Automatic Feature Construction for Network
Intrusion Detection

Binh Tran!, Stjepan Picek?, and Bing Xue!(®

1 School of Engineering and Computer Science, Victoria University of Wellington,
600, Wellington 6140, New Zealand
{binh.tran,bing.xue}@ecs.vuw.ac.nz
2 Cyber Security Research Group, Delft University of Technology,
Mekelweg 2, Delft, The Netherlands
stjepan@computer.org

Abstract. The notion of cyberspace became impossible to separate
from the notions of cyber threat and cyberattack. Since cyberattacks
are getting easier to run, they are also becoming more serious threats
from the economic damage perspective. Consequently, we are evident
of a continuous adversarial relationship between the attackers trying to
mount as powerful as possible attacks and defenders trying to stop the
attackers in their goals. To defend against such attacks, defenders have at
their disposal a plethora of techniques but they are often falling behind
the attackers due to the fact that they need to protect the whole system
while the attacker needs to find only a single weakness to exploit. In
this paper, we consider one type of a cyberattack — network intrusion —
and investigate how to use feature construction via genetic program-
ming in order to improve the intrusion detection accuracy. The obtained
results show that feature construction offers improvements in a number
of tested scenarios and therefore should be considered as an important
step in defense efforts. Such improvements are especially apparent in sce-
nario with the highly unbalanced data, which also represents the most
interesting case from the defensive perspective.

1 Introduction

From its inception, the word cyberspace is used to represent an umbrella of
phenomena occurring in computer networks. Besides the advantages stemming
from the better connectivity and reachability, cyberspace also has its drawbacks
and dangers, where cyberattacks represent one that cannot be neglected. Here,
by cyberattacks we consider all deliberate exploitations of computer systems,
since such attacks seem to be becoming easier to conduct while their severity
grows. The proliferation of such threats on computers, mobile phones, etc. made
us all beware that the connectivity we often take for a granted comes with a high
price. As an example of that tendency, we mention a fact that NATO suffered
from 500 cyber attacks every month in 2016, which represents an increase of 60%
from 2015 [1]. One could postulate that the increase and severity of attacks is
© Springer International Publishing AG 2017

Y. Shi et al. (Eds.): SEAL 2017, LNCS 10593, pp. 569-580, 2017.
https://doi.org/10.1007/978-3-319-68759-9_46

570 B. Tran et al.

evident only for large organizations, but that is not necessarily true. It is enough
to consider the 2017 Wannacry ransomware case, where in only one day, more
than 230000 computers in more than 150 countries were infected [2]. Finally,
the threats are not limited to only one type of hosts - the Wannacry example
spreads over computers running Microsoft Windows operating system, while even
more recent threat “Cloak and Dagger” was identified for the Android operating
system [3]. We note there are also different types of attacks with respect to
the attacker’s goals. As an example, the attacker can conduct only a simple
network scanning in order to detect some possible system weaknesses to be used
later. Alternatively, he can launch massive Distributed Denial-of-Service (DDos)
attacks with a goal of making network resources unavailable to its intended
users by temporarily or indefinitely disrupting services of a host connected to
the Internet.

To fight against such varying threats, there are numerous options one can
consider. In the rest of this paper, we limit our attention to one type of threat —
network intrusion attacks and consequently defenses against such attacks. A net-
work intrusion attack is an activity, where a malicious user tries to make some
sort of unauthorized activity on a computer network. Often, the first defense
against it are network intrusion detection techniques. Intrusion detection tech-
niques are usually divided into signature based and anomaly detection based
approaches [4]. In the signature based approaches one relies on recognizing the
signatures of attacks (for example, hash values that are characteristic for cer-
tain attack types). Such detection techniques are easily avoided by modifying
the attack or using previously unknown attack (i.e., zero-day attack). Anomaly
detection systems rely on recognizing what is normal traffic and categorizing all
that does not fit the description of normal into anomaly.

When discussing anomaly detection systems, a great deal of research has
been invested in utilizing machine learning and evolutionary computation tech-
niques [5,6]. As far as we are aware, up to now there is no research considering
how to use evolutionary algorithms to construct higher level features that can
result in better classification accuracy for the network intrusion detection. We
aim to fill this gap by providing the first results in several relevant scenarios and
proposing further research directions.

