Surrogate-model based Particle Swarm
Optimisation with Local Search for Feature
Selection in Classification

Hoai Bach Nguyen *, Bing Xue, and Peter Andreae

School of Engineering and Computer Science
Victoria University of Wellington
{Hoai.Bach.Nguyen, Bing.Xue, Peter. Andreae}@Qecs.vuw.ac.nz

Abstract. Evolutionary computation (EC) techniques have been applied
widely to many problems because of their powerful search ability. However,
EC based algorithms are usually computationally intensive, especially with
an expensive fitness function. In order to solve this issue, many surrogate
models have been proposed to reduce the computation time by approxi-
mating the fitness function, but they are hardly applied to EC based fea-
ture selection. This paper develops a surrogate model for particle swarm
optimisation based wrapper feature selection by selecting a small number
of instances to create a surrogate training set. Furthermore, based on the
surrogate model, we propose a sampling local search, which improves the
current best solution by utilising information from the previous evolution-
ary iterations. Experiments on 10 datasets show that the surrogate training
set can reduce the computation time without affecting the classification
performance. Meanwhile the sampling local search results in a significantly
smaller number of features, especially on large datasets. The combination
of the two proposed ideas successfully reduces the number of features and
achieves better performance than using all features, a recent sequential fea-
ture selection algorithm, original PSO, and PSO with one of them only on
most datasets.

Keywords: Feature selection, particle swarm optimization, surrogate model,
instance selection

1 Introduction

In classification, a set of training instances is used to build a classifier, which as-
signs a pre-defined class label to unseen instances. However in many classification
problems, each instance is described by a large number of features, which causes
difficulties to the training process due to the “curse of dimensionality”. Therefore,
feature selection is proposed to select a small number of features while maintain
or even improve the classification performance. However, feature selection is not
an easy task because of its huge search space, which increases exponentially with
respect to the number of features. It is also challenging to capture complex in-
teractions between features [1]. The two issues are usually handled by two main

* Corresponding Author

components, a search mechanism and an evaluation criterion, respectively. The
search mechanism is used to generate candidate feature subsets, which are then
evaluated by the evaluation criterion.

Based on the evaluation measure, feature selection methods can be divided into
wrapper approaches and filter approaches [1]. In wrappers, a classification algo-
rithm is used to measure the candidate feature subsets’ performance, which often
results in promising classification performance. However wrappers are usually com-
putationally intensive and the selected feature subsets are only for a specific clas-
sification algorithm. Meanwhile, in filter approaches, feature subsets are evaluated
based on the characteristics of data, which are captured by some filter measures
such as information measure or correlation measure. Filters are usually faster and
selects more general features than wrappers. However, in terms of classification
accuracy, filter approaches often can not achieve as good results as wrappers.

In terms of the search mechanism, evolutionary computation (EC) techniques
have been widely applied to feature selection because of their potential global search
ability. Compared with other EC techniques like genetic algorithms (GAs), memetic
algorithms, PSO evolves better solutions in more efficient computation time on
many problems [2]. Therefore, this work uses PSO as the search mechanism to find
optimal feature subsets.

A common problem of EC based algorithms is the expensive computation cost
since the fitness evaluation is performed on many individuals. Surrogate models
have been used to reduce the computation cost in many expensive problems [3].
The main idea is to partly replace the highly cost fitness function using its cheap
estimation. Despite of being applied widely, surrogate models have seldom been
applied to feature selection, which also has an expensive fitness evaluation. To the
best of our knowledge, this work will be the first attempt to develop a surrogate
model for PSO based wrapper feature selection.

Although PSO is a global search technique, it easily converges prematurely
and stuck at local optima when applying to feature selection, whose search space
is complex with many local optima. Furthermore, PSO only considers the current
best solutions, while useful information from the previous generations might be dis-
carded. Therefore, this work investigates on improving the evolved feature subsets
by applying an efficient local search, which uses information of the best solutions
from all iterations so far to prevent the premature convergence.

