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Abstract. Feature selection is a pre-processing step in classification,
which selects a small set of important features to improve the classifi-
cation performance and efficiency. Mutual information is very popular
in feature selection because it is able to detect non-linear relationship
between features. However the existing mutual information approaches
only consider two-way interaction between features. In addition, in most
methods, mutual information is calculated by a counting approach, which
may lead to an inaccurate results. This paper proposes a filter feature
selection algorithm based on particle swarm optimization (PSO) named
PSOMIE, which employs a novel fitness function using nearest neigh-
bor mutual information estimation (NNE) to measure the quality of a
feature set. PSOMIE is compared with using all features and two tra-
ditional feature selection approaches. The experiment results show that
the mutual information estimation successfully guides PSO to search for
a small number of features while maintaining or improving the classi-
fication performance over using all features and the traditional feature
selection methods. In addition, PSOMIE provides a strong consistency
between training and test results, which may be used to avoid overfitting
problem.

Keywords: Feature selection, mutual information estimation, particle
swarm optimization

1 Introduction

A feature refers to a property of an object. In classification problems, each in-
stance in a dataset is a set of values, which are assigned to the instance’s features.
These values will be used by a classification algorithm to determine which cat-
egory or class the instance belongs to. A set of instances is used to train the
classification algorithm, which is called a training set. However, in many classi-
fication problems, a large number of features are used to describe the instances.
Due to “the curse of dimensionality”, the larger a set of features is, the more dif-
ficult the training is and the longer the training time may take. In addition, not
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all features provide useful information. Some features have no or little relevance
to the class labels, which blur useful information from other features [1]. Such
features may lead to classification performance reduction. Also, some features
may provide the same information as other features, and therefore do not im-
prove the classification performance but result in a longer training time. In order
to reduce the number of features, two feature reduction approaches, including
feature selection and feature construction, are proposed. Feature construction
constructs a small number of new high-level features while feature selection [2]
reduces the size of the feature set by removing irrelevant and redundant features,
which hopefully maintains or even increases the classification performance com-
pared with using all features. This paper focuses mainly on feature selection in
classification.

Feature selection is a difficult task due to the complex interaction between
features. For example, a weakly relevant feature, which may not individually pro-
vide useful information to determine the class label, can significantly improve
the classification performance when used with other features. Furthermore, an
individually relevant feature may become redundant when working with oth-
ers. Another reason, which makes feature selection become a challenge task, is
the large search space, where the search space’s size grows exponentially with
respect to the number of features. Suppose there are n original features, then
the total number of possible subsets is 2. Therefore, the exhaustive search is
too slow to perform over the large search space in most situations. In order to
reduce the searching time, some greedy algorithms such as sequential forward
selection [3] and sequential backward selection [4] are developed. However, these
methods usually do not guarantee to find optimal solutions due to getting stuck
at local optima. Evolutionary computation (EC) algorithms such as genetic pro-
gramming (GP) [5], genetic algorithms (GAs) [6] or particle swarm optimization
(PSO) [7] are considered global optimization methods, which are suitable for a
problem with large search space like feature selection. Therefore, EC have been
widely applied to solve feature selection problems in recent years. PSO is chosen
as the search technique for this work because it has a natural representation for
feature selection, in which each original feature is represented by an entry of a
particle’s position. In addition, PSO is also simple and converges more quickly
than other EC algorithms. In [8],it has been shown that, to achieve the same
effectiveness, PSO is more efficient than GAs.

According to the evaluation criterion, existing feature selection methods can
fall into two categories: wrapper and filter approaches [9, 10]. In a wrapper ap-
proach, a learning algorithm is used to calculate the fitness value of the selected
features. Meanwhile, a filter approach is done in an independent way of learning
algorithms. Therefore, wrapper methods usually can achieve better classification
accuracy than filter ones. However, wrappers may produce a feature subset with
poor generality, which is only good for the wrapped classification algorithm. In
addition, in comparison with wrappers, filter methods are usually less expen-
sive in terms of the computation complexity. Nowadays, there are many filter
measures for feature selection problems, for example fisher score [11], consistency



measure [12], correlation measure [13] and mutual information [14]. Among these
measures, mutual information measure gains more attraction. The reason is that
mutual information is fast and able to analyze the complex interaction between
multiple features or between the class label and a set of features while most other
filter measures like correlation coefficients mainly evaluate a pair of features or
the class label and an individual feature. However, most existing mutual informa-
tion based feature selection approaches consider two-way interactions between
features and simply calculate probability distributions by counting instances,
which results in an inaccurate mutual information. A solution for the above
problem is using mutual information estimation [15], which is able to compute
the mutual information between multiple features by an accurate estimation
approach. However, mutual information estimation has never been used with
any EC algorithm to solve feature selection problems. Therefore, this work will
propose a new feature selection approach, which bases on PSO algorithm and
mutual information estimation.

