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Abstract. Feature selection and discretisation have shown their effec-
tiveness for data preprocessing especially for high-dimensional data with
many irrelevant features. While feature selection selects only relevant
features, feature discretisation finds a discrete representation of data
that contains enough information but ignoring some minor fluctuation.
These techniques are usually applied in two stages, discretisation and
then selection since many feature selection methods work only on discrete
features. Most commonly used discretisation methods are univariate in
which each feature is discretised independently; therefore, the feature
selection stage may not work efficiently since information showing fea-
ture interaction is not considered in the discretisation process. In this
study, we propose a new method called PSO-DFS using bare-bone parti-
cle swarm optimisation (BBPSO) for discretisation and feature selection
in a single stage. The results on ten high-dimensional datasets show that
PSO-DFS obtains a substantial dimensionality reduction for all datasets.
The classification performance is significantly improved or at least main-
tained on nine out of ten datasets by using the transformed “small” data
obtained from PSO-DFS. Compared to applying the two-stage approach
which uses PSO for feature selection on the discretised data, PSO-DFS
achieves better performance on six datasets, and similar performance on
three datasets with a much smaller number of features selected.

Keywords: Particle swarm optimisation, feature discretisation, feature
selection, classification, high-dimensional data

1 Introduction

Feature selection is an important technique in data preprocessing, especially
for datasets with thousands to tens of thousands of features. High-dimensional
datasets, such as text, image and gene expression data, are automatically col-
lected by machines. Therefore, they usually contain a significant number of ir-
relevant and redundant features, which negatively affects not only the learning
process but also the system memory. To deal with this problem, feature selection
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has been applied to select only informative features. Results of many studies have
shown the effectiveness of applying feature selection [1, 2] in general as well as
on high-dimensional data [3, 4]. Existing feature selection methods can be gener-
ally classified into filter and wrapper approaches [5]. Filter approaches evaluate
features based on their intrinsic characteristics. On the other hand, wrapper ap-
proaches use a learning algorithm to measure the classification performance of
the selected features. Although filters are said to be faster than wrappers, they
usually obtain lower classification accuracy than wrappers.

Besides feature selection, feature discretisation is also important in prepro-
cessing data especially for high-dimensional data because of the following im-
portant reasons. Firstly, many commonly used machine learning techniques can
only be applied or work efficiently on discrete data. High-dimensional datasets
usually include continuous features that are automatically collected at the inter-
val or ratio level such as images and gene expression data. Therefore, continuous
or real-value features are required to be partitioned or discretised into a number
of sub-ranges. Each sub-range is considered as a category. This process is called
discretisation. Secondly, discretisation techniques aim at finding a discrete repre-
sentation of each feature so that it contains enough information for the learning
task while eliminating the minor fluctuations that may be noisy in the original
data [6]. The report in [7] showed that feature discretisation helps learning be
more accurate and faster. Finally, discrete features are more compact than con-
tinuous ones. Discretisation can reduce a significant amount of memory required
to store data, enabling learning algorithms to work efficiently. As a result, fea-
ture selection and feature discretisation have been used as popular preprocessing
techniques to obtain more compact datasets that are better representatives of
the learning task. The use of these techniques has shown to improve classification
performance, memory requirements and computation time [8].

Although many discretisation methods have been proposed, most of them are
univariate, which means that only one continuous feature is discretised at a time.
For the sake of efficiency, these methods work with an assumption that each fea-
ture independently influences the task. However, this assumption is not valid in
problems in which feature interdependency occurs [9]. In these cases, multivari-
ate discretisation is needed to consider multiple features at a time. However, it
would certainly increase the time complexity for discretisation. Therefore, it is
necessary to have an efficient search technique that can simultaneously discretise
multiple features in a reasonable time.

A common practice using feature selection and discretisation in data pre-
processing is to apply discretisation before the selection process. However, when
using data discretised by a univariate discretisation method, feature selection
methods may miss relevant features since information showing feature interac-
tion may be destroyed in the discretisation process. Therefore, combining these
two processes into a single stage may obtain better representation for the learn-
ing task.

