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Abstract—Genetic programming (GP) has been widely applied
to symbolic regression problems and achieved good success.
Gradient descent has also been used in GP as a complementary
search to the genetic beam search to further improve symbolic
regression performance. However, most existing GP approaches
with gradient descent (GPGD) to symbolic regression have only
been tested on the “conventional” symbolic regression problems
such as benchmark function approximations and engineering
practical problems with a single (training) data set only and
the effectiveness on unseen data sets in the same domain and in
different domains has not been fully investigated. This paper
designs a series of experiment objectives to investigate the
effectiveness and efficiency of GPGD with various settings for
a set of symbolic regression problems applied to unseen data
in the same domain and adapted to other domains. The results
suggest that the existing GPGD method applying gradient descent
to all evolved program trees three times at every generation can
perform very well on the training set itself, but cannot generalise
well on the unseen data set in the same domain and cannot be
adapted to unseen data in an extended domain. Applying gradient
descent to the best program in the final generation of GP can also
improve the performance over the standard GP method and can
generalise well on unseen data for some of the tasks in the same
domain, but perform poorly on the unseen data in an extended
domain. Applying gradient descent to the top 20% programs in
the population can generalise reasonably well on the unseen data
in not only the same domain but also in an extended domain.

I. INTRODUCTION

Symbolic regression is a type of regression analysis that
searches the space of mathematical expressions to find the
model that best fits a given data set. Different from classical
regression, symbolic regression does not have a pre-specified
model structure and it attempts to discover both model struc-
tures and corresponding parameters/coefficients, which is a
difficult task [1]. Genetic programming (GP) [2] is particularly
promising for symbolic regression problems due to its flexible
representation, which can search for mathematical building
blocks, such as mathematical operators, analytic functions,
constants, and variables. GP can automatically generate models
without pre-defining the structure of the model. Generally, GP
is the main approach to solving symbolic regression problems

(31, [4]. [5], [6], [7].

GP uses a genetic beam search mechanism, which is argued
to be powerful for global search. However, GP often has an
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efficiency problem due to its high computational complexity
[8]. Researchers have considered combining GP with fast local
search methods, such as hill climbing, simulated annealing,
and gradient descent, to improve its effectiveness and effi-
ciency. Gradient descent is a simple yet very efficient local
search technique, which has been successfully combined with
GP to improve its performance [9], [10], [11], [12]. Performing
gradient descent search on the fitness surface in the space
of GP individuals’ coefficients/constants has been shown to
be a promising approach to symbolic regression [10] and
classification [9], [13].

Traditionally, most symbolic regression approaches were
examined on the given set of data points (i.e. training data)
[10]. The performance of the built model on the unseen data,
i.e. the generalisation ability of the symbolic regression meth-
ods, was typically not evaluated. In real-world applications,
whether the built model can perform well on unseen/new data
from the same domain is often very important to the users.
While the generalisation ability on supervised classification
including GP with gradient descent (GPGD) for classification
[13], [9] has been widely studied, researchers started to inves-
tigate the generalisation abilities of GP for symbolic regression
in recent years [14], [15], [16], [17]. Castelli et al. [15]
compared the generalisation ability of several GP frameworks
for symbolic regression, including some variants of multi-
objective genetic programming and operator equalization, a
recently defined bloat free genetic programming system, but
only one problem was tested in the experiments. There are still
many recent works on symbolic regression without having a
unseen test set [18], [19], [20], [21], [22], [23].

Recently, domain adaptation and transfer learning become
a hot topic in machine learning [24], [25], [26], particularly
in neural networks and image recognition and analysis [27],
[28], [29], [30]. While the standard supervised learning aims
to achieve generalisation on the unseen data points/instances
that are of similar distributions (or similar areas/intervals),
domain adaptation and transfer learning seek to achieve deeper
generalisation on the (unseen) data instances in a differ-
ent domain, from a different distribution, or at a different
area/interval. Compared with standard supervised learning, the
problem in domain adaptation and transfer learning is generally
much harder. This topic has also attracted good attention in
evolutionary computation particularly in memetic computing
[31], but no serious research on GP has been reported. Of



course, the domain adaptation ability of GPGD for symbolic
regression has not been investigated.

