
A Wrapper Feature Selection Approach to
Classification with Missing Data

Cao Truong Tran, Mengjie Zhang, Peter Andreae, and Bing Xue

School of Engineering and Computer Science,
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
{cao.truong.tran,mengjie.zhang,peter.andreae,bing.xue}@ecs.vuw.ac.nz

Abstract. Many industrial and real-world datasets suffer from an un-
avoidable problem of missing values. The problem of missing data has
been addressed extensively in the statistical analysis literature, and also,
but to a lesser extent in the classification literature. The ability to deal
with missing data is an essential requirement for classification because
inadequate treatment of missing data may lead to large errors on clas-
sification. Feature selection has been successfully used to improve clas-
sification, but it has been applied mainly to complete data. This paper
develops a wrapper feature selection approach to classification with miss-
ing data and investigates the impact of this approach. Empirical results
on 10 datasets with missing values using C4.5 for an evaluation and
particle swarm optimisation as a search technique in feature selection
show that a wrapper feature selection for missing data not only can help
to improve accuracy of the classifier, but also can help to reduce the
complexity of the learned classification model.
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1 Introduction

Classification is one of the most important tasks in machine learning and data
mining [14]. The input space plays a crucial role in most classification algorithms.
Many classification algorithms such as decision trees and rule-based classifiers
are not able to achieve adequate predictive performance when the input contains
many features that are not necessary for predicting the desired output. Feature
selection which finds a sufficient feature subset from original features is one
approach to the problem [18].

Missing values are a common problem in many datasets [21], [27]. For ex-
ample, 45% of the datasets in the UCI repository [1], which is one of the most
popular data repository for benchmarking machine learning tasks, contain miss-
ing values [11]. Missing data causes a number of serious problems [2]. One of
the most serious problems is non-applicability of data analysis methods because
the majority of existing data analysis methods require complete data. Therefore,
these data analysis methods cannot work directly with original data containing



missing values. Furthermore, missing data may lead to biased results because of
differences between missing and complete data.

In statistical analysis field, the problem of missing data has been tackled
extensively [12], [21], [26], [27] and also, but with less effort, in the classification
literature. There are two main approaches to classification with missing data.
One approach is to use imputation methods that fill missing values by plausible
values before using classifiers. The other approach is to use classifiers that are
able to classify missing data. Although the two approaches are able to handle
missing data, they often result in large errors on classification [10]. Therefore,
further approaches to improving classification accuracy of missing data should
be investigated.

Feature selection is the process of finding a subset of the original features
that is sufficient to solve the classification problem. Feature selection has been
widely used to improve classification for complete data [7], [18], [19]. In feature
selection, two main ways of evaluating feature subsets are the wrapper approach
and the filter approach (nonwrapper) [18]. The wrapper approach uses the per-
formance of a classifier to evaluate feature subsets. In contrast, instead of using a
particular classifier, the filter approach uses a measure such as information gain
(IG) and information gain ratio (IGR) [23] to evaluate the feature subset. In
[9], a filter approach to feature selection for missing data was proposed, and the
experimental results showed that the filter feature selection method for missing
data can increase the precision of the prediction models. However, a wrapper
approach to feature selection for missing data has not been investigated. There-
fore, whether a wrapper approach to feature selection can improve classification
with missing data is still an open issue.

1.1 Research Goals

The overall goal of this paper is to develop a wrapper approach to feature se-
lection on classification with missing data and investigate the impact of this
approach. To achieve this goal, three different ways are used to classify missing
data. Firstly, missing data is classified by using a classifier that is able to classify
directly missing data . Secondly, missing values are filled with plausible values
by using imputation methods before using a classifier. Thirdly, a wrapper fea-
ture selection method is used to select a feature subset from missing data before
using classifiers. Results from the three processes are compared to answer the
following questions:

1. Whether feature selection for missing data can improve classification accu-
racy and achieve dimensionality reduction compared to without using feature
selection; and

2. Whether feature selection for missing data can improve classification accu-
racy and achieve dimensionality reduction compared to using imputation
methods.



