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Abstract

Convolutional Neural Networks (CNNs) have shown their dominance in
solving image classification problems. However, the architectures of CNNs vary
-in different image classification tasks, which makes the design of the architec-
tures become an active research area, where tremendous effort has been made.
Three contributions are achieved in this project to automatically evolve the ar-
chitec_tg.ilgs of CNN. Firstly, two Evolutionary Computation (EC) methods with
-the's encoding strategydnlPP are proposed, which include a Differen-
tial Evolution (DE) method a efic Algorithm (GA) method; Secondly, A
hybrid DE approach is developed to break the major limitation of the two afore-
mentioned EC methods; Lastly, we propose a new hybrid two-level EC method
to automatically evolve more advanced CNNs with shortcut connections, shich
were introduced just more than a year ago in ResNe [g]?,g‘nd DenseNef{[9 jlBy
comparing with the state-of-the-art algorithms, all of the proposed methods are
capable to achieve competitive performance, and among the three contributions
in this project, the latter-proposed method outperforms the previous methods.
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Chapter 1

Introduction o O -

W AR SUD?Q
A
Image éﬁlal_y_sis_ls the process of extracting meaningful information from images. In the past
two decades, along with the exponential growth of the internet, tremendous images have
been created and collected, and the growing trend is very likely to keep for a long time.
As a result, image analysis has become more and more popular because heaps of useful
knowledge can be extracted from the images, which produces promising results. There are
a few fields in image analysis among which image classification, a-k.a. image recognition, is
one of the most crucial and widely-used fields. > RXPaTh what s Ic

Convolutional Neural Networkg(CNNs) have shown their dominating spot in various
machine learning tasks, such as s@h recognition [1], sentence classification [12] and im-
age classification [13]. However, from the existing efforts taken by researchers such as LeNet
[15][16], AlexNet [13], VGGNet [22] and GoogLeNet [28], it can be found that designing
CNNis for specific tasks coulk ery complicated. There are a couple of main issues when
utilising CNNs to solve machine learning tasks of image classification, which are listed be-
low.

e It is challenging to manually search for the optimal architecture of CNNs including
the number of convolutional layers, pooling layers and fully-connected layers, the
attributes of each layer, and the order of the layers in the architecture of CNNs;

e Different machine learning tasks need different CNN architectures, so personalised
architectures of CNNs need to be designed for specific tasks. There are tremendous
image classification tasks in real-world applications, which requires different CNNs to
solve.

Since the limitations of manually designing the architectures of CNNs have been raised
more frequently in recent years, neuroevolution [24], which uses evolutionary algorithms
to generate artificial neural networks (ANN), has come into the spotlight to resolve the is-
sues. Interested researchers have accomplished promising results on the automatic design
of the architectures of CNNs by using Genetic Programming [27] and Genetic Algorithms
(GAs) [25]. The project aims to explore more efficient and effective methods to automatically

eves encouraging
esults, and the encoding strategy proposed in this method can be applied on Deferential
Evolution (DE) and GAs, the methods using DE and GAs with the same encoding strategy
are develgped and compared with the state-of-the-art algorithms and IPPSO; Furthermore,
during the experiments in the first part, a limitation of the above EC methods is exposed,
which is that the maximum-length of the CNN architectures is fixed, so in the second part,
A hybrid DE approach is proposed in order to improve the performance by breaking the

o WAy he ﬂm“ﬁ Wh,_‘j Nraol tfis projest 2

evolve the architectures of CNNs, which are comprised of three parts@‘{s_t"gfq aﬂ@
“[Based Parficle Swarm Optimisaion (IPPSO) [2] was proposed; which ac
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’{q, ~ maximum-length limitation; Last but not least, in the past two years, shortcut connections
used in DenseNet [9] have been proven its effectiveness and efficiency in Deep CNNs, but
| in the first two parts of this project, only the traditional CNN architectures without short-
T cut connections are evolved, so a hybrid two-level method is proposed to evolve both the
structure of CNN architectures and the shortcut connections between layers.
1.1 Goals

The overall goal of this project is to design and develop effective and efficient EC methods
to search for good architectures of CNNs, and analyse and compare their performance with
the state-of-the-art algorithms. The specific objectives of this project are to

1. Develop effective DE and GA methods using the same encoding strategy in IPPSO

to automatically evolve the architecture of CNNs and obtain a good architecture of

CNNs. To be more s&ific, the proposed DE and GA methods are expected to be

40 yN““ﬁ able to search for thotal number of layers, choosing thébeslayer type for each
< layer, and obtain thg besPparameter values for each layer~¥or emple, the DE metho

Laid might find a good architecture of CNNs with 5 Tayers, having a convolutional layer at

the third layer and having a feature map of 2*2 convolutional mask as a parameter of

the'vonvolutional layer; g oreh G SRS bR <oV T g i

2. Design and develop a hybrid DE approach which are composed of three main steps
- refining the existing effectivelencoding scheme used-by#PPSO [2] to break the con-
straint of predefining the maximum depth of CNNs; developing new mutation and
crossover operators for the proposed method, which can be applied on variable-length
vectors to conquer the fixed-length limitation of the traditional DE method; and de-
signing and integrating a second crossover operator into the proposed method to pro-
duce the children in the next generation representing the architectures of CNNs whose
lengths differ from their parents;

3. Design and develop a hybrid two-level method, which is able to automatically evolve
both the structure of CNN architectures and the shortcut connections. The first level
of the evolution searches for the structure using PSO, e.g. the m“B%P of layers and
the layer types; while at the second level of the algorithm, the optimat topology of the

&ﬁ\}g) shortcut connections is evolved by DE given the structure obtained at the first level; are|
\&’SI 9'\ 4] Since training a CNN can be crawling, and the fitness function used by many other
{ QQS :E—--_tesearchers Wd evaluateeach architecture of CNNs on the given dataset, whose
o accuracy would be used as the fitness value of the individual, the whole evolution Rlae
s process can take an unacceptable amount of time. In order to make the IP-Based EC atU{SZf'“{)
methods as efficient solutions, this project aims to design an efficient fitness evaluation | M’Fn}h the
method to significantly reduce the time of the evolution process; | aboy R 14 hYSZQ
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A typical Convolutional Neural Network (CNN) is constituted of four types of layers - con-
volution layer, pooling layer, fully-connected layer and output layer. The output layer de-
pends only on the specific classification problem. For the example of image classification,
the number of classes decides the size of the output layer. Therefore, when designing an
architecture of CNNs, the output layer is fixed once the specific task is given. However, to
decide the other three types of layers, first of all, the depth of the CNN architecture has to
be decided; Then, the type of each layer needs to be chosen from convolution layer, pooling
layer and fully-connected layer; Last but no least, since there are different sets of attributes
for different types of layers - filter size, stride size and feature maps for the convolution
layer; kernel size, stride size and pooling type enclosing max-pooling or average pooling
for the pooling layer; and the number of neurons for the fully-connected layer, the attributes
of each layer have to be tuned based on its layer type in order to accomplish a CNN archi-

tecture that can obtain good performance. _
\§ ghow O QVN strrsture Jajm

h) .} S
2.2 Internet Protocol Address QKF“‘“ oA@mls.

As the proposed encoding strategy used by first two contributions of this project is inspired
by the Internet Protocol Address, it is essential to introduce IP Protocol Address. An Inter-
net Protocol address (IP address) is a numerical label assigned to each device connected to
a computer network that uses the Internet Protocol for communication [18]. A standard IP
address is made of four decimal integers concatenated by dots, each of which ranges from
0 to 255, e.g. 172.16.254.1. Another representation of the IP address is to convert the deci-
mal values into the corresponding binary numbers with a fixed-length of 8 bits, e.g. 1010
1100.0001 0000. 1111 1110. 0000 0001 as the binary representation of the aforementioned
example of the standard IP address - 192.168.1.101.

In the computer network, an IP address is configured into a network card on a device,
e.g. a desktop, a laptop or a server. The IP address is used as the identifier of the device
in a local network, so the devices can find and talk to each other within the network. Fur-
thermore, if the devices in different local networks want to communicate with each other,
the subnet can be utilised to fulfil the objective. A subnet defines a specific local network
by specifying an IP range of the subnet, so the target IP address can be easily routed to
the correct subnet and the message from the source device can be effectively delivered
to the device carrying the target IP address. For example, suppose there are two IP ad-
dress - 172.16.254.1 and 172.16.255.1, and the corresponding IP ranges of their subnets are

3
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[172.16.254.1 - 172.16.254.255] and [172.16.255.1 - 172.16.255.255], when the device with the
IP of 172.16.254.1 intends to send a message to the device with the IP address of 172.16.255.1,
if the idea of subnets is not introduced, the message will not be successfully delivered be-
cause the two local network are isolated during the process of searching an IP address;
however, if the subnets are set, the message and the target IP address will be routed to the
correct subnet first, and then the message can be sent to the target IP address by seeking the
target IP address within the subnet.

2.3 Evolutionary Computation Algorithms . cyttn (E &)

—~ pvolutdrany P
Since the main target of this project is to use' B€ methods including GAs, DE and PSO, and
their hybrid methods to evolve the architectures of CNNs, in the following sub-sections, the
background of these three EC algorithms is given, g d’Ul\( | =2 W\chmcl')

. ] Can peer seen tyom f%
2.3.1 Differential Evolution ’t book. ?

Differential Evolution (DE) is a population-based EC method which searches for the optimal
solutions of a problem. It has been proved to be a simple and efficient heuristic method DY U‘Ai\'i
for global optimisation over continuous spaces [26]. Overall, there are four major steps Y ™

in a DE algorithm, which are initialisation, mutation, crossover and selection h&l]. First ¢ 0%

of all, a population of candidate vectors are randomly initialised. Secondly, mutation is

applied according to Formula (2.1), where v; ; means the ith temporary candidate vector of

the gth generation; X,0,¢, Xr1,4 and x,2,¢ indicate three randomly picked candidates of the gth

generation; and F is the differential rate, which is used to control the evolution rate. Thirdly,

the crossover is performed based on Formula (2.2), where u;; ; represents the jth dimension

of the ith candidate at the gth generation. At the beginning of the crossover process for

each candidate, a random number j,,,q is generated, and then for each dimension of each

candidate vector, another random number rand; is generated, which then is compared with

the crossover rate Cr and jyg;q as shown in Formula (2.2) to decide whether the crossover

applies on this dimension. After applying the DE operators, a trial vector u;, is produced,

which is then compared with the parent vector to select the one that has a better fitness. By

iterating the steps of mutation, crossover and selection until the stopping criterion is met,

the best candidate can be found.

Vig = Xr0,g T Fx (xrl,g - Xr2,g) (2.1)
1o ifrand;(0,1) < Crorj = j
T T (0,1) < Crorj = jrand (2.2)
Xjig Otherwise

2.3.2 Genetic Algorithm

)
Py

Genetic Algorithm (GA) is a metaheuristic optimisation method insp’ired by the process
of natural selection in the area of biology. The bio-inspired operators, such as mutation,
crossover and selection, are utilised to evolve the population in ogder to obtain a high-
quality solution [17]. The procedure of GA is composed of four @B&/— injtialisation, se-
lection, mutation and crossover., At the stage of initialisation, a random vector of a fixed di-
mension is repetitively generated and stored in an individual until reaching the population
size; Next, the selection is performed by using a selection algorithm to select the individuals
into a mating pool; After that, on's; individual is selected from the mating pool and the value
of each dimension is randomly chosen to be changed in order to evolve a new individual;



Another way of creating new individual is to select two individuals in the mating pool and
apply crossover operator by combining a part of the dimensions of one individual’s vec-
tor with those of the other. By iterating the last thrée steps) the new population can be filled
with new individuals to form a new generation,%ﬁléﬁfapifthen be evaluated to find the best
individual. The best individual is recorded for each generation, which is compared with the
best individuals of the previous generations to output the best individual of all generations.
The whole process terminates when the stopping criteria are met, and the best individual of

all generations is reported as the evolved solution.

