This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Particle Swarm Optimization for Feature Selection in
Classification: A Multi-Objective Approach

Bing Xue, Member, IEEE, Mengjie Zhang, Senior Member, IEEE, and Will N. Browne

Abstract—Classification problems often have a large number
of features in the data sets, but not all of them are useful for
classification. Irrelevant and redundant features may even re-
duce the performance. Feature selection aims to choose a small
number of relevant features to achieve similar or even better
classification performance than using all features. It has two main
conflicting objectives of maximizing the classification performance
and minimizing the number of features. However, most existing
feature selection algorithms treat the task as a single objective
problem. This paper presents the first study on multi-objective
particle swarm optimization (PSO) for feature selection. The
task is to generate a Pareto front of nondominated solutions
(feature subsets). We investigate two PSO-based multi-objective
feature selection algorithms. The first algorithm introduces the
idea of nondominated sorting into PSO to address feature selection
problems. The second algorithm applies the ideas of crowding,
mutation, and dominance to PSO to search for the Pareto front
solutions. The two multi-objective algorithms are compared with
two conventional feature selection methods, a single objective fea-
ture selection method, a two-stage feature selection algorithm, and
three well-known evolutionary multi-objective algorithms on 12
benchmark data sets. The experimental results show that the two
PSO-based multi-objective algorithms can automatically evolve a
set of nondominated solutions. The first algorithm outperforms the
two conventional methods, the single objective method, and the
two-stage algorithm. It achieves comparable results with the exist-
ing three well-known multi-objective algorithms in most cases. The
second algorithm achieves better results than the first algorithm
and all other methods mentioned previously.

Index Terms—Feature selection, multi-objective optimization,
particle swarm optimization (PSO).

I. INTRODUCTION

LASSIFICATION is an important task in machine learn-

ing and data mining, which aims to classify each instance
in the data set into different groups based on the information de-
scribed by its features. Without prior knowledge, it is difficult to
determine which features are useful. As a result, a large number
of features are usually introduced to the data set, which include
relevant, irrelevant, and redundant features. However, irrelevant
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and redundant features are not useful for classification, and
they may even reduce the classification performance due to the
large search space known as “the curse of dimensionality” [1].
Feature selection can address this problem by selecting only
relevant features for classification. By eliminating/reducing
irrelevant and redundant features, feature selection could reduce
the number of features, shorten the training time, simplify the
learned classifiers, and/or improve the classification perfor-
mance [2], [3].

Feature selection is a difficult task because there can be
complex interaction among features. An individually relevant
(redundant or irrelevant) feature may become redundant (rel-
evant) when working together with other features. Therefore,
an optimal feature subset should be a group of complementary
features that span over the diverse properties of the classes
to properly discriminate them. The feature selection task is
challenging also because of the large search space. The size
of the search space increases exponentially with respect to the
number of available features in the data set [4]. Therefore, an
exhaustive search is practically impossible in most situations.
In order to solve this problem, a variety of search methods
have been applied to feature selection, such as greedy search
based sequential forward selection (SFS) [5] and sequential
backward selection (SBS) [6]. However, these feature selection
approaches still suffer from a variety of problems, such as
stagnation in local optima and high computational cost.

In order to better address feature selection problems, an
efficient global search technique is needed. Evolutionary com-
putation (EC) techniques are well known for their global search
ability. Particle swarm optimization (PSO) [7], [8] is arelatively
recent EC technique based on swarm intelligence. Compared
with other EC algorithms such as genetic algorithms (GAs)
and genetic programming (GP), PSO is computationally less
expensive and can converge more quickly. Therefore, PSO has
been used as an effective technique in many fields, including
feature selection [3], [9], [10].

Generally, feature selection is a multi-objective problem. It
has two main objectives, which are to maximize the classi-
fication performance (minimize the classification error rate)
and to minimize the number of features. These two objectives
are usually conflicting, and the optimal decision needs to be
made in the presence of a tradeoff between them. Treating
feature selection as a multi-objective problem can obtain a set
of nondominated feature subsets to meet different requirements
in real-world applications. Although PSO, multi-objective opti-
mization, and feature selection have been individually investi-
gated frequently, there are very few studies on multi-objective
feature selection. Meanwhile, existing feature selection
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algorithms suffer from the problems of high computational cost,
and PSO is argued computationally less expensive than other
EC techniques. In addition, the use of PSO for multi-objective
feature selection has not been investigated.

This paper represents the first time that PSO has been
applied to multi-objective feature selection. This will require
novel methods to be introduced as there is no longer a single
basis global solution but a set of solutions to meet different
requirements.

A. Goals

The overall goal of this paper is to develop a PSO-based
multi-objective feature selection approach to classification with
the expectation of achieving a Pareto front of nondominated
solutions, which include a small number of features and achieve
a lower classification error rate than using all available features.
In order to achieve this goal, we investigate two Pareto front
feature selection algorithms based on multi-objective PSO,
which are NSPSOFS using the idea of nondominated sorting
and CMDPSOFS using the ideas of crowding, mutation, and
dominance. The two feature selection algorithms will be ex-
amined and compared with two traditional methods, a sin-
gle objective algorithm, a two-stage training algorithm, and
three well-known evolutionary multi-objective algorithms on
12 benchmark data sets with different numbers of features,
classes, and instances (details are shown in Section I'V). Specif-
ically, we will investigate the following:

1) whether using a standard single objective PSO with the
overall classification error rate as the fitness function can
select a good feature subset and achieve similar or even
better classification performance than using all features,
and can outperform the two traditional methods;

2) whether the PSO-based two-stage training algorithm can
further improve the feature subset evolved by the afore-
mentioned PSO-based single objective algorithm;

3) whether NSPSOFS can evolve a Pareto front of non-
dominated solutions, which can outperform the two con-
ventional methods, the single objective algorithm, the
two-stage algorithm, and three well-known multi-
objective algorithms;

4) whether CMDPSOEFS can evolve a better Pareto front
than NSPSOFS and outperform all other methods men-
tioned previously.

The scope of this paper is continuous (standard) PSO rather
than binary PSO [11]. Although both versions of PSO have
been successfully applied to single objective feature selection
[31, [9], [10], [12], [13], binary PSO has potential limitations,
such as the position of a particle in binary PSO is updated solely
based on the velocity while the position in standard PSO is
updated based on both the velocity and current position [14].
Therefore, as the first work on multi-objective PSO for feature
selection, we will start with developing a multi-objective fea-
ture selection approach using continuous PSO.

B. Organization

The remainder of this paper is organized as follows.
Section II provides background information. Section III de-
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scribes the PSO-based multi-objective feature selection al-
gorithms. Section IV describes the experimental design, and
Section V presents the experimental results with discussions.
Section VI provides the conclusion and future work.

II. BACKGROUND

This section provides background about PSO and multi-
objective optimization and also reviews typical related work on
feature selection.

A. PSO

PSO is an EC technique proposed by Kennedy and Eberhart
in 1995 [7], [8]. PSO is motivated by social behaviors such as
bird flocking and fish schooling. The underlying phenomenon
of PSO is that knowledge is optimized by social interaction
in the population where thinking is not only personal but also
social.

PSO is based on the principle that each solution can be
represented as a particle in the swarm. Each particle has a
position in the search space, which is represented by a vector
x; = (w41, Tio, - .., xip), Where D is the dimensionality of the
search space. Particles move in the search space to search for
the optimal solutions. Therefore, each particle has a velocity,
which is represented as v; = (v;1,v;2,...,v;p). During the
movement, each particle updates its position and velocity ac-
cording to its own experience and that of its neighbors. The best
previous position of the particle is recorded as the personal best
pbest, and the best position obtained by the population thus far
is called gbest. Based on pbest and gbest, PSO searches for the
optimal solutions by updating the velocity and the position of
each particle according to the following equations:

t+1_ t t+1
Uij =Wk Vg Cp kT K (pid - %‘d) + co k1o % (pgd — mid)
(2)

where ¢ represents the tth iteration in the evolutionary process.
d € D represents the dth dimension in the search space. w is
inertia weight, which is to control the impact of the previous
velocities on the current velocity. ¢; and co are acceleration
constants. r; and ro are random values uniformly distributed
in [0, 1]. p;q and pyq denote the elements of pbest and gbest in
the dth dimension. The velocity is limited by a predefined maxi-
mum velocity, vy, and vfjl € [—Vmaxs Umax)- The algorithm
stops when a predefined criterion is met, which could be a good
fitness value or a predefined maximum number of iterations.