1.1 Goals

The overall goal of this paper is to propose a PSO based filter feature selection
approach to evolve a small set of features, which achieves similar or better clas-
sification performance than using all features. To achieve this goal, a new fitness
function is proposed, which is inspired by the nearest neighbor estimation for
mutual information [16]. Specifically, we will investigate:

— whether the proposed feature selection approach (named PSOMIE) can se-
lect a small number of features and maintain or even improve the classifica-
tion performance over using all features.

— whether PSOMIE can maintain or improve the classification accuracy than
two traditional feature selection approaches, filter sequential forward and
backward feature selection [4, 3].

2 Background

2.1 Particle Swarm optimization (PSO)

In 1995, Kennedy and Eberhart [17] proposed an EC technique, named PSO.
Like other swarm intelligence algorithms, PSO maintains a set of particles, in
which each particle represents a candidate solution for an optimization problem.
The behaviour of the swarm in PSO originates from social behaviours such as
bird flocking and fish schooling. In particular, each particle is guided by its own
best experience, called pbest and its neighbors best position so far, called gbest,
to explore the search space. The current position of a particle i is encoded as a

vector x; = (w1, Ti2, - .., Tip), where D is the dimensionality of the search space.
Particle ¢« moves in the search space by using a velocity, which is defined by a
vector v; = (v;1,vs2,...,0;p). In PSO, each velocity component is limited by a

predefined maximum velocity, called vpq4z, and viq € [—Umaz, Vmaz]. The position
and velocity of particle ¢ are updated according to the following equations:
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where t denotes the ' iteration in the search process, d is the d** dimension

in the search space, w is inertia weight, ¢; and ¢, are acceleration constants, ;1
and 7; are random values uniformly distributed in [0,1], p;q and Pgd represent
the position entry of pbest and gbest in the d*" dimension, respectively.

2.2 Mutual Information

Basic Concepts: Entropy and mutual information are two well-known con-
cepts in information theory [18], which are used to measure the information
provided by random variables. Let X be a discrete variable, then its uncertainty
can be measured by entropy H(X) defined as:

H(X)=-> P(X =) xlog, P(X = ) (3)
rzeX

Joint entropy is used to measure the uncertainty of a joint variable, which
consists of two random variables X and Y. Joint entropy H(X,Y) is defined as:

H(X,Y)=- > pla,y)*log, p(x,y) (4)
rzeX,yey

where p(z,y) = P(X =z,Y =y)
When a variable is known and the other is unknown, the remaining uncer-
tainty is measured by the conditional entropy as below

HXY)=~= > plx,y) =log, p(xy) (5)
zeX,yeY

where p(z|y) = P(X = z|Y =y).

Mutual information is a measure of shared information between two random
variables. Mutual information between two random variables X and Y can be
defined as

MIX;Y)=HX)+HY)-H(X,Y)

= H(X) — HX|Y)

— H(Y) - H(Y|X)

. o) x log, P&

- zegeyp( ?y) 1 g2 p(l‘)p(y) (6)

Mutual information is very popular in feature selection problems because it is
able to detect non-linear relationship between features. According to Eq. (6),
if two variables X and Y have a strong relationship, their mutual information
MI(X;Y) will be large. In contrast, if X and Y are totally independent then
MI(X;Y) = 0. Mutual information is also extended to measure the common



information between more than two random variables, which is called multi-
information, defined as
MI(X1; Xo;.. s Xp) = > H(X;) — H(Xy, Xa,..., Xp) (7)
i=1

Limitations of Current Work on Mutual Information for Feature Se-
lection: Most of feature selection approaches aim to select a set of features
which are most relevant to the class labels and do not contain any redundant
features. These goals can be achieved by using mutual information criteria. In
particular, the most relevant set of features will share the most information with
the class label. A non-redundant set of features will have the least mutual in-
formation between the features. These conditions are expressed in the Eq. 8.