A. Goals

The overall goal is to investigate whether GPGD algorithms
can generalise well on symbolic regression problems in the
same domain and can be effectively adapted to other domains.
Specific objectives are:

e  whether GPGD algorithms can achieve better perfor-
mance on the original training data,

e whether GPGD algorithms can generalise well on
unseen test data from the same domain,

e whether GPGD algorithms can be adapted well on
unseen test data from an extended domain,

e  whether GPGD algorithms can be adapted well on
unseen test data from a different domain, and

e how the number of data points (training instances)
influences the performance on unseen data.

B. Organisation

The remainder of this paper is organised as follows. Section
2 describes the how gradient descent is used in GP for
symbolic regression. Section 3 presents the design of the
algorithms, the benchmark problems and experiments. Results
and discussions are presented in Section 4. Conclusions and
future work are given in Section 5.

II. GP WITH GRADIENT DESCENT FOR SYMBOLIC
REGRESSION

In GP with gradient descent (GPGD) for symbolic re-
gression [10], the standard tree based GP was used [1], [2].
Assuming that the audience of this conference know GP well,
this section focuses mainly on how gradient descent is applied
to GP during the evolutionary process [10].

Gradient descent is a local search method, which can
guarantee to find a local optimal solution for a particular task.
Topchy and Punch [10] applied gradient descent to update the
value of constant nodes in a GP tree/program. Mean squared
error (MSE) is used to evaluate the fitness of each program
during the evolutionary process, which forms a minimisation
fitness function, shown by Equation (1).
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where ¢; is the target output, n is the number of training data
points/instances, X is a vector of inputs, C' is a vector of
constants, and f(X, C) is the output of an evolved model, i.e.
a GP program.

The gradient of MSE is the vector of partial derivatives
with respect to the constant values/nodes in a GP tree. These
constant values can be trained by the following learning rule.
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Fig. 1. A program tree.

where « is the learning rate defined by the user, angiE is the
partial derivative of MSE with respect to C, and k goes over

all the constants in the tree.

To perform gradient descent on a particular GP tree, the
original values of the constant nodes are collected, then the
algorithm moves to a neighbouring point that is downhill,
repeating until it converges to the minimum possible error
value or a given amount of time is run out. As soon as the
sum of derivatives in all training points is obtained, the value
of the constant node can be updated accordingly.

How to work out the partial derivative and the detailed
steps of gradient descent are described in the following two
subsections.

A. Partial Derivative

Based on Equations (1) and (2), the following Equation (3)
can be derived.

OMSE 2~ f(X,0)
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Now the task is to work out partial derivative of f(X,C).
Suppose n; is the function of node ¢ in the program tree,
according to the chain rule, one can get
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In other words, according to chain rule, the gradient of the
tree can be broken down into derivatives of nodes on the path
from the root of the tree to the given leaf node. For instance,
given a program shown in Fig. 1, assume n; is the function of
node i, then f(X,C) = n; is the final output of the program.

Since ny4 and n7 are constant nodes, the gradient vector
of f(X,C) should contain values from the partial derivatives
from n4 to ny . The partial derivatives f(X,C) with respect
to ny4 and n; are:
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As ns, ns, ng can be obtained from the program evaluation,
the gradient of f(X,C) with respect to different Cj, can be
calculated accordingly. The derivatives of the functions used
in this work are listed in Table I.

