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Abstract Missing values are an unavoidable problem of

many real-world datasets. Inadequate treatment of missing

values may result in large errors on classification; thus,

dealing well with missing values is essential for classifi-

cation. Feature selection has been well known for

improving classification, but it has been seldom used for

improving classification with incomplete datasets. More-

over, some classifiers such as C4.5 are able to directly

classify incomplete datasets, but they often generate more

complex classifiers with larger classification errors. The

purpose of this paper is to propose a wrapper-based feature

selection method to improve the ability of a classifier able

to classify incomplete datasets. In order to achieve the

purpose, the feature selection method evaluates feature

subsets using a classifier able to classify incomplete data-

sets. Empirical results on 14 datasets using particle swarm

optimisation for searching feature subsets and C4.5 for

evaluating the feature subsets in the feature selection

method show that the wrapper-based feature selection is

not only able to improve classification accuracy of the

classifier, but also able to reduce the size of trees generated

by the classifier.

Keywords Missing data � Incomplete data � Missing

values � Feature selection � Classification � C4.5 � Particle
swarm optimisation

1 Introduction

Classification is a major research area in data mining. The

input space is one of the most important aspects affecting

classification accuracy. Two main problems of input space

are missing data and redundant/irrelevant features [5, 20].

An incomplete dataset is a dataset containing some

features which do not have values in some fields. Missing

values are a common issue in many real-world datasets

[16, 29, 35]. For example, in the UCI repository [1], which

is a popular data collection for machine leaning methods,

45 % of the datasets suffer from the problem of missing

values [15]. Causes of missing values are various. For

instance, survey sheets in a social survey may lack some

values because some respondents ignore to answer some

questions in the survey; some results in an industrial

experiment might be missing because of mechanical fail-

ures while gathering data; medical datasets often contain

missing values since not all tests can be run on every

patient [13].

Missing values cause a number of severe issues. One

severe issue is non-applicability of data analysis methods.

Although some data analysis methods can deal with

missing values, many others require complete data.

Therefore, these methods are not able to work directly with

original data containing missing values. Moreover, missing

values may cause biased results owing to differences

between missing data and complete data [2].

The problem of missing values in datasets has been

addressed extensively in statistical fields [16, 29, 34, 35].
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However, the problem of missing values has been tackled

with less effort in classification tasks [15]. There are two

major approaches to addressing the problem of missing

values in classification tasks. The first approach is to use

imputation methods to fill missing values with plausible

values before using classifiers. The second approach is to

use classifiers such as C4.5 [33] which are able to directly

classify incomplete datasets. Although the two approaches

are able to cope with missing values to a certain level, they

often lead to large classification errors [12]. Hence, further

approaches to enhancing classification accuracy when

faced with missing values should be investigated.

When the input space contains numerous redundant/ir-

relevant features, many classifiers such as decision tress

cannot achieve adequate accuracy. Feature selection that

chooses a sufficient feature subset from original features is

a well known solution to the problem [17, 19, 25]. The

purpose of feature selection is to eliminate redundant fea-

tures and only keep important features, while retaining or

improving accuracy of the classification tasks. Feature

selection has been widely used for improving classification

in complete datasets [17, 19, 25].

In feature selection, there are two main approaches to

evaluating feature subsets: the filter approach and the

wrapper approach. The filter approach uses measures such

as information gain to evaluate the quality of feature

subsets [30]. In contrast, a wrapper method builds a

classifier to evaluate the quality of feature subsets. In

recent work [11, 32], filter approaches based on mutual

information have been expanded to evaluate feature sub-

sets when datasets contain missing values. The experi-

mental results show that a filter-based feature selection

can help improve regression and classification tasks when

faced with missing values. In [39], a wrapper-based fea-

ture selection method using particle swarm optimisation

(PSO) for incomplete datasets was developed, and was

able to improve classification accuracy and reduce the

complexity of the learned classifier, but it still has limi-

tation. Therefore, deeper research on the wrapper-based

feature selection for incomplete datasets should be

investigated.

1.1 Research goals

The goal of this paper is to expand the wrapper-based

feature selection method for classification with incomplete

datasets in [39] by running the experiment with more

datasets to make stronger conclusion about the effective-

ness and the complexity of the wrapper-based feature

selection for classification with incomplete datasets. We

analyse the role of threshold in PSO-based feature selection

and analyse the computation time of the wrapper method

using PSO for feature selection with incomplete datasets.

Finally, we attempt to identify why the wrapper-based

feature selection can improve classification with incom-

plete datasets. The experimental results are used to address

the following objectives:

1. How the threshold value in PSO-based feature selec-

tion affects the classification accuracy and the size of

the learned classifier.

2. Whether the proposed wrapper-based feature selection

method for incomplete datasets is able to enhance

classification accuracy compared with using a classifier

able to classify incomplete datasets without using

feature selection or using imputation methods before

using a classifier.

3. Whether the proposed wrapper-based feature selection

method for incomplete datasets is able to reduce the

complexity of the learned classifier compared with

using a classifier able to classify incomplete datasets

without using feature selection or using imputation

methods before using a classifier.

4. How expensive the proposed wrapper-based feature

selection method is for classification with missing

values.

5. Why the proposed wrapper-based feature selection

method for incomplete datasets is able to improve

classification accuracy and reduce the complexity of

the learned classifier.

1.2 Organisation

The rest of this paper is organised as follows. Related work

is outlined in Sect. 2. After that, the method and experi-

ment design are presented in Sect. 3. Empirical results and

analysis are then shown in Sect. 4. Finally, conclusions and

future work are presented in Sect. 5.

2 Related work

2.1 Classification with incomplete datasets

There are four major ways to deal with classification with

missing values including removal approach, imputation

approach, model-based approach and machine-learning

approach [15].

Removal approach removes all instances containing

missing values before using classifiers. The advantage of

this approach is to provide complete data that is able to be

classified by any classifiers. However, instances containing

missing values are not classified by the learn classifier;

hence, this method can be only used in the training process

and when a dataset contains a small amount of missing

values [13].
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Imputation approach utilises imputation methods to fill

missing fields with plausible values before using classifiers.

