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ABSTRACT
Transfer learning aims to use acquired knowledge from existing
(source) domains to improve learning performance on a different
but similar (target) domains. Feature-based transfer learning builds
a common feature space, which can minimize differences between
source and target domains. However, most existing feature-based
approaches usually build a common feature space with certain
assumptions about the differences between domains. The number
of common features needs to be predefined. In this work, we propose
a new feature-based transfer learning method using particle swarm
optimization (PSO), where a new fitness function is developed to
guide PSO to automatically select a number of original features
and shift source and target domains to be closer. Classification
performance is used in the proposed fitness function to maintain
the discriminative ability of selected features in both domains. The
use of classification accuracy leads to a minimum number of model
assumptions. The proposed algorithm is compared with four state-
of-the-art feature-based transfer learning approaches on three well-
known real-world problems. The results show that the proposed
algorithm is able to extract less than half of the original features
with better performance than using all features and outperforms
the four benchmark semi-supervised and unsupervised algorithms.
This is the first time Evolutionary Computation, especially PSO, is
utilized to achieve feature selection for transfer learning.
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1 INTRODUCTION
Machine learning techniques have been successfully applied to
many real-world problems [27]. However, they usually require that
training and test datasets are drawn from the same domain, i.e.
same feature space and data distribution. If there is any change on
the data distribution, most learning algorithms have to be re-trained
using newly collected training data. In many real-world problems
such as indoor Wifi localization [5], it is difficult and expensive to
collect labeled data. It might be better to utilize acquired knowledge
from the similar/related available labeled data (source domain) to
improve learning performance on the unlabeled target data (target
domain), which is the main motivation of transfer learning [18].

If the source and target domains have the same feature space, the
transfer learning task can be further specified as domain adaptation
[18], which is the focus of this work. The main task of domain
adaptation is to reduce the differences between data distributions
on the source and target domains. The most intuitive way is to find
a good common feature representation to minimize the distribu-
tions’ differences while preserving the discriminative ability in both
source and target domains [1], which is known as feature-based
domain adaptation. Once the common feature space is built, it does
not need to re-train if more source data is available. Depends on the
availability of labeled instances in the target domain, feature-based
domain adaptation approaches can be divided into two categories:
semi-supervised approaches with labeled instances and unsupervised
approaches without labeled instances.

Many recent feature-based methods [7, 8, 15, 17, 21] attempt to
build a new common latent feature space on which both source
and target data can be projected, and traditional machine learning
can be used to train a classifier to classify the projected target
data. However, these methods usually have to assume models for
transforming from the original feature space to the latent feature
space. Furthermore, the dimensionality of the latent feature space
must be pre-defined. Due to creating new high-level features, the
interpretation of the constructed data is reduced and important
information from the original features might be lost. Therefore,
instead of building a new feature space, some other works [24, 25]
select a number of features from the original features for reducing
differences between distributions, so that the meaning of original
features is maintained. Therefore, this work focuses on selecting
original features known as feature selection for domain adaptation.

Although it has been shown that selecting invariant original fea-
tures across different domains has good results, it is also important
to select features with high discriminative ability (relevant features),
which has not been paid enough attention in existing feature se-
lection approaches for domain adaptation. Feature selection is not
an easy task, especially when there is a large number of features.
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Firstly, the search space increases exponentially with respect to the
number of features. Secondly, the complex interactions between
features makes the selection of an optimal feature subset harder.
For example, selecting a number of weakly relevant features may
significantly increase the classification performance while choosing
only highly relevant features can result in redundant features [29].
Therefore, a global search is needed to achieve feature selection.
Evolutionary Computation (EC) techniques have been widely ap-
plied to feature selection because of their potential global search
ability. Among EC algorithms, Particle Swarm Optimization (PSO)
is gaining more attention since it is simpler with fewer parameters
in comparison with other EC techniques. Hence PSO is selected as
a search mechanism to achieve feature selection in this work. This
is the first time EC, especially PSO, is utilized to achieve feature
selection for domain adaptation.

Most existing feature-based domain adaptation approaches make
assumptions aboutmarginal distributions (related to features) and/or
conditional distributions (related to the class label) to simplify their
models, which are easier to solve using numerical optimization
techniques. Furthermore, although the two above distributions are
considered, the discriminative ability on both domains is ignored
in most works [13]. In comparison with feature selection for tradi-
tional machine learning, feature selection for domain adaptation
is more challenging since it has to simultaneously maintain or im-
prove the discriminative ability on both domains and minimize the
differences between the two domains. In this work, we propose a
new fitness function, which guides PSO to select a good feature sub-
set with an expectation of leveraging differences in both marginal
and conditional distributions while maintaining good accuracies on
the source and target domains. The fitness function is designed with
respect to the k-nearest neighbor (KNN) classification algorithm in
order to minimize the number of model assumptions and lead to
better accuracies on the target domain.