1.2 Organisation

The rest of the paper is organised as follows. Section 2 discusses related work.
Section 3 outlines the method and experiment design. Section 4 presents empir-
ical results and analysis. Section 5 draws conclusions and presents future work.

2 Related Work

This section discusses related work including classification with missing data,
imputation methods, feature selection, C4.5 for classification with missing data
and Particle Swarm Optimisation-based feature selection.

2.1 Classification with Missing Data

There are three major approaches to classification with missing data including
deletion approach, imputation approach and machine learning approach [11].

Deletion approach eliminates all instances containing missing values before
using classifiers. This approach provides complete data that can be classified by
any classifiers, but instances containing missing values are not included in the
classification process [11].

Imputation approach uses imputation methods that fill missing values with
plausible values before using classifiers. By using imputation methods, missing
data is transferred to complete data that can be then classified by any classifiers.
Moreover, most imputation methods help improve classification accuracy when
compared to classification without using imputation methods. Therefore, using
imputation methods is a major approach to classification with missing data [10].

Machine learning approach builds classifiers that are able to classify directly
missing data without using imputation methods. For example, C4.5 [25], CART
[8] and CN2 [5] can deal with missing values in any feature for both training set
and test set.

2.2 Imputation Methods

The purpose of imputation methods is to fill missing values with plausible val-
ues. By using imputation methods, missing data is transformed into complete
data that can be then analysed by any data analysis methods. Therefore, using
imputation methods is a popular approach to handling missing data [21], [26],
[27]. This section presents three popular imputation methods which are used in
this paper.



Mean imputation fills missing values in each feature with the average of
complete values in the same feature. This method maintains the mean of each
feature, but it under-represents the variability in the data because all missing
values in each feature are filled with the same value [11].

KNN-based imputation finds the K most similar instances of each instance
containing missing values, and then fills missing values of the instance with the
average of the values in the K most similar instances. KNN-based imputation is
often better than mean imputation [3]. However, this method is often compu-
tationally intensive due to having to search through all instances to find the K
most similar instances of each instance containing missing values [11].

Expectation Maximization-based imputation uses the Expectation Maxi-
mization(EM) algorithm to estimate a maximum likelihood variance-covariance
matrix and vector of means that are then used to impute missing values [21],
[27]. This method is an iterative procedure that includes two main steps at each
iteration: an E-step and an M-step. The E-step is used to estimate the means,
variances and covariances from complete values and the current best guess of
missing values. The M-step is used to estimate new regression equations for each
attribute predicted by all others, after that the new regression equations are
then used to update the best guess for missing values during the E-step of next
iteration. EM-based imputation has been proven to be one of the most powerful
imputation methods [12].

2.3 Feature Selection

Feature selection is the process of finding a subset of the original features that
is sufficient to solve the classification problem. Feature selection can remove re-
dundant features; hence, it helps to improve classification accuracy. Furthermore,
feature selection results in dimensionality reduction, so it makes the learning and
execution processes faster. Moreover, models constructed using a smaller set of
selected features are often easier to interpret [19].

The two main components of a feature selection method are a search tech-
nique and an evaluation criterion. The search procedure is used to generate
candidate feature subsets that are then examined by the evaluation procedure
to determine their goodness. The quality of the final selected features depends
strongly on both the search technique and the evaluation criterion [7].

Many search techniques have been applied to feature selection including con-
ventional methods and evolutionary techniques. For example, sequential forward
selection and sequential backward selection are two traditional search techniques
used in feature selection [15]. Recently, evolutionary computation techniques
such as Genetic Algorithms and Particle Swarm Optimisation (PSO) have been
applied to feature selection [4], [20], [24], [28], [30].

The two main ways of evaluating selected features are the wrapper approach
and the filter approach (nonwrapper) [7]. In the wrapper approach, the perfor-
mance of a classifier is used to evaluate the subset and hence guide the search.



