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Abstract Missing values are an unavoidable problem of
many real-world datasets. Inadequate treatment of missing
values may result in large errors on classification; thus,
dealing well with missing values is essential for classifi-
cation. Feature selection has been well known for
improving classification, but it has been seldom used for
improving classification with incomplete datasets. More-
over, some classifiers such as C4.5 are able to directly
classify incomplete datasets, but they often generate more
complex classifiers with larger classification errors. The
purpose of this paper is to propose a wrapper-based feature
selection method to improve the ability of a classifier able
to classify incomplete datasets. In order to achieve the
purpose, the feature selection method evaluates feature
subsets using a classifier able to classify incomplete data-
sets. Empirical results on 14 datasets using particle swarm
optimisation for searching feature subsets and C4.5 for
evaluating the feature subsets in the feature selection
method show that the wrapper-based feature selection is
not only able to improve classification accuracy of the
classifier, but also able to reduce the size of trees generated
by the classifier.
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1 Introduction

Classification is a major research area in data mining. The
input space is one of the most important aspects affecting
classification accuracy. Two main problems of input space
are missing data and redundant/irrelevant features [5, 20].

An incomplete dataset is a dataset containing some
features which do not have values in some fields. Missing
values are a common issue in many real-world datasets
[16, 29, 35]. For example, in the UCI repository [1], which
is a popular data collection for machine leaning methods,
45 % of the datasets suffer from the problem of missing
values [15]. Causes of missing values are various. For
instance, survey sheets in a social survey may lack some
values because some respondents ignore to answer some
questions in the survey; some results in an industrial
experiment might be missing because of mechanical fail-
ures while gathering data; medical datasets often contain
missing values since not all tests can be run on every
patient [13].

Missing values cause a number of severe issues. One
severe issue is non-applicability of data analysis methods.
Although some data analysis methods can deal with
missing values, many others require complete data.
Therefore, these methods are not able to work directly with
original data containing missing values. Moreover, missing
values may cause biased results owing to differences
between missing data and complete data [2].

The problem of missing values in datasets has been
addressed extensively in statistical fields [16, 29, 34, 35].
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However, the problem of missing values has been tackled
with less effort in classification tasks [15]. There are two
major approaches to addressing the problem of missing
values in classification tasks. The first approach is to use
imputation methods to fill missing values with plausible
values before using classifiers. The second approach is to
use classifiers such as C4.5 [33] which are able to directly
classify incomplete datasets. Although the two approaches
are able to cope with missing values to a certain level, they
often lead to large classification errors [12]. Hence, further
approaches to enhancing classification accuracy when
faced with missing values should be investigated.

When the input space contains numerous redundant/ir-
relevant features, many classifiers such as decision tress
cannot achieve adequate accuracy. Feature selection that
chooses a sufficient feature subset from original features is
a well known solution to the problem [17, 19, 25]. The
purpose of feature selection is to eliminate redundant fea-
tures and only keep important features, while retaining or
improving accuracy of the classification tasks. Feature
selection has been widely used for improving classification
in complete datasets [17, 19, 25].

In feature selection, there are two main approaches to
evaluating feature subsets: the filter approach and the
wrapper approach. The filter approach uses measures such
as information gain to evaluate the quality of feature
subsets [30]. In contrast, a wrapper method builds a
classifier to evaluate the quality of feature subsets. In
recent work [11, 32], filter approaches based on mutual
information have been expanded to evaluate feature sub-
sets when datasets contain missing values. The experi-
mental results show that a filter-based feature selection
can help improve regression and classification tasks when
faced with missing values. In [39], a wrapper-based fea-
ture selection method using particle swarm optimisation
(PSO) for incomplete datasets was developed, and was
able to improve classification accuracy and reduce the
complexity of the learned classifier, but it still has limi-
tation. Therefore, deeper research on the wrapper-based
feature selection for incomplete datasets should be
investigated.

1.1 Research goals

The goal of this paper is to expand the wrapper-based
feature selection method for classification with incomplete
datasets in [39] by running the experiment with more
datasets to make stronger conclusion about the effective-
ness and the complexity of the wrapper-based feature
selection for classification with incomplete datasets. We
analyse the role of threshold in PSO-based feature selection
and analyse the computation time of the wrapper method
using PSO for feature selection with incomplete datasets.
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Finally, we attempt to identify why the wrapper-based
feature selection can improve classification with incom-
plete datasets. The experimental results are used to address
the following objectives:

1. How the threshold value in PSO-based feature selec-
tion affects the classification accuracy and the size of
the learned classifier.

2.  Whether the proposed wrapper-based feature selection
method for incomplete datasets is able to enhance
classification accuracy compared with using a classifier
able to classify incomplete datasets without using
feature selection or using imputation methods before
using a classifier.

3. Whether the proposed wrapper-based feature selection
method for incomplete datasets is able to reduce the
complexity of the learned classifier compared with
using a classifier able to classify incomplete datasets
without using feature selection or using imputation
methods before using a classifier.

4. How expensive the proposed wrapper-based feature
selection method is for classification with missing
values.

5. Why the proposed wrapper-based feature selection
method for incomplete datasets is able to improve
classification accuracy and reduce the complexity of
the learned classifier.

1.2 Organisation

The rest of this paper is organised as follows. Related work
is outlined in Sect. 2. After that, the method and experi-
ment design are presented in Sect. 3. Empirical results and
analysis are then shown in Sect. 4. Finally, conclusions and
future work are presented in Sect. 5.

2 Related work
2.1 Classification with incomplete datasets

There are four major ways to deal with classification with
missing values including removal approach, imputation
approach, model-based approach and machine-learning
approach [15].