B. Multi-Objective Optimization

Multi-objective problems happen wherever optimal decisions
need to be taken in the presence of tradeoffs between two
or more conflicting objectives. Multi-objective optimization
involves minimizing or maximizing multiple conflicting ob-
jective functions. In mathematical terms, the formulas of a
minimization problem with multiple objective functions can be
written as follows:

minimize

F(x) = [fi(z), f2(2), ..., fu(z)] 3)
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Fig. 1. Minimization problem with two objective functions.
subject to
gi(2) <0,i=1,2,...m %)
hi(z) =0, i=1,2,...1 (5)

where z is the vector of decision variables, f; () is a function of
x, k is the number of objective functions to be minimized, and
gi(x) and h;(x) are the constraint functions of the problem.

In multi-objective optimization, the quality of a solution is
explained in terms of tradeoffs between conflicting objectives.
Let y and z be two solutions of the aforementioned k-objective
minimization problem. If the following conditions are met, one
can say that y dominates z or y is better than z:

Vi: fi(y) < fi(z) and Fj: fi(y) < fi(2) (6)

where i,j € {1,2,3,...k}.

Take a two-objective minimization problem (shown in Fig. 1)
as an example; x; dominates both xo and x3. For the case
that neither x5 dominates x3 nor x3 dominates x5, x5 and x3
are called nondominated solutions or tradeoft solutions of each
other. When a solution is not dominated by any other solutions,
it is referred to as a Pareto-optimal solution. The set of all
Pareto-optimal solutions forms the tradeoff surface in the search
space, the Pareto front. A multi-objective algorithm is designed
to search for a set of nondominated solutions.

Feature selection has two main conflicting objectives, which
are minimizing both the number of features and the classifica-
tion error rate. Therefore, feature selection can be expressed as
a two-objective minimization problem.

C. Related Work on Feature Selection

Existing feature selection algorithms can be broadly clas-
sified into two categories: wrapper approaches and filter ap-
proaches. Wrapper approaches include a learning/classification
algorithm in the evaluation procedure, while filter approaches
do not. Filter approaches are argued to be computationally less
expensive and more general, while wrapper approaches can
usually achieve better results [15]. A number of feature selec-
tion algorithms have been proposed in recent years [2]. Typical
feature selection algorithms are reviewed in this section.

1) Traditional Feature Selection Approaches: Two com-
monly used wrapper feature selection methods are SFS [5] and

SBS [6]. SES (SBS) starts with no features (all features); then,
candidate features are sequentially added to (removed from) the
initial feature subset until the further addition (removal) does
not increase the classification performance. The limitation of
these two methods is that, once a feature is selected (elimi-
nated), it cannot be eliminated (selected) later, which is the
so-called nesting effect [16]. This limitation can be overcome
by combining both SFS and SBS into one algorithm. There-
fore, the “plus-I/-take away-r”" method is proposed by Stearns
[17]. “plus-I-take away-r”" performs [ times forward selection,
followed by r times backward elimination. The challenge is
to determine the optimal values of (I, r). To address this chal-
lenge, two floating feature selection algorithms are proposed by
Pudil et al. [18], namely, sequential forward floating selection
(SFFS) and sequential backward floating selection (SBFS).
SFFS and SBFS are developed to automatically determine the
values for (I,7). These two floating methods are regarded to
be at least as good as the best sequential method, but they also
suffer from the problem of stagnation in local optima [16].

The Relief algorithm [19] is a classical filter feature selection
algorithm. Relief assigns a weight to each feature to denote the
relevance of the feature to the target concept. However, Relief
does not deal with redundant features because it attempts to
find all relevant features regardless of the redundancy between
them. Decision trees (DTs) use only relevant features that are
required to completely classify the training set and remove all
other features. Cardie [20] proposes a filter feature selection
algorithm that uses a DT algorithm to select a subset of features
for a nearest neighbor algorithm. The FOCUS algorithm [21],
a filter algorithm, exhaustively examines all possible feature
subsets and then selects the smallest feature subset. However,
the FOCUS algorithm is computationally inefficient because of
the exhaustive search.

2) EC Algorithms (Non-PSO) for Feature Selection: Re-
cently, EC techniques have been applied to address feature se-
lection problems, such as GAs, GP, and ant colony optimization
(ACO). This section briefly reviews some typical work in the
literature.

Based on GAs, Chakraborty [22] proposes a feature selection
algorithm using a fuzzy set based fitness function. However,
PSO with the same fitness function in [23] achieves better
performance than this GA-based algorithm. Hamdani et al.
[24] develop a multi-objective feature selection algorithm using
nondominated sorting-based multi-objective GA II (NSGAII),
but the performance of the proposed algorithm has not been
compared with any other feature selection algorithms. Based
on NSGAII and rough set theory, Banerjee ef al. [25] propose
a feature selection method for microarray gene expression data.
An initial redundancy reduction of the features is conducted
to enable faster convergence and reduce the computational
complexity. Although experiments show the effectiveness of the
proposed algorithm, only using three data sets is not convincing
enough, and the results are achieved in a very long evolutionary
process (around 15 000 generations with 100 individuals).

Zhu et al. [26] propose a hybrid wrapper and filter feature
selection algorithm (WFFSA) based on a memetic algorithm,
i.e., acombination of GA and local search. In WFFSA, GA adds
or deletes a feature based on the ranked individual features.
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Three different local search strategies, namely, improvement
first strategy, greedy strategy, and sequential strategy, are in-
vestigated in WFFSA. Experiments show that WFFSA outper-
forms GA and other methods. This paper also shows that a good
balance between local search and genetic search can improve
the search quality and efficiency of WFFSA.

Muni et al. [27] develop a multitree GP algorithm for
feature selection (GPmtfs) to simultaneously select a feature
subset and design a classifier using the selected features. For
a c-class problem, each classifier in GPmtfs has c trees. Two
new crossover operators, namely, homogeneous crossover
and heterogeneous crossover, are introduced into GPmitfs.
Comparisons suggest that GPmtfs achieves better results than
SFS, SBS, and other methods. However, the number of features
selected increases when there are (synthetically added) noisy
features. Kourosh and Zhang [28] propose a GP relevance
measure (GPRM) to evaluate and rank subsets of features in
binary classification tasks, and GPRM is also efficient in terms
of feature selection. There are also some other GP-related
works, which can be seen in [29]-[33].

Gao et al. [34] propose an ACO-based wrapper feature
selection algorithm to network intrusion detection. Fisher dis-
crimination rate is adopted as the heuristic information for
ACO. Ming [35] proposes a feature selection method based
on ACO and rough set theory. The proposed algorithm starts
with the features included in the core of the rough set. Forward
selection is adopted into the proposed method to search for the
best feature subset. Experimental results show that the proposed
algorithm achieves better classification performance with fewer
features than a C4.5-based feature selection algorithm. How-
ever, experiments do not compare the proposed method with
other commonly used feature selection algorithms.

3) PSO-Based Feature Selection Approaches: As an EC
technique, PSO has recently gained more attention for solving
feature selection problems.

Since rough set can handle imprecision, uncertainty, and
vagueness, Wang et al. [36] propose a filter feature selection
algorithm based on an improved binary PSO and rough set
theory. The goodness of a particle is assigned as the dependence
degree between class labels and selected features, which is
measured by rough set. This paper also shows that the com-
putation of the rough set consumes most of the running time,
which is a drawback when using rough set theory in feature
selection problems. Fuzzy set can also show the dependence
between features and class labels. Chakraborty [23] compares
the performance of PSO with that of a GA in a filter feature
selection algorithm with a fuzzy set based fitness function. The
results show that PSO performs better than GA in terms of the
classification performance.

Azevedo et al. [37] propose a wrapper feature selection
algorithm using PSO and a support vector machine (SVM) for
personal identification in keystroke dynamics systems. How-
ever, the proposed algorithm obtains a relatively high false
acceptance rate, which should be low in most identification sys-
tems. Later, Lin et al. [38] propose a wrapper feature selection
algorithm (PSO+SVM) using PSO and SVM. The difference
from the method in [37] is that PSO+SVM could optimize
the parameters in SVM and search for the best feature subset
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simultaneously. Huang and Dun [13] also propose a similar
feature selection method but using two versions of PSO. Binary
PSO is used to search for the optimal feature subset, and con-
tinuous PSO is used to simultaneously optimize the parameters
in the kernel function of SVM. Mohemmed e al. [10] propose
a hybrid method (PSOAdaBoost) that incorporates PSO with an
AdaBoost framework for face detection. PSOAdaBoost aims to
search for the best feature subset and determine the decision
thresholds of AdaBoost simultaneously, which speeds up the
training process and increases the accuracy of weak classifiers
in AdaBoost.