Goal: The overall goal of this paper is to develop a new fitness
functions in PSO to achieve feature selection for domain adaptation.
The fitness function aims to select invariant features containing
relevant information about the class label, thereby results in high
classification accuracies on the target domain. There will be three
main components in the fitness function, which aim to reduce the
classification error on the source domain, and the differences of
both marginal and conditional distributions between two domains,
respectively. Depends on whether there are labeled instances avail-
able in the target domain, the fitness function can adaptively change
from its semi-supervised to unsupervised form. The proposed fit-
ness function is examined on three real-world benchmark problems
and compare with four sate-of-the-art traditional domain adapta-
tion algorithms. Specifically, we will investigate:

• whether the proposed fitness function can assist PSO to
select a good subset of features, which can achieve better
performance than using all features on the target domain,
• whether the proposed PSO-based algorithm with the new
fitness function can evolve common feature spaces, which
achieve higher classification accuracy than the four tradi-
tional feature-based domain adaptation approaches, and
• whether the semi-supervised form can use class information
on the target domain to outperform the unsupervised form.

2 BACKGROUND
2.1 Transfer Learning and Domain Adaptation
To understand transfer learning, it is necessary to explicitly define
domain and task. A domain [18] consists of two components: feature
space χ and a marginal probability distribution P(X), where X =
{x1, . . . ,xn } ∈ χ . Two domains are different if there are differences
between their feature spaces or marginal distributions. Given a
domain D (χ , P (X )), a task, denoted byT (Y , f (.)) [18], also consists
of two components: a label space Y and a prediction function f (.),
which maps from the feature space χ to the label space Y . The
prediction function f (.), which can classify a new instance x , can
be viewed as a conditional distribution P (y |x ). A source domain
data, drawn from the source domain Ds , can be denoted as Src =
{(xs1 ,ys1 ), (xs2 ,ys2 ), . . . , (xms ,yms )}, where xsi ∈ χ is a source
domain instance with the class label ysi ∈ Y andms is the number
of source instances. Similarly, a set ofmt target instances, called
target domain data, drawn from the target domainDt , is denoted by
Tar = {(xt1 ,yt1 ), (xt2 ,yt2 ), . . . , (xmt ,ymt )}. Given above concepts,
Pan et al. [18] define transfer learning as below:

Transfer learning: Given a source domain Ds and a learning
task Ts , a target domain Dt and a learning task Tt , transfer learning
aims to improve the learning of the target predictive function ft (.) in
Dt using the knowledge in Ds and Dt where Ds , Dt or Ts , Tt .

Existing transfer learning works can be divided into four main
categories, which are instance-based, clustering-based, parameter-
based and feature-based transfer learning [18]. Instance-based trans-
fer learning approaches assume that there are some parts of source
data that are usable with a few labeled target instances to improve
the target performance. Most works in this category aim to assign
weights to source domain instances so that they can match the tar-
get domainwell [19, 20]. Clustering-based approaches achieve trans-
fer learning by building a similarity graph between all instances
and the weight on each edge represents the similarity between
two instances [6, 30]. Parameter-based transfer learning methods
can be applied when the models to learn in the source and target
domains have some parameters in common, such as support vector
machine. The learned parameters from the source domain can be
transfered to improve the target performance [4]. Feature-based
transfer learning approaches aim to find a good feature represen-
tation, which simultaneously reduces the difference between the
distributions on the source and target domains, and maintains im-
portant information of the source and target data. Not like other
transfer learning approaches, feature-based transfer learning ap-
proaches usually do not require to re-train if more new instances
from the source domain are obtained. Therefore, this work focus
on developing feature-based transfer learning algorithms.

When the two domains have the same feature space i.e. χs = χt ,
transfer learning is specialized as domain adaptation. This work
aims to achieve domain adaptation by building a good feature rep-
resentation for both domains, which can be categorized as feature-
based domain adaptation.