2.3.3 Particle Swam Optimisation

Particle Swarm Optimization (PSO) is a population-based algorithm, motivated by the social
behaviour of fish schooling or bird flocking proposed by Kennedy and Eberhart in 1995 [11]
[6]. In PSO, there is a population consisting of a number of candidate solutions also called
particles, and each particle has a position and a velocity. The representation of the position is
described in Formul 2.3) where x; is a vector of a fixed dimension representing the position
of the ith particle in the’population and x;; means the dth dimension of the ith particle’s
position. Formulal2.4 fillustrates the velocity of a particle, where v; is a fix-length vector
expressing the velocity of the ith particle and v;; means the dth dimension of the ith particle’s
velocity. The way that PSO solves the optimisation problems is to keep moving the particle
to a new position in the search space until the stopping criteria are met. The position of
the particle is updated according to the update equation which incorporates two equation
- the velocity update equationKZ.g and the position update equation 2.6. In Formulz( 2.5
v;4(t + 1) indicates the updated dth dimension of the ith particle’s velocity, r; and r, carry
random numbers between 0 and 1, w,¢; and ¢, are PSO parameters that are used to fine-
tune the performance of PSO, and Pz and Py bear the dth dimension of the local best and
the global best, respectively. After updating the velocity of the particle, the new position can
be achieved by applying Formula(2.(3.

xi = (%1, Xi2, - Xig) (2.3)

vy = (v, Via, Vid) (2.4)

Vig(t+1) = wxvig(t) + c1 x 11 % (Pig — xig(t)) + c2 12 % (Pgd — x;4(1)) (2.5)
xig(t+1) = xiq(t) + vig(t +1) (2.6)

2 4 yvoted WOR .
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Chapter 3

IP-Based EC algorithms
Clopey  @on\ o

s o B
3.1 The Proposed Algorithms P UV Cohto T Cr’i

e

Section 3.1.1 introduces the IP-Based Encoding Strategy, which was proposed in IPPSO [2]
and adapted in this project; The fitness evaluation method is depicted in Section 3.1.2; The
details of he population initialisation are given in Section 3.1.3, which is used by all of the al-
gorithms in this project; AmdSection 3.1.4 gives an overview of the algorithms implemented
in this project and the pseudo-code of each algorithm.

; 1o
3.1.1 IP-Based Encoding Strategy ) e 0k0 [ U&Q DNN WS

The IP-Based Encoding Strategy proposed in [PPSO [2] is to use one IP Address to represent
one layer okBgep orks (DNNsPand push the IP address into a sequence of
interfaces, each of which bears an IP_address and its corresponding subnet, in the same
order as the order of the layers in Taking CNNs as an example, the typical CNNs
are composed of three types of layers - Conv Layer, Pooling Layer and Fully-Connected
Layer. In Section 3.1.1.1, the process of encoding a CNN into a sequence of IP addresses is
elaborated, and in Section 3.1.1.2, the decoding procedure is described.

_3-1—1-9)
4%+ Encoding Procedure _, .
) PN

The proposed IP-Based Eq(cbding Strategy is to use one P’ Address to represent one layer of
Deep-Neural Networks 2NNs) and push the IP addgéss into a sequence of interfaces, each

of which bear an&@_cj_r_e__ss_ and its corresponding gubnet, in the same order as the order of
the layers in RNNs. Taking CNNs:as an example,/fhe typical CNNs are composed of three
types of layefs - convolutional tayer, pooling layer and fully-connected layer. The first step

of the encoding is to work out the range that can represent each attribute of each type of
the CNN layer. There are no specific limits for the attributes of CNN layers, but in order to
practically apply optimisation algorithms on the task, each attribute has to be given a range
which has enough capacity to achieve an optimal accuracy on the classification problems. In
tthe constraints for each attribute are designed to be capable of accomplishing a
relatively low error rate. To be specific, for the convolutional layer, there are three attributes,
which are filter size ranging from 1 to 8, number of feature maps from 1 up to 128, and the
stride size with the range from 1 to 4. As the three attributes need to be combined into one
number, a binary string with 12 bits can contain all the three attributes of the convolutional
layer, which are 3 bits for filter size, 7 bits for the number of feature maps, and 2 bits for the
stride size. Following the similar way, the pooling layer and fully-connected layer can be

Remove A4H lovel of 4Tyl .S Save o (66 of SPA

L sectin



[

s

/

/

carried in the binary strings with 5 bits and 11 bits, respectively. The details of the range of
each attribute are listed in Table 3.1.

Table 3.1: The ranges of the attributes of CNN layers - Convolutional, Pooling, Fullly-
connected layer

Layer Type Parameter Range # of Bits

Conv Filter size (1,8) 3

# of feature maps [1,128]) 7

Stride size (1.4} 2

Total 12

Pooling Kernel size [1.4] 2
Stride size [14] 2

Type: 1(maximal), 2(average) [1.2] 1

Total 5

Fully-connected # of Neurons {1,2048] 11
Total 11

Once the number of bits of the binary strings has been defined, a specific CNN layer
can be easily translated to a binary string. Suppose a convolutional layer with the filter size
of 2, the number of feature maps of 32 and the stride size of 2 is given, the corresponding
binary strings of [001], [000 1111] and [01] can be calculated by converting the decimal num-
bers! to the corresponding binary numbers. The final binary string that stands for the given
convolutional layer is [001 000 1110 01] by joining the binary strings of the three attributes
together. The details of the example are shown in Fig. 3.1.

Decimal ' pnarytobyte |
to binary

\
X

Filter size | . 2

Feature maps [~ 32 —__

Stride size |7 L.\

P

x

-
N
-*i_o—‘—‘—‘—‘ooo—*oo

i [B
-2

Figure 3.1: An example of how to encode a convolutional layer using a byte array

Similar like network engineering where the subnet has to be defined before allocating
an IP address to an interface, i.e. a laptop or desktop, the IP-Based Encoding Strategy needs
to design a subnet for each type of CNN layers. Since the number of bits of each layer type
decides its size of the search space, and the pooling layer takes much fewer bits than the
other two, the chances of a pooling layer being chosen would be much smaller than the other
two. In order to balance the probability of each layer type being selected, a place-holder of
6 bits is added to the binary string of the pooling layer to make it 11 bits, which brings the
odds of picking a pooling layer the same as that of a fully-connected layer. As there are three
types of layers with the maximum bits of 12, a 2-byte binary string has sufficient capacity to
bear the encoded CNN layers. Starting with the convolutional layer of 12 bits, as this is the
first subnet, the 2-byte binary representation of the starting IP address would be [0000 0000

1Before the conversion, 1 is subtracted from the decimal number because the binary string starts from 0,
while the decimal value of the attributes of CNN layers begins with 1

7



0000 0000], and the finishing IP address would be [0000 1111 1111 1111]; The fully-connected

layer of 11 bits starts from the binary string [0001 0000 0000 0000] by adding one to the last

IP address of the convolutional layer, and ends to [0001 0111 1111 1111]; And similarly, the

IP range of the pooling layer can be derived - from [0001 1000 0000 0000] to [0001 1111 1111

1111]. The IP ranges of the 2-byte style for each subset are shown in Table 3.2, which are
obtained by converting the aforementioned binary strings to the 2-byte strings. Now it is

ready to encode a CNN layer into an IP address, and the convolutional layer detailed in Fig.

3.1 is taken as an example. The binary representation of the IP address is [0000 0010 0011

1001] by summing up the binary string of the convolutional layer and the starting IP address-,

of the convolutional layer’s subnet, which can be converted to a 2-byte IP address &63/' 248 ,-"7 7
Fig. 3.2 shows an example vector encoded from a CNN architecture with 2 convolutional £

layers, 2 pooling layers and 1 fully-connected layer.

Conv Conv co:r‘:z;m
2 [61]18 (143 2 3218 [122] 27 155 —> PSO vestdY !
= i i
Pooling Pooling P C @AS !

Figure 3.2: An example of the encoded vector of a CNN (a;I:cI}itecture ps
T GWF O seareh ?

Table 3.2: Subnets distributed to the three types of CNN layers arid the disabled la'y} o
(

Layer type IP R: . -
Convolutional Layer /6.0-15.555 9 \ ‘
fully-connected layer | 16.0-23255 % \M \OQJr“"

pooling layer 24.0-31.255 W QO&

2
,3.-151-.2? Decoding Procedure

The encoding process transfers the complicated search space of architectures of CNNs to a

? “fiic_e:ci—(ﬁ'\merlsicg;i;ggarch space with the range of 0 to 255 for each dimension, which makes it
QsTraightforwar to apply optimisation algorithms; While, during the fitness evaluation, it is
necessary to decode the sequence of interfaces back to a CNN architecture. First of all, the
interfaces in the sequence have to be translated to the values of attributes of CNN layers.

In each interface, the IP address can be converted to a binary string, and the number of bits

of the attributes of a specific layer type can be retrieved from the subnet in the interface.
According to the number of bits of the attributes, the binary string can be split into several
binary strings, which can then be converted to decimal values corresponding to the values

of the attributes. Next, the CNN architecture can be re-built by creating each layer of the

CNN from the parsed attributes and connecting each layer by keeping the same order as
they are in the sequence of interfaces.

3.1.2 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 1. First of all, four arguments
are taken in by the fitness evaluation function - the canglidate solution which represents an
encoded CNN architecture, the Fraining epocifnumber for training the model decoded from
the candidate solution, the training set which is used to train the decoded CNN architecture,
and the fitness evaluation dataset on which the trained model is tested to obtain the accuracy
used as the fitness value. Secondly, the fitness evaluation process is pretty straightforward

8



by training the decoded CNN architecture on the training set for a fixed number of epochs,
and then obtaining the accuracy on the fitness evaluation set, which is actually used as the
fitness value.

Algorithm 1: Fitness Evaluation

Input: The candidate solution ¢, the training epoch number k, the training set D_train, the
fitness evaluation dataset D_fitness;

Output: The fitness value fitness;
Train the connection weights of the CNN represented by the candidate c on the training
set D_train for k epochs;
acc + Evaluate the trained model on the fitness evaluation dataset D_fitness
fitness < acc;
return fitness

3.1.3 Population Initialisation

The population initialisation process consists of multiple repetitions of the procedure of
initialising a candidate until the size of the population is fulfilled. To be specific with the
candidate initialisation, first of all, a type of CNN layer is randomly chosen from the four
types of CNN layers - Conv layer, Pooling layer, Fully-connected layer and
secondly, once the layer type is set, the range of the IP address is fixed as well, so a random IP
address can be generated within the IP range; Thirdly, an interface is initialised by attaching
the IP address and the subnet of the layer type as its attributes, which then is pushed in
the candidate vector in order; Finally, repeat the previous steps to add more interfaces each
of which bears a random CNN layer until the maximum depth of the CNN architecture is
accomplished.

3.14 IP-Based Evolutionary Computation Algorithms

The DE and GA algorithms with the IP-Based encoding strategy are depicted in the follow-
ing sections. However, for the comparison purpose, there are two other algorithms imple-
mented, which are IPPSO [2] and IP-Based Random Search (IPRS) described in Appendix
Al

3.1.4.1 1IP-Based Differential Evolution

The basic DE variant with the mutation scheme of DE/rand/1 is implemented, and the IP-
Based Encoding Strategy is utilised to convert the variable-length architectures of CNNss to
a fixed number of dimensions in the search space to meet the fixed-length encoding require-
ment of traditional DE methods. The IP-Based Differential Evolution (IPDE) are detailed as
follows.

IPDE Algorithm Overview The work-flow of IPDE algorithm is to initialise the popula-
tion, apply the DE genetic operation to update the individual for the whole population,
retrieve the best individual from the whole population, repe Wtil the stoppl
criteria are met, whose pseudo-code is documented in Algorithm 2. .

rm !
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Algorithm 2: Framework of IPDE
P < Initialize the population with IP-Based Encoding Strategy elaborated in Section
3.1.3;
P_best + empty;
while termination criterion is not satisfied do
Apply the DE genetic operations to update each individual in the population
described in Algorithm 3;
evaluate the fitness value of each individual;
P_best + retrieve the best individual in the population;
end while

IPDE Individual Update By following the standard DE method, the first step of applying
the genetic operations on a parent individual is to randomly select three different individu-
als from the population.[the DE mutation cannot be applied to the individual vector because
the individual is represented by a vector, and each interface enclosing the information of the
IP address and the subnet is stored as one dimension of the individual vector. Therefore, the
individual vector has to be converted into a fixed-length vector with a number in each di-
mension by extracting each byte of the IP addresses in the individual vector. Once the vector
conversion is done, the DE mutation can be performed on the three selected individuals to
produce a candidate. The crossover can then be performed on the candidate and the parent
individual to obtain the final candidate. Finally, the parent individual will be replaced by
the candidate if the candidate achieves a better fitness; otherwise, the parent individual will

not be changed.
g il e Ca 3, Vi Vi Ve

Algorithm 3: IPDE Update An Individdal ] —
Input: individual vect ind_vectof, population P; V & L
& ! . h VR b
y*Output: updated indivi vector ind_vector; L5 1/33

indvector-1 ind—vector-2; ind_vector 3 £ Randomly select three unique individuals from
he population P
ytes_vector, bytes_vector_1, bytes_vector 2, bytes_vector.3 forthe parent-individual-and

Q’ -
\)\S N\O { 5
‘»03 e E‘?@t&dmdﬁdua&ﬁextract ach byte of the IP addresses from the interfaces of
%

o VYI ’V Y).‘ pesple do wnet hnw his
bytes_vector_candidate Perforr%/ rand /1 mutation on the byte vectors of the three

= —
etected individuals byles_vector I, bytes_vector.2, bytes vector 3
@yt_esg_ectoncgg@ﬁﬂ% Perform crossover on the byte vectors of the candidate
‘x&_ bytes vector sandidate And the parent individual bytes_vector

if_r'nd:veztori‘éﬁ'ﬁ'diﬁ'iite Convert the byte vector of the candidate bytes_vector_candidate to

a DE individual

candidate_fitness < evaluate the candidate vector ind_vector_candidate;

if candidate_fitness > the fitness of ind_vector then

ind_vector < ind_vector_candidate
end if
return ind_vector

& SN dhaw mighy be easiev”

3.1.4.2 IP-Based Genetic Algorithm

The IP-Base Encoding Strategy is-used to construct a search space with a fixed number of
dimensions by encoding thiavv'ariable-lengﬂx architectures of CNNs into a byte vector with a
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fixed length, and Geretic: Angrrthn'ns implemented to solve the optimisation problem in the
search space. The IP-Based Genetic Algorithm (IPGA)/ adopts the roulette wheel selection

and the two point crossover from the traditional Genetic Algorithm.__-} P;-ab N oL blwff? #M’tﬁl’tfbﬂ _3

/
IPGA Algorithimn Overview:L:fhe framework of IPGA is composed of four main steps -
initialise the population, apply GA genetic operations to produce individuals until the size
of the child population reach the pre-defined population size, retrieve the best individual
from the new population, repeek‘f thl the stop criteria are met, which is specified
in Algorithm 4.