1.1 Goals

This paper aims to develop a new PSO based feature selection approach with the
goal of maintaining or improving the classification accuracy of wrappers while sig-
nificantly reducing the computational cost and the number of features. To achieve
this goal, firstly a surrogate training set is built by applying an instance selection
algorithm. The expectation is to reduce the computation cost and maintain the
information of the whole training set by selecting a small number of informative
instances. Based on the surrogate training set, to improve the quality of the cur-
rent best solution, a local search is developed to utilise features selected by the best
feature subsets in the previous iterations to sample new candidate feature subsets,
which will compete with and might replace the current best solution. The proposed

approach will be evaluated and compared with a PSO based pure wrapper method
and a sequential feature selection method. Specifically, we will investigate:

— whether the surrogate training set can reduce the computation cost while main-
tain or improve the performance over using the whole training set,

— whether the local search can assist PSO to evolve smaller feature subsets with
similar or better classification accuracy, and

— whether combining the local search and the surrogate model can achieve better
classification performance and scalability than using all instances and a state-
of-the-art sequential feature selection algorithm.

2 Background

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was originally proposed by Kennedy [4] to
solve continuous problems. In PSO, an optimisation problem is solved by using a
set of particles, called swarm, in which each particle represents a candidate solution.
Particles move around the search space by updating their positions using veloci-
ties, which are based on their best position, called pbest and their neighbours’s
best position, named gbest. In order to solve binary problems, Sticky PSO [5] was
proposed, which replaced the velocity vector by a probability vector. Each element
of the probability vector represents the chance of flipping the corresponding posi-
tion’s bit. The probability element consists of three components: cognitive factor
determined by pbest, social factor determined by gbest, and a stickiness property,
which is a new binary momentum. The stickiness property is defined as a tendency
to stay with the current position. It has the maximum value of 1 if its corresponding
bit is just flipped to a new value, and decays in the following iterations if the bit’s
value is not changed. This idea is implemented by a variable called currentLife,
which records the number of iterations after the bit was flipped. mazLife is the
upper limit of currentLife, which ensures that the stickiness is not negative. After
a number of iterations without flipping, the bit’s stickiness becomes 0. The posi-
tion and flipping probability vector of a particle, denoted by x and p, are updated
according to the following equations:

1, if rand() < —Lr
(EZ+1 = 1+e Yd

0, otherwise

(1)

Pd = im * (1 — stickinessq) + ip * |pbesty — xq| + iq * |gbesty — xq] (2)

currentLifeq

3)

where t is the iteration, and d is the d** dimension in the search space. i, ip
and ¢, are used to control the proportions of the stickiness, cognitive and social
components in the flipping probability, respectively. By redefining the velocity and
momentum concepts, Sticky PSO can cope with binary search spaces to search
more efficiently and effectively. Specifically, Sticky PSO can evolve better solutions
than PBPSO [6], a state-of-the-art binary PSO, on two well-known types of binary
problems: knapsack and feature selection. Therefore, Sticky PSO is selected as the
search mechanism in this work.

stickinessy = 1 — -
‘ mazxLife

tth

2.2 Related Work On Feature Selection

Feature Selection Using Non-EC Techniques: Sequential forward selection
(SES) [7]/backward selection (SBS) [8] are two well-known traditional feature selec-
tion algorithms, which starts with an empty/full feature subset and incrementally
adds/removes a feature which gives the best performance improvement. The pro-
cess of adding/removing continues until the performance can not be improved.
Although these techniques are more efficient than considering all possible feature
subsets, they suffer the “nesting” problem. Specifically, once a feature is added or
removed from the feature subset, it can not be removed or added later. To over-
come this issue, “plus-l-take away -r” is proposed in [9], which iteratively does I
forward steps followed by r backward steps. The pair (I,r) is determined dynam-
ically in [10]. Later, Nakariyakul et al. [11] propose a method named IFFS which
further improves the sequential searches using an additional step replacing weak
features in the current feature subset by an unselected feature. The experimental
results show that IFFS achieves better performance than other sequential search
algorithms. Therefore, IFFS is chosen to compare against our proposed method.

