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Abstract. More and more data is being collected due to constant improvements
in storage hardware and data collection techniques. The incoming flow of data
is so much that data mining techniques cannot keep up with. The data collected
often has redundant or irrelevant features/instances that limit classification per-
formance. Feature selection and instance selection are processes that help reduce
this problem by eliminating useless data. This paper develops a set of algorithms
using Differential Evolution to achieve feature selection, instance selection, and
combined feature and instance selection. The reduction of the data, the classi-
fication accuracy and the training time are compared with the original data and
existing algorithms. Experiments on ten datasets of varying difficulty show that
the newly developed algorithms can successfully reduce the size of the data, and
maintain or increase the classification performance in most cases. In addition, the
computational time is also substantially reduced. This work is the first time for
systematically investigating a series of algorithms on feature and/or instance se-
lection in classification and the findings show that instance selection is a much
harder task to solve than feature selection, but with effective methods, it can sig-
nificantly reduce the size of the data and provide great benefit.
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1 Introcution

As hardware technology improves, more and more data is collected at a rate machine
learning and data mining techniques cannot deal with. Often the data collected con-
tains redundant or irrelevant features and instances [7, 9, 14, 25, 22], which may slow
down and hindering the learning process in many tasks such as classification, reduce
the learning performance, and/or learn complex models. A pre-processing step is often
needed to remove some of the irrelevant or even noisy data, which can be achieved by
feature selection (FS) for selecting only a small subset of informative features, instance
selection (IS) for selecting only a small subset of representative examples/instances,
or FS and IS for removing useless or redundant features and instances [13, 17]. How-
ever, FS and/or IS is a challenging problem due to two main reasons. The first is the
large search space, which grows exponentially with the total number of features and in-
stances. The second is that there are almost always interactions between features, which
leads to a complex search space with many local optima and a good fitness function is



often needed to guide the search in order to find a good solution. There have been a
large number of works on FS, but not much work on IS, or FS and IS [13].

Different search techniques have been used for FS, but existing algorithms still suf-
fer from the problem of stagnation in local optima. Evolutionary computation tech-
niques are capable of searching large dimensions for solutions. Previous work has
shown that various evolutionary computation techniques, such as differential evolu-
tion (DE) [15], particle swarm optimization [1, 19, 11], genetic algorithms [18, 26] and
others [8, 2], achieve better performances than traditional FS and IS approaches [20].
This research will be utilizing the DE approach. DE is a simple but effective approach,
which has been used for solving a wide range of complex problems, especially the ones
with a large search space [24]. Recent works [3, 21] also show its capabilities in solving
FS problems, but its potential on IS has not been fully investigated.

Based on the evaluation criteria or fitness functions, feature and/or IS approaches
can be grouped into wrapper approaches and filter approaches [23], where wrappers
involves training a learning/classification algorithm in each evaluation to use the accu-
racy to show how good the candidate solution is, and filters are independent from any
learning/classification algorithm. Due to the direct link between the learning algorithm
and the candidate solution, wrappers can often achieve better accuracy than filters, but
are computationally expensive. Filters are often very fast, but may not achieve as high
accuracy as wrappers [7].

DE has only been used for wrapper FS recently [12, 21, 4, 5]. Compared with the
popularity and promising performance achieved by DE in other areas [6], the potential
of DE has not been fully investigated. Although most machine learning tasks require FS
and/or IS, classification is the area with the most applications, which could be a good
starting point for the investigation.

Goals. The aim of this research is to investigate the use of DE for data pre-processing,
which includes FS only, IS only, and FS and IS together. The proposed methods are
expected to reduce the size of the data and increase or at least without significantly
reducing the classification accuracy. More specifically, the overall goal is broken down
into the following objectives:
1. develop a new DE based FS algorithm for selecting a subset of features to reduce

the dimensionality and maintain or even increase the classification performance,
2. develop a new DE based IS algorithm for selecting a small subset of representative

instances to reduce the size of the data without significantly reducing the classifi-
cation accuracy,

3. develop a new DE based FS and IS algorithm to achieve FS and IS simultaneously,
and

4. investigate the performance increase of the new algorithms compared with existing
techniques.