Algorithm 4: Framework of IPGA

P < Initialize the population with IP-Based Encoding Strategy elaborated in Section
3.1.3;
P_best + empty; / T
while termination criterion is not satisfied do
Apply the B# genetic operations to prodiice a new populatlon illustrated in
Algorithm 5; ~
evaluate the fitness value of each individual;
P_best < retrieve tlie best individual in the populatior?;“/i"
end while e e e

L

IPGA Population Generation : At the very beginning the population generation, the elitism
process is executed by selecting a certain number of individuals from the population of the
current generation and pushing them through to the population of the new generation. In
order to fill up the rest of the population of the new generation, an individual is created by
applying GA operations on the population of the current generation, which then is added
into the population of the new generation, and the process of producing an individual is

repeated until reaching the pre-defined population size. The main difference between IPGA

__and traditional ¢ GA s that the IP-Base Encoding Strategy is used to transform the variable-
length architectures of CNN to the byte vectors with a fixed dimension and vice versa. Dur-
ing the genetic operations of crossover and mutation, the byte vectors are used; while during
the fitness evaluation, the decoded architectures of CNNs are utilised. The detailed process
of IPGA population generation is explained in Algorithm 5,

3.2 Experiment¥ DPSTSr\

3.2.1 Benchmark Datasets

In the experiments, six widely-used benchmark datasets are chosen to examine the proposed
algorithms, which are the datasets of MNIST Basic (MB), MNIST with a black and white im-
age as the Background Image (MBI), MNIST Digits Rotated with a black and white image as
the Background Image (MDRBI), MNIST with a Random Background (MRB), MNIST with
Rotated Digits (MRD), and CONVEX. The MB benchmark dataset and its four variants - the
MBI, MDRBI, MRB and MRD datasets consist of handwritten digits and the corresponding
labels from 0 to 9, and each of the datasets is composed of a training set of 12,000 instances
and a test set of 50,000 instances; while convex images and non-convex images with the cor-
responding labels constitute the CONVEX dataset, which is split into a training set of 8,000
examples and a test set of 50,000 examples.
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Aflgorithm 5: IPGA Generate A New Population
Input: population of the current generation P;
\Output: population of the next generation P_next;
 P_next - Find the best individuals of a certain number from the population P and
\ pushed them into the new population P_next
"-.whlle the new population P_next is not filled up do
. ,ind_vector 2 « Select two individuals from the population P using

e W eel selection

WWM Extracting each byte from the IP addresses in each

individual into a byte vector for the two selected individuals ind_vector.1, ind vector 2
_pptemmrtarmnezn-4=-Apply two point crossover on the two byte vectors
yteveetor=trbytevector 2
—bybe=veetereners < Mutate some of the bytes by replacing the number of the byte to be
mutated with a random number within the range of 0 to 255
_ind westor-new~4 Convert the new byte vector byte_vector_new to a new individual
vector
P_next < Add the new individual ind_vector_new into the new population P_next
end while
return P_next

The reason for picking the six aforementioned datasets is to fulfil the purpose of thor-
oughly testing the proposed algorithms. First of all, the classification task on the MB dataset
and its variants is to classify the handwritten images into the correct labels, which is a multi-
class classification problem, and the difficulties of the tasks vary by adding different factors
of noises into the MB dataset, so the proposed methods can be tested across multi-class clas-
sification problems with diverse complexities. Since the factors of rotation and background
are introduced separately into the MBI, MRB and MRD datasets; while a combination of
these two factors is applied on the MDRBI dataset, the MDRBI dataset holds the highest P
complexity among all of the five MNIST datasets. In addition, the binary classification task Vv
on the CONVEX dataset is utilised as a complement to the multi-class classification problem
of the MNIST datasets in order to extend the evaluation of the proposed algorithms to cover
both the multi-class and binary classification tasks. Last but not least, numerous state-of-the-
art methods have reported promising results on these benchmark datasets, which makes it
convenient to collect the results for the comparison purpose.

3.2.2 State-of-the-art Competitors

The state-of-the-art methods, which are reported to have achieved promising results on the
aforementioned benchmark datasets in the literature [4] and on the website? of the the
benchmark datasets’ provider, are picked as the peer competitors of the proposed algo-
rithms. The state-of-the-art methods are listed as follows: CAE-2 [20], TIRBM [23], PGBM+DN1
[10], ScatNet-2 [3], RandNet-2 [4], PCANet-2 (softmax) [4], LDANet-2 [4], SVM+RBF [14],
SVM+Poly [14], NNet [14], SAA-3 [14] and DBN-3 [14].

3.2.3 Experiment Design

As neuralevolution is literally comprised of two parts - neural network and evolutionary
computation, and evolutionary computation encompasses the evolutionary algorithm (e.g.

2nttp://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
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DE, PSO or GA) and the fitness evaluation, the parameter settings can be split into three
groups. In regard to the neural network parameters, based on the benchmark datasets that
are selected, a CNN architecture with the maximum depth of 10 should be sufficient to Q_b,
tain a great performanee- “Th terms of the parameters of the evolutionary algorlthms as ™
/fralrung neural network usually takes tremendous computational cost, the population size
f{ and the evolutionary generation has to be limited. After experimenting the population size
| from 10 to 100 with the step of 10, and the generation from 5 to 15 with the step of 5, the
\population size and the generation are set to 30 and 5, respectively, by contemplating the
\pme cost for the evolutionary process without compromising the accuracy in the final re-

sult. Apart from these two parameters that are commonly used by all of the proposed IPEC /

the parameters of the fitness evaluation, since training the whole dataset takes an enormous
amount of time, using the partial dataset tends to drasfically speed up the fitness evaluation,
which brings the percentage of the dataset as a hyperparameter of the fitness evaluation. In
addition, since training the very deep neural network is crawling, it is more efficient to train
the neural network for a small number of epochs to learn a trend of the neural network,
which is incorporated as another parameter of the fitness evaluation. The two parameters
related to the fitness function vary in different experiments, and they will be specified in the
following specific experiments.

ethods Jjw&m&w_ﬁ&d@?@iﬂm Sectimred@s-1. Withregard to

23.2:3;1- Parameter settings of the proposed EC methods

All of the parameters are configured according to the conventions in the communities of DE
[7], PSO [29] and GA [5] along with taking into account the small population and complexity
of the search space obtained by applying the IP-Base Encoding Strategy, which are listed in
Table 3.3.

Table 3.3: Parameter list

Parameter Name | Parameter Meaning ] Value
IPDE
F differennal rate 0.6
cr cross over rate 045
IPPSO
€l acceleration coefficient array for Py 1.49618
[ acceleration coefficient array for Ped 1.49618
w inertia weight for updating velocity 0.7298
IPGA
mr mutation rate 0.01
cr cross over rate 0.9
er elitism rate 0.1
IPRS
radius random search radius 5

The eX mrfeﬂm

f'

J;Q:S:ﬂ@)ixperiments to compare IPECs and the state-of-the-art methods

First of all, the proposed algorithms need to be compared with the state-of-the-art methods
in order to prove the competence of these algorithms. There are three IPEC methods - IPDE,
IPGA and the previously proposed IPPSO being inspected, and from the statistical point of
view, it is necessary to obtain the results from 30 runs for each algorithm, so running the
experiments could take a huge amount of time. However, as the fitness evaluation plays a
fundamental role in the computational cost, if the fitness evaluation can speed up, the total
time of the experiments can accomplish a magnificent plunge. Therefore, the partial dataset
with 10% is used to train the CNN architecture during the fitness evaluation and the number
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Ff epochs is limited to 5 epochs, which cut down the time of each run of each algorithm on
each dataset to a couple of hours approximately.

In addition, using 10% of the dataset might not be able to yield a good model due to the
under-fitting issue caused by the lack of training data, so it is worth doing an experiment
using the whole training dataset. However, whether to run the experig"tents of using wiiole
¢"dataset for only one of the algorithm or Wm@n&b&d@%&ed on
ItheTesults of the experiments with 10% of the dataset because if the difference of the perfor- N7
| mance among these methods is not obvious, the IPDE method with the whole datasét can (ﬁ,ﬁw/( .
be experimented, where the results are used as representatives of these tﬁge—l/agorithms to
%:mpare%_yyith the state-of-the-art methods; otherwise, we will perform the experiments

using the whole fataset for all of the three IPEC algorithms.
J.&.—Sei}%xperiments to compare IPECs and IPRS

In order to verify the effectiveness of IP-Based Encoding Strategy, the experiment of IPRS
with 10% of the dataset and 5 epochs will be performed. If the IP-Based random search per-
/ forms as good as the other EC methods, and it is competitive to the state-of-the-art methods,
/it can—b%é%géd that the IP-Based Encoding Strategy is capable to transform the compli-
S cated search space of the architectures of CNNs to a search space that is easy to be optimised.
)

aan éfm‘m;ﬁfq‘:f“ﬁq’

Furthermore, if all of the IPEC methods and IPRS wit }O% of the dataset gain a competing
| accuracy to the state-of-the-art methods, it dan’a: that the optima of the transformed
| search space correctly reflect the best architectures of CNNs, which can again demonstrate

|_the powerfulness of the IP-Based Encoding Strategy.

3
«‘}'2-3—& )Experiments to compare IPECs with each other

For the purpose of analysing which of the three IPEC methods has better performance, the
results of the experiments of all of the three IPEC algorithms are compared by applying
the statistical test. As the results of the IPEC methods have been obtained in the above
experiments, there are no extra experiments needed.

c4) 7y )
we

-3:2:3:5- Experiments to fine-tune the hyperparameters of fitness evaluation m@l\
: One hyperparameter of the fitness evaluation is the percentage of the dataset, which can dra-
K
b & matically affect the final results of the proposed methods. If the percentage of the dataset is
QU

A - gtoo small, the partial dataset cannot represent the characteristics of the whole dataset very
g ~§\) iﬁ‘ ) well, so the final accuracy &voﬁ"t" meet our expectation; however, the computational cost
ARG \ explodes along with the increase of the percentage, which indicates that using the whole
e \ dataset for the fitness evaluation is not ideal. It can be observed that there is a conflict be-
tween achieving the best accuracy and the fast convergence, which need to be reconciled by
fine-tuning the percentage of the dataset used for the fitness evaluation. To be specific with
the experiments, IPDE with 40% and 70% given 5 epochs will be run on the six benchmark
datasets, and the results will be compared with IPDE with 10% and the whole dataset that

are done in the experiments in Section 3.2.3.2.

The other hyperparameter is the number of epochs, which also influences the perfor-
mance of the IPEC methods. If the number of epochs is not sufficient to train a good CNN
architecture, the trend of the CNN architecture cannot be learned, which will produce some
noises of the fitness value; however, if the number of epochs is too large, overfitting may oc-
cur, which results in noises of the fitness value as well because the accuracy obtained from
the fitness evaluation is not able to represent the true accuracy of the CNN architecture on
the specific dataset. As a result, the percentage of the dataset is fixed to 10% in order to

ool 1 mich alke aere
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attain the results in a short period without severely comprising the accuracy, and IPDE with
various numbers of epochs - 10 and 15 will be done, whose results will be investigated to
learn a pattern of how the number of epochs impact the final accuracy of the learned CNN

architecture.