PSO based Feature Selection: Many works attempt to improve PSO based
feature selection algorithms by modifying initialisation, representation or fitness
function. In [12], an opposition chaotic method is applied to improve the initial-
isation of PSO. Specifically, two candidate feature subsets are generated on two
opposite sides of the search space and the better side is used to initialise a particle
in the swarm. In addition, opposition chaotic also assists to define PSO parameters
dynamically and update gbest to avoid being stagnation in local optima. A represen-
tation of PSO is proposed by Vieira et al. [13] to simultaneously optimise support
vector machine’s parameters and select a feature subset. However, the length of this
representation is longer than the traditional one since it needs extra bits for the
parameters. The results indicate that the proposed representation achieves better
performance than other binary PSO and GAs based feature selection algorithms.
Based on statistical feature clustering, Nguyen et al. [14] propose a representation
which is shorter than the traditional one. Firstly, similar features are grouped into
the same feature cluster. For each feature cluster, a maximum number of selected
features from the cluster are predefined. Each position’s bit belongs to a cluster and
indicates which feature is selected from that cluster. The experimental results show
that the proposed algorithm selects a smaller number of features while improves
the classification performance over two other PSO based algorithms.

Premature convergence is a typical problem of PSO based feature selection
algorithms. To address this problem, a gbest resetting mechanism is proposed in
[15]. Specifically, if the gbest is not changed for a certain number of iterations, its
position entries are reset to 0. This mechanism is utilised in [16] along with a local
search to simultaneously reduce both classification error and the size of feature
subsets. In addition, to speed up the fitness calculation, the proposed algorithm
only considers the changed features. In [17], PSO is even used with GAs to solve
feature selection problems, where in each iteration, the swarm is divided into two
parts which are enhanced by PSO and GAs, respectively. The combination of two
EC algorithms enhances the population variety, which results in informative feature
subsets. Nguyen et al. [18] aim to improve gbest by applying a local search called

filter based backward elimination. Features selected by the current gbest are ranked
by mutual information. The elimination process mimics the backward selection
to remove the less informative and redundant features. The proposed algorithm
reduces the number of features and achieves significantly better performance than
other recent PSO based algorithms. A comprehensive survey on EC based feature
selection is provided by Xue et al. [1].

There have been many works attempting to improve the efficiency of PSO based
feature selection algorithms by modifying the representation and fitness function.
Recently, the surrogate model is applied to many EC techniques to reduce the com-
putation time. However, it has never been applied to PSO based feature selection
algorithms. This will be the first time that the surrogate model is investigated in
PSO based feature selection. In addition, the current PSO based feature selection
algorithms do not use the feature subsets selected by gbest in previous generations,
which might contain information about good features.

3 Proposed Feature Selection Approach

Wrappers usually achieve high classification performance feature subsets with an
intensive computation cost. To alleviate the problem, we propose a surrogate model
and a local search to improve the PSO based wrapper feature selection algorithm.

3.1 Surrogate Model For Feature Selection

Surrogate Training Set: A large training set is one of the reasons for a long
classification process i.e. long time for wrapper feature selection. There might be
some noisy instances which may deteriorate the classification performance. In order
to alleviate the expensive computation cost and at least maintain the accuracy, an
instance selection algorithm can be used to select a small number of representative
instances to form a new instance set, called a surrogate training set, which is
expected to contain all essential information from the original training set. The
fitness function calculated on the surrogate training set is called a surrogate fitness
function, which can be considered an estimation of the original fitness function.

K nearest neighbours (KNN) is a simple and powerful instance based classi-
fication algorithm [19], so it is chosen to evaluate feature subsets. Wilson et al.
[20] propose several instance selection algorithms for KNN. Among the proposed
algorithms, it has been shown in [21] that DROP3 achieves good performance with
respect to KNN. In general, DROP3 reduces the number of instances by removing
central instances and retaining border instances. The main reason is that the inter-
nal instances do not affect on the decision boundaries as much as the border points.
Therefore, removing the central instances affects the classification performance less
than removing the border instances.

