introduce more styles of LCS, e.g. supervised learners, and
different types of problem, e.g. real-valued, into OIS in order to seamlessly
improve its capabilities.



460 Y. Liu et al.

References

1. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: a comparative study of two
learning classifier systems on data mining. In: Lanzi, P.L., Stolzmann, W., Wilson,
S.W. (eds.) IWLCS 2001. LNCS, vol. 2321, pp. 115–132. Springer, Heidelberg
(2002). doi:10.1007/3-540-48104-4 8

2. Browne, W., Scott, D.: An abstraction algorithm for genetics-based reinforcement
learning. In: Proceedings of the 7th annual conference on Genetic and evolutionary
computation, pp. 1875–1882. ACM (2005)

3. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: Hyper-
ellipsoidal conditions, recursive least squares, and compaction. Trans. Evol. Com-
put. 3(12), 355–376 (2008)

4. Dixon, P.W., Corne, D.W., Oates, M.J.: A preliminary investigation of modified
XCS as a generic data mining tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W.
(eds.) IWLCS 2001. LNCS, vol. 2321, pp. 133–150. Springer, Heidelberg (2002).
doi:10.1007/3-540-48104-4 9

5. Ioannides, C., Browne, W.: Investigating scaling of an abstracted LCS utilising
ternary and s-expression alphabets. In: Bacardit, J., Bernadó-Mansilla, E., Butz,
M.V., Kovacs, T., Llorà, X., Takadama, K. (eds.) IWLCS 2006-2007. LNCS, vol.
4998, pp. 46–56. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88138-4 3

6. Iqbal, M., Browne, W.N., Zhang, M.: Extracting and using building blocks of
knowledge in learning classifier systems. In: Proceedings of the 14th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 863–870. ACM (2012)

7. Iqbal, M., Browne, W.N., Zhang, M.: Evolving optimum populations with XCS
classifier systems. Soft. Comput. 17(3), 503–518 (2013)

8. Iqbal, M., Browne, W.N., Zhang, M.: Extending learning classifier system with
cyclic graphs for scalability on complex, large-scale boolean problems. In: Proceed-
ings of the 15th Annual Conference on Genetic and Evolutionary Computation,
pp. 1045–1052. ACM (2013)

9. Iqbal, M., Browne, W.N., Zhang, M.: Learning overlapping natured and niche
imbalance boolean problems using XCS classifier systems. In: 2013 IEEE Congress
on Evolutionary Computation (CEC), pp. 1818–1825. IEEE (2013)

10. Iqbal, M., Browne, W.N., Zhang, M.: Reusing building blocks of extracted knowl-
edge to solve complex, large-scale boolean problems. IEEE Trans. Evol. Comput.
18(4), 465–480 (2014)

11. Iqbal, M., Naqvi, S.S., Browne, W.N., Hollitt, C., Zhang, M.: Salient object detec-
tion using learning classifiersystems that compute action mappings. In: Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation GECCO
2014, pp. 525–532 (2014)

12. Lanzi, P.L.: Mining interesting knowledge from data with the XCS classifier sys-
tem. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, pp. 958–965. Morgan Kaufmann Publishers Inc. (2001)

13. Liu, Y., Iqbal, M., Alvarez, I., Browne, W.N.: Integration of code-fragment based
learning classifier systems for multiple domain perception and learning. In: 2016
IEEE Congress on Evolutionary Computation (CEC), pp. 2177–2184 (2016)

14. Orriols-Puig, A., Bernadó-Mansilla, E.: A further look at UCS classifier system.
In: GECCO06, pp. 8–12 (2006)

15. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with
statistical and visualization-guided knowledge discovery for Michigan-style learning
classifier systems. Comput. Intell. Mag. 7(4), 35–45 (2012)

http://dx.doi.org/10.1007/3-540-48104-4_8
http://dx.doi.org/10.1007/3-540-48104-4_9
http://dx.doi.org/10.1007/978-3-540-88138-4_3


Visualisation and Optimisation of LCSs for Multiple Domain Learning 461

16. Urbanowicz, R.J., Browne, W.N.: Introduction to Learning Classifier Systems.
Springer, Heidelberg (2017)

17. Urbanowicz, R.J., Moore, J.H.: Exstracs 2.0: description and evaluation of a scal-
able learning classifier system. Evol. Intell. 8(2–3), 89–116 (2015)

18. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175
(1995)


	Visualisation and Optimisation of Learning Classifier Systems for Multiple Domain Learning
	1 Introduction
	2 Background
	3 Method
	4 Results and Discussion
	4.1 Attribute Importance
	4.2 Specific Search

	5 Discussion
	6 Conclusion
	References