3.4 0 aemeion sublestion Sk PRi
SOASIS - L i
~3:3~ Results altd DMM“E? Tre vesul& :tst\ wih dy-ferent nanchdols . Ty
/ to better ST e S

‘As there are two hypefpara'_r,n,tefs of the IP-Based metl}od-/ma)ercentgge of dataset
/" training epochs used forfifriess evalm::ji each experiment is done with},céita(ijn/;»(r:
' centage and-a fixed riupber of epochs, in orderto make it easie;r/to/ refer tothie method/used
by a specific exp’é/rin/]é;lt, Method name, the percentage of the dataset-and the training
epochs are Coﬁ%ﬁd with a delimiter of hyphen-as-the unique nanfe of the method-used
“inanexperim faking IPDE with 10% of dataset and 5 training epochs as an example, the
name of IPDE-10%-5 is used wherever the method is referred. Each group of the results are
collected from one experiment which performs 30 runs of one unique method on a specifig
dataset. For example, one group of the result may be obtained from 30 runs of IPDE-10%-
on the CONVEX dataset. The full results contain many groups of the results captured by
performing all of the methods to be compared on all of the datasets. -
Since both Random Search and EC methods are stochastic, statistical significance test is
required to make the comparison result more convincing. When comparing the Random
Search or EC methods with the state-of-the-art method, One Sample T-Test is applied to  /
test whether the group of samples is better or not because only the best error rates of state- (_ ghaul o
of-the-art methods are reported, but not the statistical results; when a comparison of error / ;
rates between any two of the stochastic methods is performed, Two Sample T-test is utilised | by EXPRYIg:
to determine whether the difference is significant enough or not; when analysing the com- | ¢lg 335 n
putational cost, the generation, when the optimised CNN architecture is accomplished, is | )
taken for the statistical comparison, and Mann-Whitney-Wilcoxon (MWW) is chosen as the |
significance test method because the generation samples are not continuous data. /

[

3.3.1 Performance Comparison between IPECs and the state-of-the-art methods

v _/-"'"'_'_'_'__." - - == 3
3@ IPDE-10%-5 vs.(SOA methods »NW st
—h e \_’”‘_'/) —{

C_y By comparing IPDE-10%-5 with the state-of-the-arts methods using One Sample T-Test to

~ determine whether the results are better than a mean value from the statistical point of view,

it can be observed that the IPDE method achieves 21 encouraging performance in terms of
error rates shown in Table 3.4. To be specific, for. the CONVEX benchmark dataset, the
IPDE-10%-5 outperforms five of the nine state-of-the-art methods; fof'the MB benchmark,

the IPDE-10%-5 attains a better error rate than six of the ten state-of-the-art methods{for’

the MBI benchmark, the errorratesef IPDE-10%-5 beats all of the state-of-the-art methods;

for the MDRBI benchmark, although the mean error rate of IPDE-10%-5 is less than 38.547, a.c/iteves!
of LDANet-2, the P-value of One Sample T-Test is 0.4692 which indicates that the difference
between the results of IPDE-10%-5 with 38.54 is not statistically significant, so the IPDE- -
10%-5 can be deemed equivalent to LDANet-2 ranking the third among the twelve state-
of-the-art methods; for MRB benchmark, the mean error rate of IPDE-10%-5 is better than

6.0 PGBM+DN-1, but the P-value of 0.5985 between the results of IPDE-10%- a 6.08:/: &
does'nbt prove the significance of the difference, so IPDE-10%-5 can be expected to perform

just ag good as PGBM+DN-1; for MRD benchmark, IPDE-10%-5 outruns the state-of-the-arts
met\lzd apart from TIRBM.
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Table 3.4: The classification errors of IPDE-10%-5 against the peer competitors

classier CONVEX MB MBI MDRBI MRB MRD
CAE-2 - 248 +) 15.50 (+) 45.23 (+) 10.90 ) 9.66 +)
TIRBM - - - 35.50 [©] - 4.20 )
PGBM+DN-1 - 1215 @ | 3676 [3) 608 (= -
ScatNet-2 6.50 ) 127 () | 1840 (+) | 5048 ) 1230 (#) 748 (+)
RandNet-2 545 ) 125 () | 1165 () | 43.69 ) 1B (9 847 (4
PCANet-2 (softmax) 4.19 ) 1.40 [C] 11.55 +) 35.86 ) 6.85 (+) 8.52 +)
LDANet-2 722 [a) 105 () | 1242 (+) | 3854 =) 681  (+) 752 (4

 SVM+RBF 19.13 ® 3003 (+) | 2261 (+) | 5518 ) 1458 (0 | 11 &)
SVM+Poly B 19.82 +) 3.69 +) 24.01 +) 5441 +) 16.62 ) 1542 +)
NNet 32.25 ) 169 (¢ | 2741 (v | 6216 ) 2008 (9 | 1811 (3
SAA-3 1841 ® 346 (1) | 23 @ | 5193 ) 128 (0 | 1030 ()
DBN-3 18.63 @ 311 (¢ | 1631  (+) | 4739 ) 673 (&) | 1030 &
IPDE-10%-5(best) 8.56 1.16 6.63 32.20 3.88 3.84
IPDE-10%-5(mean) 11.65 147 10.30 39.33 5.89 5.81

’/’) IPDE-10%-

S(standard devia- 194 0.15 1.58 5.87 197 1.17
tion)

A2 [PGA10%-5 vs SOA fethodsy

rf <> Ttcan be dlscovered that IPGA-10%-5 excels by examining the error rates of IP.GA-10%-5 and
its competitors listed in Table 3.5. More specifically, it obtains the same rankings as IPGA-
10%-5 with the fifth, the first, tied for fourth place and the second on the CONVEX, MBI,
MDRBI and MRD benchmark datasets, respectively; for the MB benchmark, the P-value
calculated by One Sample T-Test between the error rate and 1.4 is 0.0668, so the significance
of the difference is not satisfied, which implies the IPGA-10%-5 ties PCANet-2 (softmax) at
the fourth place among the listed methods; for the MRB benchmark the P-values of 0.3270
and 0.1338 are received from One Sample T-test of 6.08 and 6.85; respectlvely, which implies
that there is no mgmﬁcgmmﬁmate of IPGA-10%-5 with the
best four state-of-the-art algorithms, so IPGA-10%-5 could be claimed as one of the best

solutions on the MRB benchmark.
A

-

Table 3.5: The classificatién errors of IPDGA-10%-5 against the peer competitors

I
E—

classier CONVEX MB |~ MBI MDRBI MRB |~~~ MRD
CAE-2 - 248 (] | 1550 (+) | 4523 _~(+) 1090 (& 266 ()
TIRBM / - s - 35,50 -) = 420 )
PGBM+DN-1 - / - 1215 (+) }736.76 ) 608 (= /-
ScatNet-2 1 650 “) V" 127 6] 18.40 (# | 5048 +) /fz.so +) 7.;8 +)
' RandNet-2 545 O 15 ¢ [ e ) | 4369 +) 1By ) | @
\ PCANet-2 (sgffmax) 419 2 140 (@) | 155 (1) | %86 & 6.85 =) |/832 &)
\\ LDANet-2/ 72 /() 105 () A242  (¢) [ 3854 (= | 681 = /] 75 (+)
\ SVM+RBE 1913 /) 3003 (o7 261 (+) | 5518 i+ 1458 @/ | 1 (+)
"\. SVM+Poly 1957 (+) 360 v | 2400+ | sfm &) 1662 () | 1542 (¥
\ NNé 25 +) 467 (1) | 241 ) [e21s ) 2004 (# | 1811 &)
A sKA-3 /18.41 (+) P (+) | 23 7| 5193 (+) 1128 (+) 10.30 +)
) OBN-3 18.63 +) 311 (0 | 1631  (+) | 47.39 +) 673 (=) | 1030
JPDE-1§%-5(best) 7.61 1.08 661 31.25 393 4.62
,LP & | [IPDE-{0%-5(mean) 11.57 146 10.09 38.84 637 5.69
-10%-
S(standard  devia- | 210 017 215 533 1.60 0.66
tion)

3.3.1.3 | IPPSO-10%-5 vs/ soa«mahods\

6 As shown in Table 3.6, IPPSO-10%-5 achieves promising results across all of the six bench-
mark datasets. To be detailed, for the CONVEX, MBI, MDRBI and MRD benchmark datasets,
it stays in the same positions exactly as IPDE-10%-5 and IPGA-10%-5; for the MB bench-
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mark, it is defeated by four of the state-of-the-art methods, which is the same as IPDE-10%-
5; for the MRB benchmark, the P-value of 0.5388 argues that IPPSO-10%-5 does not perform
worse than the best state-of-the-art method named PGBM+DN-1, even though the mean er-
ror raté/0f §26 is a bit worse than 6.08 PGBM+DN-1, and the Pzyalues of 0.0585 and 0.0434
calculated by applying One Sample T-test against 6.81 and 6.85Arespectively, indicates that
IPPSO-10%-5 does not outperform LDANet-2, but it is superior to PCANet-2 (softmax).

] tabl

Table 3.6: The classification errors of [PPSO-10%-5 against the peer compefitors

classier 2 CONVEX™ MB MBI MDRBI MRB~| MRD_}~
CAE-2 V A 248 (+) | 1580 (9 | 4523 @) 1090 ) 966  iA)
TIRBM / /- - - [ 0 - 420 7 ()
PGBM+DN-1 / /- | 1215 (+) %6.76 ) 6.08 (=) . - ,/
ScatNet2  / 6.50 0 127 /() | 1840  (+)/] s048 /| 1230 » V748 @
RandNet-2 / B45 ) 126 () | 165 () [ 869 9 1397 /[ s A
PCANet-2/{softmax) 419 [3) A4 () [ 155/ () | 3586 ) 685 (1) 852/ ()
LDANey2 /| 2 ) 105 () | 242 () | 385 (9 681 / (9) 77 @
SVM+4RBF / [ 1913 @ /T0m @ |42 @« | 538 (+) sy @) [ vl )
SvMiPoly /. 19.82 +y 369 1)/ 2400w [Aa (+) 1662 (¢ | 1542 (¥
NEet / 3225 A 69 A [ 27a1 0 /] e216 (+) 2004 (+) 18.11 +)
aa3 / 1841 /) 346 (+) | 23 Y | 5193 +) 1128 () | 1030 #
/N3 7 1863 (4 311 (4) | 1631 (9 | 4739 ) 6.73 =) | 1030 ()
’?P?Qo%-samst) 8.75 122 591 3042 327 462

é E-107%-5(mean) 1265 1.56 9.86 38.79 6.26 6.07

0%-
S(standard devia- 213 017 1.84 5.38 1.54 071
tion)

3.3.1.4 IPDE-100%-5 vs. SOA methods

From the results listed in Table 3.7, overall, IPDE-100%-5 accomplishes a more promising
performance than IPDE-10%-5 by being compared with the state-of-the-art methods. It
ranks the fifth, the fifth, the first and the second for the benchmark datasets of CONVEX,
MB, MBI and MRD, respectively, which is the same as IPDE-10%-5; However, it performs
the best on both the MDRBI and MRB benchmark datasets, which outperforms IPDE-10%-5.

Table 3.7: The classification errors of IPDE-100%-5 against the peer competitors

classier CONVEX MB MBI MDRBI MRB MRD
CAE-2 - 248  (+#) | 1550 (+) | 4523 (+) 1090  (+) 9.66 )
TIRBM - = = 35.50 (+) = 420 )
PGBM+DN-1 = = 1215 (+) | 3676 +) 608  (+) =
ScatNet-2 6.50 [8) 127 () | 1840 (+) | 5048 +) 1230 - (+) 748 +)
RandNet-2 545 ) 125 () | 1165 (+) | 4369 (+) 1347 (+) 847  (+)
X PCANet-2 (softmax) 419 [B) 140 () | 1155  (#) | 3586 +) 685  (+) 8.52 +)
/ Y LDANet-2 722 [B) 105 () | 1242  (+) | 3854 +) 681  (+) 752 +)
2 SVM+RBF 19.13 (+) 3003 (+) | 2261  (+) | 5518 (+) 1458 (+) 1111 +)
SVM+Poly 19.82 (+) 369  (+) | 2401 (+) | 5441 +) 1662 (+) 15.42 +)
NNet 3225 (+) 469 (+) | 2741 . (+) | 6216 +) 2004 -~ (4) 18.11 (+)
18.41 (+) 346 (+) | 23 +) | 5193 (+) 1128 (+) 10.30 +)
18.63 (+) 311 (4) | 1631 (+) | 47.39 (+) 673  (+) 10.30 (+)
7.25 123 5.45 26.83 3.54 445
. 11.62 157 7.54 32.07 4.88 591
3.87 018 1.03 265 0.69 134
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3.3.2 Performance Comparison between IPECs and IPRS
,3»3.'{ IPRS-10%-5 vs. SOA methods

IPRS-10%-5 can be proved as a strong competitor by inspecting Table 3.8. Considering the
error rates on the CONVEX, MBI and MRD datasets, it accomplishes the same rankings as
IPDE-10%-5, IPGA-10%-5, and IPPSO-10%-5; in terms of the performance on MB, it pos-
sesses the fifth ranking position which is the same as that of IPDE-10%-5 and IPPSO-10%-5;
regarding the MRB benchmark, the same as IPDE-10%-5, it takes the tied for first place with
PGBM+DN-1, which is supported by the P-value of 0.7112 and outperforms the other state-
of-the-art methods; with regard to the MDRBI benchmark, it achieves an error rate no better
than 38.54 of LDANet-2 and no worse than TIRBM upheld by the P-values of 0.1020 and
0.0706 collected by One Sample T-Test agaist 35.5 and 38.54, respectively, which means it
ties the best four state-of-the-art methods for first place and performs better than the others.