Particle swarm optimisation (PSO), proposed by Kennedy and Eberhart [10],
is a meta-heuristic algorithm inspired by social behaviours found in birds flock-



ing. Each particle flies from one position to another in the problem search space
with its own velocity. PSO has been applied to different tasks including feature
selection using different versions such as continuous PSO [11, 12] and binary PSO
[13–15]. However, the performance of these PSO versions strongly depend on
the control parameters for particles’ velocity such as inertia weight, acceleration
coefficients and velocity clamping [16]. Although many adaptive and dynamic
methods have been proposed to overcome this problem, it is still challenging
since setting these parameters depends on individual applications and needs to
be adjusted for different problems. In 2003, Kennedy [17] suggested updating
particles’ position using a simple Gaussian sampling around the mean of the in-
dividual best position and its neighbours’ best position. This “bare-bone” PSO
(BBPSO) eliminates the use of velocity and all of the parameters mentioned
above. The performance of this new method on function optimisation problems
has shown to be superior than the canonical one. This method also attained
promising results in [18] which proposed binary BBPSO for feature selection.
While PSO has been widely used for feature selection, it has not been applied
to feature discretisation and selection at the same time.

Goals

The aim of this study is to propose a new approach to the use of BBPSO for si-
multaneously discretising features and selecting relevant features in a single stage
for high-dimensional continuous data. For presentation convenience, we call the
new method PSO-DFS. PSO-DFS will be examined and compared with using
all original feature set and the corresponding two-stage approach (feature dis-
cretisation and then feature selection) on ten public available high-dimensional
datasets of varying difficulty. More specifically, we would like to investigate the
following research objectives:

1. How to discretise multiple features simultaneously in BBPSO so that the
discriminating power of the feature set is improved;

2. How to perform discretise and select features in a single stage;
3. Whether the features generated by PSO-DFS can produce better classifica-

tion performance than using all features;
4. Whether PSO-DFS can outperform the corresponding two-stage approach in

terms of classification accuracy, the number of features and the computation
time.

2 Background and Related Work

2.1 Feature Discretisation

In order to discretise a continuous feature into a discrete one, a discretisation
method determines the number of intervals and the corresponding cut-points
for each interval. A large number of discretisation methods can be found in the
literature. They can be categorised based on different axes [19–21] such as direct
versus incremental, supervised versus unsupervised. While direct methods deter-
mine these intervals based on a user-defined parameter, incremental methods



apply some criteria to further split or merge intervals forming splitting or merg-
ing methods, respectively. Methods which use class labels in the discretisation
process are supervised ; otherwise, they are unsupervised. Discretisation methods
can also be categorised into global or local based on whether the entire instance
space or a subset of instances is used in each discretisation step. While in dy-
namic methods, the discretisation process is done while the learner is building
the model, static methods separate these two processes. Discretisation methods
are also categorized into univariate where each feature is discretised indepen-
dently and multivariate where multiple features are discretised at the same time
so that feature interaction is also considered in the discretisation process [19].

Two simple unsupervised discretisation methods are equal-width and equal-
frequency binning methods, which require a user-defined number of intervals
m. While the former method partitions features into m intervals with the same
width, the latter partitions features into m intervals that have the same number
of instances. Although these binning methods are simple and easy to implement,
they are sensitive to a given m which is usually unknown. They may not give
good results on non-uniform distribution features and features with outliers,
which are extreme values that strongly affect the ranges [22].

To overcome the shortcoming of unsupervised methods, supervised discreti-
sation takes into account the interdependence between the discrete values and
their class labels. Different ways of using class labels to find cut-points with
higher class coherence have been proposed. A simple example is 1R [23] where
cut-points have to lie between sorted instances of different classes and each bin
has at least six instances except the right most bin. Many ways of evaluating
a cut-point are proposed based on information theory [24, 25], statistical mea-
sures [26, 27], classification error rates [28, 29], etc. Readers are referred to more
comprehensive review in [19, 21, 20, 30].

2.2 Minimum Description Length

Fayyad and Irani’s minimum description length (MDL) [25] is a univariate in-
cremental splitting discretisation method which uses the minimum description
length principle (MDLP) as the stopping criterion. The algorithm starts with
one interval containing all values of the feature and recursively partitions this
interval until the criterion is met.

In each discretisation step, a cut-point is chosen to partition the correspond-
ing interval into two sub-intervals. The algorithm considers all candidate cut-
points which lie between instances of different classes. The best cut-point is the
one with the highest information gain. Given S as the set of instances, T is a
candidate cut-point of Feature A, S1 and S2 are the resulting subsets after par-
titioning S by T , information gain of T is calculated based on Equation (1). A
cut-point is only accepted if its information gain satisfies the MDLP criterion as
shown in Equation (2), where details about this equation can be seen from [25].