The performance of PSO could be improved by properly
setting the value of inertia weight to balance its local search
and global search. Yang et al. [39] propose two feature selection
algorithms, which are based on two inertia weight strategies to
properly balance the local search and global search of PSO. The
two proposed algorithms outperform other algorithms, such
as SFS, “plus-I-take away-r,” SFFS, a sequential GA, and
different hybrid GAs.

In standard PSO, gbest is updated only when a better solution
is found. Chuang et al. [12] develop a strategy for gbest in PSO
for feature selection in which gbest will be reset to zero if it
maintains the same value after several iterations. Chuang et al.
[40] apply the so-called catfish effect to PSO for feature se-
lection, which is to introduce new particles into the swarm by
initializing the worst particles when gbest has not improved
for a number of iterations. The introduced catfish particles
could help PSO avoid premature convergence and lead to better
results than sequential GA, SFS, SFFS, and other methods.

Liu et al. [9] introduce a multiswarm PSO algorithm
to search for the optimal feature subset and optimize the
parameters of SVM simultaneously. Experiments show that
the proposed feature selection method could achieve higher
classification accuracy than grid search, standard PSO, and
GA. However, the proposed algorithm is computationally
more expensive than the other three methods because of the
large population size and complicated communication rules
between different subswarms. Hamed et al. [41] propose a
dynamic quantum-inspired PSO algorithm (DQiPSO) for single
objective feature selection and parameter optimization in neural
networks for classification. DQiPSO has two parts, where, in
the first part, the quantum information principle is embedded in
PSO as a mechanism for feature probability calculation and, in
the second part, the standard PSO with real-number encoding
is used to optimize the parameters. Experimental results show
that the proposed DQiPSO can simultaneously select a good
feature subset and optimize the parameters in an artificial
neural network. Compared with other two methods (PSO
with quantum information principle and standard PSO), the
proposed DQIiPSO is faster and achieves better classification
performance.

Based on PSO, Unler and Murat [3] propose a feature selec-
tion algorithm with an adaptive selection strategy, where a fea-
ture is chosen not only according to the likelihood calculated by
PSO but also to its contribution to the features already selected.
Experiments suggest that the proposed method outperforms
the tabu search and scatter search algorithms. Esseghir ef al.
[42] propose a filter—wrapper feature selection method based
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on PSO, which aims to integrate the strengths of both filters
and wrappers. The proposed filter—wrapper scheme encodes the
position of each particle with filter scores of features to reflect
feature-class dependence levels. The fitness of each particle is
the classification accuracy achieved by the selected features.
Experimental results show that the proposed method could
achieve slightly better performance than a binary PSO-based
filter algorithm. However, the performance of the proposed
algorithm has not been compared with that of a wrapper ap-
proach, which usually can achieve better results than a filter
approach. Our recent work on PSO for feature selection and
dimension reduction can be seen in [43]-[46].

A variety of feature selection approaches have been pro-
posed, but most of them aim to minimize the classification error
rate only, and not much work has been conducted for solving a
feature selection task as a multi-objective problem. Although
Hamdani er al. [24] develop a NSGAII-based multi-objective
algorithm, there are no comparisons to test its performance.
Many studies have shown that PSO is an efficient search
technique for feature selection, but the use of PSO for multi-
objective feature selection has not been investigated. Therefore,
the development of multi-objective PSO as the basis for feature
selection is still an open issue.

III. MULTI-OBJECTIVE APPROACHES

In this section, a commonly used PSO-based single objective
feature selection algorithm and a PSO-based two-stage training
feature selection algorithm [46] are firstly described, which are
used as the baseline to test the performance of multi-objective
algorithms. Then, we develop two multi-objective feature selec-
tion algorithms using PSO, with the goals of selecting a smaller
number of features and achieving a lower classification error
rate.

A. Two Existing PSO-Based Feature Selection Algorithms

1) Commonly Used PSO Algorithm (ErFS): PSO has been
used as a single objective technique to minimize the classifica-
tion error rate only [12], [38], [40]. This algorithm is considered
in this paper to see whether PSO can function well for feature
selection. The fitness function is shown in (7), which is to
minimize the classification error rate obtained by the selected
features during the evolutionary training process

FP+ FN

F,=E te = 7
1= Brrorfate = mp——n e iy (D

where TP, TN, FP, and FN stand for true positives, true nega-
tives, false positives, and false negatives, respectively.

The representation of a particle in PSO is a vector of n real
numbers, where n is the number of available features in the data
set and also the dimensionality of the search space. A threshold
0 is needed to compare with the value (x,4) in the position
vector. If x;4 > 0, feature d is selected; otherwise, feature d is
not selected. This representation is used in all of the PSO-based
algorithms in this paper.

2) PSO With a Two-Stage Fitness Function (2SFS): The ba-
sic fitness function (7) only considers the classification perfor-

mance and does not intend to minimize the number of features.
Therefore, the feature subset evolved by PSO may still have
redundant features, and the same classification performance can
be achieved by a smaller number of features. In order to address
this problem, a two-stage feature selection approach (2SFS)
was proposed [46].

In 2SFS, the whole evolutionary process is divided into two
stages. In the first stage, the fitness function is to minimize the
classification error rate only. In the second stage, the number
of features is taken into account in the fitness function. The
second stage starts with the solutions achieved in the first stage,
which is expected to ensure that the minimization of the number
of features is based on the achieved feature subsets with high
classification performance. The fitness function used in 2SFS is
shown in

F2 - # Features ErrorRate
¥ T Features + (1 — @) x ZHEEHEE, Stage 2
8)

where « is a constant value and « € [0, 1]. #Features stands
for the number of features selected. # All Features represents
the total number of available features. ErrorRate is the clas-
sification error rate obtained by the selected feature subset. £'R
is the error rate obtained by using all available features for
classification on the training set.

In the second stage, both the number of features and the clas-
sification performance are considered in the two-stage fitness
function (8), where a shows the relative importance of the num-
ber of features and (1 — «) shows the relative importance of the
classification performance. As the classification performance
is assumed to be more important than the number of features,
« is set to be smaller than (1 — «). For fair comparisons, the
standard (continuous) PSO is used in 2SFS in this paper while
binary PSO is used in [46].

B { ErrorRate, Stage 1

B. PSO-Based Multi-Objective Feature Selection Algorithm 1:
NSPSOFS

In this section, we investigate a new approach to feature
selection using multi-objective PSO, with the two main objec-
tives to explore the Pareto front of feature subsets. However,
standard PSO was originally proposed for single objective
optimization and could not directly be used to address multi-
objective problems. In order to investigate a PSO-based multi-
objective (Pareto front) feature selection algorithm, one of the
most important tasks is to determine a good leader (gbest) for
each particle from a set of potential nondominated solutions.
NSGAII is one of the most popular evolutionary multi-objective
techniques [47]. Li [48] introduces the idea of NSGAII into
PSO to develop a multi-objective PSO algorithm and achieves
promising results on benchmark function optimization. How-
ever, this algorithm has never been applied to feature selection
problems. In this paper, we investigate a PSO-based multi-
objective feature selection algorithm (NSPSOFS) based on the
idea of nondominated sorting in NSGAII to see whether a
relatively simple multi-objective PSO can achieve good perfor-
mance for feature selection problems.
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Algorithm 1: Pseudo-Code of NSPSOFS

1 begin

2 divide Dataset into a Training set and a Test set;

3 initialize the position and velocity of each particle in the

swarm (Swarm);

4 while Maximum Iterations is not reached do

5 evaluate two objective values of each particle; /x
number of features and the
classification error rate on the
Training set */

6 identify the particles (nonDom.S) that have nondom-
inated solutions in Swarm;

7 calculate crowding distance of each particle in
nonDom.S,

8 Sort particles in nonDomS based on the crowding
distance;

9 copy all the particles in Swarm to a union (Union);

10 for i = 1 to Population Size (P) do

11 update the pbest of particle ;

12 randomly selecting a gbest for particle 7 from the
highest ranked (least crowded) solutions in
nonDom)S;

13 update the velocity and postion of particle ¢

14 add the updated particle ¢ to Union;

15 end

16 identify different levels of nondominated fronts

F = (Fl, F27F3, .. ) in U’I’LiOTl;

17 empty the current Swarm for the next iteration;

18 1=1;

19 while | Swarm| < P do

20 if (|Swarm| + |F;| < P) then

21 add F; to Swarm;

22 1=1+1;

23 end

24 if (|Swarm| + |F;| > P) then

25 calculate crowding distance in Fj;