For example, mean imputation replaces missing fields with

the average of complete values in the same feature. The

main advantage of using imputation methods is to provide

complete data for classification. Therefore, both complete

and incomplete instances are participated in the classifi-

cation process. Moreover, most imputation methods are

able to improve classification accuracy compared to with-

out using imputation methods. Hence, imputation methods

is a main method to deal with classification with incom-

plete datasets [12].

Model-based approach builds the data distribution

model from input data. After that, the data distribution

model is combined with the Bayesian decision theory [4] to

classify both complete and incomplete instances. Although

this approach is able to classify both complete and

incomplete instances, it needs to make assumptions about

the joint distribution of all features in the model [15].

Machine learning approach builds classifiers that can

directly classify incomplete datasets without using imputa-

tion methods. For example, C4.5 [33] is able to address

missing values in both the training set and test set by using a

probabilistic approach. Some other classifiers can deal with

incomplete datasets including CART [10] and CN2 [7].

2.2 Imputation methods

Imputation methods aim at filling missing fields with

plausible values. As a result, an incomplete dataset is

transformed to a complete dataset which is then classified

by using any classifiers. Hence, using imputation method is

one of the main approaches to classification with incom-

plete datasets [15, 36–38]. This section shows three popular

imputation methods used in this paper: mean imputation,

KNN-based imputation and EM-based imputation.

Mean imputation is the simplest imputation method that

fills missing fields with the average of complete values in

the same feature. The main advantage of mean imputation

is to maintain the mean of each feature. However, mean

imputation under-represents the variability in the data since

all missing values in each feature are replaced with the

same value [15].

KNN-based imputation performs two steps to impute

missing fields in an incomplete instance. The first step is to

find the K most similar with the incomplete instance. After

that, missing fields of the incomplete instance is filled by

the average of the complete values of the K instances.

KNN-based imputation is usually better than mean impu-

tation [3]. Nevertheless, the computation time of KNN-

imputation is often expensive because this method has to

search through all instances to find the K most similar

instances [15].

Expectation Maximization-based imputation is one of

the most powerful imputation methods [29, 35]. This

imputation uses the Expectation Maximization(EM) algo-

rithm to calculate a maximum likelihood variance-covari-

ance matrix and a mean vector which are then utilised to

fill missing fields with plausible values. EM-based impu-

tation is an iterative method including two main steps at

each iteration: E-step and M-step. E-step is utilised to

calculate variances, covariances and means from complete

values and the current best values of missing fields. M-step

is utilised to build new regression equations for each fea-

ture by using all other features, and then the new equations

are used to update the best values for missing fields in the

E-step of next iteration [16].

2.3 Feature selection

Feature selection is the process of searching for a feature

subset from the original features which is adequate to

perform the classification task. Feature selection is able to

eliminate redundant features; thus, it assists to improve

classification accuracy. Moreover, feature selection is able

to reduce the complexity of the learned classifier; conse-

quently, it makes the execution of the learned classifier

faster. Furthermore, the classifiers constructed utilising a

smaller number of features are often easier to interpret

[26, 40].

A feature selection method consists of two main com-

ponents: a search procedure and an evaluation measure.

The search procedure is utilised to find feature subsets.

After that, the evaluation measure is utilised to examine the

goodness of the feature subsets. The quality of the feature

selection method strongly depends on both the quality of

the search procedure and the quality of the evaluation

measure [9].

Search techniques in feature selection can be divided

into conventional techniques and evolutionary techniques.

For instance, two traditional search techniques are

sequential backward selection and sequential forward

selection [22]. Recently, evolutionary search techniques

such as genetic algorithm, genetic programming and par-

ticle swarm optimisation (PSO) have been used widely to

search for feature subsets in the feature selection method

[6, 21, 28, 31, 42, 44].

Evaluation methods in feature selection can be divided

into the wrapper methods and the filter methods [9]. A

wrapper method uses a classifier to evaluate the feature

subsets. A wrapper-based feature selection is often com-

putationally intensive since every evaluation of feature

subsets requires to train a classifier and then test its per-

formance. In contrast, a filter method uses an evaluation

measure such as information gain [30]. None of classifiers

is participated in the evaluation of feature subsets; hence,
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feature subsets generated by using a filter-based feature

selection is often more efficient and the results are often

more general. However, wrapper-based feature selection

methods usually achieve better classification than filter-

based feature selection methods [25].

Feature selection has been mainly applied to complete

data. A filter approach to feature selection for regression

with incomplete datasets is proposed in [11], where nearest

neighbors based mutual information estimator is extended

to handle missing values. The experimental results on

artificial as well as real-world datasets show that the

method is able to select important features without the need

for any imputation algorithm and help improve the per-

formance of the prediction models. In [32], the mutual

information criterion combined with rough sets is proposed

to evaluate feature subsets in incomplete datasets. The

experimental results on different datasets show that the

proposed algorithm is more effective than existing algo-

rithms for feature selection in incomplete datasets at most

cases. In [39], a wrapper-based feature selection for

incomplete datasets has been proved capable of improving

classification accuracy and reducing the complexity of the

learned classifier.

2.4 PSO for feature selection

Particle swarm optimisation (PSO) proposed by Kennedy

and Eberhart in 1995 [23, 24] is a swarm intelligence

algorithm. PSO is inspired by the movement of organisms

such as a bird flocking. In order to optimise a problem,

PSO makes a population of particles in the search space,

and moves these particles around in the search space using

the information of the particles’ position and velocity. The

movement of each particle uses both the personal best

known position and the global best known position in the

search space. When enhanced positions are found, this

information will be utilised to guide the movements of the

swarm toward the best solution. One advantage of PSO is

that it does not require making assumptions about the

problem being optimized. Furthermore, PSO is able to

search very large spaces of candidate solutions. Conse-

quently, PSO can be used to optimise problems which are

partially noisy, irregular and change over time, etc. How-

ever, the same as other evolutionary algorithms, PSO

cannot ensure to find an optimal solution.

PSO has been recently used as a search technique to find

feature subsets form original features in feature selection

problems [27, 40, 41, 43]. If the number of original features

is n, then the search space dimensionality is n. Each par-

ticle in the swarm is usually presented by a vector of n real

numbers. The value of the ith particle in the dth dimension,

xid, is often in an interval [0, 1]. In order to identify

whether or not a feature will be chosen, the real value in the

position vector is compared with a threshold 0\h\ 1. If

xid\h, then the dth feature will be not chosen; otherwise,

the dth feature will be chosen.