F,.; = Red — Rel (8)

where Rel = MI(S;C)
Red = MI(s1;82;...;Sm)

where S is a set of features and its size |[S| =m, s; € S and C is the class label.
Rel and Red measure the relevance of feature set S and the redundancy between
features in S.

A feature selection approach often aims to find a set of features which mini-
mizes the fitness F,,,; shown in Eq. (8). However the existing mutual information
criteria for feature selection just consider the relationship between a single fea-
ture with the class label or between a pair of features. In other words, these
approaches only consider two-way interactions between features. This does not
ensure an optimal feature set being evolved because the interactions between
features are more complex than two-way interactions.

Another limitation of the current mutual information based feature selection
approaches is how the mutual information is calculated. To induce the mutual
information, the joint probability of multi-variables needs to be known. In most
current approaches, the probability distribution is achieved by counting the num-
ber of instances in the training set. However, counting approaches can only be
applied for discrete variables not continuous variables. Furthermore, even for
discrete variables, when the number of variables is large, the value distribution
in the training set will be sparse, which leads to an inaccurate probability and
mutual information. This is one of the reasons why only two-way interactions
between single features are normally considered. To overcome these limitations,
mutual information estimator has been developed. Currently, there are many mu-
tual information estimators, such as basic histogram [19], kernel estimator [20]
or nearest neighbors-based estimators [16]. Among them, the nearest neighbors-
based estimators (NNE) has only one parameter and achieves the most accurate
and consistent results with an independent hypothesis [21]. Therefore this work
will use NNE incorporated with PSO to achieve feature selection.



2.3 Existing Feature Selection Approaches

Traditional Feature Selection Methods: A heuristic search, named Sequen-
tial Forward Selection (SFS) is proposed by Whitney [3], which starts with an
empty set of features. At each step, a single feature, which gives the best fitness
value with current selected features, will be added permanently to the feature
subset. This process will stop when there is no single feature which is able to
improve the current fitness. Another heuristic search is proposed by Maril and
Green [4], which is called Sequential Backward Selection (SBS). The search starts
with a full set of features. At each step, a single feature, whose removal results in
the best score, is permanently removed from current feature set. SBS terminates
when removing any feature from current feature set does not lead to any fitness
improvement. Although SBS and SFS achieve better performance than feature
ranking methods, they still suffer from the “nesting” problem, in which once a
feature is added (or removed) from the feature set, it cannot be removed (or
added) later. More works can be seen from [9, 22].

EC Approaches (Non-PSO) for Feature Selection: EC algorithms have
been applied to feature selection problems, such as GAs [23], GP [24, 25]. Sousa,
et al. [26] proposed two ensemble GA-based feature selection approaches, where
a set of classifiers are used together to evolve better solutions than a single
classifier. The first algorithm is a simple filter approach, which uses Pearson
correlation measure as the main criterion. In the second algorithm, the filter
and wrapper measures are combined into a single fitness function. However, due
to the complexity and time consuming process, only a proportion of population
are evaluated by wrapper evaluation. This proportion is defined dynamically
based on the similarity between two ranked lists by filter and wrapper measures.
The experiments show that the proposed algorithms achieve better classification
performance than the original GAs.

Two GP-based approaches are proposed by Bhowan, et al. [27] to evolve
a set of features, which is used directly in the Watson system, an intelligent
open-domain question answering system. The first approach extracts all features,
which are used in the evolved best-of-run GP tree. The second approach considers
all evolved trees. Particularly, from the set of GP trees, the top T features with
the most frequency are chosen as extracting features. The experiment results
show that, the set of features selecting from the best GP tree can only work
well when the number of selected features is small. Meanwhile, selecting top T
features from the whole set of trees produces good results on both small and
large feature sets.