26 sort particles in Fj;

27 add the (P — |Swarm)|) least crowded particles

to Swarm;

28 end

29 end

30 end

31 calculate the classification error rate of the solutions
(feature subsets) in the F} on the test set; /« F} is the
achieved Pareto front x/

32 return the positions of particles in F1;

33 return the training and test classification error rates of the
solutions in Fj;

34 end

Algorithm 1 shows the pseudocode of NSPSOFS. The two
most important ideas in NSPSOFS are to select a good gbest for
each particle and to update the swarm during the evolutionary
process. As shown in Algorithm 1, in each iteration, the fitness
values (the number of features and the classification error rate)
of each particle are calculated. Then, the algorithm identifies
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the nondominated solutions in the swarm according to the
fitness values. The crowding distance of each nondominated
solution is calculated, and all of the nondominated solutions
are sorted according to the crowding distance. When updat-
ing the swarm to a new iteration, a gbest for each particle
is randomly selected from the highest ranked nondominated
solutions, which are the least crowded solutions. For each
particle, pbest is replaced with the new position only if the
new position dominates the current pbest. After determining
the gbest and pbest, the new velocity and the new position of
each particle are calculated according to (1) and (2). The old
positions (solutions) and the new positions of all particles are
first combined into one union. The nondominated solutions in
the union are called the first nondominated front, which are ex-
cluded from the union. Then, the nondominated solutions in the
new union are called the second nondominated front. The fol-
lowing levels of nondominated fronts are identified by repeating
this procedure. For the next iteration, solutions (particles) are
selected from the top levels of the nondominated fronts, starting
from the first front (from line 17 to line 29). If the number of
solutions needed is larger than the number of solutions in the
current nondominated front, all the solutions are added into the
next iteration. Otherwise, the solutions in the current nondomi-
nated front are ranked according to the crowding distance, and
the highest ranked solutions are added into the next iteration.

C. PSO-Based Multi-Objective Feature Selection
Algorithm 2: CMDPSOFS

NSPSOFS can extend PSO to tackle multi-objective prob-
lems. However, NSPSOFS has a potential limitation of losing
the diversity of the swarm quickly during the evolutionary
process. Specifically, when using the idea of NSGAII to update
the population, many of the particles in the new iteration
may be identical. Because new particles are selected from the
combination of current particles and the updated particles, all
nondominated particles that share the same position will be
added into the next iteration. Therefore, the diversity of the
swarm might be lost fast during the evolutionary process. In
order to better address feature selection problems, we use an-
other multi-objective PSO to develop a multi-objective feature
selection algorithm, CMDPSOFS, which is based on the ideas
of crowding, mutation, and dominance [49]. CMDPSO has
never been applied to feature selection problems.

Algorithm 2 shows the pseudocode of CMDPSOFS. In order
to address the main issue of determining a good leader (gbest),
CMDPSOFS employs a leader set to store the nondominated
solutions as the potential leaders for each particle. A gbest
is selected from the leader set according to their crowding
distances and a binary tournament selection. Specifically, a
crowding factor is employed to decide which nondominated
solutions should be added into the leader set and kept during
the evolutionary process. The binary tournament selection is
used to select two solutions from the leader set, and the less
crowded solution is chosen as the gbest. The maximum size of
the leader set is usually set as the number of particles in the
swarm. Mutation operators are adopted to keep the diversity of
the swarm and to improve the search ability of the algorithm.
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A dominance factor is adopted to determine the size of the
archive, which is the number of nondominated solutions that
the algorithm reports. The solutions (feature subsets) in the final
archive are used for classification on the test set in each data set.

Algorithm 2: Pseudo-Code of CMDPSOFS

1 begin

2 divide Dataset into a Training set and a Test set;

initialize the swarm,;

initialize the set of leaders LeaderSet and Archive

4 calculate the crowding distance of each member in

LeaderSet;

5 while Maximum Iterations is not reached do

6 for each particle do

7 select a leader (gbest) from LeaderSet for each
particle by using a binary tournament selection
based on the crowding distance;

w

8 update the velocity and position of particle ¢
9 apply mutation operators;
10 evaluate two objective values for each particle; /*

number of features and the
classification error rate on the
Training set x/

11 update the pbest of each particle;

12 end

13 identify the nondominated solutions (particles) to
update LeaderSet;

14 send leaders to Archive;

15 calculate the crowding distance of each member in
LeaderSet;

16 end

17 calculate the classification error rate of the solutions in
Archive on the test set;

18 return the solutions in Archive and their training and test
classification error rates;

19 end

Note that CMDPSOFS employs two different mutation oper-
ators, uniform mutation in which the variability range allowed
for each decision variable is kept constant over generations and
nonuniform mutation in which the variability range allowed for
each decision variable decreases over time. The two mutation
operators are used to maintain the diversity of the swarm and to
improve the search ability of the algorithm. In order to achieve
this, CMDPSOFS randomly divides the whole swarm into three
different groups in the initialization procedure. The first group
does not have any mutation. The second group employs uniform
mutation to keep the global search ability, and the third group
employs nonuniform mutation to keep the local search ability.
Furthermore, the three groups have the same leader set, which
allows them to share their success to take advantage of the
different behaviors to improve the abilities to search for the
Pareto nondominated solutions. Meanwhile, in CMDPSOEFS, w
is a random value in [0.1, 0.5], and ¢; and ¢5 are random values
in [1.5, 2.0], which are different from most of other PSO-based
algorithms in which these values are constants. This is used

as a convenient way in addressing the problem of tuning these
parameters for different test problems.

Both NSPSOFS and CMDPSOFS follow the basic update
strategies of standard PSO. As multi-objective algorithms, both
NSPSOFS and CMDPSOFS employ a crowding distance to the
nondominated solutions (potential gbest) to keep the diversity
of the selected gbest for particles. The main differences be-
tween NSPSOFS and CMDPSOEFS are the following: 1) how
to store the nondominated solutions (potential gebst). In
NSPSOFS, there is no external set to store nondominated
solutions, and all of the nondominated solutions are kept and
updated within the swarm. CMDPSOFS includes an external
leader set, which is used to store the nondominated solutions.
The leader set is updated from iteration to iteration. 2) How to
choose a gbest for each particle. NSPSOFS ranks all of the non-
dominated solutions according to their crowding distance; then,
a gbest is randomly selected from the highest ranked (least
crowded) nondominated solutions. In CMDPSOFS, a binary
tournament selection is applied to select two nondominated
solutions from the leader set, and the less crowded solution is
used as gbest. 3) When updating the swarm to a new iteration,
NSPSOFS combines the new solutions (after applying the ve-
locity and position update equations) and the old solutions into
a union. Different levels of nondominated solutions are iden-
tified from the union to form the swarm in the next iteration.
The nondominated solutions in the last iteration are reported by
NSPSOFS. In CMDPSOFS, two different mutation operators
are applied together with the update equations, and the solu-
tions in the archive are reported as final solutions. 4) Param-
eters, such as w, ¢y, and cg, in NSPSOFS are constants, and in
CMDPSOFS, they are random values within known ranges.

IV. EXPERIMENTAL DESIGN
A. Benchmark Techniques

In order to examine the performance of the two PSO-based
multi-objective feature selection algorithms, two conventional
wrapper feature selection methods, two single objective al-
gorithms, and three well-known evolutionary multi-objective
algorithms are used as benchmark techniques in the experi-
ments. The two conventional methods are linear forward se-
lection (LFS) and greedy stepwise backward selection (GSBS).
The two single objective algorithms are ErFS and 2SFS, de-
scribed in Section III. The three multi-objective algorithms are
NSGAII, strength Pareto evolutionary algorithm 2 (SPEA2),
and Pareto archived evolutionary strategy (PAES).

LFS and GSBS were derived from SFS and SBS, respec-
tively. LFS [50] restricts the number of features that are consid-
ered in each step of the forward selection, which can reduce the
number of evaluations. Therefore, LFS is computationally less
expensive than SFS and can obtain good results. More details
can be seen in the literature [50].

The greedy stepwise based feature selection algorithm can
move either forward or backward in the search space [51].
Given that LFS performs a forward selection, a backward
search is chosen in greedy stepwise to form a GSBS. GSBS
starts with all available features and stops when the deletion of
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TABLE 1

DATA SETS
Dataset # Features | # Classes | # Instances
Wine 13 3 178
Australian 14 2 690
700 17 7 101
Vehicle 18 4 846
German 24 2 1000
World Breast Cancer | 30 2 569
-Diagnostic (WBCD)
Tonosphere 34 2 351
Lung Cancer 56 3 32
Hillvalley 100 2 606
Musk Version 1 166 2 476
(Musk1)
Madelon 500 2 4400
Isolet5 617 2 1559

any remaining feature results in a decrease in evaluation, i.e.,
the accuracy of classification.