Removal approach removes all instances containing
missing values before using classifiers. The advantage of
this approach is to provide complete data that is able to be
classified by any classifiers. However, instances containing
missing values are not classified by the learn classifier;
hence, this method can be only used in the training process
and when a dataset contains a small amount of missing
values [13].
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Imputation approach utilises imputation methods to fill
missing fields with plausible values before using classifiers.
For example, mean imputation replaces missing fields with
the average of complete values in the same feature. The
main advantage of using imputation methods is to provide
complete data for classification. Therefore, both complete
and incomplete instances are participated in the classifi-
cation process. Moreover, most imputation methods are
able to improve classification accuracy compared to with-
out using imputation methods. Hence, imputation methods
is a main method to deal with classification with incom-
plete datasets [12].

Model-based approach builds the data distribution
model from input data. After that, the data distribution
model is combined with the Bayesian decision theory [4] to
classify both complete and incomplete instances. Although
this approach is able to classify both complete and
incomplete instances, it needs to make assumptions about
the joint distribution of all features in the model [15].

Machine learning approach builds classifiers that can
directly classify incomplete datasets without using imputa-
tion methods. For example, C4.5 [33] is able to address
missing values in both the training set and test set by using a
probabilistic approach. Some other classifiers can deal with
incomplete datasets including CART [10] and CN2 [7].

2.2 Imputation methods

Imputation methods aim at filling missing fields with
plausible values. As a result, an incomplete dataset is
transformed to a complete dataset which is then classified
by using any classifiers. Hence, using imputation method is
one of the main approaches to classification with incom-
plete datasets [15, 36-38]. This section shows three popular
imputation methods used in this paper: mean imputation,
KNN-based imputation and EM-based imputation.

Mean imputation is the simplest imputation method that
fills missing fields with the average of complete values in
the same feature. The main advantage of mean imputation
is to maintain the mean of each feature. However, mean
imputation under-represents the variability in the data since
all missing values in each feature are replaced with the
same value [15].

KNN-based imputation performs two steps to impute
missing fields in an incomplete instance. The first step is to
find the K most similar with the incomplete instance. After
that, missing fields of the incomplete instance is filled by
the average of the complete values of the K instances.
KNN-based imputation is usually better than mean impu-
tation [3]. Nevertheless, the computation time of KNN-
imputation is often expensive because this method has to
search through all instances to find the K most similar
instances [15].

Expectation Maximization-based imputation is one of
the most powerful imputation methods [29, 35]. This
imputation uses the Expectation Maximization(EM) algo-
rithm to calculate a maximum likelihood variance-covari-
ance matrix and a mean vector which are then utilised to
fill missing fields with plausible values. EM-based impu-
tation is an iterative method including two main steps at
each iteration: E-step and M-step. E-step is utilised to
calculate variances, covariances and means from complete
values and the current best values of missing fields. M-step
is utilised to build new regression equations for each fea-
ture by using all other features, and then the new equations
are used to update the best values for missing fields in the
E-step of next iteration [16].

2.3 Feature selection

Feature selection is the process of searching for a feature
subset from the original features which is adequate to
perform the classification task. Feature selection is able to
eliminate redundant features; thus, it assists to improve
classification accuracy. Moreover, feature selection is able
to reduce the complexity of the learned classifier; conse-
quently, it makes the execution of the learned classifier
faster. Furthermore, the classifiers constructed utilising a
smaller number of features are often easier to interpret
[26, 40].

A feature selection method consists of two main com-
ponents: a search procedure and an evaluation measure.
The search procedure is utilised to find feature subsets.
After that, the evaluation measure is utilised to examine the
goodness of the feature subsets. The quality of the feature
selection method strongly depends on both the quality of
the search procedure and the quality of the evaluation
measure [9].

Search techniques in feature selection can be divided
into conventional techniques and evolutionary techniques.
For instance, two traditional search techniques are
sequential backward selection and sequential forward
selection [22]. Recently, evolutionary search techniques
such as genetic algorithm, genetic programming and par-
ticle swarm optimisation (PSO) have been used widely to
search for feature subsets in the feature selection method
[6, 21, 28, 31, 42, 44].

Evaluation methods in feature selection can be divided
into the wrapper methods and the filter methods [9]. A
wrapper method uses a classifier to evaluate the feature
subsets. A wrapper-based feature selection is often com-
putationally intensive since every evaluation of feature
subsets requires to train a classifier and then test its per-
formance. In contrast, a filter method uses an evaluation
measure such as information gain [30]. None of classifiers
is participated in the evaluation of feature subsets; hence,
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feature subsets generated by using a filter-based feature
selection is often more efficient and the results are often
more general. However, wrapper-based feature selection
methods usually achieve better classification than filter-
based feature selection methods [25].

Feature selection has been mainly applied to complete
data. A filter approach to feature selection for regression
with incomplete datasets is proposed in [11], where nearest
neighbors based mutual information estimator is extended
to handle missing values. The experimental results on
artificial as well as real-world datasets show that the
method is able to select important features without the need
for any imputation algorithm and help improve the per-
formance of the prediction models. In [32], the mutual
information criterion combined with rough sets is proposed
to evaluate feature subsets in incomplete datasets. The
experimental results on different datasets show that the
proposed algorithm is more effective than existing algo-
rithms for feature selection in incomplete datasets at most
cases. In [39], a wrapper-based feature selection for
incomplete datasets has been proved capable of improving
classification accuracy and reducing the complexity of the
learned classifier.

2.4 PSO for feature selection

Particle swarm optimisation (PSO) proposed by Kennedy
and Eberhart in 1995 [23, 24] is a swarm intelligence
algorithm. PSO is inspired by the movement of organisms
such as a bird flocking. In order to optimise a problem,
PSO makes a population of particles in the search space,
and moves these particles around in the search space using
the information of the particles’ position and velocity. The
movement of each particle uses both the personal best
known position and the global best known position in the
search space. When enhanced positions are found, this
information will be utilised to guide the movements of the
swarm toward the best solution. One advantage of PSO is
that it does not require making assumptions about the
problem being optimized. Furthermore, PSO is able to
search very large spaces of candidate solutions. Conse-
quently, PSO can be used to optimise problems which are
partially noisy, irregular and change over time, etc. How-
ever, the same as other evolutionary algorithms, PSO
cannot ensure to find an optimal solution.