PSO-based Feature Selection Methods: Xue et al. [28] propose three new
initialisation mechanisms, which mimic the sequential feature selection approach.
While the small initialisation use about 10% of original features to initialize
the particles, particles in the large initialisation are constructed based on 50%
of original features. These two initialisation mechanisms are combined in the
mixed initialisation, which use the small initialisation for most of particles and
the large initialisation for the rest. The experimental results show that the new



initialisation and updating mechanisms led to smaller feature subsets with bet-
ter classification performance than the standard PSO. Two PSO based filter
feature selection algorithms are proposed in [29], where mutual information and
entropy are used in the fitness function to evaluate the relevance and redun-
dancy of the selected feature subset. The experiments show that the proposed
methods significantly reduce the number of features whilst achieve similar or
better classification than using all features. Butler-Yeoman et al. [30] proposed
a hybrid filter-wrapper approach named FastPSO, which mainly uses two-way
mutual information as a fitness measure. In addition, a wrapper evaluation is
used to determine whether or not a pbest need to be updated. The experiment
results show that FastPSO outperformed not only using all features but also
achieved better classification performance than PSO with mutual information
as a fitness measure. A comprehensive EC-based feature selection survey can be
seen in [31].

However most existing mutual information based feature selection approaches
only consider two-way interaction between features and use the counting ap-
proach to calculate the mutual information. Therefore, the investigation of using
mutual information estimation with a EC technique is still an open issue and
the work conducted in this paper is the first effort in this area.

3 Proposed Feature Selection Approach

The key ideas of our proposed approach are to use mutual information as the
measure of solution quality, calculated using NNE and to use PSO to search for
an optimal set of features. This approach not only deals with numeric datasets
but also considers the interaction between multiple features. The details of NNE
and how we use NNE and PSO to solve feature selection problems are shown in
the following sections.

3.1 Nearest Neighbors-Based Mutual Information Estimation

In order to estimate the mutual information between variable sets, it is usu-
ally necessary to estimate the underlying probability densities, which is a hard
task. In addition, because the underlying probability densities will then be used
together to induce mutual information, an inaccurate probability distribution
is likely to result in a more inaccurate estimation of mutual information. To
overcome this problem, Kraskov’s Nearest Neighbors-based mutual information
Estimation (NNE) [16] directly estimates the mutual information by using near-
est neighbors statistics instead of estimating probability densities. The main
idea of NNE is that if the neighbors of an instance in X space are similar to the
neighbors of that instance in Y space, then there must be a strong relationship
between X and Y, i.e. the mutual information between X and Y is high. This
is true when X and Y are single variables or sets of variables. Therefore, this
estimation can be applied for multi-variate mutual information.

The mutual information is calculated via an estimation of entropy. The NNE

based entropy estimation of a single variable X (H (X)) is given by Eq. (9).



X1
Fig. 1: Example of €(),n;1,n;2 using the k-nearest neighbors distances, where

k=3 and for the " instance.

N
H(X) = —(k) + b(N) + log ca + % 3 logex (i) )
=1

where 1 is the digamma function, N is the total number of instances in the
training set, k is the number of nearest neighbors, d is the dimensionality of
variable X, ¢4 is the volume of the d-dimensional unit ball, ex () is twice the
distance from the i*" instance to its k" nearest neighbor.

Given this entropy estimation, a multi-variate mutual information estimation
(MTI) of a feature set S = {X1,Xo,..., X} can be derived from Eq. (7), where
the multi-variate mutual information is defined by Eq. (10).

N m
MI(Xy; Xo;. .3 X)) = 0(k) — mT_lJr(m— 1)« (N) — % £ Y ni; (10)
i=1j=1

where m is the number of single variables (features) in the variable (feature) set,
n;; is the number of neighbors whose distance from the i*" instance in the space
specified by X is not greater than 0.5 * €(¢) = 0.5 * max(ex, (¢), ..., €x,, (7))

An example of computing the n;; of the NNE is given in Fig. 1, where there
are only 2 variables (m = 2) X; and Xs, the number of neighbors is set to k = 3
and the i*" instance is marked by a red point. Firstly, the 3" nearest neighbor of
the i*" instance is found, which is marked by a blue point. The distances between
the i*" instance and its 3" nearest neighbor in each dimensions X; and X, are
calculated, respectively, Ax, (i) and Ax, (7). In this case, Ax, (i) > Ax, (i) so
€(i) = ex, (1) = 2% Ax, (i). After that, for each dimension X; and X5, the total
number of neighbors whose distance in that dimension from the i*" instance is
not greater than 0.5 x (i) are counted. In this case, n;; = 7 and n;2 = 6. Given
the nj, MT can be calculated using Eq. (10).