NSGAII is one of the most popular evolutionary multi-
objective algorithms proposed by Deb er al. [47]. The main
principle of NSGAII is the use of fast nondominated sort-
ing technique and the diversity preservation strategy. The fast
nondominated sorting technique is used to rank the parent
and offspring populations to different levels of nondominated
solution fronts. A density estimation based on the crowding
distance is adopted to keep the diversity of the population. More
details can be seen in the literature [47].

SPEA2 is a popular evolutionary multi-objective algorithm
proposed by Zitzler et al. [52]. The main principle is the fine-
gained fitness assignment strategy and the use of an archive
truncation method. In SPEA2, the fitness of each individual is
the sum of its strength raw fitness and a density estimation. A
new population is constructed by the nondominated solutions in
both the original population and the archive. When the number
of nondominated solutions is larger than the population size,
the archive truncation method is applied to determine whether
a nondominated solution should be selected or not according
to the distance to its kth nearest neighbor. More details can be
seen in the literature [52].

PAES is an evolutionary multi-objective algorithm proposed
by Knowles and Corne [53]. The authors claimed that PAES
may represent the simplest possible nontrival algorithm capable
of generating diverse solutions in the Pareto front. The main
idea of PAES is the use of a local search and the use of
an archive of previously found nondominated solutions. PAES
was proposed as a baseline approach for Pareto multi-objective
algorithms, and it has been used to compare with SPEA?2 in the
literature [52].

B. Data Sets and Parameter Settings

Table I shows the 12 data sets used in the experiments,
which were chosen from the UCI machine learning repository
[54]. They were selected to have various numbers of features
(from 13 to 617), classes (from 2 to 7), and instances (from
32 to 4400), and they are used as representative samples of the
problems that the PSO-based multi-objective feature selection
algorithms can address.

In the experiments, all of the instances in each data set are
randomly divided into two sets: 70% as the training set and
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30% as the test set. During the training process, each particle
(individual) represents one feature subset. The classification
performance of a selected feature subset is evaluated by 10-
fold cross-validation on the training set. Note that 10-fold cross-
validation is performed as an inner loop in the training process
to evaluate the classification performance of a single feature
subset on the training set and it does not generate ten feature
subsets. After the training process, the selected features are
evaluated on the test set to obtain the testing classification
error rate. A detailed discussion of why and how 10-fold cross-
validation is applied in this way is given by [15].

All of the algorithms are wrapper approaches, i.e., needing
a learning algorithm in the evolutionary training process to
evaluate the classification performance of the selected feature
subset. Any learning algorithm can be used here, such as NB,
DT, and SVM. One of the simplest and commonly used learning
algorithms [39], [40], K-nearest neighbor (KNN), was chosen
in the experiments. We use K = 5 in KNN (5NN) to simplify
the evaluation process, and SNN implemented in Java machine
learning library (Java-ML) [55] is used here.

Waikato Environment for Knowledge Analysis (Weka) [56]
is used to run the experiments using LFS and GSBS for feature
selection. All of the settings in LFS and GSBS are kept to the
defaults, except that backward search is chosen in the greedy
stepwise approach to perform GSBS for feature selection.
During the feature selection process, SNN with 10-fold cross-
validation in Weka is employed to evaluate the classification
accuracy on the training set. In order to make fair comparisons,
all of the feature subsets selected by LFS, GSBS, and other
feature selection methods are tested by SNN in Java-ML on the
test sets.

In all of the PSO-based algorithms, the fully connected topol-
ogy is used, the maximum velocity vy,.x = 0.6, the population
size P = 30, and the maximum iteration 7" = 100. In ErFS,
2SFS, and NSPSOFS, the inertia weight w = 0.7298, and the
acceleration constants ¢; = ¢o = 1.49618. These values are
chosen based on the common settings in the literature [8], [57].
In the CMDPSO, w is a random value in [0.1, 0.5], ¢1 and c5 are
random values in [1.5, 2.0], and the mutation rate is 1/n, where
n is the number of available features (dimensionality). These
values are based on the settings of an equivalent algorithm
in the literature [49]. According to our previous experiments,
the threshold € in ErFS, 2SFS, NSPSOFS, and CMDPSOFS
is set as 0.6. In 2SFS, the first 50 iterations are set as the
first stage, and the last 50 iterations are the second stage. We
assume that the number of features is less important than the
classification performance. Therefore, & = 0.2 in (8) in the sec-
ond stage of 2SFS. In NSGAII, SPEA2, and PAES, the repre-
sentation of each individual is the same as the commonly used
GA for feature selection algorithms [22], [24], where each
individual is encoded by an n-bit binary string and n is the
number of available features. The bit with value “1” indicates
that the feature is selected in the subset, and “0” otherwise. A
bit-flip mutation operator is applied in three methods, and a
single point crossover operator is used in NSGAII and SPEA2.
The mutation rate is 1/n, where n is the number of available
features (dimensionality) and the crossover probability is 0.9.
For each data set, all of the algorithms have been conducted for
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40 independent runs, except for LFS and GSBS, because both
of them are deterministic methods.

V. RESULTS AND DISCUSSIONS

For each data set, LFS and GSBS obtain a unique solution
(feature subset). ErFS and 2SFS obtain a single solution in
each of the 40 independent runs. Multi-objective algorithms,
NSPSOFS, CMDPSOFS, NSGAII, SPEA2, and PAES obtain a
set of nondominated solutions in each run. In order to compare
these three kinds of results, the single solution in LFS and
GSBS, 40 solutions (from 40 runs) that resulted from ErFS and
2SFS are presented in this section. Forty sets of feature subsets
achieved by one multi-objective algorithm are first combined
into one union set. In the union set, for the feature subsets
including the same number of features (e.g., m), their classifi-
cation error rates are averaged. The average classification error
rate is assigned as the average classification performance of the
subsets with m features. Therefore, a set of average solutions is
obtained by using the average classification error rates and the
corresponding numbers (e.g., m). The set of average solutions
is called the average Pareto front and presented here. Besides
the average Pareto front, the nondominated solutions in the
union set are also presented to compare with the solutions
achieved by single objective algorithms. Since PAES achieved
similar results to SPEA2, only the results of NSGAII and
SPEA2 are shown in this section.

A. Results of Benchmark Techniques: LFS, GSBS, ETFS,
and 2SFS

Table II shows the experimental results of LFS, GSBS, ErFS,
and 2SFS. In the tables, “All” shows the results of using all
available features for classification. “AveSize” represents the
average size of the feature subsets evolved by PSO in the 40
runs. “AveEr,” “BestEr,” and “StdEr” show the average, the
smallest, and the standard deviation of the test classification
error rates in the 40 runs, respectively.

1) Results of LFS and GSBS: Based on Table II, in most
cases, LFS selected a small number of features and achieved
a similar or even lower classification error rate than using all
available features. GSBS could reduce the number of features
but only reduced the classification error rate on a few data
sets. In most cases, LFS outperformed GSBS in terms of both
the number of features and the classification performance. The
results suggest that LFS as a forward selection algorithm is
more likely to obtain some optimality of the small feature sub-
sets than GSBS (backward selection) because of the different
starting points. Feature subsets selected by GSBS may still have
redundancy.