DROP3 starts with filtering out all noisy instances, which are assigned to wrong
class labels by their K nearest neighbours. This step also removes instances in
the middle of two or more class boundaries, which creates a smoother decision
boundary. For each remaining instance, there is an “enemy” instance, which is the
closest instance with a different class label. The distance from an instance to its
“enemy” instance is called an “enemy” distance. Therefore, the larger “enemy”
distance an instance has, the farther the instance is to its class label boundary. All

remaining instances will be sorted according to their “enemy” distances so that the
internal instances, which are far from their class label boundary, are removed first.
For each instance, its removing process relates to its associated instances, which
have the instance as one of their K nearest neighbours. If removing the instance
does not reduce the number of correctly classified associated instances, then the
instance will be removed. The set of selected instances is used as the surrogate
training set for KNN in this work.

Surrogate Training Process: Surrogate models for fitness evaluations can be
roughly divided into three categories: individual based, generation based and popu-
lation based [22]. In individual based approaches, some individuals from the popu-
lation are calculated by using the original fitness function and other individuals are
evaluated by the surrogate fitness function. Population based approaches have more
than one sub-populations, which might use different surrogate fitness functions. The
communication and exchanging individuals from different sub-populations are al-
lowed. For generation based, the surrogate fitness function is used in some of the
generations before the original fitness function is used in the rest of the generations.
In PSO, the swarm starts by exploring the search space to locate promising areas,
which are then exploited in the later iterations. So it can be said that in early
iterations the swarm tries to estimate the possible regions of global optima. In the
sense of estimation, it would be safe to use the surrogate model at the beginning of
a PSO algorithm to locate promising areas before using the original fitness function
to find out the exact optima. Therefore, the idea of generation based approach is
suitable here. Specifically, the particles are evaluated using the surrogate training
set in the first I, iterations, while in rest of the iterations, the whole training set
is used. Given [is the maximum number of iterations, the task is to figure out the
value of I iterations so that the classification performance is still maintained or
even improved over using the original fitness function. The rate between I, and I

is called the surrogate rate asg, i.e. ag = IT

3.2 Local Search: Sampling On gbest

In a PSO algorithm, the main idea is to use the current gbest and pbest to guide
the particles to follow promising trajectories. However, the gbest from the previous
generations might contain some useful information, which can assist the swarm to
achieve better solutions. For instance, in feature selection, features which appear in
gbest for many iterations tend to be good features. Moreover, since feature selection
has a large and complex search space, some good features might not be selected
together in the gbest solutions. These features might be complementary features,
which provide even more information about the class label when appearing in one
feature subset. Therefore the main idea of the local search is to keep features
selected on all gbest and use them to improve the current gbest.

Suppose that Spest is the set of features which are selected in all gbest from
previous iterations. Each feature from Spes; has a score (explained later and shown
in Eq. 4). The local search constructs g candidate solutions by using Spes¢, where
P is the population size. |gbest|, the number of features in the current gbest, is
the maximum number of features in each candidate feature subsets. Specifically,
based on the calculated scores, a tournament selection is used to select |gbest|

features from Spest, which form a sampled feature subset. The higher a feature’s
score is, the more chance that feature is selected. In addition, in |gbest| selected
features, there might be some duplicated features, which means that the size of the
sampled feature subset can be less than |gbest|. All sampled feature subsets are
then compared with each other based on their surrogate fitness values to find the
best candidate feature subset. In this way, the local search utilises the surrogate
training set to approximate a good solution in a short time. After that, the best
candidate subset and the current gbest compete on the current fitness function,
fitnessq,,, which is the surrogate fitness function in the first I, iterations or the
original fitness function in the last (I — I) iterations. The winner becomes gbest.