2 Proposed Algorithms
In this section, we will investigate the use of DE for FS, IS, as well as FS and IS. Since
feature and/or IS are binary tasks, i.e. either select or not, but DE was originally pro-
posed as a continuous search technique, a binary DE algorithm will be needed. Different



from most existing approaches using classification accuracy to evaluate the fitness (i.e.
wrapper approaches), we will develop a series of filter algorithms based on the inter-
class and intraclass (IIC) measures to evaluate each candidate solutions.

2.1 Binary Differential Evolution

In DE candidate solutions are represented by vectors, with various operators being
performed on them at each generation. The operators can range from mathematical
functions such as addition, subtraction, or multiplication, to genetic operators such as
crossover and mutation. There are various versions of DE in the literature [16]. One of
the most promising one is DE/best/1, which is used in this work. A DE/best/1 iteration
is defined as such

vi,G+1 = xbest,G + F.(xr1,G − xr2,G) (1)

where i indicates i-th solution in the population, G and G+ 1 indicates the current and
next generations. F is a scale factor controlling the size of the particle’s movement,
and xr1,G and xr2,G are other random candidate solutions chosen from the population
such that xbest,G 6= xr1,G 6= xr2,G. xbest,G is the current global best solution, which
is a main feature of DE/best/1 that separates it from other implementations such as
DE/rand/1. As seen in the equations, the current global best solution is a main factor,
or the bases, of all new solutions. In DE/rand/1, three solutions are chosen at random to
generate the new solution.

An initial population of candidate solutions are randomly generated. In each gener-
ation, a tentative new candidate solution, vi,G+1, is generated with the equation above
for each solution i of the population. xi,G+1 is updated to vi,G at the G + 1 genera-
tion if the fitness vi,G+1 is better than xi,G, i.e. an improvement on the old solution.
Otherwise xi,G+1 is the same as xi,G.

Due to similarities between DE and PSO, previous work on binary PSO [10] can
be used here. A conversion must be made from the continuous vector representation of
the candidate solutions to the binary solutions required for the selection problems. The
conversion is given by:

outputi,d =

{
1, if rand() < 1

1+e−xi,d

0 otherwise
(2)

where output is the d-th bit of the i-th solution, rand() is a random number between 0
and 1, and xi,d is the d-th value of the i-th vector of the candidate solution, normalized
by the sigmoid function. The values in output determine the selection of features or
instances.

2.2 Fitness Function

The fitness function is one of the key components in the proposed algorithms, which is
based on IIC measures. The IIC measures can be broken down to two parts, which are
the interclass distance and the intraclass spread.



Algorithm 1 Interclass Distance
1: for all classes do
2: find all instances belong to this class
3: construct mean instance from all instances belong to this class
4: find and store a representative set of instances (ReSs) of this class
5: end for
6: distance := 0
7: for all ReSs do
8: classDistance := 0
9: links := 0

10: for all other ReSs do
11: for all Instance i1 in ReS do
12: for all Instance i2 in other ReS do
13: classDistance += distanceBetween(i1,i2)
14: links += 1
15: end for
16: end for
17: end for
18: distance += classDistance / links
19: end for
20: interclass distance := distance / number of classes

Interclass Distance. The interclass distance is a measure of the separability of classes
in a dataset. The larger the distance, the further apart and separated the classes are.
Therefore, a big distance means that the classes are more distinguished and there is less
overlap between classes, which is expected to have a better classification performance.
To achieve the goal of performing classification, we propose to build a prototype, which
is a mean instance, or centroid, for each class based on a set of representative instances.
The reasons for not using all instances here are to avoid outliers and long computational
cost.

Algorithm 1 shows how the interclass distance is calculated. For each class, a mean
instance, or centroid, is constructed. The mean instance is a feature vector that each
value is the mean of all instances belonging to that class. A representative set of in-
stances are the ones nearest to the constructed mean instance, which is found to repre-
sent the class. Each representative set has a size of 10% of the total number of instances
belonging to that class plus one, i.e. the mean instance. The representative sets are used
to calculate the Euclidean distance between classes, which can be seen from Lines 1-5
in Algorithm 1. Then, the Euclidean distance between the representative sets are found.
The average distance between two classes is defined as the average distance of each
instance in one representative set to each instance in the other representative set. The
average is taken here due to the different numbers of instances belonging to each class.
In Lines 10-17, the average distance between two classes is calculated for between ev-
ery class. Then the average of the averages between every two classes is used as the
distance between all classes as shown in Line 20.