2) Results of ErFs: According to Table II, in almost all
data sets, PSO with the basic fitness function (ErFS) evolved
a feature subset, which only contained around half (or less than
half in six data sets) of the available features and achieved a
lower classification error rate than using all features. All of the
standard deviation values (StdEr) are smaller than 0.05, except
in the Lung data set, which only has a small number of instances
and the classification performance changes more than in a data
set with more instances. All of the standard deviation values

TABLE II
EXPERIMENTAL RESULTS OF LFS, GSBS, ERFS, AND 2SFS
Wine Australian
Method| All LFS GSBS ErFS 2SFS | Al LFS GSBS ErFS 2SFS
AveSize| 13 7 [ 8 8 14 4 12 388 342
AveFr |23.4625.93 14.81 4.04  4.04 |29.9529.95 30.43 1452 15.76
BestEr 0 0 12.56  12.56
StdEr 1.83E-2 1.83E-2 3.6E-2 4.56E-2
Zoo Vehicle
Method| All LFS GSBS ErFS 2SFS | All LFS GSBS ErFS 2SFS
AveSize| 17 8 7 9.18 9.18 | 18 9 16 9.52  8.65
AveEr [19.0520.95 20 4.5 45 116.1416.93 2421 15 15.05
BestEr 2.86 2.86 1299 12.99
StdEr 90.1E-4 90.1E-4 79E-4 77.8E-4
German WBCD
Method| All LFS GSBS ErFS 2SFS | Al LFS GSBS ErFS 2SFS
AveSize| 24 3 18 1348 1192 | 30 10 25 1342 5
AveFEr | 32 31.33 35.67 30.59 30.85 |7.02 11.11 16.37 6.61 6.46
BestEr 28 28 526 526
StdEr 1.33E-2 1.18E-2 55.8E-475.3E-4
Tonosphere Lung
Method| All LFS GSBS ErFS 2SFS | Al LFS GSBS ErFS 2SFS
AveSize| 34 4 30 1258 1205 | 56 6 33 2735 2738
AveFr |16.1913.33 219 11.6 11.86| 30 10 10 28 27.75
BestEr 6.67 8.57 20 10
StdEr 2.14E-2 1.89E-2 6E-2 6.89E-2
Hillvalley Musk1
Method| All LFS GSBS ErFS 2SFS | All LFS GSBS ErFS 2SFS
AveSize| 100 8 90 47.32 47.05 | 166 10 122 86.48 85.58
AveFEr |43.41 3538 50.55 42.46 4243 |16.08 14.69 23.78 1542 15.42
BestEr 38.19 38.19 11.19 11.19
StdEr 1.52E-2 1.55E-2 2.04E-2 1.99E-2
Madelon Isolet5
Method| All LFS GSBS ErFS 2SFS | All LFS GSBS ErFS 2SFS
AveSize| 500 7 489 258.1 25648617 24 560 318.7 315.62
AveFr | 29.1 3538 48.72 2345 2348 [1.55 1.66 2.84 1.43 1.43
BestEr 20.51 20.64 1.23 1.25
StdEr 1.22E-2 1.26E-2 9.98E-4 9.65E-4

in Table II are very small, which indicates that all algorithms
are considerably stable and statistically significant testing is
not necessary here. As the objective functions of LFS, GSBS,
and ErFS are to minimize the classification error rate only,
the results also suggest that PSO as an evolutionary search
technique can obtain a better feature subset than LFS (in almost
all cases) and GSBS (in all cases).

3) Results of 2SFS: According to Table II, 2SFS evolved
a feature subset with around half (or less than half) of the
available features and achieved a lower classification error rate
than using all features in all data sets. Comparing with LFS,
2SFS achieved a lower classification error rate than LFS in most
cases and a smaller number of features in some cases. 2SFS
outperformed GSBS in terms of both the number of features
and the classification performance in almost all data sets. 2SFS
evolved a smaller number of features and achieved similar or
even better classification performance than ErFS in almost all
data sets.

The results in Table IT suggest that PSOs with different fitness
functions in ErFS and 2SFS obtain different feature subsets
with different numbers of features and classification error rates.
2SFS further improves the feature subset obtained by ErFS
in almost all cases. In the first stage, the fitness function (8)
could guide PSO to search for the feature subset with the
minimum classification error rate; then in the second stage, it
guide PSO to search for the smallest feature subset with the
already achieved high classification performance. Therefore,
2SFS can successfully remove redundant features and achieve
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high classification performance in most cases. However, in the
German and Ionosphere data sets, 2SFS could further reduce
the number of features, but the classification performances
are slightly worse than ErFS. Therefore, Pareto front multi-
objective feature selection algorithms are needed to better ad-
dress the problems.

B. Results of NSPSOFS and CMDPSOFS

As 2SFS usually achieved better performance than the other
methods, only the results of 2SFS are included in this sec-
tion as a baseline to test the performance of NSPSOFS and
CMDPSOFS. Fig. 2 shows the experimental results of
NSPSOFS, CMDPSOFS, and 2SFS. In Fig. 2, each chart cor-
responds to one of the data set used in the experiments. On the
top of each chart, the numbers in the brackets show the number
of available features and the classification error rate using all
features. In each chart, the horizontal axis shows the number of
features selected, and the vertical axis shows the classification
error rate.

In Fig. 2, “-A” stands for the average Pareto front resulted
from NSPSOFS or CMDPSOEFS in the 40 independent runs.
“-B” represents the nondominated solutions resulted from
NSPSOFS or CMDPSOFS in the 40 independent runs.
“2SFS” shows the 40 solutions of 2SFS. In some data sets,
2SFS may evolve the same feature subset in different runs,
and they are shown in the same point in the chart. Therefore,
although 40 results are presented, there may be less than 40
distinct points shown in a chart.

1) Results of NSPSOFS: As shown in Fig. 2, in most cases,
the average Pareto front of NSPSOFS (NSPSOFS-A) includes
two or more solutions, which selected a smaller number of
features and achieved a lower classification error rate than using
all features. For the same number of features, there are a variety
of combinations of features with different classification per-
formances. The feature subsets obtained in different runs may
include the same number of features but different classification
error rates. Therefore, although the solutions obtained in each
run are nondominated, some solutions in the average Pareto
front may dominate others.

According to Fig. 2, the nondominated solutions (NSPSOFS-
B) include one or more feature subsets, which achieved better
classification performance than using all features in all data
sets. In most data sets, NSPSOFS evolved a feature subset
that only selected one or two features but achieved a lower
classification error rate than using all features. For example,
NSPSOFS selected only around 1.8% of the available features
(1 from 56) in the Lung data set and selected 2% of the available
features (2 from 100) in the Hillvalley data set but achieved
higher classification performance than using all features. In
almost all cases, the number of features was reduced to 10%
or less, except for around 17.64% in Zoo, 26.4% in Madelon,
and 21.72% in IsoletS.

Comparing NSPSOFS with 2SFS, it can be seen that the
classification error rates of 2SFS and the average Pareto front
(NSPSOFS-A) are similar in many data sets, but the number of
features in NSPSOFS-A is usually smaller than that in 2SFS.
In almost all cases, NSPSOFS-B included fewer features and
achieved a lower classification error rate than 2SFS.
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Fig. 2. Experimental results of NSPSOFS, CMDPSOFS, and 2SFS.
The results suggest that, although NSPSOFS shares the same

parameter settings as 2SFS, NSPSOFS as a multi-objective
technique can effectively explore the Pareto front and obtain
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feature subsets, which include a smaller number of features and
achieve better classification performance than 2SFS.

2) Results of CMDPSOFS: According to Fig. 2, in all cases,
CMDPSOFS-A includes two or more feature subsets, which
successfully selected a smaller number of relevant features and
achieved a lower classification error rate than using all features.

As shown in Fig. 2, CMDPSOFS-B includes one or more
solutions, which achieved a lower classification error rate than
using all features in all data sets. In most data sets, CMDPSOFS
evolved a feature subset, which only selected one or two fea-
tures but achieved a better classification performance than using
all features. For example, CMDPSOFS selected only around
1.8% of the available features (1 from 56) in the Lung data set
and selected only 2% of the available features (2 from 100) in
the Hillvalley data set but achieved a lower classification error
rate than using all features. In almost all data sets, the number
of features selected is less than 10% of the total number of
features, except for around 16.67% in the Vehicle data set and
10.37% in the Isolet5 data set.

Comparing CMDPSOFS with 2SFS, in all data sets, the
classification performance of CMDPSOFS-A is similar to that
of 2SFS, but the number of features in CMDPSOFS-A is
smaller than that in 2SFS. Moreover, CMDPSOFS-B outper-
formed 2SFS in terms of both the number of features and the
classification performance in all data sets.

The results suggest that CMDPSOFS as a multi-objective
technique guided by the two objectives can effectively explore
the Pareto front and achieve better feature subsets than 2SFS.
Note that proper settings of the o value and the division of the
two stages in 2SFS might increase its performance on either
the number of features or the classification performance, but
this requires prior knowledge and is problem specific. This
is a disadvantage of 2SFS compared with Pareto front multi-
objective algorithms.

C. Comparisons Between NSPSOFS, CMDPSOFS, NSGAII,
and SPEA2

In order to test the performance of NSPSOFS and CMDP-
SOFS, they are compared with three popular evolutionary
multi-objective algorithms, namely, NSGAII, SPEA2, and
PAES. PAES achieved similar results to SPEA2 in terms of
the number of features and the classification performance.
Therefore, the results of PAES are not presented in this section.
Comparisons between NSPSOFS, NSGAII, and SPEA2 are
shown in Fig. 3. Comparisons between CMDPSOFS, NSGAII,
and SPEA2 are shown in Fig. 4.