The task now is to define the scores of features in Spes;. The main idea is to give
more scores to features, which are selected more frequently and recently by gbest.
The first component of the score is freq, which measures the number of iterations,
in which a feature is selected in gbest. The higher freq a feature has, the better
the feature’s quality. Before contributing to the score, freq is normalised to fregq,
so that the total freg, of all features from Spes; is 1. The second component of the
score is related to the current gbest, called gc. If a feature in Speq is also selected

in the current gbest, its gc is set to Tobest] b . Otherwise its gc is 0. The score of the
f feature in Spes is the sum of its freqn and gc, which can be seen in Eq. (4).
scoref = freqny + gey (4)
where Freg,: = fregy
nf —

lebcstl f?"e(]f

gcg = \gbest| if f e gbest
! 0 otherwise

As illustrated in Eq. (4), given the same freq,, the gc component gives more
scores to features which are recently selected. In addition, since the best sampled
subset might replace the current gbest, it is preferred to keep the sampled subset
close to the current gbest so that the swarm is not distracted. The gc component
lets the features from the current gbest to have more chance to be chosen, which
allows to build new feature subsets not far from the current gbest. The local search
is applied after the gbest of the current iteration is determined and before that
gbest is informed to all particles.

3.3 Overall Algorithm
In this work, Sticky PSO, a binary PSO algorithm, is applied to achieve feature
selection, in which each position entry corresponds to one original feature. The
value 1 of a position entry indicates that the corresponding feature is selected.
Otherwise the corresponding feature is not selected. In this work, a feature subset
is evaluated by the fitness function given in Eq. (5)

#selected features

#all features

fitness = v x Classi ficationError + (1 —) (5)
where PSO needs to minimise the classification error determined by a classification
algorithm and the number of selected features. The proportions of the two objec-
tives are controlled by ~. If the classification algorithm is trained on the surrogate

Create the surrogate training
set using DROP3

'3

Initialise Sopeg

Initialise the population

Generate
P/2 feature subsets

Evaluate Sop,y, using fitness,,;

Fig. 1: Overall algorithm

training set, the corresponding fitness function is a surrogate fitness function, de-
noted by fitnessgy,,. If the whole training set is used to build the classifier then
the fitness function is the original one, called fitness,, ;. In terms of PSO’s repre-
sentation, each feature corresponds to a position entry, whose value is either 1 or 0,
indicating the feature is selected or not selected, respectively. The overall proposed
algorithm, named SurSammPSO, is described in Fig. 1, in which the contribution
of this work is marked in blue. So., is a sampled feature subset, Sopes: is the best
So0cqn generated by the sampling process, and P is the swarm size.

4 Experiment Design

4.1 Datasets

Ten datasets (Table 1) with various numbers of features, classes and instances
chosen from the UCI machine learning repository [23] are used in the experiments.
Each dataset is randomly divided into two parts for training and test purpose,
which preserve the original class distribution and contain 70% and 30% instances,
respectively. DROP3 [20] is applied on the training set to create the surrogate
training set. During the training process, a 10-fold cross validation is used on the
training set or surrogate training set to calculate the classification accuracy. On
each dataset, feature selection algorithms are executed 40 independent times.

4.2 Parameter Settings

A KNN classification algorithm is used to classify instances, where K=3, which
is recommended in [20]. The weight v in Eq. (5) is set to 0.9 so that the search
process focuses more on the classification performance than the number of features.

i
.
.
.
.
.
.
.
.
.
.
.
i
.
S0can?
i is smaller than / Return ghest as the 5 o
final feature subset | !
.
Yes '
|| s o o
! est can than gbest ?
Yes No ' feature scores in Eq. (4)
[EEEEET > l,
i '
fitness,,, = fitnessg,, fitness g, = fitness ,; 5 H
.
I T H H Evaluate So_,, using fitnessg,, gbest = Sopeg;
h
¥ , :
- p .
Evaluate all particles using ! !
fitness ' '
: : SOqn is better
' ' 9
Update ghest ! ! than Sopeq, ?
i '
' '
v : :
Apply sampling local search | ________ H '
on gbest H S0pest = S0can
h
1 i
Populate gbest to the swarm

Table 1: Datasets.

Dataset #features #classes #instances
Vehicle 18 4 496
German 24 2 1000
Ionosphere 34 2 351
Lung 56 2 32
Sonar 60 2 208
Movementlibras 90 15 360
Plant 64 100 1600
Hillvalley 101 2 1213
LSVT 310 2 126
Multiple Features 649 10 2000

For sticky PSO, ¢y,,7, and ¢, are set to 0.1154, 0.4423 and 0.4423, respectively,
which ensures that pbest and gbest contribute more to a particle’s movement than
momentum. maxLife is set to 40. The population size is equal to the number of
features and limited by 100. The maximum number of iterations is 100.