TABLE 1L PARTIAL DERIVATIVES
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B. Gradient Descent Algorithm

The gradient descent algorithm is performed in the follow-
ing steps:

1)  Get all the constant nodes of a GP tree/program;

2)  For constant node C}, calculate the partial derivative
of the program output with respect to Ck, adicfk
according to Equation (4);

3) Calculate the partial derivative of MSE with respect
to Cp, B%SVE with Equation (3);

4)  Calculate the change of C} with Equation (2) and
update Cj;

5)  Evaluates the GP tree, if the MSE of the new GP tree
is worse than the original one, terminate the training
process, make no change on Cl;

6)  Obtain the next constant node C4 1, go to step 2 for
training Cj41;

7) If all the constant nodes of the GP tree have been
trained, go on training the next GP tree.

Note that the evolutionary process is still governed by the
genetic beam search, and the gradient descent search is only
applied to certain individual programs at a generation. The
results in [10] show that applying gradient descent search in
GP can significantly improve the performance on symbolic
regression problems on the training set, but its generalisation
and domain adaptation ability on unseen test data have not
been investigated.

III. METHOD AND EXPERIMENT DESIGN
A. Design of Different GPGD Methods

The previous work [10] has shown that GPGD can perform
much better than standard GP for symbolic regression on
the (single training) data set. That method called HGP [10]
applies gradient descent search three steps to all individual
programs at every generation. For presentation convenience,
we call it 3HGP in this paper as it applied gradient descent
three steps to every individual program. While it performs well
on the training data set, we hypothesise that 3HGP cannot
generalise well to unseen data sets in the same domain or
in a different domain — applying gradient descent too often
to the same individual program could make the program go
to local optima, and applying gradient descent to all the

individual programs in a population might make the population
quickly lose the diversity since this could make the programs
in a population functionally too similar. Accordingly, applying
gradient descent less often to few programs might enhance
the generalisation and domain adaptation ability of the GPGD
method.

Based on this idea and hypothesis and to investigate the
generalisation ability, seven GPGD methods at different levels
of combining gradient descent with GP are designed and to be
examined in this paper, namely GP, 3HGP [10], IHGP, GGP1,
GGP3, GGP5 and GP-L.

e  GP denotes the standard GP algorithm without involv-
ing any gradient descent search.

e In 3HGP, gradient descent is applied three steps to
every individual in every generation during the evolu-
tionary process of GP.

e In 1HGP, gradient descent is applied only one step to
every individual in every generation.

e In GGPI, GGP3 and GGPS5, the gradient descent
search is applied to the best 20% individuals once
in every one generation, every three generations and
every five generations, respectively.

e  GP-L denotes the algorithm that only applies gradient
descent search to the best individual only once at the
last generation of the GP search.

Obviously, the gradient descent is applied most intensively
in 3HGP, and gradually reduces to the least intensive use of
gradient descent from 1HGP, GGP1, GGP3, GGP5, GP-L, and
GP.

B. Benchmark Problems

To investigate the generalisation and domain adaptation
ability of GP with gradient descent for symbolic regression,
five benchmark problems are taken from [10], which have
been widely used to test GP approaches to symbolic regression.
Using these five benchmark problems, we also aim to make fair
comparisons of the seven different GP with gradient descent
methods.
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C. Training Data Set and Unseen Test Data Sets

To investigate the generalisation and domain adaption
ability of the GPGD methods, four sets of different types
of data points/instances are developed for each of the five
benchmark problems by providing symbolic regression prob-
lems of increasing difficulty. These four sets are designed
to mimic/simulate four tasks providing different levels for
generalisation and domain adaptation, as stated below.

e  The first data set is simply a single training set con-
sisting of a certain number of points/instances within
the interval [-3, 3] without any unseen test data. This
task here is to use the above seven GPGD methods to
evolve a model that approximates a given benchmark
function/problem. The performance will be examined
on this training set itself and no generalisation evalu-
ation will be done. Most existing research on GP for
symbolic regression belongs to this type.

e The second data set also consists of a certain number
of points/instances within the interval [-3, 3], but these
instances are different from the first data set. This set is
used as an unseen test set, and the goal is to investigate
whether the mathematical model evolved/learned by
GPGD from the first (training) set can generalise well
on the unseen test instances in the same domain ([-3,
3]). While these instances might or might not follow
the same distribution as those in the training set, they
are still located in the same interval ([-3, 3]) so we
treat them still in the same domain as those in the
training set. Compared with the first task above, this
task is much harder, and there has not been much work
reported to date.

