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Abstract. This paper explores the limitation of consistency-based measures in
the context of feature selection. These kinds of filters are not very widespread
in large-dimensionality problems. Typically, the number of selected of attrib-
utes is very small and the ability to do right predictions is a drawback. The
principal contribution of this work is the introduction of a new approach within
feature engineering to create new attributes after the feature selection stage. The
experimentation on multi-class problems with a feature space in the order of
tens of thousands shed light on that some improvements took place with the
new proposal. As a final insight, some new relationships were discovered due to
the combined application of feature selection and feature transformation. Addi-
tionally, a new measure for classification problems which relates the number of
features and the number of classes or labels is also proposed.
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1 Introduction

Classification studies problems where every object is categorised with a label repre-
sented in a discrete domain and therefore the number of values is limited [1]. The goal
of classification is to predict the output variable value of unseen data given instances
with values for the input and output variable(s). We have chosen two problems from
Bioinformatics where the number of features is higher than twelve thousands and the
number of classes is greater or equal than seven. As we are proposing a refinement of
a previous approach, we have picked up two data sets with an error rate higher than a
twenty percent and in the worst scenario in the sense that we are only considering the
problems in a not very fruitful initial situation. According the reported results in a
previous paper [2], the feature selection based on a stochastic search procedure such



as scatter search considering a consistency measure may be a fast approach although
at the same time the number of selected characteristics is very low and the potential
results are worse than with the application of classical correlation measures. This
paper utilises as a baseline feature subset the resulting one with a scatter-search meta-
heuristic with a consistency-based measure which is only applied in the training set.
Data preparation is conducted by means of feature selection in order to decrease the
number of input feature space. Then, the features are augmented

Our goal is to improve the averaged test accuracy and the Cohen’s kappa. The rest
of this paper is organized as follows: Section 2 remembers some concepts about fea-
ture engineering and data mining; Section 3 introduces the proposal; Section 4 de-
scribes the experimental design; Section 5 depicts the results; finally, Section 6 states
the conclusions.

2 Feature engineering and data mining

CRoss Industry Standard Process for Data Mining (CRISP-DM) proposes a frame-
work to conduct data mining projects in an independent way of both the industry sec-
tor and the technology used [3]. This paper makes use of two visual tools to cover
tasks from Data Analytics (DA) within Data Engineering (DE) [4] such as Waikato
Environment for Knowledge Analysis (WEKA) [5] and RapidMiner [6]. Feature en-
gineering (FE) plays an outstanding role in DA; it encompasses many fields such as
feature transformation, feature generation, feature selection, feature analysis and
many others. Machine learning algorithms cannot operate without data. As stated by
G. Dong and H. Liu in the newly book published in 2018, “little can be achieved if
there are few features to represent the underlying data objects, and the quality of the
results of those algorithms largely depends on the quality of the available features”
[7]. This idea has many connections with an earlier study from 2017 which put on the
table the real situation that as times the feature selection may get a very small number
of attributes which may not be enough to achieve reliable predictions [8]. Nowadays
the data generation is going faster and faster and a data preparation task is an im-
portant step [9]. This paper puts emphasis on the feature perspective. Feature trans-
formation (FT) is a process through which a new set of features is created [10]. Fea-
ture selection (FS) is a crucial task to conduct the training of classifiers with a reduced
number of inputs and, at the same time, the outcome predictions could be more relia-
ble. Nonetheless, a final characteristic-space with very small number of features con-
stitutes an undesirable situation. There are some works accounting for the limited
quality of the predictions and even the indiscernibility of the classes in scenarios with
a very simple feature subset [8].

The bibliographical review and our previous experience motivate us to start the
current research. A simple approach may be to create new features from the full fea-
ture space and then applying feature selection. Alternatively, we have typically ap-
plied feature selection and then we have applied supervised machine learning algo-
rithms from the classification scope. Some papers aimed at increasing the final feature



space combining solutions from different types of feature selection approaches [11] or
even iterating in a particular feature selection method more than once [12].

Thinking abstractly about all the aforementioned ideas and considering that an in-
terpretable feature space is convenient we opt to deepen FT which is a way to aug-
ment the feature space combining groups or subgroups of features. FT could be con-
ducted from the starting point with the whole feature space. On the first contribution
in this field, FT was thought as an initial step and the application of FS may retrieve
only the important properties of a study [10]. Our particular view is to establish a
trade-off between FS and FT to be applied in contexts with continuous features. It is
very well-known that for most of the problems in the nature, correlation-based rela-
tionships [13] are more common that consistency-based ones [14, 15, 16].

Basically, classifiers could be grouped in decision trees, neural networks, ruled
based and classifiers based on the k nearest neighbours (KNN). We have chosen two
reference algorithms such as KNN and Support Vector Machine (SVM) due to its
good performance and their high consideration within data mining community.