Table 3.8: The classification errors of IPRS-10%-5 against the peer competitors

classier CONVEX MB MBI MDRBI MRB MRD
CAE-2 - 248 +) 15.50 (+) 45.23 +) 10.90 {+) 9.66 +)
TIRBM - - - 35.50 (=) - 4.20 -)
/ PGBM+DN-1 - - 12.15 +) 36.76 (=) 6.08 =) -
ScatNet-2 6.50 “) 127 ) 1840 {+) 50.48 {+) 12.30 +) 7.48 {+)
RandNet-2 545 ) 1.25 ) 11.65 (+) 43.69 (+) 1347 {+) 847 (+)
PCANet-2 (softmax) 4.19 (-) 140 {-) 11.55 +) 35.86 (= 6.85 (+) 8.52 +)
) LDANet-2 7.22 ) 105 (9 | 1242 (#) | 3854 ) 681 () 752 (4)
?\ SVM+RBF 1913 ) 3003 () | 2261  (+) | 5518 D) 1458 (&) | 1111 (®
SVM+Poly 19.82 ) 360 (+) | 2401 (9 | 5441 ) 662 () | 1542 )
NNet 3225 O] 16 @ | a1 () | 6216 O] 2006 ) | 1811 ()
SAA3 18.41 ) 346 () | B @ | 5193 ) 1128 (1) | 1030 (*)
DBN-3 18.63 [B) 30 &) | 1631 (3 | 4739 ) 673 (& | 1030 &
!_IPDE-IO%-S(best) 8.93 1.01 6.36 26.88 3.73 3.78
IPDE-10%-5{mean) 12.60 1.51 9.86 36.94 5.99 554
IPDE-10%-
5(standard devia- 2.20 0.15 203 4.67 1.35 0.68
tion)
2
3322 IPDE-10%5 vs. IPRS-10%-5 Al

In terms of the error rate, none of the test results of Two Sample T-Test between IPDE-10%-5

and IPRS-10%-5 across all of the six benchmark datasets can prove any significant difference How 7
between these two methods, which can be seen in Table 3.11. With regard to the @é{@/’
which reflects the computational cost, according to the results of the MWW test, neither of

these two methods outstands.

7 w‘m‘-"y\
Table 3.9: Statist)'é Comparison Test of IPDE-10%-5 and IPRS-10%-5
= om, CONVEX | MB | M MDRBI | MRB | MRD e d e
[Erzoc Rate/ 0.08 035 | 0. 0.09 082 | 029 %’0
Generatior 073 0.12 0.73 0.58 0.58 0.79
VoW whoT o W, SR «F\QW\

e Tabie 7
3. IPGA-10%-5 vs. IPRS-10%-5 L& ‘

By analysing the Two Sample T-Test results on the error rate and the MWW test result on
the generation listed in Table 3.10, from the statistical point of view, it can be concluded
that IPGA-10%-5 obtains the similar performance as that of IPRS-10%-5 both in terms of the
accuracy and the computational cost.
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Table 3.10: Statistical Comparison Test of IPGA-10%-5 and IPRS-10%-5

<~ CONVEX | MB | MBI | MDRBI | MRB | MRD Z
1 ( Error Ratg 0.08 029 | o068 017 033 | 042 Z/"
© P leneration) 0.66 046 0.88 079 0.21 0.92

yi %
39{:4’ IPPSO-10%-5 vs. IPRS-10%-5

In Table 3.11, one P-value on the first row and one P-value on the second row indicate that
the significant difference is supported. The mean error rates of these two methods can be
found in Table 3.6 and in Table 3.8, respectively, and the mean error rate of IPRS-10%-5 on
the MRD benchmark dataset is less than that of IPPSO-10%-5, so IPRS-10%-5 outperforms
IPPSO-10%-5 on the MRD benchmark in terms of the error rate; However, the mean gener-
ation of IPPSO-10%-5 on the MRB benchmark dataset is 1.40 which is much less than 2.07
achieved by IPRS-10%-5 on the MRB benchmark, so IPPSO-10%-5 spends less computational
cost than IPRS-10%-5 on the MRB benchmark.

Table 3.11: Statistical Comparison Test of IPPSO-10%-5 and IPRS-10%-5

CONVEX MB MBI MDRBI MRB MRD
Error Rate 0.9 021 1.00 0.16 048 0.0047 '_/
Generation 0.23 0.06 0.66 0.69 0.04236 017

3.3.3 Performance Comparison between IPECs
3.3.3.1 IPDE-10%-5 vs. IPGA-10%-5

Among all of the P-values in Table 3.12, 0.02574 in bold is the only one that shows a signifi-
cant difference. By comparing 2.43 - the mean generation of IPDE-10%-5 on the MB bench-
mark dataset with 1.59 - the corresponding mean generation of IPGA-10%-5, IPGA-10%-5
attains better efficiency in terms of computational cost; while, neither of these two methods
defeats each other on the MB benchmark in terms of the classification accuracy. In regard to
the other five benchmark datasets, both of them gain a similar performance both in regard
to the error rate and the generation used to attain the optimised CNN architecture.

Table 3.12: Statistical Comparison Test of IPDE-10%-5 and IPGA-10%-5

CONVEX MB MBI MDRBI MRB MRD
0.88 0.82 0.67 0.75 0.32 0.66

Erro; e
Q—}n&\) 043 0.02574 091 074 0.60 0.67

3.3.3.2 IPDE-10%-5 vs. IPPSO-10%-5

In the generation row of Table 3.13, three of the P-values on the MB, MRB and MRD columns
are less than 0.05 - the confidence level. The mean generation values of IPDE-10%-5 on the
MB, MRB and MRD are 2.43, 2.27 and 2.30, and the corresponding mean generation values
of IPPSO-10%-5 are 1.17, 1.40 and 1.63, so IPPSO-10%-5 is more efficient than IPDE-10%-5
on these three benchmarks. Among the above three benchmarks, for the MB dataset, IPPSO-
10%-5 accomplishes a less error rate than that of IPDE-10%-5, which can be retrieved from
Table 3.6 and Table 3.4, so from the statistical point of view, IPDE-10%-5 excels on the MB
benchmark in terms of the classification accuracy; However, for the other two benchmark
among the MB, MRB and MRD, the difference between these two methods is not significant.
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Apart from the aforementioned three benchmarks, neither of IPDE-10%-5 or IPPSO-10%-5
exceeds each other.

Table 3.13: Statistical Comparison Test of IPDE-10%-5 and IPPSO-10%-5
CONVEX MB MBI MDRBI MRB | MRD
Error Rate 0.06 0.0359 0.32 0.71 0.43 | 029

Generation 029 0.00086 0.28 0.25 0.02088 l 0.03486

3.3.3.3 IPGA-10%-5 vs. IPPSO-10%-5

In Table 3.14, the significant P-values in bold appear in the columns of MB, MRB and MRD
which are the same columns as those of the comparison between IPDE-10%-5 and IPPSO-
10%-5. For the MB and MRD benchmark datasets, as the mean error rates of IPGA-10%-5
are less than the corresponding mean error rates of IPPSO-10%-5, which can we observed in
Table 3.5 and Table 3.6, IPGA-10%-5 demonstrates its superiority to IPPSO-10%-5 in terms
of the classification accuracy on the MB and MRD benchmark datasets. In addition, by
checking the P-values of the generation on MB and MRD columns in Table 3.14, [IPGA-10%-
5 does not compromise the computational cost to gain the better accuracy on these two
datasets. For the MRB benchmark, the bold 0.0035 shows the significant difference between
the generation samples of these two methods, and the mean generations of IPGA-10%-5
and IPPSO-10%-5 are 2.47 and 1.40, respectively, so the generation used to obtain the best
CNN architecture on the MB dataset by IPGA-10%-5 is larger than that used by IPPSO-
10%-5, which means there is more computational cost needed for IPGA-10%-5 given the MB
benchmark. Apart from these three significant P-values in Table 3.14, neither of these two
methods outstrips each other from the statistical point of view.

Table 3.14: Statistical Comparison Test of IPGA-10%-5 and IPPSO-10%-5

CONVEX MB MBI MDRBI MRB MRD
Error Rate 0.06 0.0416 0.67 0.98 0.78 0.0468
Generation 0.07 0.24 0.51 0.40 0.0035 0.24
3.3.4 i uning the percentage of dataset for fitness
evaluation

The results of the mean error rates, standard deviations and best error rates are reported in
Table 3.15. Even though there are no significant differences between any two of IPDE-10%-5,
IPDE-40%-5, IPDE-70%-5 and IPDE-100%-5 by performing Two Sample T-Test on the results,
there is still an implicit trend on the mean error rate along with the increase of the percentage
of the dataset used. As shown in Fig. 3.3.4, for the MBI, MDRBI and MRB benchmark
datasets, the mean error rate continuously plunges when the percentage of dataset goes up;
while, for the CONVEX, MB AND MRD datasets, the mean error rate fluctuates during the
increase of the percentage. As the CNNs are trained on partial datasets, the more data are
used the more accurate it can represent the distribution of the dataset, which is supposed
to produce a better accuracy, and it is perfecily matched by the MBI, MDRBI and MRB
benchmark datasets; while, for the other three datasets, the error rate doesn’t have a clear
trend of rising or falling, and it slightly goes up and down. Since the CONVEX, MB AND
MRD datasets are relatively simple compared to the other three, 10% dataset may be able to
represent the correct distribution of the whole dataset, so it achieves similar error rates with
a bit fluctuation during the increase of the percentage of datasets.
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Table 3.15: The classification errors of IPDE by tuning the percentage of data used for fitness
evaluation

percentage [ convex | MB | MBI | MDRBI | MRB [ MRD

Best Error Rate of State of Art method

[ 419 ] 105 | 1155 [ 3550 | 608 | 445 a_f@th}

P Mean Error Rats N Ad; ,\V g G Q'\eok"r ?
10% 1165 K47 [Aoso | 3933 T /589 [ 581 (‘\
10% . 12.58 157 |[ 857 | /3675 543| | 582
70% 12.85 156 792 [[[ 3295 528 577
100% 1162 157 754/ |\ 3207 488/ | 591
Standard Deviation il /
10% 194 0.15 158 5.87 197 117
10% 232 025 1.61 6.13 172 0.88
70% 345 021 122 229 1.06 095
100% 387 018 1.03 265 0.69 134
Best Error Rate

10% 8.56 116 | 663 | 3220 3.88 3.84
40% 7.54 126 | 588 26.38 322 198
70% 7.70 131 5.50 27.02 3.09 435
100% 7.25 123 | 545 26.83 354 445

Figure 3.3: The trend of the mean error rate along with increasing the percentage of dataset
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3.3.5 {‘e#mmcﬂﬁompaﬂsgu_bﬁuning the training epochs for fitness evalua-
tion