In order to find out the best aj, different values of a ranging from 0.0 to 1.0
with a step of 0.25 are tested on different datasets. The value of 0.0 or 1.0 mean
that the surrogate training set is never or always used, respectively. According to
the results, gy = 0.75 gives the similar or better classification performance with
the shortest running time. So the value of 0.75 is set to «; in this work, which is
given 100 iterations, the surrogate training set is used in the first 75 iterations.

The PSO based feature selection algorithm, which uses purely the original fit-
ness function, is called OriPSO. SurPSO applies the surrogate training set in the
first 75 iterations while OriSamPSO uses the sampling local search in OriPSO.
The combination of the local search and the surrogate training model results in
SurSamPSO. The classification accuracies of different algorithms are compared by
a statistical significance test called Wilcoxon test with significance level set to 0.05.

5 Experiment Results

This section presents the results of SurPSO, OriSamPSO and SurSamPSO. In all
tables, NF, Ave and Std stand for the average number of features, the average
and standard deviation of the classification accuracy over 40 independent runs. T
shows the significant test results. All means using all features.

5.1 Effect of the Surrogate Training Set

To analyse the effect of the surrogate training set, SurPSO will be compared with
OriPSO, which only uses the original fitness function to evaluate feature subsets.
The comparison can be seen from Table 2, in which “+”/“” /“=" indicate that
OriPSO or using all features are significantly better/worse/similar to SurPSO.

In comparison with using all features, SurPSO selects from 5% to 20% of the
original features while still achieves significantly better test performance on 8 out
of the 10 datasets. For example, on the LSVT dataset, SurPSO reduces more than
90% of the features and achieves around 1% better accuracy than using all features.

As can be seen from the table, in terms of training accuracy, SurPSO achieves
similar or better performance than OriPSO on 7 out of the 10 datasets. SurPSO’s
test accuracies are better than that of OriPSO on 2 datasets. For example, on the
Hillvalley dataset, SurPSO selects 2.5 features fewer than OriPSO, but its clas-
sification performance is about 1.1% better. On the rest of the datasets, SurPSO

Table 2: Results of OriPSO and SurPSO

Training Results Test Results

Dataset NF —feTrain £ Std T AveTest £ Std T Lime (ms)
Vehicle
All 18.0 89.44 + 0.00 - 83.07 + 0.00 -
OriPSO 4.8 91.41 + 0.69 = 84.66 + 1.29 - 113187.62
SurPSO 5.1 91.43 + 0.69 85.23 + 0.82 34294.93
German
All 24.0 83.14 + 0.00 - 65.33 + 0.00 -
OriPSO 5.6 78.70 £+ 0.52 - 67.63 + 1.90 = 229110.30
SurPSO 6.4 84.33 + 0.52 68.35 + 0.75 60600.90
Ionosphere
All 34.0 90.24 + 0.00 - 86.67 + 0.00 -
OriPSO 4.8 95.27 + 0.81 + 88.48 + 2.12 = 33564.40
SurPSO 4.0 94.64 + 0.81 88.38 + 2.61 9903.90
Lung
All 56.0 86.36 + 0.00 - 80.00 &+ 0.00 =
OriPSO 5.1 99.89 + 1.73 + 79.50 &+ 4.44 = 707.38
SurPSO 4.4 99.20 + 1.73 79.50 + 5.45 451.75
Sonar
All 60.0 88.97 + 0.00 - 84.13 4+ 0.00 +
OriPSO 14.8 95.55 + 1.78 + 81.94 + 3.32 = 23605.65
SurPSO 12.4 93.55 + 1.78 82.58 + 3.14 7291.62
Movementlibras
All 90.0 98.52 + 0.00 - 95.06 + 0.00 -
OriPSO 9.2 98.54 + 0.16 = 95.33 + 0.41 = 105780.20
SurPSO 9.4 98.63 + 0.16 95.29 4+ 0.32 41165.30
Plant
All 64.0 99.55 + 0.00 + 99.10 4+ 0.00
OriPSO 3.0 99.24 + 0.04 = 98.67 + 0.03 = 1756442.18
SurPSO 3.1 99.26 + 0.04 98.68 + 0.05 566479.72
Hillvalley
All 100.0 79.83 £+ 0.00 - 59.07 + 0.00 -
OriPSO 24.8 81.54 + 0.83 = 58.85 + 1.88 - 1557361.75
SurPSO 22.3 81.16 + 0.83 59.92 + 1.46 443232.00
LSVT
All 310.0 79.55 4+ 0.00 - 55.26 + 0.00 -
OriPSO 27.9 85.45 + 4.72 = 65.53 + 1.53 = 18240.05
SurPSO 27.4 85.11 + 4.72 65.07 + 4.89 4708.20
Multiple Features
All 649.0 99.49 + 0.00 - 98.57 + 0.00 -
OriPSO 118.2 99.66 + 0.05 = 99.04 + 0.10 = 7203332.90
SurPSO 143.6 99.65 + 0.05 99.05 + 0.12 2068439.52