Genetic programming (GP) is an evolutionary computation technique that
can automatically evolve solutions based on the idea of the survival of the fittest.
With a flexible representation such as trees and any kind of operators or func-
tions to represent the model, GP is an excellent choice for feature construction.
Features constructed by GP have been shown to obtain better discriminating
power than the original features [7-9]. In this study, we investigate GP perfor-
mance in constructing high-level features for the network intrusion detection.
The constructed features are expected to improve the classification performance
of common learning algorithms when compared with the original feature sets.

The area of network intrusion detection has several specificities which makes
it a challenging scenario to consider. The first problem stems from the lack of
good datasets since they are in most cases artificially constructed and difficult to

Automatic Feature Construction for Network Intrusion Detection 571

correlate with the realistic scenarios. The second difficulty comes from the fact
the classification accuracy is relatively high when compared to other problems
and consequently possible improvements obtainable with feature construction
are much smaller. Still, due to the importance of the highly-accurate intrusion
detection systems and possible damages when anomalies are not detected, even
small improvements in accuracy can be of extreme importance. Finally, being
able to automatically construct features is beneficial since feature construction
is most often done by human experts, which is far from being error prone and
is a time consuming process.

The rest of this paper is organized in the following way. In Sect. 2 we discuss
the attacker capabilities as well as the defender’s goals. We also give details about
the dataset we investigate. Section 3 gives a short overview of related work. In
Sect. 4 we provide details about GP that is used for feature construction, an brief
description of the two classification algorithms used in this paper. Section 5 gives
experimental results for several intrusion detection scenarios and a comparison
between the constructed features and the original ones. We also provide a dis-
cussion on results and remarks on possible future research directions. Finally, in
Sect. 6 we give a brief conclusion and future work.

2 Background

2.1 Stages of a Cyberattack

When discussing cyber threats, it is important to realize that often they do not
represent atomic actions leading to a success but are rather a succession of steps
one needs to do in order to successfully attack a system. Although there are
various understandings and attack stage granularities (usually ranging from five
to ten stages), some common ones are defined in [10]. An attack usually starts
with the reconnaissance phase, where the attacker’s goal is to obtain knowledge
about the system and find possible weaknesses. Next, incursion follows where the
attacker actually penetrates the system. Within the system, the attacker moves
laterally in order to discover and exploit the system. Finally, in the exfiltration
phase the attacker tries to steal the sensitive data and leave the system undis-
covered. We depict five stages of a cyberattack with an emphasis on attacker’s
goals in Fig. 1.

Attacker focus

Analyze target Exploring system Finding key data “

o = m = »

Fig. 1. Five stages of a cyberattack.

572 B. Tran et al.

We aim to defend against a powerful attacker that has an unbounded number
of IP addresses on his disposal, which enables him to run anything from a simple
network scanning attacks up to massive DDoS attacks. We do not limit the
attacker to be present in any specific stage of a cyber attack. In order to be able
to recognize such wide set of threats, we train anomaly detectors for all available
attack types as well as for the normal traffic. We assume that the attacker can
mount already known attacks as well as the zero-day attacks. Finally, we assume
that the attacker cannot interfere with the running of GP or classifiers.

Due to the fact that our system is not fast enough to work in an online setting
(where as the new data instances are acquired, GP is able to update the set of
constructed features) we consider here only the offline setting, where a number of
training instances is acquired and on the basis of them, GP constructs features.
Since we are not time-constrained, it is reasonable to assume that we can run
additional classifiers on the obtained data in order to classify it into normal or
anomaly data. Therefore, we work here only in the binary setting where we have
both normal and anomaly data (regardless whether there are different types of
anomalies or only one).

Anomaly detection is often considered in the one-class classification setting,
where we assume not to have anomaly data at the time of the model training.
Still, adding additional classifiers (i.e., building ensemble classifiers) as com-
binations among one-class, binary, and multi-class classifiers is an option that
improves the accuracy of the intrusion detection system. Although it could be
claimed that first running feature selection would enable GP to be faster and to
work with only the most informative features, we use all available features and
expect from GP to recognize the most important ones.

2.2 Datasets

All our experiments are based on the NSL-KDD dataset [11]. This dataset is on
the other hand based on one older dataset called the KDD Cup dataset [12].
Here, we first briefly describe the KDD Cup dataset and then we discuss the
differences between it and the NSL-KDD dataset.