Gain(T,A;S) = E(S)− |S1|
|S| E(S1)− |S2|

|S| E(S2) (1)



Gain(T,A;S) >
log2(|S| − 1)

|S| +
δ(T,A;S)

|S| (2)

where
δ(T,A;S) = log2(3k − 2)− [kSE(S)− kS1E(S1)− kS2E(S2)] (3)

and |S| is the number of instances in the given set S, E(S) is the entropy of
S, and kS is the number of classes appeared in S.

If the best cut-point of an interval is accepted by the MDLP criterion, then
a recursive discretisation step is applied to each new sub-interval; otherwise, the
discretisation process stops.

2.3 Feature Selection via Discretisation

Chi2 [31] is one of the first methods proposing selecting features via discretisa-
tion. It is an improvement of the ChiMerge [32] method. ChiMerge is a bottom
up method which starts with each interval having one distinct value of the fea-
ture. In each iteration, it merges the pair of adjacent intervals with the lowest
χ2 test result. The merging process is continued until all pairs of intervals have
χ2 values exceeding the parameter determined by a predefined significant level.
Chi2 has two phases. Phase 1 is a general version of ChiMerge. Instead of using
a predefined significant level, Chi2 automatically determines this value from the
data by gradually decreasing the significant level from 0.5. Consistency is used
as a stopping criterion. After this first phase, each feature has a different sig-
nificant level. Starting with the significant level determined in phase 1, phase 2
is a fining process used to further merge features in a round robin fashion until
the inconsistency of the data above a given limit. At the end, if all intervals of
a feature were merged into one, that feature was discarded.

PEAR [33] is also a supervised and univariate discretisation method. It per-
forms simultaneously feature discretisation and selection. In this method, cut-
points are chosen for a feature if they lie between instances of different classes
and produces intervals in which the majority class has at least a predefined num-
ber of instances called minperint. Furthermore, two consecutive intervals should
not have the same majority class occurrence and the ratio between these occur-
rences needs to be higher than a predefined ratio called mintofuse. Then, features
are ranked based on the number of cut-points. Features with small numbers of
cut points are considered as relevant features and therefore selected. Result on
a medical image dataset using 17% best features from a total of 140 showed
that it maintained the precision of the full feature set. Its result was better than
Relief [34] with the same number of features. However, domain knowledge or a
significant number of trials need to be done to choose appropriate values for the
parameters.

2.4 Particle Swarm Optimisation

PSO [10] is a population-based algorithm proposed by Kennedy and Eberhart
in 1995. In this section, we will describe the standard continuous PSO and its
variance, the bare-bone PSO [17].



Continuous PSO. PSO maintains a swarm of particles. These particles “fly”
from one position to another in the search space based on the information shared
by each other to find better solutions. The solution is represented in the posi-
tion which is a vector of D real numbers, where D is the dimensionality of the
problem. Each particle also has another vector of the same size called velocity
showing the speed and direction that the particle should move in each dimen-
sion. At each iteration, velocity and position of a particle are adjusted based on
the two best positions, one is the best position it has explored so far called pbest
and the other best is shared from its neighbours called gbest. Equations (4) and
(5) are used to update these vectors.

vt+1
id = w ∗ vtid + c1 ∗ r1i ∗ (ptid − xtid) + c2 ∗ r2i ∗ (ptgd − xtid) (4)

xt+1
id = xtid + vt+1

id (5)

where vtid and xtid are velocity and position of particle i in dimension d at time
t, respectively. pid and pgd are pbest and gbest positions in dimension d. c1
and c2 are acceleration constants, and r1 and r2 are random values uniformly
distributed in [0, 1]. These constants are important to control the behaviour of
the particle [16]. It determines the type of trajectory the particle travels. w is the
inertia weight controlling the impact of the last velocity to the current velocity.