Because every evaluation requires training a classifier and then testing its per-
formance, the search process using a wrapper approach is typically computation-
ally intensive. In the filter approach, instead of using a particular classifier in
the evaluation function, the selected features are evaluated by a measure such as
information gain and information gain ratio [23]. Because no classification algo-
rithm is involved in the evaluation of selected features, the search process of the
filter approach is expected to be more efficient and the results are expected to be
more general. However, wrapper approaches often achieve better classification
performance than filter approaches [18].

Feature selection has been mainly applied to complete data. A filter approach
to feature selection for regression with missing data was proposed in [9], where
mutual information was modified to evaluate feature subsets containing missing
values. The experimental results showed that the filter approach to feature se-
lection for missing data help improve the performance of the prediction models.
However, a wrapper approach to feature selection for missing data has not been
investigated.

2.4 C4.5 for Classification with Missing Data

In a wrapper feature selection algorithm for missing data, a classifier that is able
to classify missing data is required to evaluate feature subsets. In this paper, the
C4.5 algorithm that can classify directly missing data is used to evaluate feature
subsets [25].

C4.5 can handle missing values in any feature for both training set and test
set. C4.5 uses a probabilistic approach to handling missing values in both the
training set and test set, but the way of handling missing values in the training
stage is different from the testing stage. In the training stage, each value of
each feature is assigned a weight: if a feature value is known, then the weight
is assigned one; otherwise, the weight of any other values for that feature is the
frequency of that values. In the testing stage, if a test case is unknown, from the
current node, it finds all the available branches and decides the class label by
using the most probable value [25].

2.5 PSO-based Feature Selection

Particle swarm optimisation (PSO) is a swarm intelligence algorithm proposed
by Kennedy and Eberhart in 1995 [16], [17]. PSO is inspired by the movement
of organisms such as a bird flocking or fish schooling. In order to optimize a
problem, PSO builds a population of candidate solutions encoded as particles
in the search space, and moves these particles around in the search space based
on information of the particles’ position and velocity. The movement of each
particle is guided not only by its local best known position but also by the
global best known position in the search space. When improved positions are
discovered, these will be used to guide the movements of the swarm. This is
expected to move the swarm toward the best solution. PSO does not require
making assumptions about the problem being optimized and has ability to search



very large spaces of candidate solutions. Therefore, PSO is able to be used for
optimization problems that are partially noisy, irregular, change over time, etc.
However, as like the majority of evolutionary computation algorithms, PSO does
not ensure an optimal solution is ever found.

PSO has recently been applied to feature selection problems [29]. In PSO-
based feature selection, PSO is used as a search technique to find feature subsets.
If n is the total number of original features in the dataset, then the dimensionality
of the search space is n. Each particle in the swarm is often a vector of n real
numbers. The value of particle i in the dth dimension, xid, is usually in interval
[0, 1]. To determine whether a feature will be selected or not, a threshold 0 < θ
< 1 is required to compare with the real numbers in the position vector. If xid
> θ , then the feature {d} will be selected; otherwise, feature {d} will be not
selected.

Many PSO based feature selection algorithms have been proposed for both
wrapper approaches and filter approaches. PSO has been proven to have the
potential to address feature selection problems [4], [20], [28], [30]. However, the
performance of PSO for feature selection on missing data has not been investi-
gated.

3 Method and Experiment Design

This section shows detailed experiment design including the method, datasets,
C4.5 algorithm, imputation methods and PSO parameter settings for feature
selection.

3.1 The Method

The main objective of this study is to empirically evaluate the impact of a
wrapper feature selection method on classification with missing data. To achieve
this, three experimental setups are designed, as shown in Fig.1, Fig.2 and Fig.3,
respectively. The Fig.1 shows classification with missing data by using a classifier
that is able to classify missing data. The Fig.2 shows classification with missing
data by using an imputation method before applying a classifier. The Fig.3
shows classification with missing data by using a feature selection algorithm
before applying a classifier that is able to classify missing data.