The KDD Cup dataset is comprised from nine weeks of raw TCP dump data
for a local-area network (LAN) simulating a typical U.S. Air Force LAN that
was exposed to multiple attacks. Each instance is a sequence of TCP packets
starting and ending at some well-defined times. Each record can be labeled into
either normal or anomaly data, where anomaly data can be divided into four
classes: DoS (denial-of-service attacks), Probe (surveillance and other probing
attacks), R2L (unauthorized access from a remote machine), and U2R (unau-
thorized access to local superuser privileges).

During the years, researchers noticed a number of problems with the KDD
Cup dataset. Some of the often mentioned problems are the dissimilarity from
the real traffic and issues encountered due to the synthetic data generation and
insertion [13]. Still, due to the artificial data creation, one advantage is that we
can be sure the data to be correctly classified. Consider a “realistic” dataset
where the only proof of an attack is to have some classifier reporting it. In the

Automatic Feature Construction for Network Intrusion Detection 573

case that classifier misclassified, we would propagate errors to the next level
of experiments — feature construction. Finally, the KDD Cup dataset offers a
wide variety of attacks, which is not something one necessarily encounters in
“realistic” scenarios. The improvements of NSL-KDD over the KDD Cup dataset
are:

the dataset does not include redundant records in the train set,

— there are no duplicate records in the proposed test sets,

— the number of selected records from each difficulty level group is inversely
proportional to the percentage of records in the original KDD Cup dataset,

— the number of records in the train and test sets are smaller.

3 Related Work

Anomaly based detection is a well-researched topic in the last decade or more
with many papers examining various defense types and algorithms to be used.

When using GP for anomaly detection, there is a line of works exploring
binary and one-class classification. One-class GP is a technique introduced by
Curry and Heywood [14] where they artificially create the second class (outliers)
on the basis of the normal data that is available. Cao et al. [15] experiment
with one-class classification by using kernel density function, where the density
function is approximated by using GP symbolic regression. To and Elati [16]
developed a one-class GP where they use only one class in the training. In their
approach, GP tries to find a curve that fits all patterns in the training set and
if an instance belonging to the testing set is close to the trained patterns, it is
defined as belonging to the normal class. Song et al. use GP to detect anomalies
in the KDD Cup dataset where the authors use hierarchical dynamic subset
selection in order to train around 500 000 instances [17].

When considering feature selection, Wang et al. [18] experiment with several
methods to find the most informative features for each of the four anomaly classes
in the KDD Cup dataset. Zargari and Voorhis [19] conduct feature selection for
the NSL-KDD dataset and suggest the most informative features for all anomaly
classes.

When considering automatic feature construction for network intrusion
detection, the works are sparse and do not consider genetic programming (or
any kind of evolutionary algorithms). As an example of automatic feature con-
struction technique, we mention the work by Lee and Stolfo [20], where the
authors use several data mining algorithms to build a framework to construct
features and models for intrusion detection.

4 Methodology

4.1 Classification Algorithms

We use two simple classifier techniques in order to investigate the performance
of the constructed features. We decided to use these classifiers since they are
fast and able to reach high accuracies. Note that using more powerful classifiers
could improve the results but with a price of a longer classification process.

574 B. Tran et al.

Naive Bayes (NB). NB classifier is a method based on the Bayesian rule that
works under the simplified assumption that the predictor attributes (measure-
ments) are conditionally independent among the features given the target class.
Detailed information about the Naive Bayes algorithm can be found in [21].

C4.5. C4.5 is a divide-and-conquer algorithm that split features at tree nodes
using the information gain ratio criterion [22]. The node splits in further branches
if more information is gained (as measured by the gain ratio) by the split than
by keeping all the instances at the node. The trees are first grown to full length
and pruned afterwards in order to avoid data overfitting.

With the C4.5 algorithm, we investigate the influence of the confidence factor
parameter c that is used for pruning, where smaller values relate to more pruning.
We tested that parameter in the range [0.05,0.5] with a step of 0.05, where we
conducted a separate tuning phase for each scenario. Due to the lack of space,
we do not show the full tuning results but only the best obtained solutions. For
normalVSanomaly we use ¢ = 0.3, for normalVSdos ¢ = 0.35, for normalVSprobe
¢ = 0.5, for normalVSr2l ¢ = 0.5, and for normalVSu2r ¢ = 0.2.

4.2 Genetic Programming

We use a standard GP algorithm to construct one high-level feature using the
single-tree representation as in [8,23]. GP works by maintaining a population of
individuals, each of which represents a constructed feature.