2.2 Feature-based Domain Adaptation
Most feature-based domain adaptation approaches aim to build a
latent feature space as a bridge between different domains. The pro-
jected datasets of two original datasets on the new feature space are
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expected to be closer than the original datasets. In [16], a dimension-
ality reduction method, which usesMaximumMean Discrepancy [2]
to measure the similarity between two distributions, is proposed to
learn a new low-dimensional feature space. The new source dataset
is then used to train a classifier which can be applied to classify
the target instances. The work is further extended in [17] to ad-
dress cases where information about the class label is available in
the target domain. The two proposed algorithms, called TCA and
STCA, are examined on two real-world applications, indoor WiFi
localization and cross-domain text classification. The results show
that both algorithms reduce the differences between source and
target domains to achieve better target performance than using the
original feature set. Shi and Sha [21] measure domain differences us-
ing mutual information between instances and their binary domain
labels. The assumption is that the classes in two domains are well
separated and instances across domains have to be close to each
other if they belong to the same class. Shi and Sha show that by
considering discriminative characteristics on both source and target
domains, the classification performance is significantly improved
over TCA/STCA [17]. However, the latent feature space is assumed
to be a linear transformation of the original feature space. Yan et al.
[31] proposed two algorithms, namedMIDA and SMIDA, which can
cope with continuous distributional changes in the feature space.
The latent feature space is built to have a maximized independence
with domain features. Some works project both source and target
data into two different feature spaces and then build connections
between the newly built spaces [3]. Although building a latent fea-
ture space may result in good performance, it loses meaning and
possible important information of the original features.

An early work on feature selection for domain adaptation is
performed by Uguroglu and Carbonel [25]. The task is to select
original features that are not much different between two domains,
which are called invariant features. Invariant and variant features
can be distinguished based on their performance in minimizing
domains’ gap. It is shown that the proposed algorithm achieves bet-
ter performance than TCA [17] on the digital recognition and Wifi
localization problems. The efficiency of the work is improved by
Tahmoresnezhad and Hashemi [24]. Particularly, the input dataset
is split into k smaller sub-datasets. The proposed algorithm is run
on all different sub-datasets, so each feature has k different weights.
The average weight determines whether a feature is selected. How-
ever, in these works, a threshold value has to be pre-defined to
select features. The features are selected individually based on their
weights, which means that feature interactions are ignored. In ad-
dition, discriminative abilities on both source and target domains
are not considered together, so some selected invariant features
might be irrelevant to the class label. The above problems will be
addressed in our work by developing a new fitness function in PSO,
which can automatically determine the number of selected features.
In the fitness function, classification performance is used to ensure
the feature interactions are considered and the selected features
have high discriminative abilities.

2.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a swarm intelligence algo-
rithm proposed by Kennedy in 1995 [11], which is inspired by social

behaviors of bird flocking. In oder to solve an optimization problem,
PSO uses a swarm of particles to explore the search space paral-
lelly. Each particle has its own position and velocity to move in
the search space. During the searching process, they share their
knowledge, i.e. their best positions with each other to guide the
swarm towards the optimal solutions. The position and velocity are
usually represented by numeric vectors, whose lengths are usually
equal to the number of dimensions in the search space.

PSO is originally proposed to solve continuous problems, but
it is also extended to cope with binary problems [12]. In compari-
son with continuous PSO, binary PSO (BPSO) is more suitable to
solve feature selection since each binary entry can directly deter-
mine whether the corresponding feature is selected or not. However,
standard BPSO’s performance is limited in comparison with the con-
tinuous one [28]. The main reason is two continuous terms, velocity
and momentum, are directly applied to binary search spaces with-
out considering characteristics of binary movements. Nguyen et al.
[14] re-define the two concepts to suit with binary search spaces
and propose a novel BPSO algorithm, called sticky BPSO (SBPSO).
Particularly, the velocity is considered as a probability vector in
which each entry is the flipping probability of the corresponding
position entry. The momentum is redefined as the tendency to stick
with the current position, which is known as a stickiness (stk) prop-
erty. Basically, if a particle has just flipped an entry, the entry’s
stk is set to the highest value of 1, so that the particle has enough
time to explore around the entry’s new value. In the following
iterations, if the bit is not flipped, its stk is linearly decayed until 0.
The following equation shows how stk of the dth entry is updated.

stkt+1d =




1, if the bit is just flipped

max(stktd −
1

ustkS
, 0), otherwise

(1)

where t is the t th iteration and ustkS is the pre-defined number of
iterations to reduce stk from 1 to 0. The flipping probability pd is
then calculated by Eq. (2) based on stkd , its personal best position,
pbest , and its neighbor’s best position, дbest .

pd = is ∗ (1 − stkd ) + ip ∗ |pbestd − xd | + iд ∗ |дbestd − xd | (2)

where is , ip and iд control contributions of the three components.
As suggested by [14], is , ip , iд and ustkS are usually set to 0.1154,
0.4423, 0.4423 and 40, respectively. Eq. (3) shows how the dth posi-
tion entry is updated in SBPSO.

xt+1d =



1 − xtd , if rand () < pd

xtd , otherwise
(3)

It has been shown that SBPSO achieves good performance on fea-
ture selection [14]. Therefore, it is chosen as the search mechanism
in this work.