The following equations provides a mathematical form of this calculation.

Distance =

∑a 6=b
Ca,Cb∈C

∑
i∈Ca

∑
j∈Cb

|i−j|
|Ca|×|Cb|

|C|
, (3)



Algorithm 2 Intraclass Spread
1: {Part 1: Calculating spread of each feature}
2: for all features do
3: featureSpread := 0
4: for all class do
5: featureSpread += σf,c

6: end for
7: end for
8: {Part 2: Calculating overall spread}
9: intraclass spread := 0

10: for all featureSpread do
11: intraclass spread += featureSpread
12: end for

where C is the set of all representative sets, Ca, Cb are any two different representative
sets, and i, j are individual instances.

Intraclass Spread. The intraclass spread is a measure of how spread out a particular
class is. The further spread a class is, the more likely it is to overlap with other classes,
providing a more cohesive representation of the class. Therefore a smaller spread is
preferred. The spread of a class is given by the spread of its features, particularly by
all the feature values of the instances in each class. This allows easier calculation, but
does not change the total spread of a given dataset due to the associative properties of
addition.

The spread of a particular feature is given by the sum of the standard deviation of
each class’s set of values for that feature. The spread of the set of features is given by
the sum of each feature’s spread.

Spread =
∑
f∈F ′

σf , where σf =
∑
c∈C

σf,c (4)

where F ′ is a set of features, c is an instance belonging to the class C, and σf,c is the
standard deviation of the values representing feature f in class c.

Fitness Function. To achieve good classification performance, ideally, the intraclass
spread should be minimized and the interclass distance should be maximized. There-
fore, a (minimization) fitness function is formed and shown by Equation 5.

Fitness =
Spread+ α.|F |
Distance

(5)

where |F | is the number of features, and α is a coefficient. The constant α.|F | is added
to the spread in the numerator to control the weight ratio between the spread and the
distance. A smaller constant would give more weight to the spread, and a larger constant
gives more weight to the distance. This also means that the number of features selected
in FS can be controlled, as the number of features directly affect the spread and distance,
i.e. intraclass spread wants fewer selected features, whereas interclass distance wants
more features. Therefore, by adjusting the weights of spread and distance, the number
of features can be adjusted.



2.3 New Algorithms

We will investigate the use of DE for FS, IS, as well as FS and IS together. Since
the fitness function, Equation 5, eventually shows how well different classes can be
separated, it is used in all the three algorithms, to form IIC-FS, IIC-IS, and IIC-FIS, for
FS, IS, and FS and IS, respectively.

The goal of the three algorithms are the same, i.e. minimizing the fitness value.
They all follow the basic DE process. The key difference between them is the repre-
sentation since the candidate solutions are different, i.e. a subset of features, a subset
of instances, and a subset of instances with selected features only for IIC-FS, IIC-IS,
and IIC-FIS, respectively. In IIC-FS, the representation of each individual in DE is a
m-dimensional boolean vector for a dataset with m features, where each dimension de-
termines whether the corresponding feature is selected. 1 means the feature is selected
and 0 otherwise. In IIC-IS, the representation is a n-dimensional boolean vector for a
dataset with n instances, where each dimension determines whether the corresponding
instance is selected. In IIC-FIS, the representation is a (n + m)-dimensional boolean
vector, where each dimension determines whether the corresponding feature or instance
is selected.

In IIC-FS, as the instances do not change, each feature has a particular intraclass
spread value associated with it that also does not change. These values only need to be
calculated once. Training times are improved since each feature’s spread is stored in
memory and is simply read for each fitness evaluation, as opposed to recalculating each
value every time it is needed. Therefore the first part of Algorithm 2 is only performed
once at the beginning. Further evaluations only need to perform the second part. The
same cannot be achieved for interclass distances, as changing the dimensions (features)
of instances also changes their relative distances. Therefore Algorithm 1 is performed
in full for every fitness evaluation for FS. In IIC-IS and IIC-FIS, due to the changing in-
stances, and thus both the spread and distances of the data, both algorithms’ calculations
are performed in full for every fitness evaluation.