To evaluate the goodness of a constructed feature, the evaluation procedure
follows an embedded approach, where each individual is evaluated based on its
classification performance on the training set. In other words, each individual
or the corresponding constructed feature can also be considered as a classifier,
which classifies an instance x by executing the following rule:

IF constructed F <=0 THEN =z € classg; FELSE z € class;. (1)

Since the network attack detection datasets are usually unbalanced, we use the
balanced accuracy [24] as shown in Eq. (2) for fitness evaluation. It is an average
of true positive rate (TPR) and true negative rate (TNR), where TPR (or TNR)
is the proportion of correctly identified instances of positive (or negative) class.

1
fitness = 3 (TPR+TNR), (2)

In order to avoid underfitting as well as overfitting, we use a dynamic stopping
criterion. During the evolutionary process, if the validation accuracy does not
improve after 50 generations, GP stops and returns the model with the best
validation accuracy; otherwise, GP continues to run until a maximum number of
generations is reached. After the evolutionary process, the GP individual having
the best validation accuracy is returned as the best solution. Algorithm 1 shows
the pseudo code of the GP-based feature construction method which returns a
new constructed feature.

Automatic Feature Construction for Network Intrusion Detection 575

Algorithm 1. GP-based feature construction method

10
11

12
13
14
15
16
17
18
19
20

21
22
23
24
25

Input : Training_data
Output: The best constructed feature
begin

end

Training data is equally split into train_set and valid_set;

Initialize a population of GP individuals/trees;

not_improved « 0;

while Mazimum iterations is not reached or the best solution is not found or
not_improved < 50 do

for i = 1 to Population Size do

transf_train < Calculate constructed feature of individual ¢ on train_set
(transf_train has only one feature, i.e. the constructed feature) ;

fitness < classification accuracy of transf_train using Rule 1 and Eq. 2;

end
best_gen_ind <« individual that have the highest fitness;
transf_valid < Calculate constructed feature of the best_gen_ind on valid-set
(transf_valid has only one new feature) ;
valid_acc « classification accuracy of transf_valid using Rule 1 ;
if (valid_acc is improved) then
Update valid-acc ;
not_improved «— 0;
else
‘ not_improved + +;
end
Select parent individuals using tournament for breeding;
Create offspring individuals by applying crossover or mutation on the selected
parents;
Place new individuals into the population of the next generation;

end
best_ind <« individual that have the highest valid_acc;
Return the best_ind;

Table 1. Datasets

Dataset #Features | #Instances | Class-distribution
normalVSanomaly | 40 47736 48.52%-51.48%
normalVSdos 39 39852 58.12%-41.88%
normalVSprobe 38 27870 83.10%—-16.90%
normalVSr2l 40 26123 88.66%—-11.34%
normalVSu2r 40 23371 99.10%-0.90%

4.3 Dataset Details

To test the performance of our method, five binary class datasets are gener-
ated from the NSL-KDD dataset. To obtain the instances, we take 10% of all
measurements (which are already labeled) and we create datasets by combining
instances belonging to the Normal class with instances belonging to each of the
four anomaly classes.

Finally, we combine Normal instances with all anomaly instances (belonging
to all 4 classes) and simply assigning them to the anomaly class (i.e., the binary
setting). After generating these datasets, we remove those features that have only

576 B. Tran et al.

a single value since it does not provide any usefuly information. The number of
remaining features of each dataset is shown in Table1. As it can be seen from
the class distribution, three out of the five datasets are extremely unbalanced
(normalVSu2r dataset has less than 1% of instances belonging to one class),
which makes these problems more challenging for machine learning algorithms.
Each dataset is stratified and equally split into three data subsets for training,
validation, and testing. These subsets are standardized based on the training set
before feeding it into GP for feature construction.

5 Experiments

5.1 Experiment Configuration and Parameter Settings

To test the performance of GP in constructing better discriminating features, we
compare the performance of common classification algorithms including Naive
Bayes and Decision Tree using the resulting feature sets and the original feature
set. As GP is a stochastic algorithm, 30 independent runs with different random
seeds are applied on each training set. The resulting feature sets are tested on
the test set. To eliminate the statistical variations, all comparisons are done on
the 30 test results using the Wilcoxon significance test.