PSO has been recently used as a search technique to find
feature subsets form original features in feature selection
problems [27, 40, 41, 43]. If the number of original features
is n, then the search space dimensionality is n. Each par-
ticle in the swarm is usually presented by a vector of n real
numbers. The value of the i particle in the d™ dimension,
Xig, 1s often in an interval [0, 1]. In order to identify
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whether or not a feature will be chosen, the real value in the
position vector is compared with a threshold 0 <0< 1. If
X <0, then the d” feature will be not chosen; otherwise,
the d" feature will be chosen.

PSO has been used for both wrapper-based and filter-
based feature selection. PSO has been proved capable of
having the ability to deal well with feature selection
problems [6, 21, 28, 42]. However, PSO-based feature
selection for incomplete datasets has not been systemati-
cally investigated.

2.5 C4.5 for classification with missing data

In order to apply a wrapper-based feature selection for
incomplete datasets, a classifier able to directly classify
incomplete datasets is required to measure feature subsets.
In this paper, the C4.5 algorithm [33] that can directly
classify incomplete datasets is utilised to measure feature
subsets.

C4.5 computes the information gain of an incomplete
feature by computing the gain on the complete values and
discounting it by the ratio of complete instances to all
instances. C4.5 utilises a probabilistic approach to
addressing missing values in both the training set and test
set. C4.5 makes assumption that instances with the missing
values are distributed probabilistically according to the
relative frequency of known values. In the training process,
each feature value is assigned a weight: the weight is
assigned one if a feature value is known; otherwise, the
weight of any other values for that feature is the frequency
of those values. In the testing process, when a test feature is
chosen, the cases with known values are divided into
branches corresponding to these values. The cases with
missing values are passed down all available branches, but
with weight that corresponds to the relative frequency of
the value assigned to a branch and it decides the class label
by using the most probable value [33].

3 Method and experiment design

This section presents the detailed design of method and
experiment including comparison method, datasets used in
the experiment, C4.5 used as a classifier, imputation
methods used to fill missing fields with plausible values
and PSO parameter settings for searching feature subsets.

3.1 The method
This study is designed to empirically evaluate the effect of

a wrapper-based feature selection method for incomplete
datasets. In order to achieve this objective, a wrapper-based
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feature selection for incomplete datasets is proposed as
shown in Fig. 1 and compared to other two common
methods for dealing with classification with incomplete
datasets as shown in Figs. 2 and 3. Figure 1 presents the
proposed method for classification with incomplete data-
sets which uses a feature selection method to choose fea-
ture subsets from original features before using a classifier
able to directly classify incomplete datasets. Figure 2
presents a common method for classification with incom-
plete datasets which uses a classifier able to directly clas-
sify incomplete datasets. Figure 3 presents another
common method for classification with incomplete datasets
which uses an imputation method to fill missing fields with
plausible values before using a classifier.

In the three setups, an incomplete dataset is firstly
divided into a training incomplete dataset and a testing
incomplete dataset. In the proposed setup shown in Fig. 1,
a feature selection method uses the training incomplete
dataset as a training data to select a suitable feature subset.
After that the feature subset is used to build a data trans-
formation which is then used to transform the training
incomplete dataset into training transformed incomplete
dataset and the testing incomplete dataset into testing
transformed incomplete dataset. The training transformed
incomplete dataset is then used by a classifier to build a
classification model which is then utilised to classify the
testing transformed incomplete dataset. In the setup shown
in Fig. 2, the training incomplete dataset is directly used by
a classifier to build a classification model which is then
utilised to classify the testing incomplete dataset. In the
setup shown in Fig. 3, an imputation method is used to

transfer the training incomplete dataset and the testing
incomplete dataset into training imputed data and testing
imputed data. After that the training imputed data is used
by a classifier to build a classification model which is then
utilised to classify the testing imputed data.

3.2 Datasets

Fourteen datasets, summarised in Table 1, are used in the
experiments. These are taken from the UCI Repository of
Machine Learning Databases [1]. Each dataset is presented
in one row in Table 1 including the number of instances,
the number of features, the number of classes, the pro-
portion of instances containing at least one missing field
and the proportion of features containing at least one
missing field.

The first seven datasets suffer from missing values in
a “natural”way. In the datasets, we do not know any
information related to the randomness of missing values, so
we make assumption that missing values in the datasets are
distributed in a missing at random (MAR) way [29].

In order to test the performance of the proposed feature
selection method with datasets containing different levels
of missing values, the missing completely at random
(MCAR) mechanism [29] was utilised to introduce missing
values into the last seven complete datasets. Six different
levels of missing values: 5, 10, 20, 30, 40 and 50 % were
utilised to introduce missing values into the datasets.
Although naturally incomplete datasets Ozone and Mam-
mographic contain missing values in all features, the other
five datasets contain missing values in some features.

.............................
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Fig. 2 Classification with incomplete datasets using a classifier able to classify incomplete datasets
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Fig. 3 Classification with incomplete datasets using an imputation method before using a classifier

Table 1 The datasets used in

the experiments Dataset #Instances #Features #Classes Missing Inst (%) Missing features (%)

Breast 286 9 2 3.15 11.11
Cleveland 303 13 5 1.98 15.38
Hepatitis 155 19 2 48.39 78.94
Mammographic 961 5 2 13.63 100
Marketing 8993 13 9 23.54 69.23
Ozone 2536 73 2 27.12 100
Wisconsin 699 9 2 2.29 11.11
Climate 540 20 2 0 0
Ionosphere 351 34 2 0 0
Liver 345 7 2 0 0
Parkinsons 197 23 2 0 0
Robot 463 90 5 0 0
Sonar 208 60 2 0 0
Statlog 270 13 2 0 0

Therefore, with the last seven complete datasets, missing
values were put randomly in 50 % random features in each
dataset. With each dataset in the last seven datasets and
each level of missing values in the six levels, repeat 30
times: randomly select 50 % features from original fea-
tures, and then introduce the level of missing values in the
chosen features. Hence, from one dataset and one level of
missing values, 30 artificial datasets containing missing
values were generated. Therefore, from one complete
dataset, 180 (=30 x 6) artificial datasets containing miss-
ing values were generated and a total of 1260 (=180 x 7)
artificial datasets containing missing values were used in
the experiments.