PSO has been used for both wrapper-based and filter-

based feature selection. PSO has been proved capable of

having the ability to deal well with feature selection

problems [6, 21, 28, 42]. However, PSO-based feature

selection for incomplete datasets has not been systemati-

cally investigated.

2.5 C4.5 for classification with missing data

In order to apply a wrapper-based feature selection for

incomplete datasets, a classifier able to directly classify

incomplete datasets is required to measure feature subsets.

In this paper, the C4.5 algorithm [33] that can directly

classify incomplete datasets is utilised to measure feature

subsets.

C4.5 computes the information gain of an incomplete

feature by computing the gain on the complete values and

discounting it by the ratio of complete instances to all

instances. C4.5 utilises a probabilistic approach to

addressing missing values in both the training set and test

set. C4.5 makes assumption that instances with the missing

values are distributed probabilistically according to the

relative frequency of known values. In the training process,

each feature value is assigned a weight: the weight is

assigned one if a feature value is known; otherwise, the

weight of any other values for that feature is the frequency

of those values. In the testing process, when a test feature is

chosen, the cases with known values are divided into

branches corresponding to these values. The cases with

missing values are passed down all available branches, but

with weight that corresponds to the relative frequency of

the value assigned to a branch and it decides the class label

by using the most probable value [33].

3 Method and experiment design

This section presents the detailed design of method and

experiment including comparison method, datasets used in

the experiment, C4.5 used as a classifier, imputation

methods used to fill missing fields with plausible values

and PSO parameter settings for searching feature subsets.

3.1 The method

This study is designed to empirically evaluate the effect of

a wrapper-based feature selection method for incomplete

datasets. In order to achieve this objective, a wrapper-based
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feature selection for incomplete datasets is proposed as

shown in Fig. 1 and compared to other two common

methods for dealing with classification with incomplete

datasets as shown in Figs. 2 and 3. Figure 1 presents the

proposed method for classification with incomplete data-

sets which uses a feature selection method to choose fea-

ture subsets from original features before using a classifier

able to directly classify incomplete datasets. Figure 2

presents a common method for classification with incom-

plete datasets which uses a classifier able to directly clas-

sify incomplete datasets. Figure 3 presents another

common method for classification with incomplete datasets

which uses an imputation method to fill missing fields with

plausible values before using a classifier.

In the three setups, an incomplete dataset is firstly

divided into a training incomplete dataset and a testing

incomplete dataset. In the proposed setup shown in Fig. 1,

a feature selection method uses the training incomplete

dataset as a training data to select a suitable feature subset.

After that the feature subset is used to build a data trans-

formation which is then used to transform the training

incomplete dataset into training transformed incomplete

dataset and the testing incomplete dataset into testing

transformed incomplete dataset. The training transformed

incomplete dataset is then used by a classifier to build a

classification model which is then utilised to classify the

testing transformed incomplete dataset. In the setup shown

in Fig. 2, the training incomplete dataset is directly used by

a classifier to build a classification model which is then

utilised to classify the testing incomplete dataset. In the

setup shown in Fig. 3, an imputation method is used to

transfer the training incomplete dataset and the testing

incomplete dataset into training imputed data and testing

imputed data. After that the training imputed data is used

by a classifier to build a classification model which is then

utilised to classify the testing imputed data.

3.2 Datasets

Fourteen datasets, summarised in Table 1, are used in the

experiments. These are taken from the UCI Repository of

Machine Learning Databases [1]. Each dataset is presented

in one row in Table 1 including the number of instances,

the number of features, the number of classes, the pro-

portion of instances containing at least one missing field

and the proportion of features containing at least one

missing field.

The first seven datasets suffer from missing values in

a ‘‘natural’’way. In the datasets, we do not know any

information related to the randomness of missing values, so

we make assumption that missing values in the datasets are

distributed in a missing at random (MAR) way [29].

In order to test the performance of the proposed feature

selection method with datasets containing different levels

of missing values, the missing completely at random

(MCAR) mechanism [29] was utilised to introduce missing

values into the last seven complete datasets. Six different

levels of missing values: 5, 10, 20, 30, 40 and 50 % were

utilised to introduce missing values into the datasets.

Although naturally incomplete datasets Ozone and Mam-

mographic contain missing values in all features, the other

five datasets contain missing values in some features.

Fig. 1 Classification with incomplete datasets using a feature selection method before applying a classifier able to classify incomplete datasets

Fig. 2 Classification with incomplete datasets using a classifier able to classify incomplete datasets
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Therefore, with the last seven complete datasets, missing

values were put randomly in 50 % random features in each

dataset. With each dataset in the last seven datasets and

each level of missing values in the six levels, repeat 30

times: randomly select 50 % features from original fea-

tures, and then introduce the level of missing values in the

chosen features. Hence, from one dataset and one level of

missing values, 30 artificial datasets containing missing

values were generated. Therefore, from one complete

dataset, 180 (¼30� 6) artificial datasets containing miss-

ing values were generated and a total of 1260 (¼180� 7)

artificial datasets containing missing values were used in

the experiments.

None of the datasets in the experiments comes with a

specific test set. Moreover, in some datasets, the number of

instances is relatively small. Therefore, the ten-fold cross-

validation method was used to measure the performance of

the learned classifiers. With the first seven incomplete

datasets, the ten-fold cross-validation method was per-

formed 30 times. With the last seven complete datasets,

with each dataset and each level of missing values, the ten-

fold cross-validation method was performed on the 30

incomplete datasets. Consequently, for each incomplete

dataset in the first seven datasets and each level of missing

values on one dataset in the last seven datasets, 300 pairs of

training and testing sets were generated.

3.3 Imputation algorithms

Three imputation methods including mean imputation,

KNN-based imputation and EM-based imputation were

used in the experiment. Mean imputation and KNN-

based imputation were in-house implementations. With

KNN-based imputation, for each incomplete dataset,

different values for the number of neighbors K (5, 10,

15, 20, 30) were checked to find the optimal values by

using the ten-fold cross-validation method. The experi-

ments utilised WEKA [18] for EM-based imputation

implementation by setting its parameters as the default

values.