Along with the growth of epochs by fixing the percentage of the dataset, the performance
of the trained CNN climbs, which can reflect the correct trend of the corresponding fully-
trained CNN better, but when the epochs exceeds some point, the performance of the trained
CNN plunges due to over-fitting, so it can not reflect the trend of the fully-trained CNN any-
more, which adds noises to the fitness value. This assumption is supported by the changes in
the mean error rates of different datasets. For the CONVEX, MB, MRD benchmark datasets,
the CNN trained for 5 epochs are enough or more than enough to represent the fully-trained
CNN, so the mean error rate for the CONVEX dataset rockets from 5 epoch to 10 epochs, for
the MB dataset, the error rate keeps rising, and for the MRD dataset, the error rate receives
a little increase from 5 epochs to 10 epochs and jumps sharply from 10 epochs to 15 epochs.
With regard to the MBI, MDRBI datasets with more complexity, the mean error rate drops
with the growth of the epoch number. The mean error rate of the MRB datasets reduces
while epochs changes from 5 to 10, and it hikes during the change of epochs from 10 to 15,
which indicates that 10 epochs could be the point where the trained CNN could represent
the fully-trained CNN best.
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Table 3.16: The classification errors of IPDE by tuning the epochs for fitness evaluation

epochs [ convex | MB | MBI | MDRBL | MRB | MRD
Best Error Rate of State of Art method
[ 419 T 105 [ 1155 | 3550 | 608 | 445
Mean Error Rate
5 11.65 147 | 1030 | 39.33 5.89 5.81
10 12.58 149 | 946 | 3750 553 5.82
15 12.47 154 | 931 37.20 5.88 6.44
Standard Deviation
5 194 015 | 158 5.87 197 117
10 1.65 031 | 207 5.01 131 0.94
15 227 042 | 200 6.20 152 1.94
Best Error Rate
5 8.56 116 | 663 3220 3.88 384
10 9.03 100 | 649 30.30 354 | 441
15 9.14 113 | 516 29.63 107 | 475

3.4 Conclusions.of¥P-BasedECalgorithms—

It can be concluded that the proposed EC methods including IPDE and IPGA along with the
previous IPPSO and the IP-Based Random Search method have obtained promising results
on the benchmark datasets by comparing them to the state-of-the-art algorithms. It is also
observed that the IP-Based EC methods do not outperform the IP-Based Random Search al-
gorithm, and none of them significantly éxcelsin terms of the accuracy and computational
cost on the given dataset by applying statistical tests on their results. However, the limited
complexity of the benchmark datasets might not tell the performance differences between
these methods because it is easy to achieve a relatively hight accuracy for easy classification
tasks. In addition, there is another limitation of the proposed EC methods, which is that
the maximum depth of the architectures of CNNs has to be set before the commencement
of the evolutionary process, so any CNN architectures that exceed the maximum depth are
not explored by the EC methods. For simple tasks, setting a maximum depth is straightfor-
ward, e.g. a maximum depth of 10 layers for the above experiments, but for some extremely
complicated tasks, it would be hard to set a maximum length of the architectures of CNN,
as the maximum depth is not known, and using an over large depth may result in terrible
computational cost, while setting a small number as the depth may not be able to acquire an
optimal CNN architecture.
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Chapter 4

The Proposed Hybrid DE Approach

Inowdystinn |, CMF&Y‘ G@oo| .
4.1 The Proposed Algorithm

As mentioned in Section 3.4, there is a limitation of the maximum length of the architec-
tures of CNNs because the traditional methods of PSO, DE and GA are used to explore a
search space with a fixed dimension. Even though by introducing the Disabled Layer in
the encoding strategy, the aforementioned algorithms are able to evolve the variable-length
architectures of CNNs to some extent, it would be better to develop a method without any
constraints in terms of the maximum length of the architectures-of CNNs that the algorithm
is capable to learn. The proposed hybrid DE approach useg DE as the main evolutionary
algorithm, and a second crossover operator is proposed to gererate children whose lengths
differ from their parents to fulfil the requirement of evolving varigble-length architectures
of CNNs. DECNN is used as the name of the proposed algorithm.
=~ >
4.1.1 DECNN Algorithm Overview \WMJ be

The overall procedure of the proposed DECNN algorithm is written in Algorithm 6.

Algorithm 6: Framework of IPDE

P « Initialise the population elaborated in Section 4.1.2;
P_best < empty;
while termination criterion is not satisfied do
Apply the refined DE mutation and crossover described in Section 4.1.4;
Apply the proposed second crossover to produce two children, and select the best
between the two children and their parents illustrated in Section 4.1.5;
evaluate the fitness value of each individual;
P_best < retrieve the best individual in the population;
end while

4.1.2 Population Initialisation

As the individuals are required to be in different lengths, the population initialisation starts
by randomly generating the lengths of individuals. In the proposed DECNN, the length
is randomly sampled from a Gaussian distribution with a standard deviation p of 1 and
a centre u of a predefined length depending on the complexity of the classification task
as shown in Equation (4.1). After obtaining the candidate’s length, the layer type and the
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attribute values can be randomly generated for each layer in the candidate. By repeating the
process until reaching the population size to accomplish the population initialisation.

P(x) = 1 e_(x_}l)z/za'z 1)

o271t

4.1.3 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 7. First of all, four arguments are
taken in by the fitness evaluation function, which are the candidate solution which rep-
resents an encoded CNN architecture, the training epoch number for training the model
decoded from the candidate solution, the training set which is used to train the decoded
CNN architecture, and the fitness evaluation dataset on which the trained model is tested
to obtain the accuracy used as the fitness value. Secondly, the fitness evaluation process is
pretty straightforward by using the back propagation to train the decoded CNN architec-
ture on the training set for a fixed number of epochs, and then obtaining the accuracy on
the fitness evaluation set, which is actually used as the fitness value. For the purpose of
reducing computational cost, the candidate CNN is only trained on a partial dataset for a
limited number of epochs, which are controlled by the arguments of the fitness function - k,
D_train and D_fitness.

Algorithm 7: Fitness Evaluation

Input: The candidate solution c, the training epoch number k, the training set D_train, the
fitness evaluation dataset D_fitness;

Output: The fitness value fitness;
Train the connection weights of the CNN represented by the candidate c on the training
set D_train for k epochs;
acc < Evaluate the trained model on the fitness evaluation dataset D_fitness
fitness < acc;
return fitness

4.1.4 DECNN DE Mutation and Crossover £~

The proposed DECNN operations are similar to the standard DE mutation and crossover
as described in Section 2.3.1, but it introduces an extra step to trim the longer vectors be-
fore applying any operation because the DECNN candidates have different lengths and the
traditional DE operations in Equation (2.1) and (2.2) only apply on fixed-length vectors. To
be specific, the three random vectors for the mutation are trimmed to the shortest length of
them, and during the crossover, if the trial vector generated by the mutation is longer than
the parent, it will be trimmed to the length of the parent.

4.1.5 DECNN second crossover

Similar as the crossover of GAs, each individual of the two parents is split into two parts by
slicing the vector at the cutting points, and swap one part with each other. The cutting point
is chosen by randomly finding a position based on Gaussian distribution with the middle
point as the centre and a hyperparameter p as the standard deviation to control the variety
in the population. The flow of the second crossover is outlined in Fig. 4.1.
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Figure 4.1: second crossover of the proposed DECNN algorithm

4.2 Experiments

421 Benchmark Datasets and State-of-the-art Competitors

In order to perform a fair comparison between DECNN and the proposed EC algorithms in
the first part of this project, the same benchmark datasets and the same peer competitors are
utilised, which are described in Section 3.2.1 and 3.2.2, respectively.

4.2.2 Parameter settings of the proposed EC methods

All of the parameters are configured according to the conventions in the communities of
DE [7] along with taking into account a small population to safe computation time and the
complexity of the search space. For the evolutionary process, 30 is set as the population size
and 20 is used as the number of generations; In regard to the fitness evaluation, the number
of training epochs is set to 5 and 10% of the training dataset is passed for evaluation; In terms
of the DE parameters, 0.6 and 0.45 are used as the differential rate and the crossover rate,
respectively; The hyperparameter p of second crossover is set to 2, and y of the population
initialisation is set to 10; 30 independent runs is performed by the proposed DECNN on
each of the benchmark dataset.

4.3 Results

Since DE is stochastic, statistical significance test is required to make the comparison result
more convincing. When comparing the proposed DECNN with the state-of-the-art methods,
One Sample T-Test is applied to test whether the results of DECNN is better; when the
comparison of error rates between DECNN and the peer EC competitor named IPPSO [2] is
performed, Two Sample T-test is utilised to determine whether the difference is statistically
significant or not. Table 4.1 shows the comparison results between the proposed DECNN
and the state-of-the-art algorithms; Table 4.2 compares DECNN with IPPSO.
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4.3.1 DECNN vs. State-of-the-Art methods

The experimental results and the comparison between the proposed DECNN and the state-
of-the-art methods are shown in Table 4.1. In order to clearly show the comparison results,
the terms (+) and (-) are provided to indicate the result of DECNN is better or worse than the
best result obtained by the corresponding peer competitor; The term (=) shows that the mean
error rate of DECNN are slightly better or worse than the competitor, but the difference is
not significant from the statistical point of view; The term — means there are no available
results reported from the provider or cannot be counted.

It can be observed that the proposed DECNN method achieves encouraging perfor-
mance in terms of the error rates shown in Table 4.1. To be specific, the proposed DECNN
ranks the fifth on both the CONVEX and MB benchmark datasets; for the MBI benchmark,
DECNN beats all of the state-of-the-art methods; for the MDRBI dataset, the mean error
rate of DECNN is the fourth best, but the P-value of One Sample T-Test between DECNN
and the third best is 0.0871, which indicates that the significance difference is not supported
from the statistical point of view, so DECNN ties the third with PGBM+DN-1; for the MRB
benchmark, the mean error rate of DECNN is smaller than all other methods, but the differ-
ence between DECNN and the second best algorithm is not significant given the calculated
P-value of 0.1053, so DECNN ties the first with PGBM+DN-1; for the MRD benchmark,
DECNN outruns the state-of-the-arts method apart from TIRBM. In addition, by looking at
the best results of DECNN, DECNN achieves the smallest error rates on five out of the six
datasets compared with the 12 state-of-the-art methods, which are 1.03% on MB, 5.67% on
MBI, 32.85% on MDRBI, 3.46% on MRB and 4.07% on MRD. This shows that DECNN has
the potential to improve the state-of-the-art results.

Table 4.1: The classification errors of DECNN against the peer competitors
classier CONVEX MB MBI MDRBI MRB MRD
CAE-2 - 248 +) 15.50 (+) 45.23 {+) 10.90 +) 9.66 (+)
TIRBM = = n 35.50 ) = 420 3)
PGBM+DN-1 - - 12.15 (+) 36.76 (= 6.08 (= -
ScatNet-2 6.50 () 1.27 ) 18.40 +) 50.48 (+) 12.30 (+) 748 (+)
RandNet-2 545 ) 125 ) 11.65 +) 43.69 (+) 1347 (+) 847 {+)
PCANet-2 (softmax) 4.19 ) 1.40 ) 11.55 +) 35.86 ) 6.85 (+) 8.52 {+)
LDANet-2 7.22 ) 1.05 ) 1242 (+) 38.54 (+) 6.81 (+} 7.52 (+)
SVM+RBF 19.13 (+) 30.03 {+) 2261 (+) 55.18 (+) 14.58 (+} 11.11 (+)
SVM+Poly 19.82 (+) 3.69 (+) 24.01 (+) 54.41 (+) 16.62 (+) 15.42 (+)
NNet 32.25 (+) 4.69 (+) 2741 {+) 62.16 (+) 20.04 (+) 18.11 +)
SAA-3 18.41 (+) 346 (+) 23 {+) 51.93 {+) 11.28 (+) 10.30 +)
DBN-3 18.63 {+) 31 +) 16.31 {+) 47.39 {+) 6.73 {+) 10.30 (+)
DECNN({best) 7.9 1.03 5.67 32.85 346 4.07
DECNN({mean) 1119 146 8.69 37.55 5.56 5.53
dD;E\S::SS‘a“d“d 194 0.11 141 245 171 045

4.3.2 DECNN vs. IPPSO

As none of IPPSO, IPDE and IPGA outperforms the other in first part of this project from
statistical point of view, IPPSO is used as a representative of the three EC algorithms, which
is compared with the proposed DECNN. In Table 4.2, it can be observed that the mean
error rates of DECNN are smaller across all of the six benchmark datasets, and the standard
deviations of DECNN is less than those of IPPSO on five datasets out of the six, so the overall
performance of DECNN is superior to IPPSO. The second crossover operator improves the
performance of DECNN because it performs a kind of local search between the two children
and their parents both in terms of the depth of CNN architectures and their parameters.

26



o™
Table 4.2: Classification rates of DECNN and IPPSO
CONVEX MB MBI MDRBI MRB MRD

DECNN(mean) 11.19 146 8.69 37.55 5.56 553
DECNN(standard 194 01 141 245 171 045
deviation)

IPPSO(mean) 12.65 1.56 9.86 38.79 6.26 607
JLESO(Gtandard 213 017 1.84 5.38 1.54 071
deviation)

P-value 0.01 0.01 0.01 026 010 0.001

4.3.3 Evolved CNN Architecture S C

After examining the evolved CNN architectures, it is found that DECNN demonstrates its
capability of evolving the length of the architectures. When the evolutionary process starts,
the lengths of individuals are around 10; while the lengths of evolved CNN architectures
drop to 3 to 5 depending on the complexity of the datasets, which proves that DECNN has
the ability of effectively evolving CNN architectures of various lengths. Table 4.3 shows an
example of the evolved CNN architecture.