In general, EC techniques, especially PSO, have been successfully
applied to feature selection in traditional machine learning. This
work is the first attempt to perform feature selection for domain
adaptation using PSO to automatically choose a number of features.
In order to achieve the goal, a novel fitness function is proposed to
minimize the number of assumptions while still considering feature
interactions and discriminabilities on both domains.
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3 PROPOSED PSO-BASED FEATURE
SELECTION FOR DOMAIN ADAPTATION

In this section, the proposed PSO based feature selection approach
to domain adaptation is described. The main contribution is a new
fitness function which allows the PSO-based feature selection algo-
rithm to work in both cases: the class label information is available,
i.e. semi-supervised, or not available on the target domain, i.e. un-
supervised. To be convenient, the source dataset is named Src , the
target un-labeled and labeled datasets are called TarU and TarL,
respectively.

3.1 New fitness function
In feature selection for domain adaptation, in order to achieve
high classification performance on the target domain, the selected
features must satisfy the following conditions: 1) having a good dis-
criminative ability on both domains, 2) minimizing the difference
between conditional distributions, and 3) minimizing the differ-
ence between marginal distributions on source and target domains.
Therefore, the fitness function has three components corresponding
to the three above conditions, which can be seen in Eq. (4).

Fitness = sw ∗ srcErr + tw ∗ tarErr + stw ∗ di f f ST (4)

where srcErr and tarErr are classification errors on source and
target data, which ensure the selected features to have a good dis-
criminability on both domains (condition 1). Furthermore, tarErr is
obtained based on a classifier trained by the source data. Therefore,
minimizing tarErr leads to a smaller difference between conditional
distributions on the two domains (condition 2). The last condition
is achieved through di f f ST , which measures how different the two
marginal distributions are (condition 3). The three terms will be
explained in more details in the following sections. sw, tw and stw
are used to control contributions of these three components and
they sum up to 1, i.e. sw + tw + stw=1. The weight values can show
the relationship between source and target domains, which will be
illustrated in the parameter setting section.

The task of PSO is to search for feature subsets with the smallest
fitness value. In this work, each particle is represented by an n-bit
binary string where n is the total number of original features. Each
bit corresponds to one feature and its value determines whether its
corresponding feature is selected. Particularly, a feature is selected
if and only if the corresponding bit value is 1.

3.2 Discriminability on the source domain
In Eq. (4), srcErr is to ensure that the selected features have a high
discriminative ability in the source domain. srcErr is measured by
the classification error rate. Many feature-based domain adapta-
tion algorithms aim to minimize the differences between source
and target domains while ignoring this important property on the
source domain. The features obtained from these algorithms might
not be useful if they cannot preserve the discriminative ability on
the source domain and thereby on the target domain since the two
domains become more similar under the selected features.

In order to ensure that srcErr is not biased, srcErr is calculated
by applying 3-fold validation on the source dataset. Particularly,
each fold plays the role of a test dataset one time while the other
two folds are combined to form a training set. Eq. (5) shows how

classification error rate is obtained on each fold.

ErrorRate =
FP + FN

TP +TN + FP + FN
(5)

where TP ,TN , FP and FN stand for true positive, true negative,
false positive and false negative, respectively. The average value of
three error rates on three folds is assigned to srcErr .

3.3 Discriminability on the target domain
In order to achieve a good discriminability on the target domain,
we have to consider two possible situations: there are only a small
number of labeled instances or there is no labeled instance, which
form semi-supervised or unsupervised learning tasks, respectively.

3.3.1 Semi-supervised learning. If there is a small set of labeled
instances available in the target domain, called TarL, tarErr can
be calculated as the classification error rate on tarErr with Src
being used as the training set. The reason is that if tarErr is low,
the two sets TarL and Src are likely to have similar conditional
distributions. Since TarL and TarU contain labeled and unlabeled
instances drawn from the target domain, they should have the
same conditional distribution. Therefore, minimizing tarErr leads
to leverage the distribution’s difference between Src and TarU as
well. The tarErr in the semi-supervised learning is named tarErrl .