3.2 Mutual Information Estimation for Feature Selection

By using NNE, mutual information can be used to evaluate the relevance between
a set of features and the class label, and the redundancy within a set of features
even when the data is too sparse to give good estimates of the probability of
density. The aims are to improve the classification performance via maximising
the relevance between the set of features and the class label, and to reduce the
number of selected features by minimising the redundancy within the set of
features. To achieve the above objectives in a PSO search, a new fitness function
for PSO is proposed, which is shown by the Eq. (11).

Fitness = (1 — a) * Red — a % Rel (11)

where -
Red = MI(Xy;Xo;...;Xm)

Rel = MI(S;C)

where S = {X1, Xo,..., X, } is the set of selected features, C' is the class labels
and « is a weight determining the contribution of Red and Rel in the fitness
measure. Notice that in Red, the fitness function considers the multi-way inter-
action between features in S and in Rel, the whole set of features is considered
a single variable using NNE. It is easy to calculate redundancy measure by di-
rectly applying the mutual information estimation given in Eq. (10). However,
the relevance measure is harder to compute because all features in S are numeric
variables while the class label is usually a categorical variable. In order to solve
this problem, it is necessary to decompose MI (S; C), which is achieved by the
Eq. (12).
MI(S;C) = H(S)— H(S|C)
L
H(S) =Y P(C=C)*H(S|C) (12)

=1

1th class.

where L is the number of clAasses and C is the
In the above formula, H(S) is easily calculated by using Eq. (9). In order
to calculate H(S|C}), Eq. (9) is also applied but only for the instances which

belong to class Cj.

3.3 The New Algorithm: PSOMIE

The algorithm based on our approach is called PSOMIE (“PSO with Mutual
Information Estimation”). The representation of a particle in PSOMIE is a vec-
tor of n real numbers, where n is the total number of features. Each position
entry x4 falls in the range [0,1] and corresponds to the d'* feature in the orig-
inal feature set. A threshold @ is used to determine whether or not a feature is
selected: if 2,4 > 0 then the d'* feature is selected, otherwise the d'” feature is
not selected.



Table 1: Datasets.

Dataset #features|#classes|#instances
‘Wine 13 3 178
Australian 14 2 690
Image Segmentation 19 7 210
‘Wall Robot 24 4 5456
Ionosphere 34 2 351
Lung 56 2 32
Musk1 166 2 476
LSVT 310 2 126
Isoletb 617 5 1559
Multiple Features 649 10 2000

4 Experiment Design

4.1 Datasets

Ten datasets (Table 1) chosen from the UCI machine learning repository [32]
are used in the experiments. These datasets have different numbers of features,
classes and instances. Since currently mutual information estimations are mainly
used for continuous variables, the data in the selected datasets are continuous
values.

For each dataset, all instances are randomly divided into a training set and a
test set, which contain 70% and 30% of the instances respectively. The algorithm
firstly run on the training set to evolve a subset of features. After that the classi-
fication performance of the selected features will be calculated on both training
and test set by K-nearest neighbors (KNN) classification algorithm where K = 5.

4.2 Parameter Settings

In the experiments, the parameters of PSO are set as follows [33]: w = 0.7298, ¢; =
co = 1.49618, v;nae = 6.0, population size is 30, the maximum number of iter-
ations is 100. The fully connected topology is used. There are three a values
being tested in this work, which are @« = 0.9, = 0.95,a = 1.0. For each «
value, PSOMIE is ran 40 independent times on each dataset. The threshold 6
in the continuous PSO is set to 0.6. The number of neighbours used in nearest
neighbour mutual estimation k is set to 4 [16]. A statistical significance test,
Wilcoxon signed-rank test, is performed to compare between PSOMIE and us-
ing all features as well as two traditional feature selection approaches (SBS [4],
SFS [3]). The significance level of the Wilcoxon test was set as 0.05.

