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Abstract. Feature reduction is an important pre-processing step in clas-
sification and other artificial intelligent applications. Its aim is to improve
the quality of feature sets. There are two main types of feature reduction:
feature construction and feature selection. Most current feature reduction
algorithms focus on just one of the two types because they require dif-
ferent representations. This paper proposes a new representation which
supports a feature reduction algorithm that combines feature selection
and feature construction. The algorithm uses new genetic operators to
update the new representation. The proposed algorithm is compared with
two conventional feature selection algorithms, a genetic algorithms-based
feature selection algorithm, and a genetic programming-based algorithm
which evolves feature sets containing both original and high-level fea-
tures. The experimental results on 10 different datasets show that the
new representation can help to produce a smaller number of features
and improve the classification accuracy over using all features on most
datasets. In comparison with other feature selection or construction algo-
rithms, the proposed algorithm achieves similar or better classification
performance on all datasets.

1 Introduction

One of the most important tasks of machine learning is classification [1] which
assigns a class label to an instance. The classification is based on the instance’s
properties, known as features. The quality of the feature set significantly affects
the classification performance. However, in many real-world problems, there are
many irrelevant and redundant features that not only reduce the classification
accuracy, but also increase the complexity of the learned classifier and the train-
ing time.

Feature reduction is typically a pre-processing step, which aims to create an
informative feature set from the original one to improve the classification per-
formance. In feature reduction, there are two main approaches including feature
selection and feature construction. While feature selection aims at selecting a
good feature subset from the original features, feature construction builds one
or more high-level features with better discrimination ability. Since feature selec-
tion does not produce any new feature, it maintains the meanings of the original
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features in each problem. On the other hand, feature construction aims to com-
bine original features to achieve better classification performance.

Although feature reduction is a useful step, it is not an easy task. Given N
original features, the task of feature selection is to find an optimal subset among
2N possible feature subsets. So the search space of feature selection increases
exponentially with respect to the number of features. Besides the large search
space, the complex interactions between features make feature selection a chal-
lenging task. For example, two relevant features may provide the same informa-
tion about the class label, which means it is redundant to select both features.
Meanwhile, selecting two weakly relevant features may significantly improve the
classification performance if they are complementary features [2]. In order to
achieve feature construction, the first step is to select a good feature subset,
based on which the new high-level features are built. Therefore the search space
of feature construction is even larger than feature selection since it also needs
to consider how to combine features. In summary, feature reduction has two
main difficulties: large search spaces and complex feature interactions which are
usually addressed by two key factors: the search technique and the evaluation
criteria, respectively.

According to the evaluation criteria, feature reduction can be divided into two
main categories: wrappers and filters [3]. Wrapper approaches usually evaluate
feature subsets by a classification algorithm. On the other hand, filters do not
involve any classification algorithm during the evaluation process. In filters, the
goodness of a feature set is measured by characteristics of datasets. Filters are
usually more efficient and result in more general feature sets. However, wrappers
usually achieve higher classification accuracies. Therefore, in this work feature
reduction is achieved by wrapper approaches.

Evolutionary computation (EC) has been widely applied to feature reduction
because of its potential global search ability. EC-based feature construction is
usually achieved by genetic programming (GP) [4] since GP can automatically
evolve mathematic formulas without any assumptions about the structure of the
formulas. In addition, the tree-like representation of GP is quite flexible, which
makes it easy to express complex solutions with different kinds of operators and
functions. For EC-based feature selection, genetic algorithms (GAs) and particle
swarm optimization (PSO) are the most popular approaches [2]. Among EC
algorithms, GAs were the earliest search mechanism applied to feature selection
because of its natural representation of a binary string.

Most existing feature reduction works focus on either feature selection or
feature construction. However, Tran et al. [5] showed that the combination of new
high-level features and the original features appearing in the high-level features
achieves a better classification performance than using only selected features
or only constructed features. This suggests that it is promising to do feature
construction and feature selection together so that we can take the advantages
of both methods. This was partially done by Tran et al. [5] but only constructed
features were evolved during the evolutionary process while the selected features
were chosen at the end, which meant that the interactions between constructed
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and selected features were ignored. In this work, a new representation, which can
be seen as a combination of bit vector and tree representations, is proposed to
simultaneously perform feature selection and feature construction while taking
into account the interactions between the two kinds of features.