3.3.2 Unsupervised learning. In this case, we do not have labeled
instances on the target domain, so the question is how to measure
the discriminability without using labels. Based on the idea that
the two closest instances usually belong to the same class, we can
estimate the classification error on the target domain by using
labeled source domain instances, given a set of selected features.
In particular, suppose that xt1 and xt2 are two closest unlabeled
instances on the target domain (TarU ), they are very likely to have
the same class label. Since the class labels of xt1 and xt2 are not
available, we can estimate their class labels based on their two
closest instances from the source domain, xs1 and xs2 . If xs1 and xs2
are in the same class, xt1 and xt2 are also in the same class, which
means the selected features are good for grouping similar instances
into the same class. Otherwise, xt1 and xt2 are in different classes
indicating the poor disciminability of the selected features. The
tarErr in the unsupervised learning, called tarErru , is the division
between the number of closest target instances being estimated
in different classes, and the total number of instances in TarU .
Note that since the number of closest instance pairs equal to the
number instances inTarU , tarErru is in the range [0,1]. Details on
calculating tarErru are shown in Algorithm 1.

On both semi-supervised and unsupervised learning cases, the
target of tarErr is to ensure that if the selected features has a good
discriminative ability on the source domain, they should also have
a high discriminability on the target domain. Conceptually, this is
similar to the idea of making conditional distributions similar across
domains in existing feature-based domain adaptation approaches.
However, the use of tarErr does not require any model assumption
about the conditional distribution and it works closely with the
KNN classification algorithm, which is expected to result in a high
classification performance.
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Figure 1: PSO-based Feature Selection for Domain Adaptation

Algorithm 1 : Calculate tarErru
1: correct =0
2: for each instance xti in TarU do
3: find its closest instance in the source domain, xsi
4: find its closest instance in the target domain, xtj
5: find the closest instance of xtj in the source domain, xsj
6: if xsi and xsj are in the same class then
7: correct = correct +1
8: end if
9: end for
10: tarErru = 1 - correct

|TarU |

3.4 Difference between marginal distributions
The last term, di f f ST , in Eq. (4) aims to minimize the difference
between the marginal distributions. Maximum Mean Discrepancy
(MMD) [2] is used to measure the difference between the two mar-
ginal distributions, as shown in Eq. (6). This metric is widely used
in many feature-based approaches.

D (Src,TarU ) =










1
|Src |

|Src |∑
i=1

ϕ (Srci ) −
1

|TarU |

|TarU |∑
i=1

ϕ (TarUi )








H
(6)

where ϕ (x ) : X → H , H is a universal reproducing kernel Hilbert
space. Note that in both semi-supervised and unsupervised learning,
TarU is always used in the Eq. (6) since the final task is to well
classify instances fromTarU . Using the kernel trick, i.e. k (zi , zTj ) =
ϕ (zi )ϕ (z

T
j ), where k is a positive definite kernel [17], Eq. (6) can be

rewritten as:

D (Src,TarU ) =
( 1
|Src |2

|Src |∑
i=1

|Src |∑
j=1

k (Srci , Src j )

+
1

|TarU |2

|TarU |∑
i=1

|TarU |∑
j=1

k (TarUi ,TarUj )

−
2

|Src | |TarU |

|Src |∑
i=1

|TarU |∑
j=1

k (Srci ,TarUj )
)1/2

(7)

According to [23], Gaussian Radial Basis Function [RBF, k (x ,y) =
exp ( | |x−y | |2/2σ 2)] is able to detect more types of dependence than
linear or polynomial kernels. Thus RBF is used in this work. Its
kernel width (σ ) is automatically selected for each case based on
the “median trick” [22].

3.5 Overall Algorithm
The overall structure of the proposed system is shown in Figure
1. The main contribution of this work is the PSO-based feature
selection algorithm, which is marked in black. In general, source
(Src), unlabeled target (TarU ) and possibly labeled target (TarL)
data are used to evaluate particles using the proposed fitness func-
tion, Eq. (4). Based on the final feature subset selected by PSO, both
Src and TarU are projected on the common feature space to form
two new data, Src ′ and TarU ′, which should share the same data
distributions. The KNN classification algorithm (k=1) uses Src ′ as
the training set to classify instances in TarU’ to obtain the classifica-
tion performance on the target domain. Depends on whether TarL
is available in the target domain, either tarErrl or tarErru is used
in Eq. (4). We name the two algorithms using tarErrl , tarErru as
SemPSO, UnPSO, respectively.

4 EXPERIMENT DESIGN
The proposed two algorithms are compared with using all features,
two well-known unsupervised feature-based domain adaptation al-
gorithms, TCA [17], MIDA [31], and their extended semi-supervised
algorithms, STCA [17], SMIDA [31]. The systems of the four bench-
mark traditional algorithms are similar to the one shown in Figure
1, except for the step building the common feature space.