5 Experiment Results

Experiment results are shown in Tables 3 and 4. Table 3 shows the comparison
between PSOMIE and using all features, while Table 4 shows the comparison be-
tween PSOMIE and the two traditional methods. In these tables, “Full” means
that all the original features are used for classification, “Ave-Size” stands for the



Table 2: Results of PSOMIE with different o values

. . Training Set Test Set

Dataset Method | - Ave-Size| a3 T T grq [ Test|| Best | Ave £ Std | Tost
Full 13.0 83.87 82.72

Wine a =0.9 3.68 96.77| 93.95+3.95 + 96.30| 89.46+3.79 +
a =0.95| 4.5 98.39| 89.36+6.47 + 97.53| 86.96+5.85 +
a=1.0 6.12 96.77| 85.61+4.18 + 97.53| 83.7+4.86 =
Full 14 77.85 67.15

Australian a =0.9 4.98 88.82| 79.92+2.4 + 80.68| 71.28+3.32 +
a =0.95| 4.92 83.64| 79.71+£1.77 + 75.36| 70.13+2.37 +
a=1.0 5.48 83.02| 79.73+1.82 + 75.36| 70.87+2.0 +
Full 19 94.75 93.65

Image Segmentation a =0.9 2.86 96.89| 95.23+1.0 + 98.19| 95.06+1.65 +
a =0.95| 3.5 97.28| 96.05+0.56 + 98.64| 94.89+2.14 =
a=1.0 7.54 97.86| 97.41+0.33 + 98.64| 98.11+0.37 +
Full 24 94.87 92.33

Wall Robot a =0.9 2.06 97.6 95.25+1.33 = 96.18| 92.85+2.12 =
a =0.95 2.84 97.97| 97.33+£0.99 + 96.67| 95.76+£1.36 +
a=1.0 3.76 98.28| 97.93+0.22 + 97.43| 96.6+0.42 +
Full 34 89.02 81.9

Tonosphere a =0.9 3.8 93.09| 90.04+1.73 + 95.24| 87.83+3.4 +
a =0.95| 4.3 93.9 91.27+1.4 + 94.29| 87.942.51 +
a=1.0 13.12 92.68| 89.93+0.98 + 89.52| 83.942.39 +

average number of selected features over the 40 runs. “Ave” and “Std” repre-
sents the average and standard deviation of the training or test accuracies over
the 40 runs. “Test” represents the significant test comparing between PSOMIE
and other approaches. “+”7, “=“ or “-” mean that PSOMIE is respectively sig-
nificantly better, similar or significantly worse than using all features or the

traditional methods.

5.1 Comparison with All Features

According to the results shown in Table 3, in terms of test results, in almost all
datasets, the number of features selected by PSOMIE is at least 70% lower than
the total number of original features. In seven datasets, PSOMIE always achieves
significantly better classification accuracy than using all features. For example, in
the Ionosphere dataset, by selecting around 4 features from 34 original features,
PSOMIE significantly increases the classification accuracy about 6% over using
all features. In addition, in all datasets, the best solutions evolved by PSOMIE
always outperform the set of original features in both classification performance
as well as the number of selected features.

The results suggest that PSO with NNE for mutual information can signifi-
cantly reduce the dimensionality of datasets, while maintains or even improves
the classification accuracy over using all features.

5.2 Results of PSOMIE with Different o

As can be seen from Table 3, in almost all datasets, with at least one of «
value, despite of selecting a small number of features, PSOMIE is still able to
achieve better classification accuracy than using all features. The only exception



Table 3: Results of PSOMIE with different o values

. . Training Set Test Set

Dataset Method | - Ave-Size| g3 T 5t d [ Test|[ Best | Ave £ Std | Test
Full 56 86.36 90.0

Lung a =0.9 15.96 90.91| 82.91+7.53 = 100.0| 95.04+8.06 +
a =0.95| 16.54 90.91| 83.18+5.77 - 100.0| 93.249.47 +
a =1.0 17.64 90.91| 81.55+6.19 - 100.0| 93.6+12.77 +
Full 166 90.99 81.12

Musk1 a =0.9 18.52 90.69| 87.27+1.66 - 84.62| T7.69+3.56 -
a =0.95| 18.98 90.69| 87.79+1.89 - 88.11| 78.29+3.54 -
a=1.0 60.68 94.59| 91.2+1.36 = 89.51| 84.15+2.46 +
Full 310 78.41 52.63