3.4 Classification algorithm

C4.5 is a decision tree able to directly classify incomplete

datasets. The experiments utilised C4.5 to classify data and

evaluate feature subsets in feature selection. The experi-

ments utilised WEKA [18] for C4.5 implementation by

setting its parameters as the default values.

Fig. 3 Classification with incomplete datasets using an imputation method before using a classifier

Table 1 The datasets used in

the experiments
Dataset #Instances #Features #Classes Missing Inst (%) Missing features (%)

Breast 286 9 2 3.15 11.11

Cleveland 303 13 5 1.98 15.38

Hepatitis 155 19 2 48.39 78.94

Mammographic 961 5 2 13.63 100

Marketing 8993 13 9 23.54 69.23

Ozone 2536 73 2 27.12 100

Wisconsin 699 9 2 2.29 11.11

Climate 540 20 2 0 0

Ionosphere 351 34 2 0 0

Liver 345 7 2 0 0

Parkinsons 197 23 2 0 0

Robot 463 90 5 0 0

Sonar 208 60 2 0 0

Statlog 270 13 2 0 0
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3.5 PSO settings

PSO was used as a search technique for searching feature

subsets in the feature selection method. The parameters of

PSO in the feature selection method were chosen according

to common settings proposed by Clerc and Kennedy [8].

The detailed settings are shown as follows: x = 0.729844,

c1 = c2 = 1.49618, population size was set to 70, and the

maximum iteration was set to 100. The fully connected

topology is used. For each incomplete dataset, different

values for the threshold h to determine whether or not a

feature is selected (0.05, 0.2, 0.4, 0.6, 0.8, 0.95) were

checked to find the optimal values by using ten-fold cross-

validation. The fitness function to evaluate particles is

based on the performance of C4.5. For each dataset in the

first seven incomplete datasets and each level of missing

values on one dataset in the last seven datasets, 300 pairs of

training set and test set were generated, so PSO was

repeated 300 times on each dataset.

4 Results and analysis

This section presents the effects of threshold in PSO for

feature selection, classification accuracy comparisons, the

complexity of the learned models and further analysis.

Table 2 Size of trees with

different thresholds
Dataset All features Threshold

0.05 0.2 0.4 0.6 0.8 0.95

Breast 22.8 19.3 18.1 16.5 16.1 15.2 12.7

Cleveland 79.4 73.9 70.2 53.8 32.8 17.8 12.6

Hepatitis 17.3 14.5 12.5 11.9 10.2 7.5 5.3

Mamomgraphic 10.3 10.1 10.0 9.9 9.9 9.3 6.1

Marketing 1368.2 1453.6 1398.5 873.9 305.7 285.3 189.4

Ozone 24.6 39.2 37.2 25.4 15.7 9.6 7.3

Wisconsin 23.3 19.7 18.2 16.3 15.9 15.4 12.7

Table 3 Classification accuracy with different thresholds

Dataset All features Threshold

0.05 0.2 0.4 0.6 0.8 0.95

Breast 94.55 ± 0.46 94.63 ± 0.45 94.68 ± 0.54 94.51 ± 0.43 94.44 ± 0.44 94.52 ± 0.55 93.74 ± 0.72

Cleveland 54.29 ± 1.92 54.86 ± 1.83 55.74 ± 1.43 55.94 ± 1.98 57.21 ± 1.51 57.82 ± 1.27 57.43 ± 1.74

Hepatitis 79.13 ± 2.02 79.35 ± 2.02 79.08 ± 1.69 79.22 ± 1.75 79.73 ± 2.22 80.27 ± 1.59 81.53 ± 1.68

Mammographic 82.21 ± 0.45 82.86 ± 0.41 82.72 ± 0.41 82.70 ± 0.64 82.68 ± 0.38 82.27 ± 0.53 81.80 ± 0.61

Marketing 31.40 ± 0.74 31.30 ± 0.74 31.33 ± 0.70 31.29 ± 0.85 31.62 ± 0.88 31.72 ± 0.93 31.03 ± 1.24

Ozone 96.40 ± 0.43 96.26 ± 0.58 96.14 ± 0.47 95.95 ± 0.41 96.52 ± 0.52 96.67 ± 0.59 96.98 ± 0.26

Wisconsin 94.70 ± 0.41 94.61 ± 0.64 94.72 ± 0.57 94.44 ± 0.61 94.52 ± 0.64 94.54 ± 0.66 94.10 ± 0.72

Bold values indicate the best result for each dataset

Table 4 The average of accuracy comparison between C4.5FS and the other methods with datasets containing natural missing values

Dataset C4.5FS C4.5 T C4.5MI T C4.5KNNI T C4.5EMI T

Breast 94.68 ± 0.54 94.55 ± 0.46 = 94.31 ± 0.49 = 94.70 ± 0.43 = 94.78 ± 0.51 =

Cleveland 57.82 ± 1.27 54.29 ± 1.92 ? 53.42 ± 2.24 ? 53.67 ± 1.98 ? 53.58 ± 1.99 ?

Hepatitis 81.53 ± 1.68 79.13 ± 2.02 ? 77.70 ± 1.91 ? 77.64 ± 1.75 ? 78.25 ± 2.39 ?

Mammographic 82.86 ± 0.41 82.21 ± 0.45 ? 81.92 ± 0.62 ? 82.09 ± 0.64 ? 82.35 ± 0.63 ?

Marketing 31.72 ± 0.93 30.80 ± 0.74 ? 30.27 ± 0.82 ? 30.43 ± 0.85 ? 30.32 ± 0.77 ?

Ozone 96.98 ± 0.26 96.40 ± 0.43 ? 96.17 ± 0.42 ? 96.08 ± 0.41 ? 96.03 ± 0.71 ?

Wisconsin 94.62 ± 0.66 94.70 ± 0.41 = 94.47 ± 0.43 = 94.87 ± 0.61 = 94.76 ± 0.61 =

Bold values indicate the best results for each dataset
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4.1 Threshold in PSO for feature selection

To use PSO for feature selection, a threshold is required to

determine whether a feature will be selected or not. To

evaluate how the threshold affects the average number of

selected features and the classification accuracy, PSO with

different thresholds were used to do feature selection.