In the three experimental setups, in case of complete data, firstly, missing
values are introduced into complete data to generate missing data. Next, missing
data is divided into training missing data and testing missing data. In the first
setup, as shown in Fig.1, the training missing data is directly put into a classifier
to build a classification model that is then used to classify testing missing data.
In the second setup, as shown in Fig.2, both training missing data and testing
missing data are put into an imputation method to generate imputed training
data and imputed testing data, and then, the imputed training data is put
into a classifier to build a classification model that is then used to classify the
imputed testing data. In the third setup, as shown in Fig.3, training missing



data is used by a feature selection procedure to choose a suitable feature subset
that is then used to build a data transformation. The data transformation is
then used to transform the training missing data and the testing missing data
into transformed training missing data and transformed testing missing data,
respectively. The transformed training missing data is then put into a classifier
to build a classification model that is then used to classify the transformed
testing missing data.

Fig. 1. Classification with missing data by using a classifier able to classify missing
data

Fig. 2. Classification with missing data by using an imputation method before applying
a classifier

Fig. 3. Classification with missing data by using a feature selection method before
using a classifier able to classify missing data.

3.2 Datasets

The experiments used 10 benchmark datasets selected from the UCI machine
learning repository [1]. Table 1 summarises the main characteristics of each
dataset including the number of instances, the number of features, the num-
ber of classes and the percentage of instances in the datasets which have at least
one missing value.



Table 1. The datasets used in the experiments.

Dataset #Instances #Features #Classes Missing Inst (%)

Cleveland 303 13 5 1.98

Hepatitis 155 19 2 48.39

Marketing 8993 13 9 23.54

Ozone 2536 73 2 27.12

Wisconsin 699 9 2 2.29

Climate 540 20 2 0

Ionosphere 351 34 2 0

Parkinsons 197 23 2 0

Robot 463 90 5 0

Sonar 208 60 2 0

The first five datasets have missing values in a “natural”way. There is not
any information related to the randomness of missing values in the datasets, so
we assume they are distributed in a missing at random (MAR) way [21], [22].

To test the performance of the wrapper feature selection method for datasets
with different levels of missing values, the missing completely at random mech-
anism (MCAR) [21] was used to introduce missing values into the last five com-
plete datasets. Six levels of missing values: 5%, 10%, 20%, 30%, 40% and 50%
were used to put into the datasets. For each dataset and each level of missing
values, perform 30 times: choose randomly 50% features of the dataset, and then
put the level of missing values into the chosen features. Therefore, for each level
of missing values on one dataset, 30 artificial missing datasets were generated.
Hence, from one complete dataset, 180 (30 × 6) artificial missing datasets were
generated and a total of 900 (180 × 5) artificial missing datasets were used in
the experiments.

Since none of the datasets in the experiments comes with a specific test
set and the number of examples in some datasets is relatively small, a ten-fold
cross-validation approach was used to evaluate the performance of induced clas-
sification models. With the first five datasets containing natural missing values,
a ten-fold cross-validation approach was performed 30 times for each dataset.
With the last five datasets, for each level of missing values on one dataset, ten-
fold cross-validation was performed on the 30 missing datasets. As a result, for
each dataset in the first five datasets and each level of missing values on one
dataset in the last five datasets, 300 couples of training set and testing set were
generated.

3.3 Imputation Algorithms

The experiments used three imputation methods including mean imputation,
KNN-based imputation, EM-based imputation. Mean imputation and KNN-
based imputation were in-house implementations. For KNN-based imputation,
the number of neighbors was set to 10. The experiments used WEKA’s [13] im-
plementation for EM-based imputation by setting their parameters as the default
values.



3.4 Classification Algorithm

The experiments used C4.5 that has ability to classify missing data. C4.5 was
used to classify data and evaluate feature subsets in feature selection. The ex-
periments used WEKA’s [13] implementation for C4.5 by setting its parameters
as the default values.