Bare-bone PSO. From Equation (4) and (5), we can see that PSO operates
by sampling points on the search space. It uses discovered knowledge to guide
the search. The position updating reflects how particles select the next point to
explore in the search space. To investigate the trajectory of the particle swarm,
Kennedy [17] plotted all the points that were visited in one million iterations of
a standard PSO where pbest and gbest were set as constants. The obtained his-
togram is a tidy bell curve centered midway between these two best positions.
This observation suggests that the difference between these two best points,
pbest and gbest, is an important parameter for scaling the amplitude of parti-
cle’s trajectory. The step size for particles’ movement should be a function of
consensus between these two points. Therefore, Kennedy [17] proposed bare-
bone PSO (BBPSO) which uses a Gaussian sampling based on pbest and gbest
to update particle positions as follows:

xt+1
id =

{
N
(

pt
id+gt

id

2 , |ptid − gtid|
)
, rand() < 0.5

ptid, otherwise
(6)

In Equation (6), N (µ, σ) is a random number generator using Gaussian distri-
bution with the mean µ centered between pbest and gbest and the standard
deviation σ equal to the absolute difference between them. A probability rand()
is used to retain the previous best position pbest in order to speed up conver-
gence.

BBPSO eliminates the velocity component of the canonical PSO algorithm.
The advantages of this strategy is not only that PSO does not need to optimize
another D-dimensional vector (the velocity), but also there is no lag between
when an adaptation is needed and when it occurs.



Both PSO and BBPSO have been used for feature selection, which can be
seen from [1, 35, 18] (not detailed here due to the page limit). However, they have
not been used for feature discretisation or simultaneously feature discretisation
and feature selection, which could potentially improved the performance.

3 The Proposed Approach

This section describes the proposed approach for simultaneously feature discreti-
sation and feature selection. To achieve these two tasks, a key component needs
to be designed is the particle representation which represents a candidate solu-
tion for feature discretisation and selection, and also requires a new updating
mechanism.

PSO Representation. As a binary discretisation method, our method evolves
one cut-point for each feature. Therefore, a candidate solution, i.e. a particle’s
position, is encoded as a vector of length D, which is the number of original
features in the dataset. Each element in the vector represents a cut-point for
the corresponding feature. Therefore, each particle’s position is a vector of real
numbers (i.e. cut-points) whose values need to be in the range [Min..Max]
of the corresponding feature values. Fig. 1 shows an example of a particle’s
position. During the updating process of the algorithm, if the updated value of
a dimension corresponding to feature F is greater than MaxF , then it is set to
MaxF . Similarly, it is set to MinF if the updated value is smaller than MinF .

W���]�o�[��

Position

Min

Max

F1 F2 F3 F4 F5
« FD

5.5 -9.2 7.6 -8.5 6.9 « -9.3

10.2 20.5 12.7 4.5 50.1 « -1.6

7.2 10.4 12.7 -3.8 6.9 « -4.5

Not selected

Fig. 1. Particle representation of PSO-DFS.

To achieve feature discretisation, a feature’s original continuous values are
compared with the corresponding cut-point value in the particle’s position vec-
tor, then these continuous values are converted/discretised to either 0 or 1 de-
pending whether their continuous values are larger than the cut-point value or
not. To achieve feature selection, we consider a feature to be relevant to the
target concept if its discrete version has a better discriminating power indicated
by an improvement in the classification performance of the learning algorithm.
Therefore, if a feature is discretised to a single interval (i.e. all the original con-
tinuous values are converted to the same discrete value), which means that it
is useless in differentiating instances of different classes, it can be considered
irrelevant and should be discarded. In our method, if the cut-point of a feature
equals to its minimum or maximum value, it is discretised into one interval. For
example, in Fig. 1, Features F3 and F5 are not selected because the cut-point of
F3 equals to its maximum value and that of F5 equals to its minimum value.



To update the position, we proposed to use the updating mechanism of the
BBPSO instead of standard PSO that is usually used in PSO-based methods
for feature selection. In most existing PSO-based feature selection methods, the
PSO representation is a vector of real numbers whose values are all in the same
range [0, 1] representing the probability to select features. A feature is selected
if its probability is greater than a predefined threshold. Therefore, two evolved
probabilities, one is slightly greater than the threshold and the other is signif-
icantly greater than the threshold, have the same effect on the solution, which
may limit the performance of PSO for feature selection. In the new representa-
tion for feature discretisation and selection, a different evolved value leads to a
different discrete feature. Therefore, the search needs to be fine tuned so that
an appropriate value of cut-point can be found. Since BBPSO use a Gaussian
random generator to explore new positions between the pbest and the gbest, it
is likely to obtain this behaviour. The new position is sampled around the mean
of pbest and gbest with a standard deviation equal to the absolute difference
between them. Therefore, when the difference between these two bests is large,
the variance enables particles to explore new regions in the space. When they
are closer, the new position is limited to a smaller region around this mean.