Tables 2 and 3 show the average size of trees and the

Table 5 The average of accuracy comparison between C4.5FS and the other methods with datasets using several missing rates

Dataset Missing rate (%) C4.5FS C4.5 T C4.5MI T C4.5KNNI T C4.5EMI T

Climate 5 91.50 ± 0.52 90.19 ± 0.87 ? 89.46 ± 0.97 ? 89.81 ± 0.92 ? 89.76 ± 0.85 ?

10 91.49 ± 0.43 90.13 ± 1.04 ? 89.21 ± 1.10 ? 89.40 ± 1.40 ? 89.62 ± 1.19 ?

20 91.58 ± 0.37 90.51 ± 1.21 ? 89.42 ± 1.01 ? 89.54 ± 0.89 ? 89.51 ± 1.04 ?

30 91.41 ± 0.33 91.17 ± 0.71 ? 88.97 ± 0.89 ? 88.90 ± 0.98 ? 89.20 ± 1.07 ?

40 91.48 ± 0.27 91.29 ± 0.60 ? 88.90 ± 1.23 ? 88.98 ± 1.26 ? 89.20 ± 0.91 ?

50 91.41 ± 0.28 91.29 ± 0.50 = 89.10 ± 1.33 ? 89.14 ± 1.32 ? 89.12 ± 1.33 ?

Ionosphere 5 90.73 ± 1.11 89.87 ± 1.66 ? 89.98 ± 1.42 ? 89.49 ± 1.42 ? 89.59 ± 1.56 ?

10 90.67 ± 1.35 89.86 ± 1.32 ? 88.92 ± 1.58 ? 89.68 ± 1.28 ? 89.62 ± 1.38 ?

20 90.45 ± 1.60 89.53 ± 1.14 ? 88.81 ± 1.63 ? 87.55 ± 1.81 ? 89.07 ± 1.39 ?

30 89.73 ± 1.64 89.62 ± 1.89 = 88.91 ± 1.92 ? 88.45 ± 2.28 ? 89.10 ± 1.89 ?

40 88.96 ± 1.78 88.56 ± 1.46 = 87.48 ± 1.96 ? 87.51 ± 1.95 ? 88.30 ± 1.95 ?

50 88.95 ± 2.54 88.17 ± 2.46 ? 87.37 ± 2.24 ? 87.37 ± 2.24 ? 87.64 ± 2.36 ?

Liver 5 65.69 ± 1.91 65.88 ± 2.03 = 64.84 ± 2.30 = 65.24 ± 2.12 = 64.92 ± 2.51 =

10 64.38 ± 2.66 63.69 ± 2.50 = 63.68 ± 2.67 = 63.42 ± 2.72 = 63.56 ± 2.31 =

20 64.35 ± 2.63 64.06 ± 2.48 = 62.31 ± 2.58 ? 63.54 ± 2.76 = 62.80 ± 2.65 ?

30 62.98 ± 3.65 62.83 ± 3.66 = 62.51 ± 2.97 = 61.78 ± 3.29 ? 62.18 ± 3.16 =

40 62.05 ± 3.79 62.01 ± 3.52 = 60.88 ± 4.42 = 61.19 ± 3.85 = 60.89 ± 3.27 ?

50 61.52 ± 3.60 61.29 ± 2.93 = 59.99 ± 3.95 ? 61.02 ± 3.11 ? 60.41 ± 2.84 =

Parkinsons 5 86.72 ± 2.28 85.63 ± 1.90 = 85.13 ± 2.34 ? 84.83 ± 2.36 ? 85.13 ± 1.95 ?

10 86.09 ± 1.83 85.42 ± 2.16 = 84.07 ± 1.98 ? 84.16 ± 2.29 ? 84.84 ± 2.36 ?

20 86.52 ± 2.07 85.40 ± 2.59 ? 84.30 ± 2.01 ? 84.13 ± 2.37 ? 84.53 ± 2.40 ?

30 86.47 ± 2.51 85.31 ± 2.24 ? 83.14 ± 2.61 ? 82.65 ± 2.44 ? 83.57 ± 2.03 ?

40 85.78 ± 1.78 84.77 ± 2.29 ? 83.69 ± 2.79 ? 84.08 ± 2.56 ? 83.05 ± 1.90 ?

50 85.55 ± 2.47 84.29 ± 2.54 ? 81.76 ± 2.89 ? 81.61 ± 2.79 ? 82.07 ± 2.47 ?

Robot 5 36.21 ± 1.91 32.72 ± 2.16 ? 31.97 ± 1.91 ? 31.82 ± 2.11 ? 32.53 ± 1.93 ?

10 35.12 ± 2.11 33.10 ± 2.11 ? 32.09 ± 1.63 ? 32.36 ± 1.81 ? 32.24 ± 1.95 ?

20 35.87 ± 1.75 32.54 ± 1.96 ? 33.54 ± 2.01 ? 33.54 ± 2.02 ? 33.39 ± 2.08 ?

30 35.44 ± 1.92 33.67 ± 2.08 ? 34.14 ± 2.19 ? 34.14 ± 2.19 ? 33.65 ± 1.92 ?

40 36.69 ± 2.61 35.18 ± 2.01 ? 34.60 ± 2.04 ? 34.60 ± 2.04 ? 35.93 ± 1.90 =

50 38.39 ± 2.13 36.60 ± 1.63 ? 33.82 ± 2.28 ? 33.82 ± 2.28 ? 35.66 ± 2.49 ?

Sonar 5 74.97 ± 3.04 72.96 ± 2.63 ? 72.65 ± 3.00 ? 74.15 ± 2.72 = 72.68 ± 2.77 ?

10 74.11 ± 3.20 72.60 ± 3.15 ? 72.20 ± 2.78 ? 72.79 ± 2.93 = 72.19 ± 2.66 ?

20 73.94 ± 3.48 73.94 ± 3.34 ? 71.58 ± 2.82 ? 71.44 ± 2.77 ? 72.56 ± 2.76 =

30 72.23 ± 3.24 72.74 ± 2.43 = 70.94 ± 2.71 = 70.94 ± 2.71 = 71.22 ± 3.19 =

40 73.20 ± 4.17 72.49 ± 3.85 = 69.31 ± 3.82 ? 69.31 ± 3.82 ? 71.70 ± 2.72 =

50 73.71 ± 3.58 72.85 ± 3.01 = 68.25 ± 3.25 ? 68.25 ± 3.25 ? 70.23 ± 3.55 ?