3.5 PSO Settings

The experiments used PSO as a search technique for feature selection. The pa-
rameters in the PSO based feature selection algorithm were selected according
to common settings proposed by Clerc and Kennedy [6]. The detailed settings
were shown as follows: ω = 0.729844, c1 = c2 = 1.49618, population size was
50, and the maximum iteration was 100. The fully connected topology is used.
The threshold θ was set 0.6 as suggested by [29] to determine whether a feature
is selected or not. For each dataset in the first five datasets and each level of
missing values on one dataset in the last five datasets had 300 couples of training
set and test set, so PSO repeated 300 times on each dataset.

4 Results and Analysis

Table 2 and Table 3 present the average of classification accuracy along with
standard deviation of the first five datasets and the last five datasets with six
levels of missing values, respectively, by using C4.5 in different ways. With the
first five datasets containing natural missing values, the average of classification
accuracy were calculated on accuracy of 30 times performing ten-fold cross-
validation on each dataset. With the last five datasets, for each dataset and each
missing level, the averages of classification accuracy were calculated on accuracy
of 30 generated missing datasets with the missing level.

Table 4 and Table 5 present the average of size of decision trees (the number
of nodes in the trees) generated by using C4.5 in different ways of the first five
datasets and the last five datasets with six levels of missing values, respectively.

In the four tables, C4.5 column indicates results from the first experimental
setup in Fig.1; C4.5MI, C4.5KNNI and C4.5EMI columns indicate results from
the second experimental setup in Fig.2 by using mean imputation, KNN-based
imputation and EM-based imputation, respectively; C4.5FS column indicates
results from the third experimental setup in Fig.3. In order to compare the clas-
sification performance of C4.5FS with other methods, t-tests at 95% confidence
level have been conducted to compare the classification performance achieved
by C4.5FS with all other methods. “T”columns in Table 2 and Table 3 indicate
significant tests of the columns before them against C4.5FS, where “+”means
C4.5FS was significantly more accurate, “=”means not significantly different,
and “-”means significantly less accurate.



Table 2. Classification accuracy comparison of C4.5FS with C4.5, C4.5MI, C4.5KNNI
and C4.5EMI on datasets containing natural missing values. The T columns indicate
significant tests of the columns before them against C4.5FS.

Dataset C4.5FS C4.5 T C4.5MI T C4.5KNNI T C4.5EMI T

Cleveland 56.64±1.37 55.07±1.88 + 53.89±1.31 + 54.08±1.53 + 53.77±1.71 +

Hepatitis 79.62±1.93 78.59±1.87 + 76.84±2.56 + 77.24±2.98 + 77.71±2.08 +

Marketing 32.85±0.46 30.80±0.41 + 29.99±0.38 + 30.0±0.39 + 29.98±0.40 +

Ozone 96.55±0.31 96.28±0.26 + 95.94±0.32 + 95.93±0.38 + 95.95±0.31 +

Wisconsin 94.62±0.55 94.73±0.46 = 94.47±0.47 = 94.96±0.48 - 94.87±0.48 -

Table 3. Classification accuracy comparison of C4.5FS with C4.5, C4.5MI, C4.5KNNI
and C4.5EMI using several missing rates. The T columns indicate significant tests of
the columns before them against C4.5FS.

Dataset

Missing

rate

(%)