4.1 Benchmark Datasets
All the algorithms are examined on three well-known real-world
problems, Gas Sensor [26], Handwritten Digits [24] and Object
Recognition [8, 10], which are separated by dashed lines as shown
in Table 1, where #C and #F represent the number of classes and
features. Each problem contains many cases, which have the same
number of classes and features, but might have different numbers
of instances in the source (Src) and target domains (TarU ,TarL).

The gas sensor array drift datasets are collected by Vergara et
al. [26] using 16 gas sensors over 36 months. The task is to classify
instances into six different kinds of gas. The whole datasets are
divided into 10 batches according to the acquisition time. The 1st

batch is used as the source dataset and each batch from the 2nd to
the 10th ones are used as the target dataset, which forms 9 domain
adaptation cases.

USPS and MNIST [24] are two handwritten digit datasets, which
share 10 classes of digits. The USPS dataset is collected by scanning
envelops from US Postal Service while MNIST is taken from mixed
American Census Bureau employees and American high school
students, so they have very different distributions. In this problem,



GECCO ’18, July 15–19, 2018, Kyoto, Japan B. Nguyen et al.

Table 1: Domain adaptation problems.

Problem Cases #C #F |Src| |TarU| |TarL|

Gas Sensor

1-2 6 129 178 746 498
1-3 6 129 178 951 635
1-4 6 129 178 97 64
1-5 6 129 178 118 79
1-6 6 129 178 1380 920
1-7 6 129 178 2168 1445
1-8 6 129 178 176 118
1-9 6 129 178 282 188
1-10 6 129 178 2160 1440

Handwritten MNIST-USPS 10 257 800 1080 720
Digits USPS-MNIST 10 257 720 1200 800

A-C 10 801 384 674 449
A-D 10 801 384 94 63
A-W 10 801 384 177 118
C-A 10 801 449 574 384
C-D 10 801 449 94 63

Object C-W 10 801 449 177 118
Recognition D-A 10 801 63 574 384

D-C 10 801 63 674 449
D-W 10 801 63 177 118
W-A 10 801 118 574 384
W-C 10 801 118 674 449
W-D 10 801 118 94 63

there are two domain adaptation cases, in which either MNIST or
USPS is the source dataset and the other one is the target dataset.

The last problem is to recognize 10 objects from four different
image sources including Caltech-256 (C) [10], Amazon (A), Webcam
(W) and DSLR (D) [8]. To form a domain adaptation case in this
problem, we select one image source as the source domain and
another image source as the target domain. Therefore, there are 12
cases for the object recognition problem.

In general, there are 23 domain adaptation cases, which have dif-
ferent numbers of classes, features or different numbers of instances
in the source and target domain.

4.2 Parameter Settings
Parameters of the four traditional algorithms (TCA, STCA, MIDA
and SMIDA), including their kernel and kernel widths, are tuned
for the best accuracy using a heuristic search [31] on each case.
The parameters of SBPSO are set according to recommendations in
its original paper [14], as described in Section 2.3. Each PSO-based
algorithm is run 30 independent times on each case.

To tune the three weights in Eq. (4), three cases with the lowest
classification accuracy from each problem are selected as repre-
sentatives, which are “1-8”, “USPS-MNIST” and “C-W”. Different
values of the three weights are examined by running SemPSO one
time on each selected case. The evolved feature subsets are used
to obtain two projected datasets of Src and TarL, called Src ′ and
TarL′. The best setting for each problem is selected according to
the best and the average classification accuracy on TarL′. Partic-
ularly, on Gas Sensor, sw, tw and stw are set to 0.1, 0.9 and 0.0,
respectively. On Handwrittend Digits and Object Recognition, the
three values are (0.1, 0.7, 0.2) and (0.0, 0.1, 0.9), correspondingly.
Based on the parameters, it can be seen that different problems

have different relationships between source and target domains.
For example, on Gas Sensor, tw is large which means that the main
difference between the two domains is the conditional distribu-
tion. Thus tuning the weights may reveal the relationship between
domains, which cannot be easily achieved by most traditional ap-
proaches. The setting of UnPSO mainly follows SemPSO, except for
Object Recognition, where sw is set to 0. SinceTarL is not available
in UnPSO, srcErr seems to be more reliable than tarErr , so sw is
set to 0.1 instead of 0.0.

5 RESULTS
The results are shown in Table 2, where #F and Acc represent
for the number of selected features and the average classification
performance. The number of features selected by PSO are used as
the pre-defined number of features for four traditional methods to
ensure a relatively fair comparison. In the table, the best accuracies
are marked in bold while the second best ones are underlined. A
significance Wilcoxon test with significance level set to 0.05 is used
to compare between semi-supervised, unsupervised approaches to
examine the effect of the proposed fitness function in both learning
cases. Particularly, SemPSO is compared with Full/STCA/SMIDA
in Table 3. Table 4 shows the comparisons between UnPSO and
Full/TCA/MIDA. In each table cell, the three numbers represent the
number of cases that the PSO-based approaches are significantly
better, similar or worse than the other benchmark algorithms.