Goal: The overall goal of this paper is to develop a new scheme for feature
reduction to evolve small new feature sets with better classification performance
than using all features. The new representation scheme and genetic operators
are designed so that feature selection and feature construction can be performed
simultaneously. The proposed feature reduction algorithm is then compared with
a GA-based feature selection algorithm, a GP-based feature construction algo-
rithm, and two conventional feature selection algorithms on 10 datasets with dif-
ferent numbers of features, classes and instances. Specifically, we will investigate:

– whether the new algorithm can reduce the number of features while increasing
the classification performance over using all features,

– whether the new algorithm can evolve smaller feature sets with better classi-
fication accuracy than the GA-based feature selection algorithm,

– whether the new scheme helps to build a small feature set containing both
high-level and original features that achieves better performance than the
high-level feature and/or selected features evolved by GP,

– whether the new algorithm can outperform two traditional (non-EC) feature
selection algorithms.

2 Background

2.1 Genetic Algorithms (GAs) and Genetic Programming (GP)

GAs [6] are one of the first EC algorithms, which are inspired by the natural
selection from the Darwinian theory of evolution. In GAs, an optimization prob-
lem is solved by a population of candidate solutions. Each candidate solution is
represented by a fixed-length bit string which is also known as a chromosome.
The algorithm starts with a number of random chromosomes. During the evolu-
tionary process, each candidate solution is evaluated by a fitness function. The
selection scheme ensures that the chromosomes with better fitness values have
higher chance to be selected or survival in the next generation. Some genetic
operators such as crossover and mutation are applied to the selected chromo-
somes to produce new chromosomes for the next generation. It is expected that
exchanging information between two good parents can result in better children.
In addition, the fittest chromosomes is possibly preserved by the elitism mech-
anism. The new generation is then evaluated and enhanced in the following
iteration. The algorithm terminates when a maximum number of iterations is
reached, and/or a satisfactory fitness value has been achieved. It can be seen
that GAs use a vector representation, which is a natural representation for fea-
ture selection. Specifically, in the binary vector representation, “1” shows the
corresponding feature is selected and “0” means not selected.
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Similar to GAs, GP [7] is a population-based optimization algorithm in which
the candidate solutions are evolved by a number of genetic operators such as
selection, crossover,mutation and elitism. The difference between GAs and GP
is mainly on their representations. In GP, each candidate solution is usually
represented by a tree, where the decision variables/features are the leaf nodes
and each internal node is a function selected from a predefined function set. So
each candidate solution, presented by a tree representation, can be seen as a
high-level function, which maps from a number of original features to a high-
level feature. GP is a domain-independent method since it does not require any
domain knowledge such as any assumption about the model. Therefore, GP is
usually used to achieve feature construction.

2.2 Related Work on Feature Reduction

The easiest way to achieve feature selection was to consider all possible feature
subsets, which guaranteed to produce an optimal feature subset. However, this
method was very computationally intensive and impossible when there was a
large number of features. In order to reduce the computation cost, two sequen-
tial searches including forward (SFS) and backward (SBS) selection approaches
were proposed [8]. Starting from an empty or full set of features, in each iteration
SFS or SBS added or removed one feature from the current feature subset. The
algorithms terminated when a pre-defined number of features was reached. How-
ever, the decision on a feature could not be changed once the feature was added
or removed. The issue was addressed in two floating sequential forward (SFFS)
and backward (SBFS) selection methods [8], which performed an additional step
to remove or select features after each of the forward or backward step.

EC has been widely applied to feature selection. GAs [9,10] and PSO [11,12]
are the two most popular techniques because of their natural representations for
feature selection. Some works focused on improving the feature subset qualities
by estimating good starting points for the population, such as [13,14]. The exper-
imental results suggested that a good initialization strategy not only improved
the classification performance but also shortened the training time. Represen-
tations were also modified to further enhance the feature subset qualities. For
example, Vieira et al. [15] included a classifier’s parameters into an individual’s
position in PSO to simultaneously optimize both feature subsets and the para-
meters. Statistical feature clustering information was also utilized to shorten the
representation as in [16,17], which allowed to select the most important features
in different runs consistently. Besides effectiveness, improving efficiency is also an
important aspect in feature selection. Nguyen et al. [18] used a small number of
training instances to estimate promising search regions before further exploring
the regions using the whole training set. In addition, a local search mechanism
was proposed to use information from the previous iterations to improve the cur-
rent feature subsets. The proposed algorithm not only significantly reduced the
computation time but also evolved better feature subsets than using the whole
training set.
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In terms of feature construction, GP was used to build a single high-level
feature by using a single tree-representation for a given problem [19]. However,
a single constructed feature usually did not contain enough information to well
describe the problem. Therefore, GP was extended to construct multiple high-
level features. A straight-forward way was to used a multi-tree representation
[5], in which each individual consisted of more than one tree and each tree corre-
sponded to one constructed feature. The experimental results showed that using
the constructed and selected features resulted in better accuracies than using
either of them. However, the selected features were chosen from features used
as leaf nodes in the best constructed features in the last iteration, which were
not explicitly evaluated during the evolutionary process. This means that their
interactions might be ignored. For example, the selected features and constructed
features might be redundant since the selected feature was already included in
the constructed features. Furthermore, some original features, which were com-
plementary with the constructed features, might not be selected since they were
not used for constructing features. This work will address the above issues by
proposing a new representation to achieve both feature selection and feature
construction.