C4.5FS C4.5 T C4.5MI T C4.5KNNI T C4.5EMI T

Climate

5 91.34±0.66 90.07±0.93 + 89.74±0.98 + 89.86±0.87 + 90.20±0.98 +

10 91.28±0.80 90.39±0.95 + 89.42±0.97 + 89.86±1.13 + 89.63±1.30 +

20 91.23±0.55 90.39±1.10 + 89.20±1.19 + 89.46±1.12 + 89.35±1.21 +

30 91.38±0.63 90.94±1.09 + 89.30±1.20 + 89.30±1.15 + 89.29±0.95 +

40 91.41±0.52 91.22±0.75 = 89.10±1.07 + 88.95±1.05 + 89.20±0.92 +

50 91.48±0.13 91.08±0.91 + 89.30±1.30 + 89.23±1.92 + 89.43*1.20 +

Ionosphere

5 90.87±1.17 90.25±1.58 + 89.68±0.88 + 89.05±1.06 + 89.29±1.07 +

10 90.25±1.67 89.36±1.70 + 89.08±1.50 + 88.47±1.52 + 89.49±1.35 =

20 90.30±1.39 89.50±1.39 + 89.03±1.66 + 87.54±2.46 + 89.12±1.55 +

30 89.46±1.62 89.33±1.67 = 88.64±1.62 + 88.18±2.23 + 88.10±1.70 +

40 88.60±1.99 88.59±2.44 = 87.44±2.65 + 87.43±2.70 + 88.40±2.19 =

50 89.03±2.24 88.54±2.64 = 86.36±2.60 + 86.36±2.60 + 87.56±2.30 +

Parkinsons

5 87.23±2.24 85.84±1.98 + 84.51±2.70 + 84.09±2.31 + 84.32±2.39 +

10 86.89±1.72 85.05±2.34 + 84.36±2.41 + 84.10±2.62 + 84.52±2.43 +

20 86.51±2.10 85.47±2.04 + 84.11±2.64 + 84.09±2.50 + 83.86±2.26 +

30 86.79±1.87 84.96±2.50 + 83.90±1.91 + 83.28±2.35 + 83.16±2.03 +

40 86.66±2.11 85.42±2.11 + 83.07±2.54 + 83.13±2.70 + 83.77±2.93 +

50 86.68±2.08 85.03±2.09 + 83.19±3.41 + 83.06±3.41 + 83.15±2.00 +

Robot

5 36.21±1.91 32.72±2.16 + 31.97±1.91 + 31.82±2.11 + 32.53±1.93 +

10 35.12±2.11 33.10±2.11 + 32.09±1.63 + 32.36±1.81 + 32.24±1.95 +

20 35.87±1.75 32.54±1.96 + 33.54±2.01 + 33.54±2.02 + 33.39±2.08 +

30 35.44±1.92 33.67±2.08 + 34.14±2.19 + 34.14±2.19 + 33.65±1.92 +

40 36.69±2.61 35.18±2.01 + 34.60±2.04 + 34.60±2.04 + 35.93±1.90 =

50 38.39±2.13 36.60±1.63 + 33.82±2.28 + 33.82±2.28 + 35.66±2.49 +

Sonar

5 74.97±3.04 72.96±2.63 + 72.65±3.00 + 74.15±2.72 = 72.68±2.77 +

10 74.11±3.20 72.60±3.15 + 72.20±2.78 + 72.79±2.93 = 72.19±2.66 +

20 73.94±3.48 73.94±3.34 + 71.58±2.82 + 71.44±2.77 + 72.56±2.76 =

30 72.23±3.24 72.74±2.43 = 70.94±2.71 = 70.94±2.71 = 71.22±3.19 =

40 73.20±4.17 72.49±3.85 = 69.31±3.82 + 69.31±3.82 + 71.70±2.72 =

50 73.71±3.58 72.85±3.01 = 68.25±3.25 + 68.25±3.25 + 70.23±3.55 +



Fig. 4. Comparison of C4.5FS with C4.5, C4.5MI, C4.5KNNI and C4.5EMI

4.1 Classification Performance

It is clear from Table 2 that with the first five datasets containing natural missing
values, C4.5FS achieves significantly better classification performance than other
methods on the first four datasets, similar classification performance to C4.5 and
C4.5MI on Wisconsin dataset and significantly worse classification performance
to C4.5KNNI and C4.5EMI on Wisconsin dataset.

Fig.4 summarises the results from Table 3. It is clear from Fig.4 that with
artificial missing datasets, C4.5FS often achieves significantly better or at least
similar classification accuracy to the other methods. C4.5FS has more times
achieving significantly better than C4.5MI and followed by C4.5KNNI, C4.5EMI
and C4.5.

In summary, with both natural and artificial missing datasets, in most cases,
feature selection for missing data can help improve classification accuracy of
C4.5.