None of the datasets in the experiments comes with a
specific test set. Moreover, in some datasets, the number of
instances is relatively small. Therefore, the ten-fold cross-
validation method was used to measure the performance of
the learned classifiers. With the first seven incomplete
datasets, the ten-fold cross-validation method was per-
formed 30 times. With the last seven complete datasets,
with each dataset and each level of missing values, the ten-
fold cross-validation method was performed on the 30
incomplete datasets. Consequently, for each incomplete
dataset in the first seven datasets and each level of missing
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values on one dataset in the last seven datasets, 300 pairs of
training and testing sets were generated.

3.3 Imputation algorithms

Three imputation methods including mean imputation,
KNN-based imputation and EM-based imputation were
used in the experiment. Mean imputation and KNN-
based imputation were in-house implementations. With
KNN-based imputation, for each incomplete dataset,
different values for the number of neighbors K (5, 10,
15, 20, 30) were checked to find the optimal values by
using the ten-fold cross-validation method. The experi-
ments utilised WEKA [18] for EM-based imputation
implementation by setting its parameters as the default
values.

3.4 Classification algorithm

C4.5 is a decision tree able to directly classify incomplete
datasets. The experiments utilised C4.5 to classify data and
evaluate feature subsets in feature selection. The experi-
ments utilised WEKA [18] for C4.5 implementation by
setting its parameters as the default values.
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Table 2 Size of trees with ] i ]
different thresholds Dataset All features Threshold
0.05 0.2 0.4 0.6 0.8 0.95
Breast 22.8 19.3 18.1 16.5 16.1 15.2 12.7
Cleveland 79.4 73.9 70.2 53.8 32.8 17.8 12.6
Hepatitis 17.3 14.5 12.5 11.9 10.2 7.5 53
Mamomgraphic 10.3 10.1 10.0 9.9 9.9 9.3 6.1
Marketing 1368.2 1453.6 1398.5 873.9 305.7 285.3 189.4
Ozone 24.6 39.2 37.2 254 15.7 9.6 7.3
Wisconsin 23.3 19.7 18.2 16.3 15.9 154 12.7
Table 3 Classification accuracy with different thresholds
Dataset All features Threshold
0.05 0.2 0.4 0.6 0.8 0.95
Breast 94.55 £+ 0.46 94.63 £+ 0.45 94.68 £+ 0.54 94.51 £ 043 94.44 £+ 0.44 94.52 £+ 0.55 93.74 £ 0.72
Cleveland 54.29 £+ 1.92 54.86 £ 1.83 55.74 £ 143 55.94 £ 1.98 57.21 £ 1.51 57.82 + 1.27 5743 £ 1.74
Hepatitis 79.13 £+ 2.02 79.35 £ 2.02 79.08 £ 1.69 79.22 £ 1.75 79.73 £ 2.22 80.27 + 1.59 81.53 + 1.68
Mammographic 82.21 + 0.45 82.86 £ 0.41 82.72 + 0.41 82.70 + 0.64 82.68 + 0.38 82.27 £ 0.53 81.80 £ 0.61
Marketing 31.40 + 0.74 31.30 + 0.74 31.33 £ 0.70 31.29 £+ 0.85 31.62 + 0.88 31.72 £ 0.93 31.03 £ 1.24
Ozone 96.40 £+ 0.43 96.26 £ 0.58 96.14 £ 0.47 95.95 £ 041 96.52 £+ 0.52 96.67 £+ 0.59 96.98 £ 0.26
Wisconsin 94.70 £ 0.41 94.61 £+ 0.64 94.72 £ 0.57 94.44 £ 0.61 94.52 £+ 0.64 94.54 £+ 0.66 94.10 £ 0.72
Bold values indicate the best result for each dataset
Table 4 The average of accuracy comparison between C4.5FS and the other methods with datasets containing natural missing values
Dataset C4.5FS C4.5 T C4.5MI T C4.5KNNI T C4.5EMI T
Breast 94.68 =+ 0.54 94.55 £ 0.46 = 94.31 £ 0.49 = 94.70 £ 0.43 = 94.78 £+ 0.51 =
Cleveland 57.82 £ 1.27 54.29 £ 1.92 + 5342 £ 224 + 53.67 £ 1.98 + 53.58 + 1.99 +
Hepatitis 81.53 £ 1.68 79.13 £+ 2.02 + 77.70 £ 1.91 + 77.64 £ 1.75 + 78.25 + 2.39 +
Mammographic 82.86 £+ 0.41 82.21 £ 0.45 + 81.92 £ 0.62 + 82.09 £ 0.64 + 82.35 £ 0.63 +
Marketing 31.72 +£ 0.93 30.80 + 0.74 + 30.27 £ 0.82 + 30.43 £ 0.85 + 30.32 £ 0.77 +
Ozone 96.98 £ 0.26 96.40 £+ 0.43 + 96.17 £ 0.42 + 96.08 £ 0.41 + 96.03 £+ 0.71 +
Wisconsin 94.62 + 0.66 94.70 £ 0.41 = 94.47 £ 043 = 94.87 £ 0.61 = 94.76 £ 0.61 =

Bold values indicate the best results for each dataset

3.5 PSO settings

PSO was used as a search technique for searching feature
subsets in the feature selection method. The parameters of
PSO in the feature selection method were chosen according
to common settings proposed by Clerc and Kennedy [8].
The detailed settings are shown as follows: o = 0.729844,
c1 = ¢ = 1.49618, population size was set to 70, and the
maximum iteration was set to 100. The fully connected
topology is used. For each incomplete dataset, different
values for the threshold 0 to determine whether or not a
feature is selected (0.05, 0.2, 0.4, 0.6, 0.8, 0.95) were
checked to find the optimal values by using ten-fold cross-

validation. The fitness function to evaluate particles is
based on the performance of C4.5. For each dataset in the
first seven incomplete datasets and each level of missing
values on one dataset in the last seven datasets, 300 pairs of
training set and test set were generated, so PSO was
repeated 300 times on each dataset.