In addition, since DE has never been used for IS, and FS and IS, we investigate
two wrapper based methods using KNN as the classification algorithm to evaluate the
classification performance as the fitness function for IS only (KNN-FS), and for FS and
IS (KNN-FIS). Both KNN-FS and KNN-FIS are also new to some extent.

3 Experiment Design

The proposed algorithms are run against 10 datasets taken from the UCI machine learn-
ing repository shown in Table 1. These datasets are selected to represent a range of
feature and instance counts, as well as being widely used datasets such that the new al-
gorithms can be compared against existing ones. Data is normalized as they are loaded,
ensuring that distance and standard deviation measures are on the same scale for all
features.

For each selection process, 30 runs are conducted for each dataset. The DE has a
population of 80 candidate solutions, and is run for 100 generations. Since an optimal
solution cannot be easily determined and classification rate is not part of the training
process, there is no early stopping criteria. The data is resplit every 10 runs for a total



Table 1. Experiment Datasets

Dataset NO. of Features NO. of Instances NO. of Classes α
Wine 13 178 3 0.4
Australian 14 690 2 2
Zoo 17 101 7 0.65
Vehicle 18 846 4 0.38
German 24 1000 2 0.16
Wbcd 30 569 2 0.27
Ionosphere 34 351 2 0.2
Lung 56 32 2 0.41
Sonar 60 208 2 0.2
Movementlibras 90 360 15 1.2

of 3 different splits per dataset. The split is done randomly, with each instance having a
70% chance of being used for training, and 30% chance of being used for testing.

In ICC-FS, IIC-IS and IIC-FIS, a search was conducted before the experiments
for α. The coefficient values for α in Table 1 were found to give a similar number of
features to KNNFS and were used for the experiments. IIC-FIS has two specific im-
plementations. The first one, marked with “200”, is run with 200 candidate solutions
of DE instead of 80. This is to accommodate for the larger search space due to the di-
mension size being the sum of number of features and instances. The second, marked
with “ICC-Half”, uses a modified KNN for classification after using IIC-FS to reduce
the features. This modified KNN only uses half the instances. For each class, the cen-
troid, or mean instance, is calculated from every instance of that class in the training
set. Then half the instances of that class, the half closest to the centroid, are used in the
KNN for classification. Although only the features are selected in the training process,
this modified KNN selects instances, putting it under FS and IS. In KNN-FS, KNN-IS,
and KNN-FIS, the average classification accuracy of a 10-fold validation on the training
set is used as the fitness value, where 10-fold validation is used to make sure that no FS
bias is involved and the test set is completely unseen for the FS methods.

After the DE generations, the solutions with the best fitness are evaluated for its
classification accuracy on the test set, where KNN (K=5) is used as the classifier. A non-
parametric test, the Mann-Whitney U test, is then used to compare the testing accuracy
and number of features/instances selected by the IIC measure against using all features,
as well as the standard KNN technique.

4 Results and Discussions
Tables 2, 3, and 4 show the results of the three sets of experiments. Table 2 shows the
results of the FS using KNN-FS, and IIC-FS. The first two columns show the dataset
name and the methods. The third column shows the average and standard deviation
of the number of selected features. The fourth column shows the average, standard
deviation, and best accuracy on the test sets. The column “Test 1” shows the statistical
significance tests between the method in the corresponding row against All, where “#”,
“?”, and “=” means the corresponding method is significantly better than, worse than,
and similar to that of All, respectively. The column “Test 2” shows the same information
against KNN-FS. Note that “better” means larger for accuracy, but means smaller for



Table 2. Experimental Results for Feature Selection

Dataset Method NO. of Accuracy Test 1 Test 2 Average
Features Mean (Std) Best Acc Size Acc Size Time