3 Proposed Approach

3.1 Hybrid GA-GP: A New Representation

This section describes a new representation scheme for feature reduction to con-
duct feature selection and feature construction simultaneously. The vector rep-
resentation used in GAs is most appropriate for feature selection and the tree
representation used in GP is most appropriate for feature construction. In order
to achieve the two tasks at the same time, the new representation is designed as
a combination of the vector and the tree representations. The reason for selecting
GAs and GP over other EC algorithms such as PSO and differential evolution
(DE) is that the similar evolutionary mechanisms of the two selected algorithms
make it easier to combine them into a single algorithm.

In the new representation scheme, each individual includes two parts. The
first component of the new representation (FS) is a bit string, as in GAs. Each
bit corresponds to one original feature, so the length of the string is equal to the
number of original features. A bit’s value of “1” means the corresponding feature
is selected, otherwise the feature is discarded. The second component of the new
representation (FC) is a tree, as in GP, and represents a constructed feature.
Therefore, each candidate solution is a feature set containing a subset of original
features and a newly constructed feature. The essential difference between this
representation and the work conducted by Tran et al. [5] is that the selected and
constructed features are evaluated together as a single feature set. Therefore, the
new representation is able to consider the interactions between selected features
and the constructed feature. An example of the new representation with four
original features, {f0, f1, f2, f3}, is given in Fig. 1. As can be seen in the figure,
the FS part is a binary vector with a length of 4. The bit values indicate that



596 H.B. Nguyen et al.

Fig. 1. An example of the new representation with a dataset including 4 features

two original features, f0 and f3, are selected. The FC part contains a single tree,
which uses 3 original features f0, f1 and f3 to construct a high-level feature, (f0+
f1)∗f3. Therefore, the individual defines a new feature set, which is {f0, f3, ((f0+
f1) ∗ f3)}.

3.2 Genetic Operators

The aim of the algorithm that uses this representation is to co-evolve the bit vec-
tor (FS) and the tree representation (FC) together so that the selected original
features and the constructed feature in the final feature set are complementary
in achieving better classification performance.

The selection operator of the algorithm works the same way as selection
in traditional GAs and GP. In this work, a tournament selection is applied.
Specifically, each time from the population, a number of individuals are picked,
from which the fittest one is selected. This process is repeated to select a fixed
number of individuals which work as parents for crossover, the next operator.

Since each individual has both a bit string (FS) and a tree (FC), the two
operators crossover and mutation must be modified to cope with the new repre-
sentation. In crossover, firstly two parents are randomly selected. After that, the
crossver is performed on both FS and FC components, simultaneously. Specifi-
cally, a single crossover point on the two bit strings is selected and two crossover
nodes in two trees are randomly selected. All bits beyond the crossover point are
swapped and the two subtrees rooted at the two crossover nodes are exchanged
to form two new trees. The results of the crossover operator is two new offspring
and each of them contains a new bit string and a new tree. In Fig. 2, the vertical
green dash-line shows the crossover point between the two bit strings and the 4th

bits of the two strings are exchanged. The crossover node and its corresponding
subtree are marked in green.

As in crossover, mutation is also changed so that both components in the
new representation are mutated. Given a parent randomly selected from the
population, its bit string is mutated by firstly selecting some bits randomly and
then flipping the selected bits (change 1 to 0 and 0 to 1). Similarly, the tree
from the FC part is mutated by replacing a random subtree by a small newly
generated tree. Therefore, the mutation operator replaces a selected parent by
an offspring, which also has both a bit string and a tree. An example of mutation
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Fig. 2. An example of crossover for the new representation (Color figure online)

is shown in Fig. 3, where the bits and subtree selected for mutation are filled in
green. Specifically, the subtree {f2} is replaced by another small tree, {f0 ∗ f1}.