4 Results and analysis
This section presents the effects of threshold in PSO for

feature selection, classification accuracy comparisons, the
complexity of the learned models and further analysis.
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4.1 Threshold in PSO for feature selection

To use PSO for feature selection, a threshold is required to
determine whether a feature will be selected or not. To

evaluate how the threshold affects the average number of
selected features and the classification accuracy, PSO with
different thresholds were used to do feature selection.
Tables 2 and 3 show the average size of trees and the

Table 5 The average of accuracy comparison between C4.5FS and the other methods with datasets using several missing rates

Dataset Missing rate (%) C4.5FS C4.5 T C4.5M1 T C4.5KNNI T C4.5EMI T
Climate 5 9150 £ 052 90.19 +£0.87 + 8946 097 + 89.81+092 + 89.76 £0.85 +
10 9149 £ 043 90.13 £ 1.04 + 8921+ 1.10 + 8940+140 + 89.62+£1.19 +
20 91.58 £ 037 9051 £ 121 + 89.42 £+ 1.01 + 8954 +£089 + 8951 +1.04 +
30 9141 £ 033 91.17 £ 0.71 + 8897+ 089 + 8890+098 + 8920+ 1.07 +
40 9148 £ 027 9129 £ 0.60 + 8890+ 123 + 8898+126 + 89.20+£091 +
50 9141 £ 028 9129+ 050 = 89.10 133 + 89.14+132 4+ 89.12+133 +
Ionosphere 5 90.73 + 1.11 89.87 £ 1.66  + 89098 + 142 + 8949+142 4+ 8959+1.56 +
10 90.67 £ 135 8986 +132 4+ 8892 158 + 89.68 128 + 89.62+ 138 +
20 9045 £ 1.60 8953 +£1.14 + 88.81 = 1.63 +  87.55 £ 1.81 + 89.07 £139 +
30 89.73 £ 1.64  89.62 + 1.89 8891 +£192 + 8845+228 + 89.10+1.89 +
40 88.96 + 1.78  88.56 + 1.46 8748 196 + 8751195 + 8830£195 +
50 88.95 + 254 88.17 246 + 8737 +224 + 8737+224 4+ 87.64+£236 +
Liver 5 65.69 £ 191 6588 +203 = 6484 £230 = 6524+£212 = 64924+251 =
10 64.38 + 2.66 63.69 £250 = 63.68 +£2.67 = 6342+272 = 63.56 + 231
20 6435 £ 2.63 64.06 + 2.48 6231 £ 258 4+ 6354 +276 = 62.80=+265 +
30 6298 +3.65 6283 +366 = 6251 £297 = 6178 £329 + 62.18+3.16 =
40 62.05 +£3.79 6201 +£352 = 60.88 £442 = 61.19£385 = 6089 +327 +
50 61.52 +£3.60 6129 +293 = 5999 £ 395 4+ 61.02+£3.11 + 6041 £284 =
Parkinsons 5 86.72 £ 228 8563+ 190 = 85.13 234 + 8483+236 + 8513195 +
10 86.09 +£ 1.83 8542 +216 = 84.07 £ 198 + 84.16+229 4+ 8484 +236 +
20 86.52 £ 2.07 8540+259 + 8430 £ 201 + 84.13+£237 4+ 8453+240 +
30 86.47 + 2.51 8531 £224 + 83.14 £+ 2.61 + 8265+244 + 83574203 +
40 8578 + 1.78  84.77 £229 + 83.69 +279 + 84.08+256 + 83.05+190 +
50 8555 + 247 8429 +254 + 81.76 £2.89 + 81.61 £279 + 8207 +t247 +
Robot 5 36.21 £ 1.91 3272 £2.16 + 31.97 £ 191 +  31.82 £ 2.11 + 3253+£193 +
10 3512 £2.11 3310+ 211 + 3209 +£1.63 4+ 3236£181 + 3224+195 +
20 3587 £1.75 3254 +196 + 33.54 + 2.01 + 3354202 + 33394+£208 +
30 3544 £ 192 33.67£208 + 3414+ 219 4+ 3414+£219 + 3365+192 +
40 36.69 £ 261 3518 £2.01 + 3460 £2.04 4+ 3460+£204 + 35934+£190 =
50 3839 £2.13 36.60 £ 1.63 + 33.82 +228 4+ 33.824+228 4+ 3566+249 +
Sonar 5 7497 £3.04 7296 +2.63 + 7265 £3.00 + 7415+272 = 7268 £277 +
10 7411 £3.20 72.60 £ 3.15 + 7220 £ 278 4+ 72779 £293 = 7219 +£266 +
20 7394 £ 348 7394 £334 4+ 7158 £2.82 4+ 7144 £277 4+ 7256 £2.76
30 7223 £ 324 7274 +243 = 70.94 £+ 2.71 = 7094+271 = T71224+319 =
40 7320 £4.17 7249 £385 = 6931 £3.82 4+ 6931 £382 + TL.70+£272 =
50 7371 £358 7285 +£3.01 = 68.25 £ 325 4+ 6825+£325 + 7023 +355 +
Statlog 5 81.16 + 2.18 7892 + 221 + 7798 £2.03 + 78024+207 + 7796215 +
10 80.06 + 2.05 78.17 £2.07 + 7722 £226 + 7686 £2.01 + 7691 £208 +
20 7975 £ 288 7756 £ 254 + 7697 £242 + 7646 £299 + 7633 +£237 +
30 7881 £ 353 7726 £299 + 77.08 £ 225 4+ 7644 £3.07 + 7558 +£234 +
40 7593 £ 398 7644 +386 = 7348 £ 454 4+ 7383 +£446 + 7470+£280 =
50 75.96 £ 390  76.66 + 3.81 7275 £ 426 4+ 727719 +£476 + 7230+ 4.10 +

Bold values indicate the best results for each dataset
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classification accuracy with different thresholds in PSO for
the first seven datasets containing natural missing values.