3 Proposal

The proposal is based on the application of two kinds of FE procedures. The former
carries out feature selection. The latter takes as input the selected features to conduct a
feature transformation combining every different pair of selected attributes and apply-
ing to both operands a binary arithmetical operator (e.g. sum) to get one new attribute
for every possible pair. Then, the selected features and the transformed features are
merged to establish a new final characteristic space. As the proposal framework ap-
plies an operator which keeps the interpretative perspective on the data, we have
called it Feature Selection and Interpretable Feature Transformation (FS-IFT). Fig. 1
depicts the approach proposed. There are no requirements for the current proposal
although we would like to remark some important facts: i) any kind of feature selec-
tion approach may be conducted in the step 1 which is related with the initial feature
selection. It means that feature ranking or feature subset selection are perfectly appli-
cable, ii) the number of selected features must not be very high especially whether
afterwards is going to be conducted in the feature transformation a pair combination
of selected features; as a recommendation, no more than 25 attributes. For instance, a
number of features around twenty is going to generate a number of new attributes
which is close to two hundred.

This paper also introduces a new measure for classification to relate the number of
features and the number of classes to characterise better classification problems. The
Feature-to-class ratio (FtoC ratio) is a normalised ratio which represents how many
features are approximately for every class label. The aforementioned ratio is of espe-
cial interest for feature engineering since the number of attributes after the data pre-
processing is going to be altered in any way. It aids to analyse in a more detailed way
the final outcome of the data preparation procedure. FtoC ratio is defined as follows:

Feature-to-class-ratio = No. features/No. classes €))



FtoC gives a measurement between the dimensionality and the complexity in terms
of number of different labels for a problem at hand. The number of patterns is also
another interesting value to analyse; nonetheless we are working with Bioinformatics
problems and their number is from almost one hundred to typically no more than five
hundreds.
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Fig. 1. Proposal framework within feature engineering.

4 Experimentation

Two challenging multiple class classification problems from Bioinformatics have
been used to assess the proposal. Global Cancer Map (GCM) is a very difficult prob-
lem from the context of Bioinformatics which started to be studied in the beginning of
the current century although its interest, even now, is very wide especially to the
prevalence of very common diseases. GCM is populated with 190 tumor objects that
have one out of the 14 possible labels such as Breast, Lung, Bladder to cite some of
them in a very large dimensional space. Subtypes of Acute Lymphoblastic Leukemia
(SALL) deals with leukemia and contains 327 samples distributed in the six known
leukemia subtypes (T-cell, E2APBX1, TEL-AMLI1, MLL, BCR-ABL and hyper-
diploid) and an extra category for those instances which do not belong to none of the
featured subtypes. The order of magnitude of the number of attributes is exactly the
same as SALL which is the order of tens of thousands. Additionally, the Feature-to-



class ratio is similar and its values are in-between one and two thousands of attributes
with a distance to the cut-off point of an exact thousand around two hundred. Table 1
illustrates the most representative properties of the test bed. The experimental design
follows a stratified hold-out cross validation procedure with three and one quarters for
the training and testing sets, respectively.

Table 1. Summary of problems.

Problem Patterns Features Classes Feature-to-class ratio Distribution of classes

GCM 190 16063 14 1147.4 10(3),11(8),20(1),22(1),30(1)
SALL 327 12558 7 1794.0  15(1),20(1),27(1),43(1),64(1),79(2)
Average 258.50  14310.50 10.50 1470.68

Table 2 details the setting of the FE methods within the FS-IFT approach. Specifical-
ly, the proposal has been configured as follows: the first phase carries out feature
subset selection based on a consistency-based measure with a scatter search to guide
the exploration; the second phase takes as input the reduced training subset according
to the previous step and creates new attributes with the arithmetical combination of
the feature values that are merged to the selected attributes in the first step to create a
new feature space to be used as the training set to train the classifier. As the baseline
approach for feature selection, Scatter Search under a CoNsistency-based feature
Selection (SS-CNS) [2] has been considered and the parameter that we have changed
is the operator included in the second stage, hereinafter we refer to a concrete config-
uration of the proposal as FS-IFT(SS-CNS,op) where op could take as values the sum
(+) or the multiplication (*). These operators are appropriate since the test bed con-
sists of problems with continuous features. The feature engineering methods have
been conducted for five different seeds to smooth the results and get reliable results
due to the stochastic nature of the first procedure and the indirect stochasticity that is
inherited into the second phase from first one. The combination of a stochastic step
and a non-stochastic one further than all that is incorporated in the first stage has been
applied within feature selection but not in the context of FE merging to subtypes of
methods [17]. Table 3 reports the average number of attributes included in the feature
space in the starting point, after the first phase of FS-IFT and at the end of FS-IFT
which is also related to the number of classes to get an overview about what is con-
venient for a concrete problem.

5 Results

We have compared the baseline results (SS-CNS) to the new proposal in two scenari-
os such as FS-IFT(SS-CNS,+) and FS-IFT(SS-CNS,*). KNN (with k=1) and SVM
classifiers are applied to two different databases in the contexts aforementioned in
Sect. 4. Both classifiers have been assessed with two performance measures that are
averaged with five seeds: accuracy and Cohen's kappa (CK). Tables 4 and 5 show the
test results for KNN and SVM including the mean and the Standard Deviation (SD).