Wine All 13 0.948 (0.03) 0.979
KNN-FS 6.4 (1.13) 0.936 (0.05) 0.98 = # 566.57
IIC-FS 5.3 (0.47) 0.959 (0.02) 0.981 = # = # 5.47

Aus. All 14 0.859 (0.01) 0.867
KNN-FS 5.47 (0.94) 0.867 (0.02) 0.903 = # 8652.8
IIC-FS 2.9 (0.66) 0.858 (0.01) 0.862 = # = # 95.67

Zoo All 17 0.909 (0.05) 0.946
KNN-FS 9 (1.58) 0.938 (0.04) 1 = # 264.7
IIC-FS 8.33 (1.42) 0.904 (0.03) 0.968 = # ? = 2.27

Vehicle All 18 0.667 -0 0.667
KNN-FS 8.6 (1.54) 0.693 (0.03) 0.751 # # 20937.43
IIC-FS 8.63 (1.22) 0.645 (0.04) 0.719 ? # ? = 125.27

German All 24 0.697 (0.01) 0.709
KNN-FS 10.4 (1.92) 0.715 (0.03) 0.766 # # 43018.27
IIC-FS 8.67 (1.99) 0.718 (0.02) 0.759 # # = # 413.1

WBCD All 30 0.959 (0.01) 0.969
KNN-FS 13.2 (2.16) 0.956 (0.02) 0.982 = # 18815.8
IIC-FS 14.13 (1.93) 0.952 (0.01) 0.982 = # = = 189

Ionos. All 34 0.839 (0.01) 0.843
KNN-FS 9.8 (2.50) 0.876 (0.03) 0.933 # # 8652.6
IIC-FS 10.57 (2.03) 0.852 (0.02) 0.899 # # ? = 87.17

Lung All 56 0.747 (0.04) 0.8
KNN-FS 23 (4.34) 0.707 (0.09) 0.923 = # 129.53
IIC-FS 24.27 (2.88) 0.719 (0.08) 0.846 = # = = 2.7

Sonar All 60 0.809 (0.06) 0.895
KNN-FS 26.07 (2.80) 0.792 (0.05) 0.895 = # 9331.53
IIC-FS 26.33 (3.46) 0.798 (0.06) 0.912 = # = = 148

Movement All 90 0.707 (0.03) 0.745
libras KNN-FS 38.9 (6.15) 0.699 (0.04) 0.764 = # 51255.67

IIC-FS 39.37 (4.23) 0.682 (0.05) 0.764 = # = = 154.37

the number of features. The last column shows the average training time for a single
run,where the number is shown in seconds. Table 3 shows the results of IS, and Table
4 shows the results of FS and IS together, where the meanings of symbols are the same
as in Table 2.

4.1 Results of Feature Selection

According to Table 2, it can be seen that comparing IIC-FS with All, the number of
features is reduced to around one third of the total number of features. With the reduced
feature subsets, IIC-FS achieved better or at least similar classification accuracy than
using all the original features on nine out of the ten datasets. The results show that
proposed IIC-FS can be successfully used for FS to evolve a small number of features,
which can maintain or even increase the classification performance.

Comparing IIC-FS with KNN-FS, the number of features and the classification per-
formance are similar in most of the cases, with three cases of IIC-FS selecting a smaller
feature subsets and KNN-FS achieving better classification accuracy. KNN-FS is ex-
pected to achieve better accuracy since it is a wrapper approach while IIC-FS is a filter
approach.

In terms of the training time, there is a huge difference between IIC-FS with KNN-
FS, where IIC-FS always used a substantial shorter time (48 to 167 times faster) than
KNN-FS, with the Vehicle dataset having the biggest difference.