4.2 Size of the Learned Models

Table 4. Tree size of C4.5FS, C4.5, C4.5MI, C4.5KNNI and C4.5EMI on datasets
containing natural missing values

Dataset C4.5FS C4.5 C4.5MI C4.5KNNI C4.5EMI

Cleveland 32.7 79.0 81.8 81.6 81.9

Hepatitis 10.3 17.3 19.8 21.3 18.6

Marketing 304.8 1367.1 1720.3 1665.2 1717.4

Ozone 13.6 24.8 29.4 30.7 30.1

Wisconsin 15.8 22.8 24.0 22.3 22.4



Table 5. Tree size of C4.5FS, C4.5, C4.5MI, C4.5KNNI and C4.5EMI with several
missing rates

Dataset
Missing
amount
(%)

C4.5FS C4.5 C4.5MI C4.5KNNI C4.5EMI

Climate

5 10.4 23.8 25.4 25.7 24.8
10 9.9 21.1 27.4 26.5 25.9
20 7.2 14.5 26.5 24.8 23.9
30 5.6 10.2 28.0 25.3 22.7
40 4.8 8.7 28.6 27.7 22.3
50 3.8 6.5 25.7 25.0 22.0

Ionosphere

5 17.5 24.3 26.0 26.0 25.9
10 17.4 24.2 25.4 25.6 25.3
20 17.3 23.4 25.8 25.9 25.1
30 17.7 22.8 26.8 26.5 25.6
40 18.5 22.5 28.3 28.2 25.5
50 18.2 20.7 27.7 27.7 25.6

Parkinsons

5 15.0 17.8 19.0 18.7 18.8
10 15.5 17.9 18.7 19.2 18.5
20 15.4 17.8 19.9 19.5 18.7
30 15.0 17.0 19.6 19.5 18.8
40 13.9 15.8 19.7 19.6 18.3
50 13.3 14.6 19.3 19.2 18.7

Robot

5 63.6 71.3 118.4 106.6 100.9
10 69.4 76.0 133.9 133.9 120.7
20 73.1 86.4 131.7 131.7 129.2
30 74.6 85.4 129.2 129.2 126.8
40 70.8 79.4 128.4 128.4 125.0
50 63.7 73.1 129.2 129.2 121.3

Sonar

5 25.1 27.7 28.0 27.5 27.9
10 25.4 28.1 28.7 28.3 27.9
20 24.8 28.4 29.5 29.5 27.6
30 23.2 27.5 30.3 30.3 28.2
40 22.4 26.7 30.6 30.7 28.7
50 22.7 26.3 31.8 32.0 29.2

Fig. 5. Ratio tree size of C4.5, C4.5MI, C4.5KNNI and C4.5EMI with C4.5FS



According to Table 4, with the first five datasets containing natural missing
values, in all cases, C4.5FS generates smaller decision trees than other methods.
For example, in Marketing dataset, sizes of decision trees generated by C4.5FS
are nearly one fifth the sizes of decision trees generated by C4.5 and more than
one fifth of sizes of decision trees generated by using imputation methods before
using C4.5.

Fig.5 shows minimum, average and maximum of ratio of tree size of C4.5,
C4.5MI, C4.5KNNI and C4.5EMI with C4.5FS from Table 5. The minimum of
ratio of tree sizes of the other methods with C4.5FS show that C4.5FS generates
smaller trees than other methods. On average, C4.5 generates about 30% bigger
than those generated by C4.5FS, and the other three methods generate trees over
twice bigger than those of C4.5FS. Especially, the maximum of ratio of tree sizes
of the other methods with C4.5FS shows that sizes of decision trees generated by
using imputation methods before using classifier in some cases are dramatically
bigger than C4.5FS. The main reason is likely that imputation methods often
generate further values for missing features; therefore, if the missing features are
chosen to build decision trees, the further values make decision trees bigger.