Tablq‘i.@: An example of the evolved architectures on MB dataset

Layer type Configuration = AL )
convolutional | Filter size: 2, Stride size: 1, feature maps: 23 ’
convolutional | Filter size: 4, Stride size: 2, feature maps: 49
full Neurons: 1583 carc h.(“f © moye
full Neurons: 10

Adcose 5

44 Conclusioréof"Th‘E‘Hybr'rd—BE—Appmaw

The goal of this part is to develop a novel DE-based algorithm to automatically evolve the
architecture of CNNs for image classification without any constraint of the depth of CNN
architectures. This has been accomplished by designing and developing the proposed hy-
brid differential evolution method. More specifically, three major contributions are made
by the proposed DECNN algorithm. First of all, the IP-Based Encoding Strategy has been
improved by removing the maximum length of the encoded vector and the unnecessary dis-
abled layer in order to achieve a real variable-length vector of any length; Secondly, the new
DE operations - mutation, crossover are developed, which can be applied to candidate vec-
tors of variable lengths; Last but not least, a novel second crossover is designed and added
to DE to produce children having different lengths from their parents. The second crossover
plays an important role to search the optimal depth of the CNN architectures because the
two children created through the second crossover have different length from their parents
- one is longer and the other is shorter, and during the selection from the two children and
the two parents, the candidate with a better fitness survives to the next generation, which
indicates that the length of the remaining candidate tends to be better than the other three.
The proposed DECNN has achieved encouraging performance. By comparing the per-
formance of DECNN with the 12 state-of-the-art competitors on the six benchmark datasets,
it can be observed that DECNN obtains a very competitive accuracy by ranking the first on
the MBI and MRB datasets, the second and the third on the MRD and MDRBI datasets, re-
spectively, and the fifth on the MB and CONVEX datasets. In a further comparison with the
peer EC competitor, the best results are achieved by DECNN on five out of the six datasets.
However, it can be observed that there are still some room to improve the performance
in terms of the accuracy, especially on MB, CONVEX and MDRBI benchmark datasets as
there are a few peer competitors outperforming DECNN on these three datasets, so in the
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final part of the project, more advanced CNN architectures are evolved to boost the accuracy
on these three datasets.
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Chapter 5

The Proposed Hybrid Two-level EC

Method i
I-IVGYOO{U(QW &oal. R u‘% Qw"\\ﬂ”\é

heat 28 e e

5.1 Algorithm

In recent researches of deep CNINS, optimisation diffieulty has be ome more and more ;’Lﬁ (e
_vere-along with the depth expansion of CNNS. Fortunately,@etween
layers have been disc?zéq;nd proved to be effective to conquer the optimisation diffi-
culty, which thereforé improves the performance of the deep CNNs, e.g. ResNet [8] and
DenseNet [9L.£AS. there-is-some room-to-improve._the classification_accu DECNN »—> ,7
whese evolved CNN architectures follow the traditional architectures of CNNs without any
shortcut connections, we would like to explore a new algorithm which has the ability of
evolving CNNs with shortcut connections to er reduce the error rate. A hybrid algo-
rithm with two-level evolution using GA and PSQ{HGAPSO) is proposed here, and the
details of the algorithms are illustrated lng sub-sections. As onnec-
tions of the evolved CNN architectures may be densely= ected or sparsely-connected,
the evolved CNN is called Dynamically-connected Network (Dynamt

: P
_5‘ ‘2'7 /,..?;N:-bnb T\E-'?-E/K‘Go G&?\(KTL N C}«gf&\r w1 _ ,\9 ‘V'Vh(lii |

c 51.1 H/(}APSO Encoding Strategy
—2K
QTenseNék has shown a feasible way to build shortcut connections between layers as drawn
ig. 5.1. The network is comprised of a number of blocks which are connected by transi-
tion layers, and the shortcut connections are built between layers inside the block. Based on

the construction pattern (g*the network, the hyperparameters of the architecture can besphit be Lorg g
-igto-te the structure And the shortcut tions. Regarding the structure of the network,’

the first conv layer, the linear layer and the transition layers afe fixed for a specific ~ ftave Jrst

but there are still various hyperparameters including the number of blocks, the number of  thpjy, 0,

conv layers in each block and the growth rate of the conv layer in the block. In the DenseNet

figure, the layers in each block are fully connected, but we would like to explore differen

topology of shortcut connections, i.e. different combination of partial shortcut connection Why >
mm optimal architecture. — g “ (j .

Based on the analysis of the architecture and hyperparameters, the encoding process can -

be divided into two steps. First of all, the hyperparameters of the architecture need to be de-

cided. Each of the hyperparameter is a dimension of the structure encoding, which is shown

in Fig. 5.2. The first dimension is the number of blocks, and the two hyperparameters of each

block as two dimensions are appended in the vector. As[this-is-the firstlevel-encoding it is

named as the first level encoding. Secondly, based on the result of the first level encoding,

the shortcut connections can be encoded into a binary vector illustrated in Fig. 5.3, which is

NS Ghy pso?
The Ybfw reeds to he Self-- corgifieol /.




o 3 7

named as the’second level encoding. This is an example of one block wi]@yers, and each
of the dimensior&represents a shortcut connection between two layers. TaKing the first layer
as an example, the ;Féé binary digits - [101] represent the shortcut connection between the
first layer\tﬁthe second, third and fourth layer, respectively, where 1 means the connection
exists; while 0 means there is no connection, A number of similar binary vectors drawn in
Fig. 5.3 constitute one whole vector that represents the shortcut connections of the whole

network. IW"A 2 ,lAN{‘\‘, 2ard 3 darh 4 2
—  shottus?

-

Prediction

e-g - - “ho/f‘

Input —
| | ﬁ Dense Block 1
L | R f
ﬂ 3 %‘%"
3

g 7 ‘ Dense Block 2 g 7 [Danse Block 3

L

Figure 5.1: DenseNet architecture [9] - an example of a CNN architecture with shortcut

connections —3 Rreg| YR ket S heYe .

Block 1 (? Block 2 Block 3
A 7

~

number of | number of érowth.)numberof growth | number of
blocks conv layer conv layer | rate | conv layer

Figure 5.2: HGAPSO first level encoding — % Fg@

-3
0N
>
-J

7
Layer 1 Layer 2 b4
1= (O 1 1 0 1 | —>
\ Figure 5.3: HGAPSO second level encoding

=5 Q.
[ 5f\z‘ﬁ( HGAPSO Algorithm Overview
J

Based on the two-level encoding strategy, the algorithm is composed of two levels of evolu-

tion described in Algorithm 8. The first-level evolution is designed to evolve the structure of gmg}

the CNNs encoded by the first-level encoding, and the second-level evolution is performed
to search for the best combination of shortcut connections. There are a couple of reasons
to separate the structure evolution from the evolution of the shortcut-connection combina- ReMS
tion. First of all, since the structure and the shortcut connectons play different roles in the / shouy
architectures of CNNs, which are that the structure including the depth and the width of A s s<sf
the CNNs represents the capacity of network and the shortcut connections are able to facil- | kefay/e

itate the training process of the network, the training process is only comparable when the | be ReeATatip /N
structure is fixed, which inspires the idea of splitting the evolution to two levels. Secondly, |

as shown L%’th(eabigﬂgﬁ.tb@'there are quite a few types of parameters combined into |
the encoded vector, which brings some uncertainties to the search space, it may deteriorate
the complex search space by introducing more disturbance to the search space.

It is arguable that the computational cost of the two-level evolution may be high, but the

two-level encoding strategy divides the complex search space to two smaller search space
and it also reduce the disturbance in the search space, so the two-level evolution we believe

Ut

—
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Algorithm 9: HGAPSO first-level PSO update
Input: The current particlef d/the
(changing the number of blocks oy 7
qdﬁmraﬁEMMH‘frmmmﬁ'm =
ind thematchedBlocks of the particle ind by comparing the feature map size;
__Update the velocity and position of the matched blocks of the particle ind according to
q P Equatioﬁ@s and@.@,>
if rnd < rg then
Update the velocity and position of the dimension of number of blocks of the particle
ind according to Equatior%@.g and(2.6
Randomly cut the blocks to the value of the number of blocks dP

end if \\ e chvwoe dorgeie

=

best Pyest, the global best Gpest, the rate of
e

5.1.4 HGAPSO Second-level GA update

According to the second-level encoding depicted in Section 5.1.1, once the particle is ob-
o tained from the first-level evolution, the dimensionality of the second-level encoding will
TN be fixed, :ﬁ%@g}j d vector can be represented by a fixed-length binary vector.”Since

R %“\) GA is anefficient algorithm to optimise the problems that can be encoded i vec-
el tors, GA is chosen as the algorithm to perform the second-level evolution, which becomes a
stdndard GA problem. =

5.1.5 HGAPSO Fitness Evaluation Vo

The fitness evaluation is done by using backpropagation witq@am Optimiser f0 train the

network for a number of epochs on the training data and then obtaining thg ccuracy of

the trained network on the-fest data. It can be observed that there are two hyperparameters

for the fitness evaluation, which are the number of epochs and the initial learning rate of (\@&0{
1 dam Optimiser. In our experimenf, 5 epochs are fixed by consider;rr%c),u;,haxdware anda "y |p

fairly-short experimental time. After the number of epochs is chosgrt, DenseNet is sed as a dear®y"

benchmark to determine an initial learning rate for optimising a CNN'with the given depth oot it

and width, i.e. after the structure of the CNN obtained, the network with fully-connected Oee

blocks as shown in Fig. 5.1 are used to find a best initial learning rate among 0.9, 0.1 and ':“”“7#9

0.01. Un firhess

In order to speed up the evolution process, a partial dataset is used for the second-level m‘u&'b(blz

evolution because the second-level evolution consume most the computation; while for the ’

first-level evolution, as the computational cost is not that high, and in order to achieve a

more stable performance given the structure of a CNN, the full dataset is used to achieve

the fitness value of the individuals of the first-level evolution.

A%MVM 8 oloeg st serwto fave o Rvst {eved evo\nator
52 Experiments Pl - Bhest are Wpolat | bosack oft thee secomh

5.2.1 Benchmark Datasets and State-of-the-art Competitors (evel -E‘tmzsg .

¥l

In order to perform a fair comparison between the proposed hybrid two-level EC method
and the other algorithms proposed in the first two parts of this project, the same benchmark
datasets and the same peer competitors are utilised, which are described in Section 3.2.1
and 3.2.2, respectively. However, due to the computational cost and the time constraint of

the final part of this project, only MB, MDRBI and CONVEX datasets are @B;Lto test the
proposed algorithm. \ ¢
7
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will not perform worse than searching for the optima in a much more complex search space.
Other than that, as the second-level evolution of searching for the best combination of short-

cut connections only depends on the specific structure evolved in the first-level evolution, ¥
the second-level evolution can be done in parallel for each of the individual of the first-level
evolution, which can dramatically speed up the process if sufficient hardware is available.
Algorithm 8: Framework of HGAPSO
P+ IrutlaJI ¢ the population with first level encoding &aborated in Section 5.1.1;
Pyest < emiply;
Gpest +— empty; N H
while first-level termination criterion is not satisfied do—— '
P « Update the population with first leve{BS,O/update/_Qescrlbed in Section 5.1.3;
for particle ind in population P do 05
P _sub < Initialize the population with second level encoding based on the value of
ind illustrated in Section 5.1.1; 3 F i

while second-level termination criterion is not satisfied do
P_sub + Update the population with second leve fok updat descrlbed in
Section 5.1.4; \3 Wh.
evaluate the fitness value of each individual; e %’f 2
P_suby,s; + retrieve the best individual in P_SM
end while SRstivin &, b
Update Ppeg; if P_suby,s; is better than Py,;
end for
Gypest ¢ retrieve the best individual in P;
end while

E-low oiart 7~

e\re)@ PSO mandual requites & @A lo°p ? SRRWS VRV eRpeRie

E. ’W VY (G 0 / /
5.1.3 HGAPSO First-level PSO update oV o 4&7 ('ﬁ‘J‘\W\ RYViRw

ased on the encoded vector from the first-level encoding, the value of each dimension is"éi""*J
decimal value, and PSO is proved to be effective and efficient to solve the optimisation prob-

lem with decimal value, so PSO is chosen as the first-level evolution algorithm/ However,

the dimensionality of the encoded vector is not fixed, so an adapted variable-length PSO >
is proposed to solve this variable-length problem. First of all, t@gm ¥

dimension - the number of blocks in the vector is introduced, which is a real value between

0 to 1, because we do not want the depth of thenetwork to -m: oo often and the ?

rate can be used to control the probability of changing the number of blocks of the structure. (ngt
Secondly, the length of the particle may be different fr he length of the personal best f v
and global best, so based Wf the fndividudl)the corresponding blocks in the .
personal best and the globalbest need to beimatched by selecting the blocks with the same

size of the output feature and the PSO algorithm is only applied on the matched blocks.
Lastly not least, when the number of blocks is thanged, some blocks need to randomly cut
or randomly generated in order to meet the requirement of the number of blocks in the first

dimepsion. What B & matck ?