It is clear from Table 2 that higher thresholds result in
smaller trees than lower thresholds, and in all the datasets,
high thresholds result in smaller trees than using all fea-
tures. However, feature selection with low thresholds does
not always result in smaller trees than using all features.
For example, threshold needs be at least 0.4 for Marketing
dataset and 0.6 for Ozone dataset to achieve smaller trees.

Table 3 shows that classification accuracy not only
depends on thresholds, but also depends on datasets. With
difficult datasets which have many classes such as Cleve-
land and Marketing or many features such as Ozone, to
achieve classification improvement, threshold needs be
high enough. In contrast, with datasets having a small
number of features such as Breast, Mammographic and
Wisconsin, low thresholds help to achieve classification
improvement.

The purpose of feature selection is to reduce the number
of original features, and retain or improve classification
accuracy compared with using all features. Therefore,
chosen thresholds have to not only help to reduce redun-
dant features, but also retain or improve classification. In
the experiments, for each dataset, different values of
thresholds (0.05, 0.2, 0.4, 0.6, 0.8, 0.95) were checked to
find the optimal values by using ten-fold cross-validation.
The optimal threshold was chosen such that maximises
classification accuracy and achieves smaller trees than
using all of features. By using ten-fold cross-validation to
choose thresholds, thresholds were chosen 0.05 for Mam-
mographic, 0.2 for Breast and Wisconsin, 0.95 for Hepatitis
and Ozone, and 0.8 for the other datasets.

4.2 Classification performance

Table 4 shows the average of classification accuracy and
standard deviation of the first seven datasets. In the table,
and in the following ones, C4.5FS column presents results
from the first setup shown in Fig. 1, C4.5 column presents
results from the second setup shown in Fig. 2; C4.5MI,
C4.5KNNI and C4.5EMI columns present results from the
third experimental setup shown in Fig. 3 by using mean
imputation, KNN-based imputation and EM-based impu-
tation, respectively.

With each dataset in the first seven datasets, the classi-
fication accuracy is the average of accuracies of the 30
times performing ten-fold cross-validation. Table 5 shows
the average of classification accuracy and standard devia-
tion of the last seven datasets with six levels of missing
values. With each dataset and each missing level in the last
seven datasets, the classification accuracy is the average of
accuracies of the 30 generated incomplete datasets with the
corresponding missing level.

To compare the performance of C4.5FS with the other
methods, the Wilcoxon signed-ranks tests at 95 % confi-
dence interval is used to compare the classification accu-
racy achieved by C4.5FS with the other methods. “T”
columns in Tables 4 and 5 show significant test of the
columns before them against C4.5FS, where “+4”, “=" and
“—” mean C4.5FS is significantly more accurate, not sig-
nificantly different, and significantly less accurate,
respectively.

Table 4 shows that C4.5FS can achieve significantly
better classification accuracy or at least similar classifica-
tion accuracy to the other methods with the datasets con-
taining natural missing values. C4.5FS achieves similar
classification accuracy to other methods on Breast and
Wisconsin, significantly better classification accuracy than
other methods on the other five datasets, and never sig-
nificantly worse classification accuracy than the other
methods.

The results from Table 5 are summarised in Fig. 4.
Figure 4 shows that C4.5FS can obtain significantly better
or at least similar classification accuracy compared to the
other methods with artificial incomplete datasets. It is also
clear from Fig. 4 that C4.5FS can achieve more times
significantly better than C4.5MI and followed by
C4.5KNNI, C4.5EMI and C4.5.

In order to confirm if C4.5FS is really significantly
better than the others, we perform Friedman’s test on the
accuracies of all the algorithms in the 49 datasets. Table 6
shows the ranking of the algorithms using Friedman’s test.
It is clear from Table 6 that C4.5FS is the best algorithm,
followed by C4.5, C4.5EMI, C4.5KNNI and C4.5MIL
Furthermore, we perform post hoc tests to carry out pair-
wise comparisons. Table 7 shows pairwise comparisons
using Holm and Shaffer as a post-hoc procedure [14]. It’s
clear form Table 7 that C4.5FS is significantly better than
each of the other algorithms. Moreover, the three imputa-
tion methods cannot help to improve C4.5, and this
observation is similar to the observation in [12], where
C4.5 was proved to be better than the combination of C4.5

Wlsignificantly be(tersmllar[’mgmflcantly worse|

C4.5KNNI C4.5EMI

Number of Cases
- nN nN w W B
U’1 o (6] O (4] O

—_
o

o o

Fig. 4 Accuracy comparison of C4.5FS with the other methods
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and imputation methods. Therefore, the new approach to
using feature selection to improve C4.5 is essential.

In summary, the feature selection method for incomplete
datasets is able to help enhance classification accuracy of
C4.5 not only with natural incomplete datasets, but also
with artificial incomplete datasets.