Table 3. Experimental Results for Instance Selection

Dataset Method NO.of Accuracy Test 1 Test 2 Average
Instances Mean(Std) Best Acc Size Acc Size Time

Wine All 128 (3.61) 0.948 (0.031) 0.979
KNN-IS 50.9 (5.82) 0.943 (0.031) 1 = # 255.33
IIC-IS 47.57 (6.02) 0.943 (0.02) 0.98 = # = = 3.2

Australian All 487.67 (10.97) 0.859 (0.009) 0.867
KNN-IS 209.47 (20) 0.862 (0.015) 0.888 = # 4327.37
IIC-IS 209.9 (20.52) 0.862 (0.021) 0.898 = # = = 40.17

Zoo All 69.67 (5.51) 0.909 (0.046) 0.946
KNN-IS 31.83 (6.79) 0.856 (0.043) 0.968 ? # 120.2
IIC-IS 26.13 (4.03) 0.817 (0.079) 0.968 ? # = # 0.03

Vehicle All 596 (10.54) 0.667 (0) 0.667
KNN-IS 277 (25.63) 0.62 (0.032) 0.699 ? # 11258.87
IIC-IS 255.13 (22.4) 0.629 (0.037) 0.707 ? # = # 35.07

German All 704 (14.53) 0.697 (0.009) 0.709
KNN-IS 311.77 (25.42) 0.711 (0.019) 0.756 # # 26422.23
IIC-IS 300.47 (25.19) 0.7 (0.022) 0.745 = # = = 275.43

WBCD All 400 (10.39) 0.959 (0.011) 0.969
KNN-IS 185.2 (20.76) 0.957 (0.013) 0.975 = # 11477.57
IIC-IS 168.67 (14.59) 0.946 (0.013) 0.969 ? # ? # 149.47

Ionosphere All 241.33 (8.62) 0.839 (0.005) 0.843
KNN-IS 104.5 (13.01) 0.86 (0.017) 0.892 # # 5608.13
IIC-IS 99.77 (8.6) 0.707 (0.057) 0.866 ? # ? = 59.07

Lung All 21.67 (2.52) 0.747 (0.045) 0.8
KNN-IS 6.77 (2.39) 0.647 (0.038) 0.7 ? # 32.77
IIC-IS 2.5 (0.9) 0.693 (0.124) 0.9 = # # # 1.63

Sonar All 147.67 (3.51) 0.809 (0.063) 0.895
KNN-IS 63.4 (9.05) 0.678 (0.054) 0.817 ? # 4899.07
IIC-IS 57.23 (6.88) 0.668 (0.058) 0.767 ? # = # 68.33

Movement All 247 (9.85) 0.707 (0.033) 0.745
libras KNN-IS 122.7 (9.62) 0.511 (0.057) 0.6 ? # 36993.93

IIC-IS 87.37 (8.68) 0.42 (0.045) 0.482 ? # ? # 143.6

In summary, the proposed ICC-FS methods can be successfully used for FS. As a
filter approach, IIC-FS is able to achieve similar FS performance to the wrapper method,
KNN-FS, but the computational time is much shorter.

4.2 Results of Instance Selection

Table 3 shows the results of IS, where both KNN-IS and IIC-FS are newly investigated
in this paper. The results show that both KNN-IS and IIC-IS selected only a much
smaller number of instances compared with the total number of instances on all the
datasets. Although the number of instances to be selected by IIC-IS was not controlled,
the number of instances selected by IIC-FS is significantly smaller than that of KNN-
IS on six out of the ten datasets, and similar on the other four datasets. Compared to
using all instances, both KNN-IS and IIC-IS performed significantly better or similar
in around half of the cases, but in general the difference is not too big, and the best
accuracy of KNN-IS and IIC-IS is often better than using all instances. This is different
from the good performance of their corresponding FS methods, as shown in Table 2.
This is not too surprised given that IS could change the original pattern and distribution
of the data, which is probably why there has been much more work on FS than IS,
although IS can benefit classification in many ways as FS. We will further investigate
effective IS methods in the future.