e The third data set is designed to consist of instances
within the interval [-6, 6], and all these instances
are different from those in the training data set. The
goal is to investigate whether the mathematical model
evolved/learned by GPGD from the first (training) data
set can be adapted (or transferred) to the unseen test
instances in an extended domain [-6, 6]. While this
interval still includes the previous interval [-3, 3], it
also has two additional intervals ([-6,-3] and [3, 6]).
So we treat these unseen instances in an extended
or overlapped domain to those in the training set.
Compared with the first two tasks above, this task is
harder, and no work on GPGD for symbolic regression
has been reported to date.

e The fourth data set consists of instances within the
interval [3, 6], which we treat as a different domain
from those in the training set. Clearly, there are no
overlap between the instances in this data set and
those in the training set. The task here is to investigate
whether the model evolved from the training set can
be further adapted (or transferred) to the instances in
a different domain. Again, the task is the hardest one
among the four, and no work on GP for symbolic
regression has ever been reported.

D. Number of Instances in the Data Sets

To test how the number of training instances/data points
influences the learning performance, all the experiments are

conducted on data sets with two different sizes. The first
includes 20 random data points in the training set and every
test set, which is intentionally to be consistent with [10]. The
second includes 100 random points in the training set and every
test set, which is to see whether increasing the number of data
points changes the conclusions.

E. Parameter Settings

The parameters settings of GP in all the seven GPGD
algorithms can be seen from Table II, which is consistent with
that in [10]. The learning rate « in gradient descent is 0.5 as
suggested in [10].

TABLE II. PARAMETER SETTINGS
Population Size 200
Function set {+,-,* %protected }
Generation 50
Crossover probability 0.6
Mutation probability 0.4

Elitism probability 0.1
Maximum Depth 8

The experiment of every algorithm on each problem with
each data set size have been conducted for 100 independent
runs. Therefore, 7000 (i.e. 7*5%2*100) experiments have been
run for the seven algorithms on five benchmark problems with
two different data set sizes. The 7000 runs result in 7000 GP
trees (one tree from each run). Each GP tree has a training
MSE, and three testing MSEs by applying it to the three
test sets. Therefore, 28000 (i.e. 7000*4) results are used here
to discuss performance, generalisation and domain adaption
ability of GPGD for symbolic regression.

IV. RESULTS AND DISCUSSIONS

Tables III and IV show the results of the seven methods
on the training data [-3, 3], the unseen test data from the same
domain [-3, 3], the unseen test data from an extended domain
[-6, 6], and the unseen test data from a different domain [3,
6]. Tables V and VI show the results of significance tests
on the experiments with 20 data points and 100 data points,
respectively. Table VII presents the computational time. In
the tables, “Mean” and “Std” show the average and standard
deviation of the 100 results that were obtained from 100
independent runs in each algorithm.

A. Results on the Training Set

As can be seen from Table III, 3HGP generally achieved
the best training performance, which is much better than all
the other six algorithms on all the five benchmark problems.
This is consistent with that in [10], where only a training set
was used. Generally, from 3HGP, IHGP, GGP1, GGP3, GGPS5,
GP-L to GP, where the gradient descent search was used from
the most intensively to the least, the performance is gradually
reduced. The number of data points as 20 or 100 does not
change the pattern of the results.

The results suggest that introducing gradient descent as a
complementary search to the genetic beam search of GP can
increase the search ability of the algorithm to obtain better
performance on the training set. The more use of the gradient
descent search can generally result in better performance.



TABLE III.