(?
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evaluols. -

As it would be more convincing to }é{the proposed EC algorithms on larger datasets
such as CIFAR-10, but the computational cost is too high, which makes it not feasible to test
all of the algorithms on CIFAR-10, it is more reasonable to choose the best proposed algo-
rithm to be tested on CIFAR-10. The proposed HGAPSO method is expected to be the best,
so if HGAPSO outperforms the other proposed EC algorithms on the six smaller datasets,
a further experiments of running HGAPSO on CIFAR-10 will be performed. However, the
experiment will not be ran by 30 times due to the very high computational cost, our limited
GPU resource and the time constraint of the project. Instead, only one run of th¢ experiment
will be performed in order to obtain an initial result, which can be used to dgcide whether
it is worth continuing the experiments for 30 runs in the future when more GPU resources

are ready. How' ld’t% ?

{ 2
5.2.2 Parameter settings of the proposed EC methods pl‘,tf:h" ‘s
]

V

All of the parameters are configured according to the conventions in the communities of PSO
[29] and GAs [5] along with taking into account the computational cost and the complexity
of the search space. The values of the parameters of the proposed algorithms are listed in

Table 5.1.
ladd Size 7
Table 5.1: P ter list o 9
4 € Paramelerarame eI[. i’flue “H‘ 3’{)"1&\”&@[6“
PSO

acceleration coefficient array for Pjy 149618 - h )
acceleration coefficient array for PSL’ 149618 _) LrTS'{'tOK \ ﬂ. Q \Fmr 3 M We“ .

inertia weight for updating velocity 0.7298

GA
mutfation rate 0.01
Cross over rate 09
elitism rate 01

HGAPSO parameters
# of layers in each block / [4,8] D""? & QVQ >
growth rate in each block 73'3?-}\‘ R [ "
— >
'

5.3 Results

Since the proposed EC method is stochastic as the other algorithms proposed in this project,
statistical significance test is required to make the comparisongesuemore convincing. When
comparing the proposed HGAPSO with the state-of-the-art methods, One Sample T-Test is
applied to test whether the results of HGAPSO is better; when the comparison of error rates
between HGAPSO and the proposed DECNN is performed, Two Sample T-test is utilised to
determine whether the difference is statistically significant or not. Table 5.2 shows the com-
parison results between the proposed HGAPSO and the state-of-the-art algorithms; Table
5.3 compares HGAPSO with DECNN.
4 SR et 47

5.3.1 HGAPSO vs. State-of-the-Art methods

The experimental resultsandthe tomparisen-betweenthep State-
oi:the-&ﬁmethods-are-shewﬂ—iﬁz'f'able 5.2, Jn order to clearly show the/comparison results,
the terms (+) and (-) are provided to indicate the result of HGAPSO ié%etter or worse than
the best result obtained by the corresponding peer competitor; The term (=) shows that
the mean error rate of HGAPSO are slightly better or worse than the competitor, but the
difference is not significant from-the statistical point-of view; The term — means there are no
available results reported from W cannot be counted.

m\ ¢Q, o ® F\:""Qb o
bm OT\3 1 '

>
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It can be observed that the proposed HGAPSO method achieves a significant improve-
ment in terms of the error rates shown in Table 5.2. HGAPSO significantly outperforms the
other peer competitors across all three benchmark datasets. To be specific it reduces the er-
ror rate of the best competitor by 5%, 1% and 10% on CONVEX, MB and MDRBI datasets,

respectively.

Table 5.2: The classification errors of HGAPSO against the peer competitors

classier CONVEX MB MDRBI -
CAE-2 = 248 (4 | 4523 ()1 :
TIRBM - - | 350 [ >
PGBM+DN-1 =7 - 367 )
ScatNet-2 650 /0 | 127 0 Sos— b
RandNet-2 545 | 0 125 () | 4369 (4] -
PCANet-2 (softmax) a9 [ ¢ 140 () | 358 ( 0 )T 4
LDANet-2 2 N/ 105 () | 3854 |

SVM+RBF 19.13 (+) 3003 (+) | 5518 (+)

SVM-+Poly 19.82 ) 369 (4) | 5441 )

NNet 32.25 ) 469 (+) | 6216 +)

SAA-3 18.41 ) 346 (+) | 5193 (+)

DBN-3 18.63 +) 311 (4) | 4739 +)

HGAPSO(best) 1.03 074 1053

HGAPSO(mean) 124 0.84 1223

i%ﬁﬂig)(s‘a"d”d 0.10 0.07 06

7
532 HGAPSO vs. DECNN > th ,«,@MS

Since DECNN achieves better performance than ; EC al onthm eveloped in the first

part, DECNN is chosen as the peer EC competitor. In Table 5.3, it can be observed that by
comparing the results between HGAPSO and DECNN, both the mean error rate and the
standard deviation of HGAPSO are smaller than those of DECNN, and from the statistical
point of view, HGAPSO has a significant improvement in terms of the classification accu-

I acy. \/
Table 5.3: Classification rates of HGAPSO and DECNN
CONVEX MDRBI

HGAPSO(mean) 1.24 0.84 12.23
HGAPSO(standard 0.10 0.07 0.86
deviation)

DECNN(mear) 1119 146 37.55
DECNN(standard 194 011 245
deviation)

P-value 0.0001 0.0001 0.0001

0
gt g
‘M—&W.

5.3.3 Evolved CNN Architecture TADLL ?

After investigating the evolved CNN architectures, it is found that HGAPSO demonstrates
its capability of evolving both the structure of CNNs and the shortcut connections between
layers. By looking into the evolved CNN architectures, it can be observed that not only the
CNN architectures with various number of layers but also different topologies of shortcut
connections are evolved. Here is an example of the evolved CNN architecture with 3 blocks.
In the first block, there are 4 conv layers, and [0, 0, 0, 0, 1], [0, 1, 0, 1], [0, O, 1], [0, 0] and
[1] represent the connections from the input, the first layer, the second layer, the third layer
to the following layers, where 1 indicates the connection exists, and 0 means no connection;
The second block is composed of 8 layers with the growth rate of 34, and the corresponding
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connections are [1,0,1,0,1,0,1,0},[0,1,1,1,1,0,1},(1,1,1,1,1,0}, [1,1,1,0,1], {1, 0,
0, 0], [0, 0, 0], [1, 1] and [0]; In the third block, there are 5 layers with the corresponding
connections of [0, 0,1, 1, 0], [0, 0,0, 0], [1, 0, 0], [0, 1] and [0], and the growth rate is 39.

5.3.4 Initial result on CIFAR-10 dataset

As mentioned earlier, the computational cost of testing HGAPSO is extremely high. For

one run of the experiment using one GPU card, it takes more than a week to evolve the

CNN architecture, and it spend almost 12 hours to trained the evolved CNN architecture. g
However, the classification accuracy of the specific run is 90.08%, which ranks in the middle

of the state-of-the-art deep neural networks ranging from 75.86% to 96.33% that are collected

by the rodrigob website 1. P 5’“@ o g P[L HGAP_{O o automary, 2

R%LCJ'Q >

It can be concluded that the hybrid two-level EC method outperforms the other proposed al-
gorithms from the first two parts of the project by evolving the more advanced architectures
of CNNss instead of the traditional CNN architectures mainly because of two reasons. The
first reason is that by introducing shortcut connections, the feature maps learned in previ-
ous layers can be reused in further layers, which amplifies the leverage of useful knowledge;
Secondly, the shortcut connections makes the training of very deep neural networks more
effectively by passing the gradients through shortcut connections, which has been proven
by DenseNet [9].

The classification accuracy of HGAPSO on CIFAR-10 is really promising as it is very
competitive with the state-of-the-art deep neural networks. In addition, the most advantage
of HGAPSO is that it does not require any human efforts to design the architecture of CNNS,
which is usually required for the peer state-of-the-art competitors.

5.4 Conclusions

1ht’fp: / /rodrigob.github.io/are_we_there_yet/build/ classification_datasets_results.htm#43494641522d3130
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Chapter 6

Conclusions ard Futuwe Work

The main objectives of this whole project comprised of three parts have been successfully ac-
complished. In the first part, the proposed DE and GA methods using the IP-Based encoding
strategy have been developed, and it has proven its competitiveness with the state-of-the-art
methods. The IP-Based encoding strategy has shown its flexibility and powerfulness of en-
coding very complex parameters with various number of parameters and arbitrary ranges
of values into a search space with a fixed length, which makes it straightforward to apply
EC algorithms on these tasks; In the second part, a new DE algorithm which can be applied
on vectors with various length is designed and implemented, and a second crossover is in-
troduced to enhance the variety of the population in terms of the vector length, which grants
the ability of evolving the length along with the value of the vector on the proposed algo-
rithm. As a result, the proposed hybrid DE algorithm is able to evolve CNN architectures
without any constraints of depths, and the performance has been improved comparing the
proposed algorithms in the first part. In the last part of this project, more advanced and
recent CNN architectures with shortcut connections are evolved by the proposed hybrid
two-level algorithm, which have achieved a significant improvement in terms of the classi-
fication accuracy comparing the other proposed algorithms in this project.

In regard to the future work, there are two aspects coming up from the experiments and
learnt experience of this project. Firstly, due to the hardware limitation, all of the proposed
algorithms are tested on relatively small datasets. Even though an initial result of running
HGAPSO on CIFAR-10 is achieved, the statistical analysis based on the results from 30 runs
needs to be applied in order to make a stronger claim of the proposed HGAPSO. It would be
more convincing if the algorithms could be tested on other larger datasets such as ImageNet
dataset. Fortunately, more hardware is setting up in our lab, which makes it feasible to
do more researches on larger datasets. Secondly, as the CNN architectures with shortcut
connections shows dramatical improvement, it would be helpful to investigate more recent
CNN architectures and then apply EC methods on searching for a good solution among
different types of recent CNN architectures.
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Appendix A

IP-Based EC algorithms

A.1 IP-Based Random Search

A fixed step size random search (FSSRS) [21] is implemented as it is an easy and effective
random search algorithm. In order to make a fair comparison with other IPEC methods,
instead of using one candidate to perform the random search task, a population of numerous
candidates is used to complete the search process. As the IP-Based Encoding Strategy is used
to encode the architecture of CNNs into 8-byte vectors which constitute the search space, the
objective of the IP-Based Random Search (IPRS) method is to optimise the accuracy in the
constructed search space.

A.1.1 IPRS Algorithm Overview

The framework of IPRS is mainly comprised of four key steps - initialise the population,
update the position of each candidate of the population, retrieve the best candidate in the
whole population, and repeat step 2 and 3 until the stop criteria are met. More details are
depicted in the pseudo-code in Algorithm 10.

Algorithm 10: Framework of IPRS

P < Initialize the population with IP-Based Encoding Strategy elaborated in Section

3.1.3;

P_best < empty;

while termination criterion is not satisfied do
update the position of each candidate solution as shown in Algorithm 11;
evaluate the fitness value of each candidate;
P_best + find the best candidate in the population;

end while

A.1.2 IPRS Position Update

The candidate contains a series of interfaces each of which represents a CNN layer, and each
interface carries a 2-byte IP address, so in order to update the position of the candidate, the
IP addresses in the candidate need to be flattened into an integer vector which is composed
of 1-byte integers, and each byte is one dimension of the position of random search. When
randomly searching the space, a random point on the hypersphere with a certain radius and
the current point as the origin is selected as the new position. Instead of directly moving to
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the new position, the candidate only moves to the new position if the fitness value of the
new position is better.

Algorithm 11: Update The Position of A Candidate Solution

Input: candidate vector c_vector, radius for random search r;
Output: updated candidate vector c_vector;

bytes_vector +— extract each byte of the IP addresses from the interfaces of the candidate
c_vector in order;
sphere_vector +— randomly generate a vector with the radius r and the size of bytes_vector
as the dimension
i+ 0;
for i < the size of bytes_vector do

bytes_vector|i] < bytes_vector[i] + sphere_vector|i];

if bytes_vector(i] > 255 then

bytes_vector[i] < bytes_vector[i] — 255

end if

i—1i+1;
end for
new_c_vector <— convert bytes_vector to a new candidate vector by generating IP
addresses from bytes_vector which then are stored as interfaces in the new candidate
vector
new_fitness < evaluate the new candidate vector new_c_vector;
if new_fitness > the fitness of c_vector then

c.vector < new_c_vector
end if
return c_vector
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