Fig. 3. An example of mutation for the new representation (Color figure online)

3.3 Fitness Function

In feature reduction, there are two main objectives: to minimize the classification
error and to minimize the number of features. The algorithm combines the two
objectives into a single fitness function, as shown in the following equation:

fitness = α ∗ ErrorRate + (1 − α) ∗ #manipulatedFeatures

#originalFeatures
(1)

where ErrorRate is the classification error of the new feature set, #manipulat-
edFeatures and #originalFeatures represent the number of features in the new
feature set and the total number of original features, respectively. α is used to
control the contribution of the two objectives. The task of a feature reduction
algorithm is to minimize the fitness value calculated by Eq. (1). The classification
error is calculated based on the new feature set including selected original fea-
tures from the bit string (FS) and constructed features from the tree (FC), which
means that the interaction between the two parts of the new representation is
considered.
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Note that in a GA-based feature selection algorithm, the new feature set
is actually a subset of features selected from the original feature set. So the
features inside the new feature set are not new features. On the other hand,
in the proposed feature reduction algorithm with the new representation, the
new feature set contains a new constructed feature, along with a subset of the
original features.

3.4 Overall Algorithm

Algorithm 1 shows the pseudo-code of the proposed algorithm, which combines
GAs and GP together to perform feature selection and feature construction
simultaneously. The proposed algorithm is called HGAGP. In the initialization,
each bit in a bit string is randomly assigned to 0 or 1. Trees in FC components
are initialized using the ramped half-and-half strategy.

Algorithm 1. Hybrid GA-GP for feature reduction (HGAGP)
1: Initialize the population;
2: Evaluate each individual according to Eq. (1);
3: while Maximum number of iterations is not reached do
4: Perform selection operator;
5: Perform crossover operator;
6: Perform mutation operator;
7: Evaluate the new population according to Eq. (1);
8: end while
9: Return the best individual including the selected and constructed features with its

corresponding training and testing accuracies.

4 Experiment Design

To examine the performance of the proposed algorithm HGAGP, two tra-
ditional feature selection methods, which are floating sequential forward and
backward selection (SFFS and SBFS) [8] and two feature reduction algorithms
based on GAs and GP are used as benchmark techniques. Note that for the
GP based algorithm, GP is used to construct a single feature. The feature set
evolved by HGAGP is compared with a single constructed feature (GP), and the
combination of the constructed feature with the selected original features used
as leaf nodes in the constructed feature (GPWS).

The algorithms are compared on 10 different datasets selected from the UCI
machine learning repository [20]. The datasets have different numbers of features,
classes and instances (Table 1). For each dataset, the instances are divided into
training and test sets with the proportions of 70% and 30%, respectively. The
division ensures that the class distribution are roughly maintained in the two
instance subsets. On each dataset, each algorithm is ran 50 independent times.



A Hybrid GA-GP Method for Feature Reduction in Classification 599

Table 1. Datasets

Dataset No. of features No. of classes No. of instances

Wine 13 3 178

Vehicle 18 4 946

WBCD 30 2 569

Ionosphere 34 2 351

Sonar 60 2 208

Movementlibras 90 15 360

Hillvalley 101 2 606

Musk1 166 2 476

Arrhythmia 279 16 452

Isolet5 617 5 7797

All feature reduction algorithms in this work are wrapper approaches, in
which each candidate solution is evaluated by the K-nearest neighbor (KNN)
classification algorithm. K is set to 5 so that KNN can avoid the noisy instances
while maintaining its efficiency. During the training process, 10-fold cross vali-
dation is applied to measure the classification error of a feature set to be used
in the fitness function. The α value in Eq. (1) is set to 0.9 so that the search
focuses more on improving the classification performance.

For all algorithms, the population size is set to three times the total number of
original features since the search space size increases exponentially with respect
to the number of features. However, the population size is limited to 100. The
maximum initial depth of a tree is set to 7 and the maximum tree depth is
17 to avoid the bloating problem in GP. The crossover and mutation rates for
GAs, GP and HGAGP are 0.8 and 0.2, respectively, which follows the parameter
settings by Tran et al. [5] to ensure a fair comparison. In this work, followed the
implementation by the DEAP package [21], elitism is not implemented. However
the best solution evolved during the evolutionary process is recorded, which is
returned at the end of each algorithm. All algorithms stop after 50 generations.
Different algorithms are compared by a statistical significance test, Wilcoxon
signed rank test with the significance level being set to 0.05.