4.3 Complexity of the learned models

Tables 8 and 9 show the average number of selected fea-
tures, the average time of feature selection and the average
size of decision trees (the number of nodes in the trees) by
utilising C4.5 in different ways in the first seven datasets

Table 6 The ranking of the

algorithms using Friedman’s Algorithm Ranking
test C4.5FS 1.1939
C4.5 2.1939
C4.5EMI 3.6327
C4.5KNNI 3.8163
C4.5MI 4.1633
Table 7 Pairwise comparisons using a post-hoc procedure
Algorithms Holm Shaffer
C4.5FS versus C4.5 0.0125 0.0125
C4.5FS versus C4.5MI 0.0050 0.0050
C4.5FS versus C4.5KNNI 0.0056 0.0083
C4.5FS versus C4.5EMI 0.0063 0.0083
C4.5 versus C4.5MI 0.0071 0.0083
C4.5 versus C4.5KNNI 0.0083 0.0083
C4.5 versus C4.5EMI 0.0100 0.0125
C4.5MI versus C4.5KNNI 0.0250 0.0250
C4.5MI versus C4.5EMI 0.0167 0.0167
C4.5KNNI versus C4.5EMI 0.0500 0.0500

Bold values indicate the significant difference

and the last seven datasets with six levels of missing val-
ues, respectively.

According to Table 8, with the first seven datasets
containing natural missing values, the feature selection
helps to reduce at least 30 % the number of original fea-
tures. Moreover, in some datasets such as Hepatitis and
Ozone, the feature selection helps to reduce more than
90 % the number of original features.

According to Table 9, with artificial incomplete data-
sets, the feature selection helps to reduce at least 50 % the
number of original features. Moreover, in some datasets
such as Robot and Sonar, the feature selection helps to
reduce around 90 % the number of original features.

Table 8 shows that C4.5FS is able to generate signifi-
cantly smaller decision trees than the other methods in all
cases. For example, with Marketing and Ozone datasets,
the average of tree sizes generated by C4.5FS is around one
fifth of the average of tree sizes generated by C4.5 and
more than one fifth of the average of tree sizes generated by
utilising imputation methods before using C4.5.

Figure 5 presents the minimum, average and maximum
ratios between the average of tree sizes generated by C4.5,
C4.5MI, C4.5KNNI and C4.5EMI with C4.5FS from
Table 9. The minimum ratio between the average of tree
sizes generated by the other methods with C4.5FS depicts
that C4.5FS can generate smaller trees than the other
methods. On average, the average of tree sizes generated
by C4.5 is about 50 % bigger than those generated by
C4.5FS, and the average of tree sizes generated by the
other methods is over nearly three times bigger than those
of C4.5FS. Moreover, the maximum of ratio between the
average of tree sizes generated by the other methods with
C4.5FS depicts that the average of tree sizes generated by
using imputation methods in some cases are dramatically
bigger than C4.5FS. The major reason is possibly that
imputation methods often generate further values for
missing features; hence, if the incomplete features are

Table 8 The average of tree sizes generated by C4.5FS and the other methods with datasets containing natural missing values

Dataset #Features Tree size Feature selection

time (ms)
All Selected features C4.5FS C4.5 C4.5M1 C4.5KNNI C4.5EMI

Breast 9 6.1 16.2 23.3 23.6 22.6 229 2.7 x 10*

Cleveland 13 29 17.8 79.4 82.0 82.5 82.1 5.0 x 10°

Hepatitis 19 1.6 53 17.3 19.6 21.0 18.9 2.3 x 10°

Mammographic 5 3.7 10.1 10.3 20.5 11.5 13.6 4.3 x 10*

Marketing 13 7.8 285.3 1368.1 1721.3 1676.3 1718.4 9.8 x 10°

Ozone 73 4.1 73 24.6 29.5 30.9 30.2 4.9 x 10*

Wisconsin 9 5.0 182 23.3 24.1 22.5 224 2.8 x 10*

Bold values indicate the best results for each dataset
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Table 9 The average of tree sizes generated by C4.5FS and the other methods with datasets using several missing rates

Dataset Missing rate (%) #Features Tree size Feature selection time (ms)
All  Selected features C4.5FS C4.5 C4.5MI C4.5KNNI C4.5EMI
Climate 5 20 4.5 54 23.8 25.6 254 239 7.9 x 10°
10 37 4.6 20.4 24.7 24.1 23.5 7.7 x 10°
20 4.5 43 17.3 27.9 26.1 25.1 6.3 x 10°
30 4.6 2.7 7.8 26.5 25.6 23.5 7.5 x 10°
40 39 23 54 26.3 26.7 20.9 6.6 x 10°
50 4.0 2.8 8.5 27.3 27.7 22.1 8.7 x 10°
Ionosphere 5 34 4.8 15.0 25.8 26.3 26.2 26.0 1.9 x 10*
10 5.3 14.8 23.7 25.5 25.6 25.7 2.4 x 10*
20 5.8 15.9 23.5 25.8 25.1 25.4 1.9 x 10*
30 5.6 15.5 222 26.5 26.2 25.2 1.1 x 10*
40 6.1 16.9 214 28.1 28.0 25.9 1.0 x 10*
50 5.1 174 20.7 27.9 27.9 25.4 1.1 x 10*
Liver 5 7 2.7 13.2 40.9 46.3 47.3 46.6 4.8 x 10*
10 2.0 11.8 339 422 41.2 40.1 3.5 x 10°
20 3.0 10.4 26.2 40.7 36.0 34.8 4.4 % 10°
30 2.7 15.0 17.0 19.6 19.5 18.8 3.4 % 10°
40 2.6 9.0 20.4 35.2 29.4 30.5 4.1 x 10°
50 1.9 7.6 14.2 29.1 24.7 227 2.5 x 10°
Parkinsons 5 23 4.1 15.0 17.8 19.0 18.7 18.8 7.4 x 103
10 4.6 15.5 17.9 18.7 19.2 18.5 7.6 x 10°
20 39 154 17.8 19.9 19.5 18.7 6.1 x 10°
30 4.2 15.0 17.0 19.6 19.5 18.8 6.6 x 10°
40 44 139 15.8 19.7 19.6 18.3 1.2 x 10*
50 4.0 133 14.6 19.3 19.2 18.7 1.1 x 10*
Robot 5 90 6.9 63.6 713 1184 106.6 100.9 1.9 x 10°
10 8.7 69.4 76.0 1339 133.9 120.7 32 % 10°
20 7.5 731 864 131.7 131.7 129.2 1.4 x 10°
30 10.1 74.6 854 1292 129.2 126.8 1.3 x 10°
40 6.3 70.8 794 1284 128.4 125.0 1.0 x 10°
50 10.5 63.7 73.1 1292 129.2 121.3 1.1 x 10°
Sonar 5 60 9.0 251 27.7 28.0 27.5 27.9 2.7 x 10°
10 7.9 254 28.1 28.7 28.3 27.9 2.8 x 10°
20 9.7 24.8 28.4 29.5 29.5 27.6 6.9 x 10°
30 8.2 232 27.5 30.3 30.3 28.2 6.1 x 10°
40 74 224 26.7 30.6 30.7 28.7 6.9 x 10°
50 7.6 227 26.3 31.8 32.0 29.2 6.3 x 10°
Statlog 5 13 37 12.8 304 34.6 343 339 5.9 x 10°
10 35 12.9 29.4 36.8 35.6 353 5.3 x 10°
20 3.7 12.6 26.2 36.0 36.1 35.0 5.9 x 10°
30 4.0 12.0 23.1 36.4 36.3 355 7.2 x 103
40 4.0 11.5 21.8 38.5 38.1 36.9 5.7 x 103
50 44 10.9 19.0 38.2 37.9 36.2 7.1 x 103