LSVT a =0.9 55.74 81.82| 76.14+2.18 - 76.32| 59.16+5.4 +
a =0.95| 54.56 82.95| 76.36+2.22 - 65.79| 58.32+3.74 +
a =1.0 111.26 84.09| 76.93+1.97 - 65.79| 54.1£3.54 +
Full 617 99.16 98.37

Isolets a =0.9 107.28 99.15| 98.87+0.1 - 98.5 98.09+0.2 -
a =0.95| 108.52 99.06| 98.94+0.0 - 98.47| 98.19+0.14
a =1.0 210.14 99.28| 99.1440.0 = 98.8 98.45+0.14 +
Full 649 99.1 99.0

Multiple Features a =0.9 121.66 99.37| 98.87+0.4 - 99.1 98.43+0.51 -
a =0.95| 120.0 99.39| 98.88+0.39 - 99.13| 98.45+0.57 -
a =1.0 256.52 99.51| 99.13+0.26 = 99.37| 98.89+0.33 -

is the largest dataset, Multiple Features, which is not too surprising since filter
approaches often can not scale well [34] and the classification accuracy is already
very high (99.0%) when using all features. In Multiple Features, although the
feature set selected by PSOMIE is not better than all features according to
the significant test, PSOMIE can select around only 18.5% of the features and
still achieve aroud 98.45% classification accuracy, which is only 0.55% lower than
using all features. In addition, the best accuracy is better than using all features.

In these experiments, « is given 3 values, which corresponds to the contribu-
tion of relevant measure to the fitness function. When « is larger than 0.5, rel-
evant measure will contribute more than redundant measure, which means that
the searching process will focus more on improving classification accuracy than
reducing the number of features. As can be seen from Table 3, on most datasets,
when « is increased, PSOMIE tends to select more features and achieves better
classification performance. In seven of the ten datasets, with a = 0.95, PSOMIE
only selects 16.7% of the original feature set and still achieves better classifi-
cation than using all features. On the other hand, when « is assigned to 1.0,
although the feature sets evolved by PSOMIE are larger than when a = 0.95,
these sets achieve better classification accuracy than using all features in nine of
the ten cases.

The results suggest that different weights for the two fitness components,
i.e. the relevant and redundant measures, have significant effect on the searching
process. In other words, by setting a proper value for v, PSOMIE is able to evolve
a set of small number of features and achieve better classification accuracy than
using all features.



Table 4: Comparison between PSOMIE and SFS, SBS

Dataset Method Ave-Size|Ave Std Test |Time (ms)

PSOMIE 4.5 86.96 5.85 528
Wine SFS 5.0 81.48 + 1

SBS 5.0 81.48 + 5

PSOMIE 4.9 70.13 2.37 1883
Australian SFS 4.0 67.63 + 1

SBS 5.0 69.57 + 4

PSOMIE 3.5 94.89 2.14 685
Image Segmentation SFS 8.0 89.57 + 1

SBS 9.0 89.57 + 5

PSOMIE 2.8 95.76 2.12 142605
Wall Robot SFS 4.0 94.77 + 1

SBS 4.0 95.20 = 3

PSOMIE 4.3 87.90 2.51 2427
Tonosphere SFS 5.0 78.10 + 1

SBS 5.0 85.71 + 4

PSOMIE 16.5 93.20 9.47 952
Lung SFS 18.0 80.00 + 8

SBS 18.0 80.00 + 5

PSOMIE 19.0 78.29 3.54 61789
Musk1l SFS 2.0 62.94 + 8

SBS 3.0 62.24 + 213

PSOMIE 54.56 58.32 3.74 19313
LSVT SFS 3.0 76.32 - 9

SBS 3.0 60.53 - 1599

PSOMIE 108.5 98.19 0.14 2981564
Isolet5 SFS 13 95.83 + 43

SBS 28 95.33 + 26419

PSOMIE 120.0 98.45 0.57 5063384
Multiple Features SFS 15 96.93 + 56

SBS 91 99.17 - 28466

5.3 Analysis between Training and Test Results

In classification tasks, overfitting is a very common problem. After a long training
time, the training accuracy still increases while the test accuracy becomes worse.
This is because the classifier may remember all specific properties of training
instances. As can be seen from Table 3, in almost all datasets, the results of
training and test sets are very consistent. In particular, a small increase/decrease
of the classification accuracy on the training set usually corresponds to a small
increase/decrease of the accuracy on the test set. This consistency suggests that
mutual information estimation is able to extract a consistent pattern, which is
effective in both training and test (unseen data) set.