Statlog 5 81.16 ± 2.18 78.92 ± 2.21 ? 77.98 ± 2.03 ? 78.02 ± 2.07 ? 77.96 ± 2.15 ?

10 80.06 ± 2.05 78.17 ± 2.07 ? 77.22 ± 2.26 ? 76.86 ± 2.01 ? 76.91 ± 2.08 ?

20 79.75 ± 2.88 77.56 ± 2.54 ? 76.97 ± 2.42 ? 76.46 ± 2.99 ? 76.33 ± 2.37 ?

30 78.81 ± 3.53 77.26 ± 2.99 ? 77.08 ± 2.25 ? 76.44 ± 3.07 ? 75.58 ± 2.34 ?

40 75.93 ± 3.98 76.44 ± 3.86 = 73.48 ± 4.54 ? 73.83 ± 4.46 ? 74.70 ± 2.80 =

50 75.96 ± 3.90 76.66 ± 3.81 = 72.75 ± 4.26 ? 72.79 ± 4.76 ? 72.30 ± 4.10 ?

Bold values indicate the best results for each dataset
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classification accuracy with different thresholds in PSO for

the first seven datasets containing natural missing values.

It is clear from Table 2 that higher thresholds result in

smaller trees than lower thresholds, and in all the datasets,

high thresholds result in smaller trees than using all fea-

tures. However, feature selection with low thresholds does

not always result in smaller trees than using all features.

For example, threshold needs be at least 0.4 for Marketing

dataset and 0.6 for Ozone dataset to achieve smaller trees.

Table 3 shows that classification accuracy not only

depends on thresholds, but also depends on datasets. With

difficult datasets which have many classes such as Cleve-

land and Marketing or many features such as Ozone, to

achieve classification improvement, threshold needs be

high enough. In contrast, with datasets having a small

number of features such as Breast, Mammographic and

Wisconsin, low thresholds help to achieve classification

improvement.

The purpose of feature selection is to reduce the number

of original features, and retain or improve classification

accuracy compared with using all features. Therefore,

chosen thresholds have to not only help to reduce redun-

dant features, but also retain or improve classification. In

the experiments, for each dataset, different values of

thresholds (0.05, 0.2, 0.4, 0.6, 0.8, 0.95) were checked to

find the optimal values by using ten-fold cross-validation.

The optimal threshold was chosen such that maximises

classification accuracy and achieves smaller trees than

using all of features. By using ten-fold cross-validation to

choose thresholds, thresholds were chosen 0.05 for Mam-

mographic, 0.2 for Breast and Wisconsin, 0.95 for Hepatitis

and Ozone, and 0.8 for the other datasets.

4.2 Classification performance

Table 4 shows the average of classification accuracy and

standard deviation of the first seven datasets. In the table,

and in the following ones, C4.5FS column presents results

from the first setup shown in Fig. 1, C4.5 column presents

results from the second setup shown in Fig. 2; C4.5MI,

C4.5KNNI and C4.5EMI columns present results from the

third experimental setup shown in Fig. 3 by using mean

imputation, KNN-based imputation and EM-based impu-

tation, respectively.

With each dataset in the first seven datasets, the classi-

fication accuracy is the average of accuracies of the 30

times performing ten-fold cross-validation. Table 5 shows

the average of classification accuracy and standard devia-

tion of the last seven datasets with six levels of missing

values. With each dataset and each missing level in the last

seven datasets, the classification accuracy is the average of

accuracies of the 30 generated incomplete datasets with the

corresponding missing level.

To compare the performance of C4.5FS with the other

methods, the Wilcoxon signed-ranks tests at 95 % confi-

dence interval is used to compare the classification accu-

racy achieved by C4.5FS with the other methods. ‘‘T’’

columns in Tables 4 and 5 show significant test of the

columns before them against C4.5FS, where ‘‘?’’, ‘‘=’’ and

‘‘-’’ mean C4.5FS is significantly more accurate, not sig-

nificantly different, and significantly less accurate,

respectively.

Table 4 shows that C4.5FS can achieve significantly

better classification accuracy or at least similar classifica-

tion accuracy to the other methods with the datasets con-

taining natural missing values. C4.5FS achieves similar

classification accuracy to other methods on Breast and

Wisconsin, significantly better classification accuracy than

other methods on the other five datasets, and never sig-

nificantly worse classification accuracy than the other

methods.

The results from Table 5 are summarised in Fig. 4.

Figure 4 shows that C4.5FS can obtain significantly better

or at least similar classification accuracy compared to the

other methods with artificial incomplete datasets. It is also

clear from Fig. 4 that C4.5FS can achieve more times

significantly better than C4.5MI and followed by

C4.5KNNI, C4.5EMI and C4.5.

In order to confirm if C4.5FS is really significantly

better than the others, we perform Friedman’s test on the

accuracies of all the algorithms in the 49 datasets. Table 6

shows the ranking of the algorithms using Friedman’s test.

It is clear from Table 6 that C4.5FS is the best algorithm,

followed by C4.5, C4.5EMI, C4.5KNNI and C4.5MI.

Furthermore, we perform post hoc tests to carry out pair-

wise comparisons. Table 7 shows pairwise comparisons

using Holm and Shaffer as a post-hoc procedure [14]. It’s

clear form Table 7 that C4.5FS is significantly better than

each of the other algorithms. Moreover, the three imputa-

tion methods cannot help to improve C4.5, and this

observation is similar to the observation in [12], where

C4.5 was proved to be better than the combination of C4.5

Fig. 4 Accuracy comparison of C4.5FS with the other methods
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and imputation methods. Therefore, the new approach to

using feature selection to improve C4.5 is essential.

In summary, the feature selection method for incomplete

datasets is able to help enhance classification accuracy of

C4.5 not only with natural incomplete datasets, but also

with artificial incomplete datasets.