1) Comparisons Between NSPSOFS, NSGAII, and SPEA2:
According to Fig. 3, in most cases, the average Pareto fronts,
NSPSOFS-A, NSGAII-A, and SPEA2-A include two or more
feature subsets, which selected a smaller number of features
but achieved better classification performance than using all
features. There are also some dominated solutions in the three
average Pareto fronts, and the reason is the same as discussed
in Section V-B.

Comparing NSPSOFS-A with NSGAII-A and SPEA2-A, in
most cases, the classification performance of three methods are
similar. Although in a few cases the classification error rates
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Fig. 3. Comparisons between NSPSOFS, NSGAII, and SPEA2.

of NSPSOFS-A are slightly higher than that of NSGAII-A
and SPEA2-A, the number of features is usually smaller in
NSPSOFS-A than that in NSGAII-A and SPEA2-A.
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Fig. 4. Comparisons between CMDPSOFS, NSGAII, and SPEA2.

In terms of the nondominated solutions (NSPSOFS-B,
NSGAII-B, and SPEA2-B), results in different data sets
show different patterns. Specifically, in three data sets (Zoo,
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Vehicle, and German), NSPSOFS-B dominated NSGAII-B
and SPEA2-B, while in two data sets (WBCD and Lung),
NSPSOFS-B was dominated by NSGAII-B and SPEA2-B. In
the other data sets, there are always solutions in NSPSOFS-B,
which dominate solutions in NSGAII-B and SPEA2-B, al-
though there are also solutions in NSPSOFS-B dominated by
solutions in NSGAII-B and SPEA2-B. In most cases, NSGAII-B
outperformed SPEA2-B in terms of the classification perfor-
mance and the number of features.

The results in Fig. 3 suggest that NSPSOFS, NSGAII, and
SPEA?2 are generally competitive with each other. However, as
discussed in Section III-C, NSPSOFS has a potential limitation
of quickly losing the diversity of the swarm because of the
updating mechanism. The performance of a PSO-based multi-
objective algorithm could be improved if this limitation can be
addressed.

2) Comparisons Between CMDPSOFS, NSGAII, and
SPEA2: As shown in Fig. 4, the average Pareto fronts,
CMDPSOFS-A, NSGAII-A, and SPEA2-A achieved similar
classification performance in all data sets. However, the
number of features in CMDPSOFS-A is usually smaller than
that of NSGAII-A and SPEA2-A, especially in the Madelon
and Isolet5 data sets.

Comparing the nondominated solutions CMDPSOFS-B with
NSGAII-B and SPEA2-B, it can be seen that, in almost all data
sets, CMDPSOFS-B achieved better results than NSGAII-B
and SPEA2-B in terms of both the number of features and the
classification performance. In a data set with a large number
of features, the better performance of CMDPSOFS is more
obvious, especially for the number of feature criterion. For
example, in the Madelon data set, the number of features in
NSGAII-B and SPEA2-B is around 150, while this number in
CMDPSOFS-B is only around 50, which means that CMDP-
SOFS further reduced by two thirds of the number of features
selected.

The results show that CMDPSOFS can address the limitation
in NSPSOFS and achieve better performance than NSPSOFS,
NSGAII, and SPEA2 in terms of both the number of features
and the classification performance.

D. Results of Hypervolume Indicator

In order to further compare the results of multi-objective
algorithms, NSPSOFS, CMDPSOFS, NSGAII, SPEA2, and
PAES, the hypervolume indicator [58] is used in the experi-
ments. In each run, each method obtained two Pareto fronts,
which are a training Pareto front according to the training clas-
sification performance and the number of features, and a festing
Pareto front according to the testing classification performance
and the number of features. Therefore, for each method, we
calculated two sets of hypervolume values based on the Pareto-
fronts on the training process and the testing process, respec-
tively. Therefore, for each method, 40 hypervolume values on
the training process and 40 hypervolume values on the testing
process were calculated. As the calculation of hypervolume
needs the true Pareto front, which is not available in the tested
data sets, we first combine the training (or testing) Pareto front
of these five methods into a union and then identify the Pareto
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TABLE III TABLE V
T-TEST ON HYPERVOLUME RATIOS ON TESTING ACCURACY COMPARISONS ON COMPUTATIONAL TIME (IN MINUTES)
Dataset Wine Australian Zoo Vehicle German | WBCD Wine | Australian | Zoo Vehicle | German WBCD
NS|CMD |NS| CMD | NS |CMD | NS |CMD | NS [CMD | NS | CMD NSPSOFS 029 | 483 0.11 777 12.61 434
NSPSOFS = B = = = 7 CMDPSOFS | 025 | 4 0.09 6.59 93 271
CMDPSOES | = ¥ = = = 7 NSGAIT 024 | 3.00 0.09 6.59 932 2.67
NSGAIL |[=] = [+ = [=[=1=[=1=1=17"]"7 SPEA2 0.2 3.24 0.07 5.53 7.64 2.13
SPEA2 |[=]| = |[+]| = |[=] = |=] === [7] ? PAES 021 | 3.95 0.07 635 385 2.01
PAES =l =1=1=1=[=1]=1=1=]1=1?["7 Lung | lonosphere | Hillvalley | Muskl | Madelon | Isolet5
Dataset Lung | lonosphere | Hillvalley | Muskl | Madelon | IsoletS NSPSOFS 0.02 1.79 46.04 10.66 868.75 374.63
NSJCMD NS CMD |NSTCMD |[NSTCMD [NS[CMD |[NS]CMD CMDPSOFS | 0.01 | 1.54 23.49 6.02 39445 | 200.71
NSPSOFS ? + + + = + NSGAIT 001 | 1.06 2888 7.46 72171 | 33823
CMDPSOFS | ? - - - = - SPEA2 0.01 | 0.87 30.23 6.69 69491 | 33191
NSGAIL [?] ? = + [ -1+ 1=]=1+1+% PAES 001 | 1.04 2488 5.73 560.83 | 27697
SPEAZ | 7] 7 | =] ~+ F -1+ [=] = [+ =
PAES ? ? = + - + = = - T . . ..
ume value ratios in the fraining process. It can be seen that
TABLE IV NSPSOFS achieved slightly worse results than other methods in
T-TEST ON HYPERVOLUME RATIOS ON TRAINING ACCURACY most cases, but NSPSOFS achieved better results than NSGAII
Dataset Wine | Australian | Zoo Vehicle | German | WBCD and SPEA?2 in the Isolet5 data set, where the number of features
SPSORS NS|CMD NS | CMD |NS|CMD NS |CMD NS |CMD NS |CMD| g ]arge. Table IV also shows that, in the data sets with a rela-
+ + + + + + . .
CMDPSORS |- - - - - tively small number of features, CMDPSOFS usually achieved
NSGALL | -| = | -| = |- - |- - = = similar results to NSGAII, SPEA2, and PAES. In the data sets
3135&2 —.——— - with large numbers of features, such as Hillvalley, Muskl,
Satasor Tung [Tonosphere | Hillvalley | Muskl | Madelon | Tsolets Madelon, and Isolet5, CMDPSOFS achieved significantly bet-
NS]CMD |NS[CMD |[NS[CMD |NS[CMD |[NS[CMD|NS[cMD| ter results than NSPSOFS, NSGAII, and SPEA2. Although
cb;fgggggs * + + + + * CMDPSOFS achieved slightly worse results than PAES on the
NSCATT =T - T-1 - T-T + - T = 1=+ T+ =+ training set, CMDPSOFS achieved similar or better results than
SPEA2 | - | - [- =+ |-+ |=]+ [+] + PAES on the test set (shown in Table III), which is considered
PAES - - B - s -

front in the union as the “true Pareto front” to calculate the
hypervolume values. The hypervolume values are normalized
to hypervolume ratios, which is the division of the hypervolume
value of a Pareto front and the hypervolume of the “true Pareto
front.” In order to compare NSPSOFS and CMDPSOFS with
the other three algorithms, NSGAII, SPEA2, and PAES, the
Student’s T-test was performed on their hypervolume ratios,
where the significance level was set as 0.05 (or confidence
interval is 95%).

1) Results of Hypervolume on the Testing Process: Table 111
shows the results of the 7T-test between NSPSOFS, CMDP-
SOFS, NSGAII, SPEA2, and PAES on the hypervolume ra-
tios in the testing process, where “NS” and “CMD” represent
NSPSOFS and CMDPSOFS. In Table III, “+” (*-”) indicates
that NSPSOFS or CMDPSOFS is significantly better (worse)
than another corresponding algorithm. “=" means that they
are similar. In the WBCD and Lung data sets, “?” means
that the hypervolume ratio could not be obtained because the
extracted “true Pareto front” only contains two points and its
hypervolume value is zero.