RESULTS ON THE TRAINING SET [-3, 3] AND TEST SET FROM THE SAME DOMAIN [-3, 3]

. Training: [-3,3] Test 1: [-3,3]
Function Method 20 points 100 points 20 points 100 points
Mean=+Std Mean=+£Std Mean=+Std Mean=+Std
GP 0.3110.04 0.4610.03 0.6940.74 0.44+0.08
3HGP 0.2140.05 0.440.03 4.25+5.55 0.940.98
IHGP 0.2340.05 0.4140.03 4.67+10.69 0.67+0.37
h GGP1 0.3£0.05 0.45+0.03 0.69+0.62 0.45+0.08
GGP3 0.31+0.04 0.46+£0.03 0.74+0.86 0.45+0.07
GGP5 0.3110.04 0.4610.03 0.5940.46 0.44+0.06
GP-L 0.3140.04 0.4610.03 0.704-0.76 0.44+0.08
GP 22.484+18.43 13.12416.71 64.31+61.55 17.93425.85
3HGP 15.73+£12.79 11.32+14.58 66.05+81.84 19.72428.34
IHGP 19.5£11.23 12.95+15.58 103.784+193.93 20.87+27.78
f2 GGP1 25.224+17.15 25.81+18.21 62.93+47.89 41.3£30.91
GGP3 21.3+18.21 16.24+17.55 55.98+54.97 24.79429.5
GGP5 21.684+17.08 14.114+17.28 55.66+50.28 20.44428.18
GP-L 22.414+18.39 13.07416.68 63.96+61.26 17.90+25.88
GP 4.94+1.28 4.86+£1.83 521.8841024.94 6.4447.37
3HGP 2.6510.96 2.61+1.6 272.824573.9 3.0141.61
IHGP 3.240.94 2.78+1.45 340.5+708.52 3.36+1.63
fs GGP1 479+1.6 4.63+2.28 257.524525.63 6.25+6.41
GGP3 4.94+1.65 4.49+2.08 397.164760.98 5.714+4.46
GGP5 4.95+1.55 4.71£191 297.354+603.3 6.8648.33
GP-L 491+£1.27 4.83+1.83 522.0941029.7 6.4347.38
GP 0.461+0.21 0.6140.1 2.174+1.82 0.53+0.08
3HGP 0.16£0.1 0.26+0.13 797+142 0.32£0.27
IHGP 0.25+0.18 0.34+0.15 6.97+14.32 0.34£0.14
fa GGP1 0.5240.21 0.6310.06 2.1442.11 0.54+0.04
GGP3 0.4310.2 0.6240.1 2.314+1.67 0.53+0.08
GGP5 0.461+0.2 0.6310.08 2.454+1.97 0.54+0.06
GP-L 0.46+0.21 0.61£0.1 2.16+1.80 0.52+0.08
GP 3.63+1.75 3.0+1.73 6.51+5.81 3.114+1.71
3HGP 1.62+1.18 1.14+1.27 14.44425.65 1.41£1.27
IHGP 1.98+1.29 1.59+1.46 22.06+63.7 1.94+1.57
fs GGP1 3.2941.68 2.79+1.77 12.27428.46 2.944+1.73
GGP3 3.48+1.68 2.81+1.82 17.871+49.47 2.924+1.74
GGP5 3.59+1.68 29+1.8 10.53+17.54 3.07£1.75
GP-L 3.62+1.75 2.99+1.73 7.93+12.31 3.11+1.72
TABLE IV. RESULTS ON TEST SETS FROM AN EXTENDED DOMAIN AND A DIFFERENT DOMAIN
. Test 2: [-6,6] Test 3: [3,6]
Function Method 20 points 100 points 20 points 100 points