4.3 Complexity of the learned models

Tables 8 and 9 show the average number of selected fea-

tures, the average time of feature selection and the average

size of decision trees (the number of nodes in the trees) by

utilising C4.5 in different ways in the first seven datasets

and the last seven datasets with six levels of missing val-

ues, respectively.

According to Table 8, with the first seven datasets

containing natural missing values, the feature selection

helps to reduce at least 30 % the number of original fea-

tures. Moreover, in some datasets such as Hepatitis and

Ozone, the feature selection helps to reduce more than

90 % the number of original features.

According to Table 9, with artificial incomplete data-

sets, the feature selection helps to reduce at least 50 % the

number of original features. Moreover, in some datasets

such as Robot and Sonar, the feature selection helps to

reduce around 90 % the number of original features.

Table 8 shows that C4.5FS is able to generate signifi-

cantly smaller decision trees than the other methods in all

cases. For example, with Marketing and Ozone datasets,

the average of tree sizes generated by C4.5FS is around one

fifth of the average of tree sizes generated by C4.5 and

more than one fifth of the average of tree sizes generated by

utilising imputation methods before using C4.5.

Figure 5 presents the minimum, average and maximum

ratios between the average of tree sizes generated by C4.5,

C4.5MI, C4.5KNNI and C4.5EMI with C4.5FS from

Table 9. The minimum ratio between the average of tree

sizes generated by the other methods with C4.5FS depicts

that C4.5FS can generate smaller trees than the other

methods. On average, the average of tree sizes generated

by C4.5 is about 50 % bigger than those generated by

C4.5FS, and the average of tree sizes generated by the

other methods is over nearly three times bigger than those

of C4.5FS. Moreover, the maximum of ratio between the

average of tree sizes generated by the other methods with

C4.5FS depicts that the average of tree sizes generated by

using imputation methods in some cases are dramatically

bigger than C4.5FS. The major reason is possibly that

imputation methods often generate further values for

missing features; hence, if the incomplete features are

Table 6 The ranking of the

algorithms using Friedman’s

test

Algorithm Ranking

C4.5FS 1.1939

C4.5 2.1939

C4.5EMI 3.6327

C4.5KNNI 3.8163

C4.5MI 4.1633

Table 7 Pairwise comparisons using a post-hoc procedure

Algorithms Holm Shaffer

C4.5FS versus C4.5 0.0125 0.0125

C4.5FS versus C4.5MI 0.0050 0.0050

C4.5FS versus C4.5KNNI 0.0056 0.0083

C4.5FS versus C4.5EMI 0.0063 0.0083

C4.5 versus C4.5MI 0.0071 0.0083

C4.5 versus C4.5KNNI 0.0083 0.0083

C4.5 versus C4.5EMI 0.0100 0.0125

C4.5MI versus C4.5KNNI 0.0250 0.0250

C4.5MI versus C4.5EMI 0.0167 0.0167

C4.5KNNI versus C4.5EMI 0.0500 0.0500

Bold values indicate the significant difference

Table 8 The average of tree sizes generated by C4.5FS and the other methods with datasets containing natural missing values

Dataset #Features Tree size Feature selection

time (ms)
All Selected features C4.5FS C4.5 C4.5MI C4.5KNNI C4.5EMI

Breast 9 6.1 16.2 23.3 23.6 22.6 22.9 2:7� 104

Cleveland 13 2.9 17.8 79.4 82.0 82.5 82.1 5:0� 103

Hepatitis 19 1.6 5.3 17.3 19.6 21.0 18.9 2:3� 103

Mammographic 5 3.7 10.1 10.3 20.5 11.5 13.6 4:3� 104

Marketing 13 7.8 285.3 1368.1 1721.3 1676.3 1718.4 9:8� 105

Ozone 73 4.1 7.3 24.6 29.5 30.9 30.2 4:9� 104

Wisconsin 9 5.0 18.2 23.3 24.1 22.5 22.4 2:8� 104

Bold values indicate the best results for each dataset
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Table 9 The average of tree sizes generated by C4.5FS and the other methods with datasets using several missing rates

Dataset Missing rate (%) #Features Tree size Feature selection time (ms)