Table III shows that, compared with CMDPSOFS, NSGAII,
SPEA2, and PAES, NSPSOFS achieved similar results in
most cases, although NSPSOFS achieved better results on the
Australian data set and worse results on the Hillvalley and
Musk1 data sets. Table II also shows that CMDPSOFS
achieved similar results with other methods in most cases. In
the data sets with a large number of features, such as Hillvalley,
Muskl1, and Isolet5, CMDPSOFS achieved significantly better
results than NSPSOFS, NSGAII, SPEA2, and PAES.

2) Results of Hypervolume on the Training Process: Ta-
ble IV shows the results of the 7T-test between NSPSOFS,
CMDPSOFS, NSGAII, SPEA2, and PAES on the hypervol-

due to the overfitting problem in PAES.

E. Comparisons on Computational Time

Table V shows the average computational time (in minutes)
used by NSPSOFS, CMDPSOFS, NSGAII, SPEA2, and PAES
in one run.

From Table V, it can be seen that, for data sets that have
a small number of features and instances, SPEA2 and PAES
generally use less time than the other three methods. However,
all algorithms can perform one run in relatively short time, a
few minutes or even less than one minute, such as the Wine,
Zoo, and Lung data sets. For data sets with a large number
of features and instances, CMDPSOFS and PAES used shorter
time than the other three methods, especially for the Madelon
and Isolet5 data sets, where CMDPSOFS used much less time
than NSPSOFS, NSGAII, and SPEA2. In such large data sets,
computational time is more important than that in small data
sets. CMDPSOEFS can finish the evolutionary training process
in much shorter time and achieve better results, which suggests
that this method is a better choice than the other four methods
in real-world applications, where a large number of features and
instances are involved.

All of the methods have the same number of evaluations as
they have the same number of individuals and iterations during
the evolutionary process. NSGAII and NSPSOFS generally
consumed more time, which is probably caused by the different
levels of nondominated ranking mechanism and the calculation
of crowding distances. CMDPSOFS also involves ranking, but
it only happens in the small leader set. Therefore, ranking
in CMDPSOFS does not cost as much time as NSGAII and
NSPSOFS. More importantly, during the evolutionary training
process, CMDPSOFS selected smaller numbers of features than
the other four algorithms, which cost much less time for the
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10-fold cross-validation to calculate the training classification
performance in each evaluation, especially for the data sets with
a large number of features.

F. Further Discussions

Experimental results show that the NSPSOFS and
CMDPSOFS can be successfully used for feature selection, but
NSPSOFS could not achieve as good results as CMDPSOFS.
The main reasons are that feature selection problems are
difficult problems with many local optima. CMDPSOFS
employs different mechanisms to maintain the diversity of both
the leader set and the swarm. Specifically, it selects and filters
out crowded leaders and uses different mutation operators to
maintain the diversity of the swarm to avoid stagnation in local
optima.

As discussed in Section III, CMDPSOFS has an external
leader set to store the nondominated solutions, which are used
as potential leaders for each particle. Different from other
multi-objective evolutionary techniques, CMDPSOFS employs
a crowding factor to maintain and update the leader set from
generation to generation, which helps in filtering out some
crowded potential leaders. This mechanism will be more help-
ful for the data sets with a large number of features, where
most nondominated solutions in the leader set may have similar
numbers of features and slightly different classification error
rates. These crowded nondominated solutions have a chance
to be selected as a leader, which will limit the exploration
ability of the algorithm. Eliminating such solutions helps the
algorithm to explore the solution space more effectively to
search for better results. Meanwhile, when selecting a leader for
a particle, CMDPSOFS employs a binary tournament to select
two nondominated solutions from the leader set, and the less
crowded one will be selected as the leader. This mechanism
attempts to keep the diversity of the swarm in future iterations
and further avoids particles from converging to local optima.
Moreover, CMDPSOFS employs different mutation operators
for different groups of particles to maintain the diversity of
the swarm and to balance its global and local search abilities.
By contrast, NSPSOFS is less effective in terms of avoiding
stagnation in local optima. NSPSOFS employs different lev-
els of Pareto fronts to store the already found nondominated
solutions. Therefore, all of the nondominated solutions will
be kept in the swarm from generation to generation. Such
nondominated solutions may be duplicated, and the swarm
may lose diversity quickly, which will lead to the problem of
premature convergence. Although NSGAII employs the same
mechanism to store the nondominated solutions, NSGAII also
employs mutation and crossover operators to keep the diversity.
Therefore, NSPSOFS usually could not achieve as good results
as CMDPSOFS and NSGAIIL

G. How to Chose a Single Solution

In multi-objective problems, a set of Pareto front (non-
dominated) solutions is obtained, which are tradeoffs between
different objectives. However, selecting a single solution from
these solutions is an important issue. In feature selection prob-
lems, the two main objectives are minimizing the number of
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features and maximizing the classification performance, and the
decision is a tradeoff between these two objectives. If the Pareto
front was “smooth” in that adding each additional feature would
reduce the classification error rate by a small, but significant
margin, users could weigh the tradeoff criteria to determine
their preferred solutions. However, the results produced show
that this is not usually the case. Adding features beyond a
known limit number does not increase the classification per-
formance. For example, the Musk1 data set in Fig. 2, the subset
with the lowest classification error rate in CMDPSOFS-B, has
40 features. Adding more features does not further increase
the classification performance because it does not increase the
relevance but increases the redundancy and the dimensionality.
Meanwhile, removing features may not lead to a decrease in
classification error rate as relevant features may be removed.
In the Musk]1 data set, the solution that stands in the “elbow”
of CMDPSOFS-B would be a good choice. Therefore, visually
seeing these possible solutions in the Pareto front assists users
in determining their preferred compromises. This is actually the
main reason why solving feature selection problems as multi-
objective tasks is important.

VI. CONCLUSION AND FUTURE WORK

This paper has conducted the first study on multi-objective
PSO for feature selection. Specifically, we considered two PSO-
based multi-objective feature selection algorithms, NSPSOFS
and CMDPSOFS. The two feature selection algorithms were
examined and compared with two conventional methods (LFS
and GSBS), a single objective algorithm (ErFS), a two-stage
method (2SFS), and three well-known multi-objective algo-
rithms (NSGAII, SPEA2, and PAES) on 12 benchmark data
sets of varying difficulty. Experimental results show that both
NSPSOFS and CMDPSOFS can achieve more and better fea-
ture subsets than LFS, GSBS, ErFS, and 2SFS. NSPSOFS
achieved similar (or slightly worse in some cases) results to
NSGALII, SPEA2, and PAES in most cases. CMDPSOFS out-
performed all other methods mentioned previously not only
on the number of features but also on the classification per-
formance. In particular, for the data sets with a large number
of features, CMDPSOFS achieved better classification perfor-
mance using fewer features and shorter computational time than
the other four multi-objective algorithms.

This paper finds that, as multi-objective algorithms,
NSPSOFS and CMDPSOFS can search the solution space more
effectively to obtain a set of nondominated solutions instead
of a single solution. Examining the Pareto front achieved by
the multi-objective algorithms can assist users in choosing their
preferred solutions to meet their own requirements. Meanwhile,
this paper discovers that the potential limitation of losing the
diversity of the swarm quickly in NSPSOFS limits its perfor-
mance for feature selection. More importantly, this paper high-
lights the benefits of the strategies of maintaining the diversity
of the swarm in CMDPSOFS. A crowding factor together with
a binary tournament selection can effectively select and filter
out some crowded nondominated solutions in the leader set.
Different mutation operators in different groups of particles
can effectively keep the diversity of the swarm and balance
its global and local search abilities. These strategies account
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for the superior performance of CMDPSOFS over NSPSOFS,
NSGAII, SPEA2, and PAES, especially on the data sets with
large numbers of features.

The Pareto front multi-objective algorithms, NSPSOFS and
CMDPSOFS, can achieve a set of good feature subsets, but
it is unknown whether the achieved Pareto fronts can be
improved or not. In the future, we will further investigate
the multi-objective PSO-based feature selection approach to
better explore the Pareto front of nondominated solutions in
feature selection problems. We intend to investigate the use of
binary multi-objective PSO for feature selection and compare
its performance with that of continuous multi-objective PSO.
Meanwhile, we will also investigate whether using a given
learning algorithm in a wrapper feature selection approach can
select a good or near-optimal feature subset for other learning
algorithms for classification tasks.
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