Regarding the training times, both KNN-IS and IIC-IS have a faster training time
than their respective FS counterparts as shown in Table 2. This is due to the highly
reduced number of instances in each fitness evaluation, resulting in fewer calculations



Table 4. Experimental Results for Feature and Instance Selection
Dataset Method Features Instances Accuracy Test 1 Test 2 Average

Used Used Mean(Std) Acc Ins Feas Acc Ins Feas Time
Wine All 13 128(3.61) 0.948(0.03)

KNN-FIS 7.17(2.13) 52(5.62) 0.935(0.04) = # # 84.9
IIC-200 10.93(1.17) 54.93(7.98) 0.94(0.04) = # # = ? = 5
IIC-Half 6.97(1.13) 66.67(1.27) 0.941(0.03) = # # = = ? 4.07

Aus. All 14 487.67(10.97) 0.859(0.01)
KNN-FIS 7.03(1.77) 207.57(21.50) 0.866(0.02) # # # 1563.4
IIC-200 11.1(1.18) 223.17(23.03) 0.858(0.02) = # # = ? ? 63.57
IIC-Half 4.7(1.29) 245(4.32) 0.813(0.03) ? # # ? # ? 86.23

Zoo All 17 69.67(5.51) 0.909(0.05)
KNN-FIS 8.43(1.85) 31.17(6.18) 0.835(0.04) ? # # 38.1
IIC-200 12.57(1.74) 30.77(4.16) 0.836(0.08) ? # # = ? = 1.13
IIC-Half 8(1.26) 40.67(2.54) 0.916(0.04) = # # # = ? 1.33

Veh. All 18 596(10.54) 0.667 -0
KNN-FIS 9.5(1.85) 283.03(19.67) 0.652(0.04) ? # # 4082
IIC-200 15(1.84) 287.9(24.69) 0.627(0.03) ? # # ? ? = 78.2
IIC-Half 9.57(1.14) 301.33(4.18) 0.572(0.03) ? # # ? = ? 104.17

Germ. All 24 704(14.53) 0.697(0.01)
KNN-FIS 9.97(2.24) 316.5(28.43) 0.712(0.03) # # # 7683.53
IIC-200 15.93(2.08) 326.63(21.46) 0.696(0.02) = # # ? ? = 273.7
IIC-Half 10.47(2.21) 353.67(6.23) 0.687(0.04) = # # ? = ? 397.47

WBCD All 30 400(10.39) 0.959(0.01)
KNN-FIS 14.23(2.99) 186.13(17.47) 0.947(0.02) ? # # 4215.1
IIC-200 21.13(2.87) 185.33(16.04) 0.95(0.01) ? # # = ? = 178.67
IIC-Half 14.83(2.52) 201.33(4.57) 0.941(0.01) ? # # = = ? 215.87

Ionos. All 34 241.33(8.62) 0.839(0.01)
KNN-FIS 14.53(2.96) 106.97(12.08) 0.864(0.03) # # # 1633.83
IIC-200 19.63(2.24) 105.33(11.30) 0.763(0.04) ? # # ? ? = 61.27
IIC-Half 11.93(2.42) 122.33(3.36) 0.708(0.04) ? # # ? # ? 116.47

Lung All 56 21.67(2.52) 0.747(0.04)
KNN-FIS 23.87(3.66) 6.23(2.06) 0.647(0.04) ? # # 10.37
IIC-200 27.73(4.70) 2.43(1.07) 0.704(0.12) ? # # # ? # 1.87
IIC-Half 24.6(3.63) 12.67(1.27) 0.715(0.09) ? # # # = ? 2.27

Sonar All 60 147.67(3.51) 0.809(0.06)
KNN-FIS 26.57(4.32) 64.07(9.66) 0.722(0.05) ? # # 1648
IIC-200 30.53(4.07) 61.43(6.37) 0.679(0.05) ? # # ? ? = 62.03
IIC-Half 26.3(4.46) 75.67(1.27) 0.707(0.04) ? # # = = ? 86

Move. All 90 247(9.85) 0.707(0.03)
libras KNN-FIS 43.77(5.77) 125.67(9.83) 0.497(0.06) ? # # 11808.07

IIC-200 54.17(5.11) 108.67(9.77) 0.46(0.05) ? # # ? ? # 190.83
IIC-Half 40.3(4.02) 135.33(4.18) 0.553(0.04) ? # # # # ? 142.63

of the distances between instances. Once again the IIC technique is much faster than the
KNN technique. The speed increase ranges from 20-321 times faster. The Zoo dataset is
a special case, most of the training times where recorded as 0 (seconds) since the entire
training process took less than one second. This results in an extremely low average
training time, which was 4000 times faster than KNN-IS.