The results show that, by using NNE for mutual information in PSO, the
overfitting problem in feature selection might be avoided. With this property,
the testing accuracy can be improved by advancing the accuracy on the training
set, which does not happen in many feature selection algorithms.

5.4 Comparison with SFS and SBS

The comparison between PSOMIE and two traditional methods, SFS [3] and
SBC [4] are shown in Table 4. These traditional methods use standard mutual
information with the counting approach to calculate the redundancy and rele-
vance, which are combined into a fitness function as shown in Eq. (11). However,



in the traditional methods, the counting approach is applied to calculate the mu-
tual information. To ensure a fair comparison, the « value in the fitness function
shown in Eq. (11) is set to 0.95 in both PSOMIE and traditional methods. Since
SES and SBS are deterministic methods, they produce a single solution on each
dataset.

As can be seen from this table, in the first six datasets where the number of
features is relatively small, although PSOMIE always selects a smaller number
of features than both SFS and SBS, it still achieves better classification perfor-
mance. For example, in Image Segmentation, the subset evolved by PSOMIE
is three times smaller than the traditional methods, but the PSOMIE’s subset
is about 5% better than the sequential selection in terms of classification per-
formance. In the other four large datasets, PSOMIE selects more features than
the traditional methods and obtains higher classification accuracy in three of
the four cases. The results suggest that PSOMIE is able to adapt with different
datasets to balance between the number of selected features and the classification
performance.

However, in terms of efficiency, PSOMIE is much more expensive than se-
quential approaches, but the performance of SBS and SFS can not be improved
by giving longer time since they are deterministic methods and stop when the
fitness value is not further improved. For PSOMIE, although the Ionosphere
dataset has a larger number of features than Wall Robot, the selection time of
Wall Robot is still longer. Similarly, despite of having a smaller number of fea-
tures than the LSVT dataset, the Musk1 dataset needs longer training time. This
is caused by the large number of instances. Particularly Muskl and Wall Robot
datasets have more instances than Ionosphere and LSVT datasets, respectively.
Because for each instance, PSOMIE needs to calculate a distance between the
current instance to another instances, the total cost for finding distance for all
instances is O(N?) where N is the total number of instances in the training set.
After that, for each instance, there is another process which counts all neighbors
which fall in a range around that instance in each dimension. Therefore, in order
to estimate one mutual information, the worst cost will be n x O(N?3) where n
is the total number of features. So the computation cost of mutual information
estimation increases with respect to the number of instances in the training set.

6 Conclusions and Future Work

The goal of this paper is to investigate a PSO based filter feature selection ap-
proach, which uses nearest neighbor mutual information estimation to evolve a
set of small number of features while maintaining or improving the classification
performance over using all features. The experiment results show that PSOMIE
substantially reduces the dimensionality of the datasets and achieves the sim-
ilar or better classification performance than using all features. PSOMIE also
produces a strong consistency between training and test accuracies. In addition,
by using mutual information estimation, PSOMIE can better balance between



a smaller number of features in comparison with sequential feature selection
approaches.

However, besides the strengths, PSOMIE still has several limitations, which
will be addressed in our future work. Firstly, PSOMIE could not be applied to
categorical datasets because NNE requires a numeric dataset. In order to solve
this problem, a good distance measure needs to be developed, which can per-
form well on both numeric and categorical datasets. In addition, PSOMIE will
have an expensive computation cost if there are a large number of instances in
the training set. Therefore, developing an instance selection algorithm, which
reduces the number of instances while maintaining most of important informa-
tion, will lower the computation cost. In addition, scalability is a common issue
in filter feature selection. So developing novel feature selection methods to solve
feature selection tasks with thousands of features is also needed in future work.
This work is investigates the use of mutual information estimation in standard
PSO for feature selection. In the future, other advanced PSO algorithms, such as
constriction factor version of PSO [35], and other methods will be investigated
to improve the performance of filter feature selection on different problems.
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