PSO Initialisation. To speed up the evolutionary process, each particle’s ini-
tial position is a random feature subset with the size restricted to 50 for two-class
problems and 150 for multi-class problems. These values are taken as suggested
in previous studies [36]. For each randomly selected feature, its cut-point is ini-
tialised using the best binary cut-point calculated based on MDLP (see Section
2.2) [25]. For those features that are not selected in the initial candidate so-
lutions, their corresponding dimensions will be initialised to the corresponding
maximum values. In the initialisation procedure, information gain of the best
cut-point is used as a probability to choose features.

Fitness Function. The optimisation process is guided by the classification
accuracy. To evaluate a particle, its evolved cut-points are used to discretise fea-
tures in the training set. Features that are discretised into a single interval, which
means all instances have the same feature value, will be discarded. Classification
accuracy of the transformed training set is used to evaluate the performance
of the particle. By evaluating the cut-points of multiple features together, the
joint contribution of all cut-points is taken into account. Since many of these
datasets are unbalanced data, fitness values are calculated based on the balanced
classification accuracy [37] as follows:

fitness =
1

n

n∑
i=1

TPi

|Si|
(7)

where n is the number of classes of the problem, TPi is the number of correctly
identified instances in class i and |Si| is the total number of instances in class i.
Since there is no bias to any specific class, the weight here is set equally to 1/n.



The Overall Approach. Fig. 2 shows an overview of the proposed PSO ap-
proach to discretisation and feature selection in one stage. Fig. 3 shows the
two-stage approach (named PSO-FS) in which features are first discretised and
then selected. In both systems, the input dataset is first divided into a training
set and a test set. The training set is used to find the discretisation scheme as
well as select relevant features. Based on the output scheme, the training and
the test sets are transformed as inputs to the classification algorithm to evaluate
the performance of both methods. The pseudo-code of PSO-DFS is presented in
Algorithm 1.

Test the trained

Classifier

Training a

Classifier

Accuracy

Transform 

Data

New Training New Test

Training Set Test Set

Cut-points for 

Selected

Features

Data discretization and 

feature selection 

(PSO_DFS)

Fig. 2. Overview of the PSO-DFS system.

Disc. Training Disc. Test

Selected

Feature Subset

Test the trained

Classifier

Training a

Classifier

Accuracy

Feature selection 

(PSO)

Transform 

Data

New Training New Test

Training Set Test Set

Data discretisation

Cut-points for 

all features

Transform 

Data

Fig. 3. Overview of the PSO-FS system.

Algorithm 1: The pseudo code of PSO-DFS
Input : Training set with continuous data
Output: Cut-points for the selected features
begin

Calculate the best binary cut-point for each feature based on the MDLP principle [25];
Initialise particles;
while Maximum iterations or stopping criterion is not met do

for i = 1 to Population Size do
Pi ← Position of particle i;
Tri ← Transform training set based on Pi;
Fi ← Evaluate the accuracy of Tri using Eq. (7);
if Fi is better than pbest’s fitness then

Update pbest ;
end

end
Update gbest of the swarm;
for i = 1 to Population Size do

for j = 1 to Dimensionality do
Update dimension j of particle i’s position using BBPSO updating
mechanism as shown in Eq. (6) ;

end

end

end
Return cut-points for the selected features from gbest’s position;

end



Table 1. Datasets

Dataset #Features #Instances #Classes %Smallest class %Largest class
SRBCT 2,308 83 4 13 35
DLBCL 5,469 77 2 25 75
9Tumor 5,726 60 9 3 15
Leukemia 1 5,327 72 3 13 53
Brain Tumor 1 5,920 90 5 4 67
Leukemia 2 11,225 72 3 28 39
Brain Tumor 2 10,367 50 4 14 30
Prostate 10,509 102 2 49 51
Lung Cancer 12,600 203 5 3 68
11Tumor 12,533 174 11 4 16

4 Experiment Design
Datasets. Ten gene expression datasets with thousands of features are used
to examine the performance of the proposed method on high-dimensional data.
These datasets are publicly available on http://www.gems-system.org. Details
about these datasets are shown in Table 1.

Baseline Methods. To test the effectiveness of PSO-DFS in data discretisation
and feature selection, we compared the classification performance using the PSO-
DFS transformed data and the original dataset. To see if combining both feature
discretisation and feature selection in a single stage achieves better results than
applying them in two stages, we also compared PSO-DFS with using PSO for
feature selection on the discretised data i.e. the two-stage method (PSO-FS). In
PSO-FS, data is first discretised by MDLP [25], then, PSO runs on the discrete
data to find the best feature subset.