Mean=+Std Mean=+Std Mean=+Std Mean=+Std
GP 1.07£0.59 1.01£0.91 1.63£1.36 1.69+2.68
3HGP 10.49+17.7 11.92421.23 2.25+1.47 18.26+34.38
IHGP 10.34+18.83 5.07+8.16 2424144 5.914+10.67
h GGP1 1.36+1.18 1.214+1.28 2.02+1.75 1.8243.01
GGP3 1.31£0.92 1.09£0.98 1.83+£1.47 1.46+£2.27
GGP5 1.08£0.63 0.89+0.72 1.72+1.44 1.19+1.58
GP-L 1.0840.59 1.0240.94 1.654+1.36 1.714£2.70
GP 1.35E5+1.20E5 2.01E4+3.81E4 1.00E5+-8.88E4 3.34E41+6.34E4
3HGP 1.53E5+1.12E5 4.39E4+1.07E5 1.13E54-8.46E4 5.85E4+8.32E4
. IHGP 1.76E541.04ES 3.36E4+4.67E4 1.26E5+7.59E4 5.55E4+47.80E4
f2 GGP1 1.60E5+1.07ES 5.83E41+4.64E4 1.20E5+-8.09E4 1.03E5+8.57E4
GGP3 1.27E5+1.20E5 3.39E4+4.60E4 9.40E4+-8.79E4 6.00E4+-8.40E4
GGP5 1.37E5+1.17E5 2.55E4+4.17E4 1.05E5+-8.85E4 4.47E4+7.49E4
GP-L 1.35E541.20E5 2.01E4+3.82E4 1.00E5+-8.88E4 3.36E4+6.34E4
GP 246.38+739.7 356.524331.85 66.491+185.66 1106.98+1158.17
3HGP 1491.35+£6468.82 1137.2342066.24 1083.5742436.27 4211.07+£1.02E4
1HGP 624.561+1846.55 867.994+1573.61 446.82+669.87 2779.514+4305.0
fs GGP1 111.63+167.87 404.821+338.83 64.84+173.01 1334.184+1314.26
GGP3 73.41+£92.12 429.531+341.66 72.97+£197.79 1305.62+1281.04
GGP5 117.524+165.18 379.494307.54 65.181+154.46 1217.4241237.69
GP-L 230.23+711.17 353.344331.08 66.861+188.11 1094.974+1147.64
GP 7.24+443 1.1840.17 0.95+0.4 1.4940.25
3HGP 174.594+312.37 9.544-8.85 2.0443.15 26.69432.0
1HGP 133.814283.75 7.31+11.17 1.08+1.22 19.23+34.01
fa GGP1 1.5+£2.12 1.21£0.08 1.04+0.38 1.54+0.14
GGP3 30.131+143.67 1.1840.19 0.96+0.34 1.4940.27
GGP5 1.2642.07 1.240.1 0.9540.34 1.5240.17
GP-L 9.04153.76 1.1840.18 0.954+0.39 1.484+0.27
GP 999.094-400.83 1376.84£1199.46 2500.184+1042.42 4083.98+-2727.85
3HGP 1043.224-897.57 1419.744-2941.67 1837.1741481.48 2496.724+3616.92
1HGP 994.36+657.99 1229.3441891.59 2331.78+1653.21 3004.4143850.45
fs GGP1 966.01+428.78 1005.444990.95 2236.13+1088.61 3021.7742375.16
GGP3 998.294-422.46 1142.024+1158.56 2391.741038.66 3414.6742759.59
GGP5 1020.184423.63 929.45+858.0 2535.384+1058.36 3002.9542216.49
GP-L 998.734400.05 1374.594+1194.54 2502.6641041.29 4074.88+2714.17