Table 2 describes the parameter settings for GP. The function set comprises
of 7 functions, 5 of which are arithmetic operators (addition, subtraction, multi-
plication, square root, and protected division). Function maz returns the maxi-
mum values from the two inputs and i f returns the second argument if the first
argument is positive and returns the third argument otherwise. The terminal set
comprises of all the original features. ECJ package [25] was used to implement
the system. We used the standard crossover operator provided by the package,
which swaps two randomly picked subtrees of two parents, and the standard
mutation, which replaces a randomly picked subtree of the parent by a new
subtree.

Table 2. GP parameters and experiment settings

Function set +, —, X, /7\f, mazx, if
Initial population Ramped half-and half
Maximum tree depth 10

Initial maximum tree depth | 3

Generations 500

Population size 1024

Crossover rate 0.4

Mutation rate 0.6

Elitism size 10

Selection method Tournament method

Tournament size 7

Automatic Feature Construction for Network Intrusion Detection 577

5.2 Results and Analysis

Table 3 shows the test accuracy of NB and DT using the resulting constructed
feature sets compared with the “Full” (i.e., using the original feature set) feature
set. For each classification algorithm, the best (B), the average, and the standard
deviation (A + Std) over the 30 independent runs are reported. In this column,
we also display the Wilcoxon significance test results of the corresponding feature
set over Full feature set with significance level of 0.05. “+” or “—” means that the
result is significantly better or worse than the Full set and “=" means that their
results are similar. In other words, the more “+”, the better the resulting feature
sets. The time (in minutes) used to train the constructed features is shown under
the dataset name. Column “#F” shows the average size of each feature set.

We can observe that the running time is correlated with the sample size of
the dataset. Note that although the time to train the constructed features ranges
from 38 to 92min for each dataset, it is only run once and can be offline. After
the constructed features are learned, the execution time of the tree to produce
the new features is negligible.

Table 3. Test results using NB and DT

Dataset Features | #F | B-NB| A £+ Std-NB B-DT | A+Std-DT
normalVSanomaly | Full 40.00 | 84.40 | 84.40+0.00 98.44 | 98.4440.00
92.21 (m) FullCF |41.00 | 87.31 | 84.714+0.84= |98.53 | 98.37 +0.09 —
normalVSdos Full 39.00|91.90 | 91.90+0.00 99.83 199.83 £0.00
77.61 (m) FullCF |40.00 | 95.62 |92.50£0.90+ | 99.84 | 99.75+0.06 —
normalVSprobe Full 38.00193.10 |93.10£0.00 99.17 199.17+0.00
51.97 (m) FullCF |39.00 95.27 1 93.62+£0.64+ |99.40 | 99.16 £0.09 =
normal VSr21 Full 40.00 | 85.25 | 85.25+0.00 96.10 | 96.10+£0.00
50.84 (m) FullCF |41.00 89.83 | 87.00£2.09+ |96.95 | 96.27£0.37 +
normalVSu2r Full 40.00 | 91.03 | 91.03 £0.00 89.27 | 89.27+0.00
38.98 (m) FullCF |41.00|92.36 | 91.06 +0.60= | 95.67 |92.06+1.79+

As can be seen from Table3 that feature sets with added one constructed
feature (FullCF) are able to outperform the original sets in all considered cases.
There, when using the Naive Bayes classifier, the difference is relatively large,
while when using Decision Tree classifier, the difference in the accuracy is less
pronounced. The FullCF helps NB achieve significantly better results in three
out of five cases. The remaining two datasets, namely normalVSanomaly and
normalVSu2r, obtain a similar accuracy. We also notice that the best accuracy
that NB achieves using FullCF is always higher than using Full set. Using FullCF
and considering averaged values, DT performance is better on 2 datasets, similar
on 1 and worse on the remaining 2. We emphasize that bigger differences can
be seen in the last three datasets, where the imbalance between the classes

578 B. Tran et al.

is more significant. Note the last scenario — normalVSu2r where the accuracy
improvement is more than 6% and the class distribution is 99.10%0.90%.

To better assess the influence of the added constructed feature, next we
present the testing results for scenarios, where we use only one feature (or GP
tree) — “CF” set as a binary classifier. As can be seen from Table4, using one
constructed feature results on average in performance degradation for DT on
the first three datasets when compared with the original or FullCF feature set.
Still, considering the fact that we use only one feature, the results are promising
for scenarios, where extremely fast classification is needed. On the other hand,
in scenarios with highly unbalanced data as in the last two datasets, this binary
classifier with only one constructed feature still achieves higher accuracy than
DT using Full or FullCF feature set.