5 Results and Discussions

5.1 Results on the Training Set

The average training accuracies of the feature sets evolved by the four algorithms
over 50 independent runs are shown in Table 2. In the table, “Full” means that
all the original features are used for classification. The significance test results
are shown in the brackets, where “+”/“−” means that the corresponding algo-
rithm is significantly better/ worse than the proposed algorithm, HGAGP; “=”



600 H.B. Nguyen et al.

Table 2. Training accuracies

Datset Full GAs GP GPWS HGAGP

Wine 96.74 (−) 98.01 (−) 97.34 (−) 97.41 (−) 99.10

Vehicle 84.26 (−) 83.99 (−) 77.19 (−) 79.52 (−) 85.72

WBCD 97.22 (−) 97.73 (−) 98.13 (=) 97.68 (−) 97.96

Ionosphere 92.24 (−) 95.64 (−) 95.77 (−) 94.68 (−) 96.70

Sonar 91.66 (−) 97.13 (=) 88.73 (−) 89.93 (−) 97.08

Movementlibras 89.64 (−) 89.92 (=) 64.31 (−) 75.15 (−) 90.22

Hillvalley 78.15 (−) 80.77 (−) 99.57 (=) 95.80 (−) 99.49

Musk1 92.77 (−) 95.64 (=) 85.56 (−) 87.40 (−) 95.86

Arrhythmia 69.84 (−) 77.18 (−) 71.82 (−) 73.19 (−) 78.55

Isolet5 91.19 (−) 94.41 (=) 57.53 (−) 78.36 (−) 94.58

means not significantly different. As can be seen in the table, HGAGP achieves
better training accuracies than using all features on all datasets. Especially on
Hillvalley, the accuracy of HGAGP is 20% higher than using all features. Simi-
larly, HGAGP is significantly better than GPWS on all datasets. In comparison
with GAs and GP, HGAGP significantly outperforms them on a majority of the
datasets. For example, on Isolet5, HGAGP’s training accuracy is 94.58% which
is almost twice higher than the one obtained by GP.

5.2 Results on the Test Set

Feature sets evolved by the four algorithms were evaluated on unseen instances
from the test set. The average testing accuracies are shown in Table 3. As can

Table 3. Testing accuracies

Datset Full GAs GP GPWS HGAGP

Wine 98.14 (+) 93.48 (−) 91.33 (−) 94.14 (−) 96.62

Vehicle 66.14 (−) 72.99 (−) 62.07 (−) 65.95 (−) 74.09

WBCD 98.83 (+) 95.99 (=) 96.10 (=) 96.37 (=) 95.82

Ionosphere 78.09 (−) 84.55 (=) 84.49 (=) 83.75 (=) 84.74

Sonar 77.77 (−) 79.65 (=) 64.76 (−) 69.84 (−) 80.66

Movementlibras 75.00 (=) 74.96 (=) 27.00 (−) 47.22 (−) 74.77

Hillvalley 58.24 (−) 61.76 (−) 99.13 (=) 90.72 (−) 98.92

Musk1 76.92 (−) 86.65 (=) 64.40 (−) 70.61 (−) 85.93

Arrhythmia 53.67 (−) 59.41 (−) 58.86 (−) 60.44 (−) 62.52

Isolet5 75.42 (−) 84.79 (−) 28.18 (−) 60.74 (−) 85.14
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be seen from the table, on 7 out of the 10 datasets, HGAGP improves the test-
ing accuracies over using all features. Especially on the Hillvalley dataset, in
comparison with using all features, HGAGP is almost two times more accurate.
Compared with GP and GPWS, on most datasets HGAGP performs signifi-
cantly better. For example, on Isolet5, the largest dataset, HGAGP’s accuracy
is almost 60% and 25% higher than GP and GPWS, respectively. HGAGP is
significantly better than GAs on 5 datasets and achieves similar performance on
the other datasets. The most significant difference between the two algorithms is
on Hillvalley, where HGAGP’s accuracy is almost 40% better than that of GAs.
Therefore, on all datasets the proposed algorithm is never significantly worse
than GAs, GP or GPWS.