5.1 SemPSO/UnPSO vs using all features
As can be seen from Table 2, on all cases, SemPSO achieves signifi-
cantly better performance than using all features. For example on
Gas Sensor, SemPSO usually improves 20% over the original feature
set, especially on the 1-8 case, the accuracy of SemPSO is almost
three times better. In the 1-6 case, the accuracy of using all features
are already quite high, which means that the two domains are very
similar and most features are invariant. However, SemPSO still
manages to improve the accuracy by 5%. The possible reason is the
classification accuracies in Eq. (4) assist PSO to remove irrelevant
or redundant features from both domains.

Similar to SemPSO, UnPSO also achieves good performance de-
spite of lacking information about the class label in the target do-
main. Table 4 shows that UnPSO is worse than the original feature
sets on only two cases while being significantly better on 17 out of
the 23 cases. Although on 1-10 and D-A, UnPSO’s accuracies are at
most 0.9% less than using all features, it only selects less than a half
number of the features. On the other hand, the largest improvement
by UnPSO is on W-C, where UnPSO evolves a set of features which
are almost three times more accurate than using all features.

The experimental results show that PSO guided by the proposed
fitness function can automatically reduce half of the numbers of
features and achieve better classification performance than using all
features. The fitness function not only selects invariant features but
also extracts relevant ones to improve the classification accuracy.

5.2 SemPSO vs STCA/SMIDA
As can be seen in Table 3, SemPSO well utilizes the class label infor-
mation on the target domain to significantly improve the classifica-
tion performance. On all cases, SemPSO significantly outperforms
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Table 2: Overall results on 23 cases.

Cases
Full Unsupervised Semi-supervised

#F Acc
TCA MIDA UnPSO STCA SMIDA SemPSO
Acc Acc #F Acc Acc Acc #F Acc

1-2 128 69.57 63.40 61.80 58.63 76.71 72.39 68.50 49.33 90.90
1-3 128 70.24 60.04 63.41 57.00 72.66 72.24 63.83 44.30 94.58
1-4 128 61.86 52.58 56.70 62.40 61.55 68.04 58.76 55.23 81.34
1-5 128 70.34 49.15 75.42 53.70 71.89 66.95 75.42 56.73 76.44
1-6 128 89.64 79.06 80.14 59.00 89.56 84.35 80.58 52.47 94.53
1-7 128 53.60 57.84 56.83 55.20 58.09 63.65 55.81 45.73 71.54
1-8 128 26.70 12.50 29.55 60.33 32.41 9.09 13.64 41.27 79.47
1-9 128 46.45 21.28 18.44 57.93 53.01 29.79 71.63 47.67 67.86
1-10 128 49.12 49.54 47.31 58.83 48.19 57.73 45.28 36.77 68.35

MNIST-USPS 256 59.63 35.65 34.91 113.33 65.90 55.65 35.93 104.23 72.54
USPS-MNIST 256 23.83 20.83 21.17 74.13 49.82 10.67 19.92 97.33 56.14

A-C 800 22.55 27.89 28.19 414.83 27.24 19.44 31.45 410.20 30.53
A-D 800 18.09 22.34 23.40 409.17 26.74 17.02 26.60 392.30 29.61
A-W 800 22.03 26.55 27.12 412.90 28.31 20.90 32.20 401.73 35.37
C-A 800 24.39 30.84 30.49 396.23 28.82 24.56 15.33 394.03 33.05
C-D 800 22.34 6.38 26.60 390.47 25.53 23.40 25.53 383.30 26.06
C-W 800 16.95 20.90 20.34 396.03 25.12 20.34 23.73 389.03 28.44
D-A 800 22.65 17.94 17.42 397.63 22.10 11.50 23.34 394.00 31.40
D-C 800 23.74 24.78 23.44 379.83 22.38 12.76 26.26 393.80 29.06
D-W 800 41.24 10.17 18.08 396.10 47.18 42.94 18.08 405.07 51.94
W-A 800 21.95 9.58 24.91 403.67 21.62 10.63 24.22 401.43 30.21
W-D 800 44.68 13.83 14.89 407.57 52.27 7.45 18.09 403.17 50.32
W-C 800 8.00 14.24 14.09 412.17 21.39 14.39 10.83 391.27 27.72