Bold values indicate the best results for each dataset
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Fig. 5 Tree size ratio between the other methods and C4.5FS

selected to make decision trees, the further values can
make decision trees bigger.

Tables 8 and 9 show that the feature selection time
strongly depends on the datasets. With datasets containing
many instances such as Marketing and datasets containing
many classes such as Robot, the feature selection procedure
often requires longer time than datasets containing small
instances and classes. The main reason is that datasets
containing many instances and classes often require longer
time for the classifier evaluating feature subsets.

In summary, in all cases, the feature selection method
for incomplete datasets is able to help reduce complexity of
the learned trees generated by C4.5, especially compared to
using imputation methods before using C4.5.

4.4 Further analysis

In order to know how C4.5FS has the ability of achieving
better classification accuracy and smaller trees than the
other methods, we analysed carefully the trees generated by
using C4.5 and C4.5FS on Climate dataset. Climate dataset
which has 20 features {fi,../fo0} was chosen because the
trees generated by using C4.5 and C4.5FS on the Climate
are not so big to analyse. Figures 6 and 7 present two
typical trees we observed.

Figure 6 presents two trees generated by using C4.5 and
using C4.5FS on Climate with 20 % missing values in nine
features {f271f3,ﬂ7f12,f137f147f15,f17,f19}. After llSil’lg the
feature selection method on the dataset, seven features
{f1,fa,111,f15,f16,f17,/20} were chosen. The tree generated
by C4.5FS achieved slightly higher classification accuracy
compared to the tree generated by C4.5 with 90.95 and
89.91 %, respectively. Both of them had the same features
in the top part of the trees. However, in the bottom part, the
tree generated by C4.5 tree included more features which
were not included in the tree generated by C4.5FS because
these features already had been removed by the feature
selection procedure. Consequently, C4.5FS can achieve not
only better classification accuracy but also smaller trees
than the C4.5.

@ Springer

Figure 7 presents two trees generated using C4.5 and
C4.5FS on Climate with 20 % missing values introduced in
10 features {fl aﬁlafS7f77f9aﬁ();ﬁ3afl4aflﬁafl9}~ After LlSiIlg
the feature selection method, seven features {f7,fs,fo,f13,
f15./16,f18} were selected. In C4.5, when computing the
information gain of a feature containing missing values, it
firstly calculates the gain based on the complete values and
discounts the gain by the proportion of complete instances
to all instances [33]. It means that missing values reduce
the information gain of incomplete features. Hence, C4.5
tends to select complete features to make decision trees;
however the bias of selecting complete features to build
decision trees is not always good. For instance, on Fig. 7,
while the first node of the tree generated by C4.5 is a
complete feature f3, the first node of the tree generated by
C4.5FS is an incomplete feature f¢. Nevertheless, the tree
generated by C4.5FS obtained both better accuracy (91.3
vs 90.1 % ) and smaller size than the tree generated by
C4.5. A possible reason could be that by removing less
suitable features such as f3, the feature selection is able to
reduce the C4.5’s bias towards selecting complete features
to build decision trees.

In summary, the feature selection method can choose
relevant features and remove irrelevant features. Thus, the
feature selection is able to make better classifier.

5 Conclusions and future work

This paper has attempted to find the impact of a wrapper
feature-based feature selection method for incomplete
datasets. To achieve this goal, a wrapper-based feature
selection method for incomplete datasets is proposed and
compared with the two other common methods coping with
incomplete datasets: one using a classifier able to directly
classify incomplete datasets and the other using an impu-
tation method to transfer incomplete datasets to complete
datasets. The three setups were compared on 14 datasets
where seven datasets contain natural missing values and
the other seven datasets contain six levels of artificial
missing values. The experiments used C4.5 as an evalua-
tion and PSO as a search method for the feature selection
approach. The experimental results showed that the pro-
posed wrapper-based feature selection method for incom-
plete datasets is able to help to enhance the classification
accuracy of C4.5, significantly reduce the number of
original features and significantly reduce the complexity of
the learned classifier.

The experiments in this paper used C4.5 as a classifier
since C4.5 can cope with incomplete datasets. There are
some other classifiers that are able to classify incomplete
datasets such as CART [10] and CN2 [7]. Future work
could perform this investigation with CART and CN2.
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Fig. 6 The left decision tree generated by using C4.5 and the right decision tree generated by using C4.5FS on Climate with 20 % missing fields
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Fig. 7 The left decision tree generated by using C4.5 and the right decision tree generated by using C4.5FS on Climate with 20 % missing fields
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Furthermore, the experiments tested the proposed method
with datasets involving not too many features. Therefore,
another future work could consider datasets involving more
features to test the scalability of the proposed method.
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