The sum operator helps to overcome the baseline results for GCM with kNN concern-
ing the mean accuracy and/or the CK. There is one tie in the mean accuracy, although
the SD is a bit slower what indicates more homogeneous solutions. For SALL, the
improvements only happen with the multiplication operator which may reveal that the
interaction of measures is more profitable to study Leukemia cases. Clearly, the new
proposal is very convenient for SVM as there are gains in both scenarios for both
problems. It is especially remarkable that with sum operator the improvements are
very outstanding. As a final breakthrough, a Feature-to-class ratio in the environment
of 1 (average values between 0.9 and 1.3) is not very promising to get accurate pre-
dictions according to the results. The experimentation has shown that with average
values close to 6 the prediction ability of the classifier is considerably higher. Addi-
tionally, as one reviewer suggested, we have tried an extra feature selection procedure
after FS-IFT. We have applied CoNsistency-based feature selection [15] and the
number of selected attributes is even lower than the initial values after Phase 1.

Table 2. Feature engineering methods within Feature Selection and Interpretable Feature

Transformation (FS-IFT).

Phase and name Descriptive property Value/s

Phase 1: Feature selection Input file Training set
Input Full feature space
Output Subset of features

Attribute evaluation measure
Type of search

Population size

Consistency
Scatter search

250

Phase 2: Feature transformation Input file

Input
Output

Number of attributes to act as operands

Operator
Way to obtain new attributes

Reduced training set

Reduced feature space
Augmented reduced feature
space

2

Sum(+), Multiplication(*)
All possible combinations
excluding self-combinations

Table 3. Average number of attributes and Feature-to-class ratio in every phase of FS-IFT.

Problem Features Classes Initial Selected features Feature-to-class ratio
feature-to-
class ratio
FS-IFT FS-IFT FS-IFT FS-IFT
(Phase 1) (Both phases) (Phase 1) (Both phases)
Avg. SD Avg. SD Avg. SD Avg. SD
GCM 16063 14 1147.4 12.6  3.65 91.0 49.76 0.9 0.26 6.5 3.55
SALL 12558 7 1794.0 8.8 0.84 43.4 7.89 1.3 0.12 6.2 1.13




6 Conclusions

This paper presented a framework within feature engineering including two kinds of
methods: the first step reduces the dimensionality via feature selection and the second
one expands the feature space by means of feature transformation. The proposed re-
ported very competitive results with remarkable improvements in one or two assess-
ment measures. Additive and multiplicative relations are very noticeable. In kNN
there are some cases where the sum is better, whereas in others the multiplication is
better, while in SVM the sum is substantially better in all cases. Concretely, for GCM
the classifier KNN obtained an improvement of 2.61 in accuracy with the + operator
and in SALL it is obtained an improvement of 0.93 with * operator. With the classifi-
er SVM, in GCM it is obtained an improvement of 2.61 as well as in SALL a gain of
2.44 with is also accompanied with very relevant overcoming in CK evaluation meas-
ure. Additionally, the feature-to-class ratio must be similar to the number of classes as
happens in the second most difficult case as SALL is or close to the half as in the
most challenging problem (GCM). Though the current proposal has been focused on
two complex problems from Bioinformatics, we strongly believe that the proposed
approach could be extensively used for other classification problems involving an
important number of attributes and multiple classes and even for other classifiers.
Moreover, this contribution may represent an important push for promoting the analy-
sis of low dimensionality spaces that may be achieved after feature subset selection
especially with consistency measures or sometimes with correlation metrics.

Table 4. KNN classifier: Test results.

Problem Feature Engineering procedures

SS-CNS FS-IFT(SS-CNS,+) FS-IFT(SS-CNS,*)

Accuracy CK Accuracy CK Accuracy CK

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
GCM 41.30 3.64 0.3630 0.0390 43.91 3.19 0.3910 0.0340 41.30 3.37 0.3640 0.0350
SALL 80.98 3.24 0.7666 0.0038 80.73 3.03 0.7630 0.0360 81.91 3.40 0.7770 0.0410
Average 61.14 0.5648 62.32 0.5770 61.61 0.5705

Table 5. SVM classifier: Test results.

Problem Feature Engineering procedures

SS-CNS FS-IFT(SS-CNS,+) FS-IFT(SS-CNS,*)
Accuracy CK Accuracy CK Accuracy CK
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

GCM 3043 5.67 0.2200 0.0750 33.04 5.40 0.2690 0.0570 31.30 6.24 0.2350 0.0770
SALL 81.46 396 0.7670 0.0490 83.90 4.11 0.7999 0.0520 82.93 4.29 0.7870 0.0550

Average  55.95 0.4935 58.47 0.5345 57.12 0.5110 55.95
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