It can be seen that GAs, GP and GPWS do not perform consistently well on
all datasets. On some datasets, feature selection with GAs is more suitable. On
the other datasets, constructing features with GP is a better method. However,
HGAGP shows that it can adapt with different datasets to consistently produce
good features on all datasets since it does both feature selection and feature
construction at the same time. Although GPWS also combines a constructed
feature with original features, it does not consider the interaction between the
two kinds of features, which results in its worse performance than HGAGP.

5.3 Size of New Feature Sets

The size of new feature sets evolved by the algorithms is shown in Table 4.
Since the target is to select a small number of features, the smaller feature
set the better the algorithm. GP necessarily produces the smallest feature set
because it only constructs a single feature. It can be seen that on all datasets,
HGAGP evolves feature sets containing less than 30% of the total number of
original features. On the small datasets, HGAGP usually selects a similar or
smaller number of features than other algorithms (except for GP). When the

Table 4. Number of features in the new feature set

Datset Full GAs GP GPWS HGAGP

Wine 13.0 (−) 4.2 (=) 1.0 (+) 8.8 (−) 4.3

Vehicle 18.0 (−) 7.3 (=) 1.0 (+) 7.5 (=) 7.5

WBCD 30.0 (−) 6.1 (=) 1.0 (+) 10.8 (−) 5.7

Ionosphere 34.0 (−) 7.4 (=) 1.0 (+) 10.5 (−) 6.9

Sonar 60.0 (−) 19.7 (+) 1.0 (+) 20.4 (=) 21.7

Movementlibras 90.0 (−) 30.8 (=) 1.0 (+) 15.1 (+) 31.7

Hillvalley 100.0 (−) 30.4 (−) 1.0 (+) 14.5 (−) 5.1

Musk1 166.0 (−) 56.5 (=) 1.0 (+) 24.2 (+) 58.2

Arrhythmia 278.0 (−) 85.5 (+) 1.0 (+) 33.1 (+) 94.9

Isolet5 617.0 (−) 234.6 (=) 1.0 (+) 28.0 (+) 240.0
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number of original features is increased, HGAGP tends to select more features
to preserve its high classification performance. So the experimental results show
that HGAGP can adapt with different numbers of features to maintain its high
classification accuracies. Due to space limitations the computation cost is not
included. In general, HGAGP is a little bit more expensive than GAs and GP
since it needs to transform the original dataset using both bit strings and trees.

5.4 Further Comparison with Traditional Methods

A comparison between HGAGP and two sequential searches, SFFS and SBFS,
is shown in Table 5. The number of features evolved by HGAGP is used as
stopping criteria for the two sequential searches. In the table, on each dataset
(each column) the best testing accuracy is marked in bold. As can be seen from
the table, HGAGP achieves the best performance on 7 out of the 10 datasets.
The largest difference between the three methods is on Hillvalley, where HGAGP
is almost twice accurate than SFFS and SBFS. The experimental results show
that the new representation helps HGAGP to better explore the search space
than the two sequential algorithms.

Table 5. Results of SFFS and SBFS

Method Wine Vehicle WBCD Ionosphere Sonar

SFFS 98.15 69.69 92.98 81.91 74.60

SBFS 98.15 68.90 92.98 84.70 80.95

HGAGP 96.62 74.09 95.92 84.74 80.66

Method Movementlibras Hillvalley Musk1 Arrhythmia Isolet5

SFFS 73.15 64.56 82.52 64.71 83.55

SBFS 73.15 59.34 82.52 55.88 76.92

HGAGP 74.77 98.92 85.93 62.52 85.14

6 Conclusions and Future Work

The goal of the research was to develop a new representation for feature reduction
using EC, which not only performs feature construction and selection simultane-
ously but also considers the interaction between the two kinds of features. The
goal has been achieved by combining a bit string and a tree together to form a
new representation. The genetic operators were also redesigned to suit the new
representation. The experimental results on 10 different datasets show that the
proposed algorithm, HGAGP, can evolve smaller feature sets with better classifi-
cation accuracy than using all features. Since HGAGP performs feature selection
and construction at the same time, it can consistently achieve good performance
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on all datasets. In addition, considering the interactions between original and
constructed features helps HGAGP to outperform using GAs for feature selection
only, and using GP for feature construction and/or feature selection.

In the future, we will investigate on how to construct multiple features along
with selecting features to further improve the classification performance. In addi-
tion, it will be interesting to exchange the information between two parts in the
new representation. For example, the selected features in feature selection can be
used to enhance the constructed features in feature construction and vice versa.
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