Parameter Settings and Termination Criteria. Table 2 shows the param-
eter settings used in the experiments for both PSO-FS and PSO-DFS. Because
the numbers of features in the datasets are quite different, ranging from about
two thousand to twelve thousand, the search spaces of these problems are very
different. As a result, we set the population size proportional to the number of
original features, i.e. pop size = #features/20. However, due to the limitation
of computer memory, this number is restricted to 300. The stopping criterion is
either PSO reached a maximum iteration of 70 or the gbest does not improved
after 10 iterations.

Table 2. Parameters for PSO

Parameters Settings
Population Size #features/20 (restriction to 300)
Maximum iterations 70
Stopping criterion gbest not improved for 10 iterations
Communication topology Fully connected

Experiment Configuration. Since PSO-DFS is proposed as a wrapper method,
classification performance of a specific classification algorithm will be used as a
measure to evaluate the particles. In this study, we use k-nearest neighbour
(KNN) with k=1 as it is simple, non-parametric and used in previous papers on
these datasets [38, 4].

Due to the small numbers of instances in these datasets, two loops of cross
validation (CV) are used to avoid feature selection bias as suggested in [5]. The



outer loop uses a stratified 10-fold CV on the whole dataset. One fold is kept as
the unseen data to evaluate the performance of each method, and the remaining
9 folds are used to form the training set for feature discretisation and feature
selection. In the fitness function, an inner loop of 10-fold CV on the training set
is used to evaluate the evolved solution of each particle during the evolutionary
process.

Since PSO is a stochastic method, 30 independent runs are executed with
different random seeds for each method. Therefore, a totally 300 runs (30 runs
x 10 fold CV) are executed for each method on each dataset. Experiment runs
on PC with Intel Core i7-4770 CPU @ 3.4GHz, running Ubuntu 4.6 and Java
1.7 with a total memory of 8GB. The results of 30 runs from each method are
compared using Wilcoxon test, a pair-wise statistical significance test, with the
significance level 0.05.

Table 3. KNN average results over the 30 independent runs.

Dataset Method Size Best Mean±Std Sig. Test

SRBCT
Full 2,308 87.08 -
PSO-FS 150.00 97.50 91.31 ± 2.71 -
PSO-DFS 137.25 100.00 96.89 ± 1.64

DLBCL
Full 5,469 83.00 -
PSO-FS 101.84 96.67 80.03 ± 6.13 -
PSO-DFS 42.75 94.17 85.18 ± 5.46

9Tumor
Full 5,726 36.67 -
PSO-FS 954.99 55.00 45.95 ± 4.93 -
PSO-DFS 138.54 65.00 58.22 ± 3.12

Leuk1
Full 5,327 79.72 -
PSO-FS 150.00 92.22 81.60 ± 4.72 -
PSO-DFS 135.92 95.56 93.37 ± 1.83

Brain1
Full 5,920 72.08 =
PSO-FS 317.34 78.75 71.00 ± 3.06 -
PSO-DFS 150.73 79.17 72.79 ± 3.48

Leuk2
Full 11,225 89.44 =
PSO-FS 150.00 93.89 86.11 ± 3.97 -
PSO-DFS 139.94 94.44 89.93 ± 2.79

Brain2
Full 10,367 62.50 -
PSO-FS 417.92 82.08 69.11 ± 5.89 =
PSO-DFS 152.78 83.75 70.76 ± 5.30

Prostate
Full 10,509 85.33 +
PSO-FS 777.39 90.33 85.20 ± 2.35 =
PSO-DFS 54.93 90.33 83.74 ± 3.55

Lung
Full 12,600 78.05 -
PSO-FS 686.23 85.73 81.72 ± 2.08 =
PSO-DFS 150.80 85.58 80.60 ± 2.42

11Tumor
Full 12,533 71.42 -
PSO-FS 1,638.84 86.07 82.62 ± 1.70 +
PSO-DFS 149.93 83.68 79.29 ± 2.11

5 Results and Discussions

Table 3 shows the experimental results of PSO-FS and PSO-DFS. “Full” means
KNN using the original full set of continuous features. “Size” shows the aver-
age number of features selected by each method over the 30 runs. The best,
the average and the standard deviation of the test accuracies achieved by each
method on each dataset are displayed in the fourth and the fifth columns. The
test accuracy is calculated using Equation (7). The smallest subset size and the



best classification accuracy in each dataset are bold. The last column displays
the statistical Wilcoxon significance test results of the corresponding method
over the proposed method. “+” or “–” means the result is significantly better
or worse than the proposed method and “=” means they are similar in the
Wilcoxon tests. In other words, the more “–”, the better the proposed method.