In summary, with both natural and artificial missing data, in all cases, feature
selection for missing data can help reduce complexity of the classification model
generated by C4.5, especially compared to using imputation methods before
using C4.5.

4.3 Analysis

To give a better picture of how C4.5FS can achieve better classification and
smaller trees than the other methods, we looked carefully at the trees generated
by C4.5 and C4.5FS on Climate dataset which has 20 features {V1,..,V20}.
Climate dataset was chosen since the trees generated on the Climate dataset are
not too big to analyse. Figs 6 and 7 show two typical pattern trees we observed.

Fig. 6. Left tree generated by C4.5 and right tree generated by C4.5FS on Climate
dataset with 20% missing values in features {V2, V3, V4, V12, V13, V14, V15, V17,
V19}



Fig. 6 shows trees generated by C4.5 and C4.5FS on Climate dataset with
20% missing values in 9 features {V2, V3, V4, V12, V13, V14, V15, V17, V19}.
After applying feature selection on the dataset, only seven features {V1, V4, V11,
V15, V16, V17, V20} were chosen. The C4.5FS tree achieved slightly higher
classification accuracy compared to the C4.5 tree, with 90.95% and 89.91%,
respectively. Both of them had the same features in the top part of the trees.
However, in the bottom part, the C4.5 tree had additional features which were
not present in the C4.5FS tree because these features had been removed in
the feature selection procedure. As a result, the C4.5FS achieved both better
classification accuracy and a smaller tree than the C4.5.

Fig. 7. Left tree generated by C4.5 and right tree generated by C4.5FS on Climate
dataset with 20% missing values in features {V1, V4, V5, V7, V9, V10, V13, V14, V16,
V19}

Fig. 7 shows trees generated by C4.5 and C4.5FS on Climate dataset with
20% missing values in 10 features {V1, V4, V5, V7, V9, V10, V13, V14, V16,
V19}. After applying feature selection on the dataset, only seven features {V7,
V8, V9, V13, V15, V16, V18} were chosen. In C4.5, when computing the in-
formation gain of a feature containing missing values, it computes the gain on
the complete values and discounts it by the ratio of complete instances to all
instances [25]. In other words, missing values discount information gain of miss-
ing features. Therefore, C4.5 biases towards choosing complete features to build
decision trees, but the bias of choosing complete features to build decision trees
is not always good. For example, on Fig.7, while the first node of C4.5 tree is
a complete feature V3, the first node of C4.5FS tree is a missing feature V16.
However, the C4.5FS tree achieved both better classification accuracy (91.3% vs
90.1% ) and smaller tree than the C4.5 tree . A possible reason could be that by
removing less suitable features such as V3, feature selection helps to counteract
the C4.5’s bias towards choosing complete features to build decision trees.



In summary, feature selection is able to choose relevant features and remove
irrelevant features. Therefore, feature selection helps to build better classifier.

5 Conclusions and Future Work

This paper presents research which has attempted to find the effect of a wrapper
feature selection approach to classification with missing data. To undertake the
research, three different experimental setups were designed: classification with
missing data by using a classifier that is able to classify missing data, classi-
fication with missing data by using an imputation method before applying a
classifier, and classification with missing data by using feature selection before
using a classifier that is able to classify with missing data. The results from
the three setups were compared on 10 datasets (five dataset containing natural
missing values and five datasets with six levels of artificial missing values), using
C4.5 for an evaluation and PSO as a search technique for feature selection. The
empirical results showed that a wrapper feature selection approach to classifi-
cation with missing data can help to improve classification performance of C4.5
and reduce the complexity of the learned classifier.

The experiment in this paper used C4.5 as a classifier because it can handle
missing data. There are some other classifiers that are able to classify missing
data such as CART [8] and CN2 [5]. Future work could repeat this investigation
with CART and CN2. This paper used a wrapper-based approach to feature
selection on classification problems with missing data. In [9], a filter-based ap-
proach to feature selection was applied to regression problems with missing data.
The future work could explore the effectiveness of a filter-based approach to fea-
ture selection on classification problems with missing data.
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