Table 4. Testing results, GP using CF, accuracy. 1 — normalVSanomaly, 2 — nor-
malVSdos, 3 — normalVSprobe, 4 — normalVSr2l, 5 — normalVSu2r

Statistics | 1 2 3 4 5

Best 97.13 1 99.64 | 99.08 | 97.28 | 96.82
Average |96.26|99.35|98.29 | 96.36 | 95.03
StdDev 0.75| 0.21| 0.34| 0.48| 0.92

Finally, in Table5 we display the testing results for the FullCF scenario.
Note that the results are averaged over 30 runs and we use the C4.5 parameters
obtained after a tuning phase for each scenario. The tuning phase is done on a
single (for each scenario) training set where we select those uniformly at random.
Notice that the first three scenarios give similar accuracies as those where the
tuning phase was done on Full feature set (see Table3) but in the last two
scenarios the improvement is even more significant (considering Best values)
with the tuning done on FullCF feature set.

Table 5. Testing results, DT using FullCF, accuracy. 1 — normalVSanomaly, 2 — nor-
malVSdos, 3 — normalVSprobe, 4 — normalVSr2l, 5 — normalVSu2r

Statistics | 1 2 3 4 5

Best 98.3299.78 1 99.96 | 98.62 | 99.76
Avg 94.9598.98 1 99.14 | 96.66 | 99.05
StdDev 3.61| 2.85| 0.19, 3.91| 048

Since our work represents only a start of investigations on GP feature con-
struction for intrusion detection, there are many possible research directions one
could follow. We briefly discuss only three of those. An obvious continuation
of this work would be to consider more complex classifiers like Support Vector

Automatic Feature Construction for Network Intrusion Detection 579

Machines. Naturally, this would come with an added cost in the evolutionary
process. The second interesting option would be to investigate how to reduce
the false positive rate. This could be done by incorporating appropriate term in
the fitness function for GP. Finally, here we discuss binary setting but we believe
it would be of extreme importance to consider one-class classification and GP
feature construction. In such a scenario, one would build new features that bet-
ter represent normal class and hopefully help to further discriminate between
normal and anomaly data.

6 Conclusions

In this paper, we consider the task of automated construction of higher-level
features via GP for the network intrusion detection problem. Although this work
should be considered only as a preliminary investigation in that direction, our
results show that constructed features are able to increase the accuracy especially
in scenarios where we observe highly unbalanced data. Since such unbalanced
data represents a usual scenario for network intrusion detection (where we have
either many normal instances and only sparse anomalies as in the reconnaissance
phase or where most of the instances belong to the anomaly class like in DDoS
attack) the proposed can be considered highly beneficial. In the future, we will
consider other scenarios and datasets to further examine the performance of
the proposed algorithm. We also intend to develop new approaches to further
investigate the potential of feature construction on solving complex network
intrusion problems.

References

1. Browne, R.: Nato: we ward off 500 cyberattacks each month, January 2017. http://
edition.cnn.com/2017/01/19/politics/nato-500-cyberattacks-monthly/

2. Symantec: Ransom.wannacry, March 2017. https://www.symantec.com/security_
response/writeup.jsp?docid=2017-051310-3522-99

3. Fratantonio, Y., Qian, C., Chung, S., Lee, W.: Cloak and Dagger: from two per-
missions to complete control of the UI feedback loop. In: Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, San Jose, CA, May 2017

4. Garcia-Teodoro, P., Diaz-Verdejo, J., Macid-Ferndndez, G., Vdzquez, E.: Anomaly-
based network intrusion detection: techniques. Syst. Chall. Comput. Secur. 28(1—
2), 18-28 (2009)

5. Wu, S.X., Banzhaf, W.: Review: the use of computational intelligence in intrusion
detection systems: a review. Appl. Soft Comput. 10(1), 1-35 (2010)

6. Tsai, C.F., Hsu, Y.F., Lin, C.Y., Lin, W.Y.: Intrusion detection by machine learn-
ing: a review. Expert Syst. Appl. 36(10), 11994-12000 (2009)

7. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolv-
ing rotation-invariant texture image descriptors by genetic programming. IEEE
Trans. Evol. Comput. 21(1), 83-101 (2017)

8. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and
selection in classification on high-dimensional data. Memet. Comput. 8(1), 3-15
(2015)

http://edition.cnn.com/2017/01/19/politics/nato-500-cyberattacks-monthly/
http://edition.cnn.com/2017/01/19/politics/nato-500-cyberattacks-monthly/
https://www.symantec.com/security_response/writeup.jsp?docid=2017-051310-3522-99
https://www.symantec.com/security_response/writeup.jsp?docid=2017-051310-3522-99

580

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

B. Tran et al.

Tran, B., Zhang, M., Xue, B.: Multiple feature construction in classification on
high-dimensional data using GP. In: IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 210218, December 2017

Symantec: preparing for a cyber attack, January 2017. http://www.symantec.com/
content/en/us/enterprise/other_resources/b-preparing-for-a-cyber-attack-interac
tive-SYM285k_050913.pdf

Habibi, A., et al.: UNB ISCX NSL-KDD dataset. http://nsl.cs.unb.ca/NSL-KDD/
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD
CUP 99 data set. In: Proceedings of the Second IEEE International Conference on
Computational Intelligence for Security and Defense Applications, CISDA 2009,
Piscataway, NJ, USA, pp. 53-58. IEEE Press (2009)

Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357-374 (2012)

Curry, R., Heywood, M.IL.: One-class genetic programming. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 1-12. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01181-8_1
Cao, V.L., Nicolau, M., McDermott, J.: One-class classification for anomaly detec-
tion with kernel density estimation and genetic programming. In: Heywood, M.IL.,
McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol.
9594, pp. 3-18. Springer, Cham (2016). doi:10.1007/978-3-319-30668-1_1

To, C., Elati, M.: A Parallel genetic programming for single class classification.
In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolu-
tionary Computation, GECCO 2013 Companion, pp. 1579-1586. ACM, New York
(2013)

Song, D., Heywood, M.I., Zincir-Heywood, A.N.: Training genetic programming
on half a million patterns: an example from anomaly detection. IEEE Trans. Evol.
Comput. 9(3), 225-239 (2005)

Wang, W., Gombault, S., Guyet, T.: Towards fast detecting intrusions: using key
attributes of network traffic. In: Proceedings of the 2008 The Third International
Conference on Internet Monitoring and Protection, ICIMP 2008, pp. 86-91. IEEE
Computer Society, Washington, DC (2008)

Zargari, S., Voorhis, D.: Feature selection in the corrected KDD-dataset. In: 2012
Third International Conference on Emerging Intelligent Data and Web Technolo-
gies, pp. 174-180, September 2012

Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Trans. Inf. Syst. Secur. 3(4), 227-261 (2000)
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach.
Learn. 29(2), 131-163 (1997)

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco (1993)

Tran, B., Xue, B., Zhang, M.: Using feature clustering for GP-based feature con-
struction on high-dimensional data. In: McDermott, J., Castelli, M., Sekanina,
L., Haasdijk, E., Garcia-Sdnchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
210-226. Springer, Cham (2017). doi:10.1007/978-3-319-55696-3_14

Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Reusing genetic programming for
ensemble selection in classification of unbalanced data. IEEE Trans. Evol. Comput.
18(6), 893-908 (2014)

Evolutionary Computation Laboratory: ECJ: a Java-based evolutionary computa-
tion research system. https://cs.gmu.edu/eclab/projects/ecj/

http://www.symantec.com/content/en/us/enterprise/other_resources/b-preparing-for-a-cyber-attack-interactive-SYM285k_050913.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-preparing-for-a-cyber-attack-interactive-SYM285k_050913.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-preparing-for-a-cyber-attack-interactive-SYM285k_050913.pdf
http://nsl.cs.unb.ca/NSL-KDD/
http://dx.doi.org/10.1007/978-3-642-01181-8_1
http://dx.doi.org/10.1007/978-3-319-30668-1_1
http://dx.doi.org/10.1007/978-3-319-55696-3_14
https://cs.gmu.edu/eclab/projects/ecj/

	Automatic Feature Construction for Network Intrusion Detection
	1 Introduction
	2 Background
	2.1 Stages of a Cyberattack
	2.2 Datasets

	3 Related Work
	4 Methodology
	4.1 Classification Algorithms
	4.2 Genetic Programming
	4.3 Dataset Details

	5 Experiments
	5.1 Experiment Configuration and Parameter Settings
	5.2 Results and Analysis

	6 Conclusions
	References