5.1 PSO-DFS versus Full

According to Table 3, the average number of features selected by PSO-DFS is
always the smallest and significantly smaller than the total number of features.
Less than 1% of total number of features is selected in Prostate and DLBCL,
1% to 3% in other seven datasets and 6% in SRBCT.

With the discretised and selected features, the classification performance is
significantly improved over using all continuous features. An increase of more
than 7% in accuracy is achieved on five out of ten datasets and the highest
improvement is 22% on 9Tumor. PSO-DFS obtains a similar accuracy as using
original features on Brain1 and Leuk2 and 2% lower accuracy on Prostate with
much smaller feature subsets (on average 54.93 features from 10,509 features).
However, the best accuracies of PSO-DFS on these three datasets are still 7%,
5% and 5% higher than using all features, respectively.

The results indicate that PSO-DFS can simultaneously discretise and select
relevant features so that the discriminating power of the feature set is either
significantly improved or maintained with a much smaller number of features.

5.2 PSO-DFS versus PSO-FS

It can be observed in Table 3 that PSO-DFS always selects a much smaller
number of features than PSO-FS. With the transformed features, PSO-DFS
outperforms PSO-FS on six datasets with the highest improvement of about 12%
in accuracy on 9Tumor and Leuk1. While PSO-FS degrades the performance of
KNN on DLBCL, PSO-DFS still attains a better performance than using the
original feature set on this dataset with only half of the number of features. In
general, PSO-DFS obtains the highest average accuracy in seven datasets.

The biggest difference between these two methods can be seen in the 9Tumor
dataset. While PSO-FS selects 955 features to achieve an improvement of 9% in
classification accuracy, PSO-DFS improves 22% accuracy with only 139 features.
A similar pattern can be seen in the first six datasets. In Brain2, Prostate and
Lung, both methods obtain a similar accuracy. However, PSO-DFS selects less
than half of the number of features selected by PSO-FS. In Prostate and Lung,
PSO-DFS selects only 54 and 150 features on average compared to 777 and 686
features selected by PSO-FS. In 11Tumor, PSO-DFS attains 3% lower accuracy
than PSO-FS with only 149 features while PSO-FS selects more than 1,600
features.

5.3 Further Analysis

To further analyse the performance of PSO-FS and PSO-DFS, we look at the
training accuracy or fitness values of the returned solutions in the ten datasets.



Table 4. Fitness of the best solutions obtained by PSOFS and PSO-DFS.

Dataset Method Fitness Dataset Method Fitness

SRBCT
PSO-FS 100.00 ± 0.00

Leuk2
PSO-FS 100.00 ± 0.00

PSO-DFS 100.00 ± 0.00 PSO-DFS 100.00 ± 0.00

DLBCL
PSO-FS 100.00 ± 0.00

Brain2
PSO-FS 99.73 ± 0.12

PSO-DFS 100.00 ± 0.00 PSO-DFS 98.38 ± 0.27

9Tumor
PSO-FS 97.49 ± 0.23

Prostate
PSO-FS 98.89 ± 0.10

PSO-DFS 95.03 ± 0.22 PSO-DFS 98.56 ± 0.14

Leuk1
PSO-FS 100.00 ± 0.00

Lung
PSO-FS 97.77 ± 0.05

PSO-DFS 100.00 ± 0.00 PSO-DFS 97.10 ± 0.14

Brain1
PSO-FS 100.00 ± 0.00

11Tumor
PSO-FS 99.80 ± 0.08

PSO-DFS 99.33 ± 0.29 PSO-DFS 96.21 ± 0.19

Table 4 shows the average fitness of the best solutions and its standard deviation
obtained by both methods in the 30 runs.

It can be seen from the obtained fitness that both methods have converged
to the optimal solutions in all runs on 4 datasets, namely SRBCT, DLBCL,
Leuk1, and Leuk2. However, as seen in Table 3, PSO-DFS achieves significantly
better test accuracy on these four datasets than PSO-FS. This indicates that
the solutions evolved by PSO-DFS generalise better to unseen data than those
of PSO-FS.