B. Results on the Test Set from the Same Domain

Table III shows that when applying the obtained GP trees
(i.e. models) to unseen test set from the same domain as
the training set [-3,3], the overall pattern of the results is
different from that in the training set. A clear pattern is that
the number of data points (20 or 100) considerably influences
the generalisation of the algorithms.

When using 100 random points, 3HGP achieved the best
performance in three of the five benchmark problems and
second best in one benchmark problem. However, when using
20 random points, where the task is harder than using 100
points, 3HGP did not achieve the best results in any of the
five benchmark problems, but obtained the worst result in one
benchmark problem. Meanwhile, IHGP obtained the worst
results in three out of the five problems. In contrast, in all
the five problems, the best performance was achieved by one
of the three algorithms that only applied gradient descent on
the best 20% individuals, i.e. GGP1, GGP3 and GGP5.

The results show that the algorithm that performed well
on the training data can generalise well on unseen test data
from the same domain when the number of data points is
relatively large, but not when the number of data points is
small. The reason is that this is a standard supervised learning
process and overfitting occurred. Although this has not been
seriously investigated for symbolic regression, this is consistent
with results from classification [32], [33]. When using a small
number of data points, applying gradient descent to every
individual in every generation in 3HGP and 1HGP may lead to
a poor generalisation, but applying only on the best individuals
can result in better generalisation.

C. Results on the Test Set from an Extended Domain

The results of applying the obtained GP trees to unseen test
data from an extended domain [-6, 6] are shown in Table IV by
Test 2. It can be observed that all the algorithms have much
larger MSEs than that in Table III, but it is not unexpected
because the tasks from the extended domain are much harder
than from the same domain [-3, 3].

From Table IV, it can be observed that regardless of the
number of data points, 3HGP obtained the worst results in four
of the five problems, which is an opposite pattern from that on
the training set. The best performance was achieved by one of
the algorithms where gradient descent was applied but not on
all individuals. This pattern is similar to the first test set [-3,
3] but clearer, which further indicates that GP with gradient
descent can have good generalisation to a similar/extended
domain, but applying gradient descent to all individuals is not
useful.

D. Results on the Test Set from a Different Domain

The results of applying the obtained GP trees to unseen test
data from a different domain [3, 6] are shown in Table IV by
Test 3. This task is much harder than all the other three tasks.
The results show that all the algorithms have much higher
MSEs than in the other three tasks.

The pattern here is not clear enough, but it can be seen that
3HGP performed worse than the other algorithms in general.
The algorithms where gradient descent was not applied to all

TABLE V. SIGNIFICANCE TEST ON EXPERIMENTS WITH 20 POINTS

Training Test 1 Test 2 Test 3

T1 T2 Tl T2 Tl T2 T1 T2
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individuals achieved the best performance in most cases. This
suggests that when applying to a different domain, the problem
becomes much harder and it is difficult to develop a good
algorithm to perform well. New approaches are needed to solve
such problems.

E. Results of Significance Tests

In order to further test and compare the generalisation
ability of the seven algorithms, the on-parametric statistical
significance test, Wilcoxon test, was used in the experiments,
where the significance level is 0.05. The results of the sig-
nificance tests for the experiments with 20 data points are
shown in Table V and for the experiments with 100 data
points are shown in Table VI. In the tables, T1 shows the
results of the six GP with gradient decent algorithms against
standard GP without using the gradient descent, and T2 shows
the results of GGPS against the other six algorithms. The “+”
(“~”) shows the MSE of the corresponding algorithm (i.e. in
the corresponding row) is significantly larger (smaller) than
that of standard GP (or GGPS). “=" means they are similar.

According to Tables V and VI, it can be seen that in the
training set, HGP3 and HGP achieved significantly smaller
MSE than GP and GGP5 in almost all cases. For Test 1,
when having 20 data points, HGP3 and HGP did not achieve
significantly better (i.e. smaller) results than GP and GGP5
on any function, but worse (i.e. larger) than GP and GGP5 in



TABLE VIIL

COMPUTATIONAL TIME (IN MILLISECOND)