All Selected features C4.5FS C4.5 C4.5MI C4.5KNNI C4.5EMI

Climate 5 20 4.5 5.4 23.8 25.6 25.4 23.9 7:9� 103

10 3.7 4.6 20.4 24.7 24.1 23.5 7:7� 103

20 4.5 4.3 17.3 27.9 26.1 25.1 6:3� 103

30 4.6 2.7 7.8 26.5 25.6 23.5 7:5� 103

40 3.9 2.3 5.4 26.3 26.7 20.9 6:6� 103

50 4.0 2.8 8.5 27.3 27.7 22.1 8:7� 103

Ionosphere 5 34 4.8 15.0 25.8 26.3 26.2 26.0 1:9� 104

10 5.3 14.8 23.7 25.5 25.6 25.7 2:4� 104

20 5.8 15.9 23.5 25.8 25.1 25.4 1:9� 104

30 5.6 15.5 22.2 26.5 26.2 25.2 1:1� 104

40 6.1 16.9 21.4 28.1 28.0 25.9 1:0� 104

50 5.1 17.4 20.7 27.9 27.9 25.4 1:1� 104

Liver 5 7 2.7 13.2 40.9 46.3 47.3 46.6 4:8� 104

10 2.0 11.8 33.9 42.2 41.2 40.1 3:5� 103

20 3.0 10.4 26.2 40.7 36.0 34.8 4:4� 103

30 2.7 15.0 17.0 19.6 19.5 18.8 3:4� 103

40 2.6 9.0 20.4 35.2 29.4 30.5 4:1� 103

50 1.9 7.6 14.2 29.1 24.7 22.7 2:5� 103

Parkinsons 5 23 4.1 15.0 17.8 19.0 18.7 18.8 7:4� 103

10 4.6 15.5 17.9 18.7 19.2 18.5 7:6� 103

20 3.9 15.4 17.8 19.9 19.5 18.7 6:1� 103

30 4.2 15.0 17.0 19.6 19.5 18.8 6:6� 103

40 4.4 13.9 15.8 19.7 19.6 18.3 1:2� 104

50 4.0 13.3 14.6 19.3 19.2 18.7 1:1� 104

Robot 5 90 6.9 63.6 71.3 118.4 106.6 100.9 1:9� 105

10 8.7 69.4 76.0 133.9 133.9 120.7 3:2� 105

20 7.5 73.1 86.4 131.7 131.7 129.2 1:4� 106

30 10.1 74.6 85.4 129.2 129.2 126.8 1:3� 106

40 6.3 70.8 79.4 128.4 128.4 125.0 1:0� 106

50 10.5 63.7 73.1 129.2 129.2 121.3 1:1� 106

Sonar 5 60 9.0 25.1 27.7 28.0 27.5 27.9 2:7� 103

10 7.9 25.4 28.1 28.7 28.3 27.9 2:8� 103

20 9.7 24.8 28.4 29.5 29.5 27.6 6:9� 103

30 8.2 23.2 27.5 30.3 30.3 28.2 6:1� 103

40 7.4 22.4 26.7 30.6 30.7 28.7 6:9� 103

50 7.6 22.7 26.3 31.8 32.0 29.2 6:3� 103

Statlog 5 13 3.7 12.8 30.4 34.6 34.3 33.9 5:9� 103

10 3.5 12.9 29.4 36.8 35.6 35.3 5:3� 103

20 3.7 12.6 26.2 36.0 36.1 35.0 5:9� 103

30 4.0 12.0 23.1 36.4 36.3 35.5 7:2� 103

40 4.0 11.5 21.8 38.5 38.1 36.9 5:7� 103

50 4.4 10.9 19.0 38.2 37.9 36.2 7:1� 103

Bold values indicate the best results for each dataset
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selected to make decision trees, the further values can

make decision trees bigger.

Tables 8 and 9 show that the feature selection time

strongly depends on the datasets. With datasets containing

many instances such as Marketing and datasets containing

many classes such as Robot, the feature selection procedure

often requires longer time than datasets containing small

instances and classes. The main reason is that datasets

containing many instances and classes often require longer

time for the classifier evaluating feature subsets.

In summary, in all cases, the feature selection method

for incomplete datasets is able to help reduce complexity of

the learned trees generated by C4.5, especially compared to

using imputation methods before using C4.5.

4.4 Further analysis

In order to know how C4.5FS has the ability of achieving

better classification accuracy and smaller trees than the

other methods, we analysed carefully the trees generated by

using C4.5 and C4.5FS on Climate dataset. Climate dataset

which has 20 features {f1,..,f20} was chosen because the

trees generated by using C4.5 and C4.5FS on the Climate

are not so big to analyse. Figures 6 and 7 present two

typical trees we observed.

Figure 6 presents two trees generated by using C4.5 and

using C4.5FS on Climate with 20 % missing values in nine

features {f2; f3; f4; f12; f13; f14; f15; f17; f19}. After using the

feature selection method on the dataset, seven features

{f1; f4; f11; f15; f16; f17; f20} were chosen. The tree generated

by C4.5FS achieved slightly higher classification accuracy

compared to the tree generated by C4.5 with 90.95 and

89.91 %, respectively. Both of them had the same features

in the top part of the trees. However, in the bottom part, the

tree generated by C4.5 tree included more features which

were not included in the tree generated by C4.5FS because

these features already had been removed by the feature

selection procedure. Consequently, C4.5FS can achieve not

only better classification accuracy but also smaller trees

than the C4.5.

Figure 7 presents two trees generated using C4.5 and

C4.5FS on Climate with 20 % missing values introduced in

10 features {f1; f4; f5; f7; f9; f10; f13; f14; f16; f19}. After using

the feature selection method, seven features {f7; f8; f9; f13;

f15; f16; f18} were selected. In C4.5, when computing the

information gain of a feature containing missing values, it

firstly calculates the gain based on the complete values and

discounts the gain by the proportion of complete instances

to all instances [33]. It means that missing values reduce

the information gain of incomplete features. Hence, C4.5

tends to select complete features to make decision trees;

however the bias of selecting complete features to build

decision trees is not always good. For instance, on Fig. 7,

while the first node of the tree generated by C4.5 is a

complete feature f3, the first node of the tree generated by

C4.5FS is an incomplete feature f16. Nevertheless, the tree

generated by C4.5FS obtained both better accuracy (91.3

vs 90.1 % ) and smaller size than the tree generated by

C4.5. A possible reason could be that by removing less

suitable features such as f3, the feature selection is able to

reduce the C4.5’s bias towards selecting complete features

to build decision trees.

In summary, the feature selection method can choose

relevant features and remove irrelevant features. Thus, the

feature selection is able to make better classifier.

5 Conclusions and future work

This paper has attempted to find the impact of a wrapper

feature-based feature selection method for incomplete

datasets. To achieve this goal, a wrapper-based feature

selection method for incomplete datasets is proposed and

compared with the two other common methods coping with

incomplete datasets: one using a classifier able to directly

classify incomplete datasets and the other using an impu-

tation method to transfer incomplete datasets to complete

datasets. The three setups were compared on 14 datasets

where seven datasets contain natural missing values and

the other seven datasets contain six levels of artificial

missing values. The experiments used C4.5 as an evalua-

tion and PSO as a search method for the feature selection

approach. The experimental results showed that the pro-

posed wrapper-based feature selection method for incom-

plete datasets is able to help to enhance the classification

accuracy of C4.5, significantly reduce the number of

original features and significantly reduce the complexity of

the learned classifier.

The experiments in this paper used C4.5 as a classifier

since C4.5 can cope with incomplete datasets. There are

some other classifiers that are able to classify incomplete

datasets such as CART [10] and CN2 [7]. Future work

could perform this investigation with CART and CN2.

Fig. 5 Tree size ratio between the other methods and C4.5FS
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Fig. 6 The left decision tree generated by using C4.5 and the right decision tree generated by using C4.5FS on Climate with 20 % missing fields

in features {f2; f3; f4; f12; f13; f14; f15; f17; f19}

Fig. 7 The left decision tree generated by using C4.5 and the right decision tree generated by using C4.5FS on Climate with 20 % missing fields

in features {f1; f4; f5; f7; f9; f10; f13; f14; f16; f19}
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Furthermore, the experiments tested the proposed method

with datasets involving not too many features. Therefore,

another future work could consider datasets involving more

features to test the scalability of the proposed method.
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