Table 3: SemPSO vs semi-supervised methods

Full STCA SMIDA
23/0/0 23/0/0 20/1/2

Table 4: UnPSO vs unsupervised methods

Full TCA MIDA
17/4/2 18/1/4 17/2/4

STCA. In comparison with SMIDA, SemPSO is significantly better
on 20 out of the 23 cases. On the 1-6 case, where the two domains
are very similar, both STCA and SMIDA build new latent feature
spaces, which perform worse than the original features. In this case,
the important information of original features is discarded by the
two traditional methods. On the other hand, SemPSO aims to select
relevant original features on both domains, so it can improve the
performance over using all features. The two traditional methods
aim to maximize the dependence between the features and labels
on the target domain. However, the dependency is implicitly opti-
mized through the Hilbert-Schmidt Independence Criterion (HSIC)
[9]. Meanwhile, in our proposed fitness function, the classification
performance is used to explicitly presents the dependence between
the features and labels, which leads to higher accuracies on the
target model. In comparison with UnPSO, except for W-D, SemPSO
achieves better classification performance on all other cases. The
results show that the actual classification error on TarLworks better
than estimating the classification error on TarU.

5.3 UnPSO vs TCA/MIDA
The significance test results between UnPSO and TCA/MIDA are
shown in Table 4. As shown in the table, UnPSO is similar to the
two traditional algorithms only on at most 2 cases while being
significantly better on at least 17 cases. On the Gas Sensor problem,
UnPSO usually achieves 10% accuracy better than at least one of
the two traditional methods. Especially on the difficult case 1-9,
UnPSO is at least three times more accurate than TCA and MIDA.
UnPSO also outperforms the two traditional methods on the two
handwriting digital cases. Only on the 12 object recognition cases,
TCA andMIDA can achieve comparable performance in comparison
with UnPSO. UnPSO is similar or better than the other two methods
on only 9 out of the 12 cases. The possible reason is the estimation
process of tarErru mainly bases on Euclidean distances, which may
not work well on such high-dimensional datasets (800 features).

5.4 Overall Comparisons
As can be seen in Table 2, in general, SemPSO achieves the best
classification accuracy on 19 out of the 23 cases while being ranked
as the second best algorithm on the other four cases. UnPSO evolves
the best common feature set on one case and acquires the second
best accuracy on nine cases. The achievement of UnPSO is much
better than the best traditional algorithm, SMIDA, which obtains
the best or second best performance on 6 cases. Note that in the
overall comparisons, UnPSO is also compared with semi-supervised
algorithms like SMIDA, which assume some instances are labeled
in the target domain. Therefore, the outperformance of UpPSO to
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other semi-supervised traditional algorithms suggests that the esti-
mation of target classification error based on the source domain can
improve the discriminative ability on the target domain and reduce
the differences between their conditional distributions, which are
assumed to be the same in the four traditional approaches. The
classification error rate on the source domain also plays an impor-
tant role in the fitness function. Normally, traditional feature-based
adaptation approaches focus only on producing invariant features,
while the source classification performance ensures that the se-
lected features have high discriminative abilities on both domains
when they become similar. In terms of computation time, the PSO-
based algorithms are more computationally intensive than the four
traditional approaches since they involve classification processes
in the evaluation step.

6 CONCLUSIONS AND FUTUREWORK
In this work, a novel fitness function is developed to assist PSO
to automatically select a subset of original features, which can
improve classification performance in domain adaptation problems.
The proposed fitness function aims to select relevant and invariant
features across different domains. The fitness function can flexibly
adapt with unsupervised or semi-supervised domain adaptation,
depends on the availability of labels on the target domain. Based
on that, two PSO-based feature selection algorithms for domain
adaptation are proposed and examined on three well-known real-
world problems containing 23 domain adaptation cases, in total.
The proposed algorithm, called UnPSO and SemPSO, are compared
with four traditional feature-based domain adaptation algorithms,
TCA, STCA, MIDA and SMIDA. The results suggest that explicitly
presenting feature and label relations by classification performance
results in better common feature spaces than relying on model
assumptions. Furthermore, incorporating the discriminability on
the source domain in the fitness function guides PSO to search for
feature subsets with a high discriminative ability on both domains.

This is the first work utilizing EC, specifically PSO, to achieve
feature-based domain adaptation. In the future, we will further
investigate their potential to achieve even better performance. For
example, the difference between two marginal distributions is cal-
culated based on the MMD model, which may not perform well
on the high-dimensional dataset. We will work on estimating the
difference without any model assumption. The three weights in
the fitness function can be adaptively changed, by analyzing the
relationships between source and target domains.
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