In the other six datasets, neither of the two methods achieves the optimal
solutions for the training data. Since both methods stop running if gbest fitness
does not improve after 10 iterations, they may need a better stopping criteria or a
more effective mechanism to jump out of these local optima. In these problems,
PSO-DFS obtains a slightly lower fitness with a much smaller feature subset
than PSO-FS. The big difference between PSO-DFS and PSO-FS feature set
sizes in these cases indicates that PSO-DFS might need to select more features
to achieve a better performance.

Comparing the test accuracy in Table 3 and the training accuracy (or fitness)
in Table 4, we can see that there is a big gap between these accuracies in most
cases with the biggest difference in 9Tumor. This indicates that overfitting has
occurred with different levels of effect in different datasets. The reason of this
phenomenon is that the features’ distribution in these datasets is very skew.
Therefore, the training and test sets may have different distributions. The model
learned from training data may not be generalised to the test data. This effect is
worse in datasets with a small number of instances. Therefore, with only 50 and
60 instances, Brain2 and 9Tumor are the most affected cases. In addition, the
class imbalance issue in these datasets also makes them challenging problems.
With 9 classes, 9Tumor has worse results than Brain2 which has 4 classes.

In general, the results show that the proposed approach of combining data
discretisation and feature selection in one stage performs better than separate
these two steps in different stages. PSO-DFS can create a more compact and
better discriminating representation for data than PSO-FS. This confirms our
hypothesis that individually discretising features in the first stage of PSO-FS
may lose important information including feature interaction. Since PSO-DFS
evaluates the cut-points of all features simultaneously, such information is taken
into account.



Table 5. Computation time (in minutes) of PSOFS and PSO-DFS.

Dataset Method Time Dataset Method Time

SRBCT
PSO-FS 1.14

Leuk2
PSO-FS 7.85

PSO-DFS 1.60 PSO-DFS 4.95

DLBCL
PSO-FS 3.69

Brain2
PSO-FS 6.95

PSO-DFS 2.04 PSO-DFS 2.95

9Tumor
PSO-FS 16.74

Prostate
PSO-FS 30.23

PSO-DFS 5.09 PSO-DFS 4.29

Leuk1
PSO-FS 3.01

Lung
PSO-FS 129.20

PSO-DFS 3.61 PSO-DFS 17.01

Brain1
PSO-FS 10.14

11Tumor
PSO-FS 192.11

PSO-DFS 5.09 PSO-DFS 13.00

5.4 Computation Time

The average time in minutes to complete one run for PSO-FS and PSO-DFS is
shown in Table 5. Using wrapper approach, both methods use the classification
accuracy of KNN classifier running with 10-fold CV on the training data to guide
the search. It is noticed that while PSO-FS only needs to transform the training
set based on the selected features, PSO-DFS has to do both discretisation and
selection in every particle’s evaluation process. Therefore, its running time was
expected to be higher than PSO-FS. However, the observation from Table 5
reflects an opposite trend. Compared to PSO-FS, PSO-DFS has a lower running
time on eight datasets. PSO-DFS spends less than half of the running time used
by PSO-FS on most datasets with only about one tenth on Lung and 11Tumor.
A detailed inspection of the evolutionary process revealed that this is because
PSO-DFS selected a significant smaller number of features than PSO-FS.

6 Conclusions and Future Work

This paper proposes a new PSO-based method for feature discretisation and
feature selection in a single stage. To achieve feature discretisation, a new PSO
encoding scheme is proposed to evolve cut-points for multiple features simultane-
ously. Feature selection is accomplished by removing features that are discretised
into only one interval. PSO-DFS is tested and compared with the two-stage ap-
proach, PSO-FS, in which features are individually discretised and then selected.

Experimental results on ten high-dimensional datasets show that PSO-DFS
can effectively discretise multiple features to significantly improve or maintain
the classification performance on most cases. Through discretisation, a much
smaller number of relevant features is selected at the same time. Comparison
between PSO-FS and PSO-DFS shows that conducting feature discretisation
and feature selection in a single stage is more effective than applying these
techniques in two different stages.

Although PSO-DFS obtained better solutions than PSO-FS for preprocessing
data, it may still get stuck in local optima. Overcoming this problem enables
PSO-DFS to achieve even better solutions. Multiple interval discretisation is
another promising direction to investigate. Our future work will focus on these
directions.
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