In summary, the two IS methods cannot in most cases maintain or increase the
classification performance, although it can substantially reduce the size of the data. The
speed of the algorithms is very fast, much faster than the FS methods. How to maintain
the speed and simultaneously increase the classification performance is an interesting
direction for future work.

4.3 Results of Feature and Instance Selection

Table 4 shows the results for the FS and IS experiments, where “200” is used to rep-
resent the implementation of IIC-FIS with 200 generations, and “IIC-Half” is used to



represent the version of IIC-FIS with the KNN implementation. All the three methods
on this set of experiments are new in this work.

The results from Table 4 show that both the number of features and the number
of instances have been significantly reduced, but the price is the lower classification
performance, especially on the large datasets. IIC-200 selected significantly more fea-
tures than KNN-FIS on every dataset, and they are similar in the number of instances
on most datasets. IIC-Half has a similar number of features selected on seven of the
ten datasets as KNN-FIS, and a similar classification performance. Compared to using
all feature and instances, KNN-FIS achieves a better classification accuracy on three
datasets, and worse on six. Both IIC-200 and IIC-Half achieves similar results on three
(Wine and German for both, then Australian for 200 and Zoo for IIC-Half) datasets.
Neither achieves a significantly better result than using all features and instances.

For the training time, the IIC methods have a much faster time than the KNN based
method. Although the improvement here is not as high as in FS and IS, with the range
of reduction at 4-80 times faster.

4.4 Analysis on the Computational Time
The ICC methods are orders of magnitude faster than KNN-FIS in terms of the training
time while still achieving similar results. According to Tables 2, 3 and 4, the average
training speed is roughly 4-400 times faster (on average 120 times faster) using IIC
than the KNN technique. This is due to the number of distance calculations between
instances, a costly operation, is much lower in IIC than KNN.

Assuming instances are equally distributed between classes, for each fitness evalua-
tion the number of calculations between values in IIC can be roughly calculated by the
following equation:

n+ 0.01
(n
c

)2
.
c(c− 1)

2
, (6)

where c ∈ [1, n] is the number of classes and n is the number of instances. The initial
n at the beginning is to find the distance from each instance to its mean instance to
identify the representative set. The second part is the distance calculations between
representative set. A fully connected graph (where each vertex is a class representative
set) has c(c−1)

2 edges, with each edge consisting of 0.1n
c × 0.1n

c calculations. This is
largest at c = 2 for all n > 2, giving n+ 0.0025n2 calculations.

For the KNN based techniques, each evaluation requires 10× 0.9n× 0.1n (0.9n2)
distance calculations. This is from the 10-fold cross validation, where in each fold 10%
of instances are compared with the other 90%. So the rough number of calculations is

n+ 0.0025n2 > 0.9n2 for all n > 1, (7)

Fig. 1 shows the number of distance calculations in KNN and IIC when the number
of instances is 10 and 100. One can see that even at only 10 instances, KNN has greatly
separated from IIC. When there is 100 instances, IIC is negligible compared to KNN.
Note that are more than 100 instances in the training set in all but two datasets.

5 Conclusions and Future Work
The goal of this paper was to investigate the use of DE for feature and/or IS in classifi-
cation, which a new binary DE algorithm and a new fitness function. The experiments
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Fig. 1. Number of distance calculations in KNN and IIC

and comparisons on ten datasets show that the proposed DE based FS algorithm is suc-
cessful in terms of the number of features, the classification accuracy and the training
time. However, when the IS task involved, the algorithms are good at reducing the size
of the data, but the classification accuracy may suffer, which is a critical problem. The
reason for this is due to the large search space, which is also probably why there has
been much more work on FS than IS.

This paper investigates a series of different feature and/or IS methods, which have
not been done before. Although it is only a preliminary work, the findings are very
useful, especially when both feature selection and instance selection are becoming in-
creasingly important for big data tasks. There is still a lot of work should be done in
this filed. For example, a novel representation of solutions is needed, which can ef-
fectively reduce the search space and also form a more smooth landscape to be more
easily searched. A computationally cheap fitness measure is also of key component,
especially on datasets with a large number of features and instances. We will focus on
these directions in the future.
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