20 data points
Method f1 fa f3 fa fs
GP 103.32459.9 142.54473.87 132.91£71.49 126.53496.83 116.29£79.15
HGP3 3587.28+1976.84 3046.05+1413.7 4244.9+1759.09 3915.934+2100.3 3766.344+1502.35
HGP 2081.344-943.8 2026.424750.16 2436.514+1031.03 1862.914+731.23 2188.551+620.63
GGP1 533.73+333.92 817.194390.44 889.211+437.44 432.46+213.97 799.31+334.04
GGP3 263.284+165.61 398.86+168.17 365.564+207.24 280.384+170.92 382.854+196.51
GGP5 194.05+£124.72 306.424143.56 309.94165.34 239.634+150.53 303.661+179.4
GP-L 99.98+47.07 147.761+72.46 134.23470.05 122.33+90.62 121.524-88.95
100 data points
Method | 2 3 4 fs
GP 360.121+133.94 397.594+90.0 379.71+106.58 263.62460.05 328.814+85.57
HGP3 3.09E4+1.56E4 2.17E4+1.36E4 4.14E4+2.00E4 2.56E4+1.54E4 4.02E4+1.96E4
HGP 1.28E4+6194.15 1.34E4+£7409.13 2.11E41+9481.55 9890.3545524.53 1.62E41-6843.35
GGP1 2489.254+-2019.59 4438.24+2674.3 6246.13+3263.4 874.184+833.27 4166.12+2183.24
GGP3 1064.9+731.18 1757.024+1032.35 2479.831+1245.54 591.06+390.34 1630.09+831.99
GGP5 717.131+480.33 1107.434£548.18 1447.064+657.79 571.861448.25 1195.194+673.08
GP-L 355.644+118.13 436.914223.39 462.19+197.12 278.82450.64 389.094219.44

TABLE VI. SIGNIFICANCE TEST ON EXPERIMENTS WITH 100 POINTS

Training Test 1 Test 2 Test 3
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some cases, which may indicate the appearance of overfitting.
When having 100 data points, where ovetfitting is less likely
than when having only 20 data points, HGP3 and HGP
achieved significantly better results than GP and GGPS5. This is
consistent with our hypothesis that applying too many gradient
decent steps may lead to relatively poor performance on unseen
data. The results in Test 2 and Test 3 show that HGP3 and HGP
in general cannot be well adopted to data from the an extended
domain or from a different domain.

FE. Computational Time

Table VII shows the average and standard deviation of the
computational times used by each algorithm in the 100 inde-
pendent runs, where the values are expressed in milliseconds.

According to Table VII, all the algorithms are reasonably
fast and the largest average time is still less than 1 minute.
Comparing different algorithms, 3HGP used the longest time
in all cases, which is around 30 times longer than GP. The
computational time gradually reduces from 3HGP, 1HGP,
GGP1, GGP3, GGP5, GP-L, to GP, which is consistent with
the number of applications of the gradient descent search.

V. CONCLUSIONS AND FUTURE WORK

The overall goal was to investigate whether GPGD for
symbolic regression can generalise well on unseen problems
in the same domain and can be effectively adapted to other
domains. To achieve this, a number of experiments have been
conducted on seven GPGD algorithms on five commonly used
benchmark functions of varying difficulty. The algorithms were
examined on training data, unseen test data from the same do-
main/interval, from an extended domain, and from a different
domain with two different numbers of data points/instances.
The experimental results show that on the training set, GP with
more gradient descent performed better. The best algorithm
on the training set generalised well on unseen data from the
same domain when the number of data points was relatively
large, but not when the number was small. For unseen data
from an extended domain, applying gradient descent to only a
small proportion of individuals in GP generalised better than
applying to all individuals. All the algorithms could not be
adapted well on unseen data from a different domain, since
the task is very challenging. The results also showed that
performing more gradient descent search always increased the
computational cost, but not always better for generalisation
or adaptation. Finding an appropriate way to apply gradient
descent can not only improve its performance on training data,
but also increase its generalisation ability, which is key for
real-world tasks.

This paper provides a simple way to investigate the gen-
eralisation and domain adaptation ability of symbolic re-
gression algorithms, but discovers very interesting findings,
which opens the door for future research in this direction. In
future, we will further investigate the key factors influencing



the generalisation and domain adaptation ability of symbolic
regression algorithms. We also intend to propose a novel GP
approach to symbolic regression, which can generalise well on
unseen data/problems from the same domain or even adapted
well on unseen data from different domains.
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