achieves similar test performance in comparison with OriPSO. In terms of the num-
ber of selected features, except for the last dataset with a large number of features,
the size of feature subsets selected by the two algorithms are roughly equal. Despite
of maintaining or improving the classification performance, SurPSO’s evolutionary
processes are much shorter than that of OriPSO. Specifically, on most of datasets
SurPSO spends 70% less time than OriPSO to evolve a feature subset. Although
OriPSO is already quite fast on the Lung dataset (only 707 ms), SurPSO is still
able to reduce about 40% of the OriPSO’s computation time. So the surrogate
training set significantly reduces the computation cost without deteriorating the
test performance. On some datasets, SurPSO even improves the performance due
to the DROP3’s intention to remove noisy instances.

5.2 Effect of the Sampling Local Search

To analyse the effect of the proposed local search, OriSamPSO, which applies the
local search to the original fitness function is compared with using all features and
OriPSO. The comparisons are illustrated in Table 3.

Table 3: Results of OriPSO and OriSamPSO

Training Results Test Results

Dataset NF —feTrain £ Std T AveTest £ Std T Lime (ms)
Vehicle
All 18.0 89.44 + 0.00 - 83.07 + 0.00 -

OriPSO 4.8 91.41 + 0.73 = 84.66 + 1.29 = 113187.62
OriSamPSO 4.7 91.40 + 0.73 84.83 + 1.10 117337.07

German

All 24.0 83.14 + 0.00 + 65.33 + 0.00 -

OriPSO 5.6 78.70 £+ 4.90 = 67.63 + 1.90 = 229110.30
OriSamPSO 5.4 79.26 + 4.90 67.33 + 1.98 226021.25
Ionosphere

All 34.0 90.24 + 0.00 - 86.67 + 0.00 -

OriPSO 4.8 95.27 + 0.42 = 88.48 + 2.12 + 33564.40

OriSamPSO 4.3 95.19 + 0.42 87.31 + 1.68 39497.60
Lung
All 56.0 86.36 + 0.00 - 80.00 &+ 0.00 =

OriPSO 5.1 99.89 + 0.00 = 79.50 &+ 4.44 = 707.38

OriSamPSO 4.5 100.00 £ 0.00 80.75 + 2.63 833.70
Sonar
All 60.0 88.97 + 0.00 - 84.13 4+ 0.00 +

OriPSO 14.8 95.55 + 1.54 = 81.94 + 3.32 = 23605.65

OriSamPSO 14.6 95.60 + 1.54 81.83 + 3.27 23992.17
Movementlibras
All 90.0 98.52 + 0.00 = 95.06 + 0.00 -

OriPSO 9.2 98.54 + 0.20 = 95.33 + 0.41 = 105780.20

OriSamPSO 9.0 98.55 + 0.20 95.21 4+ 0.36 107488.62
Plant
All 64.0 99.55 + 0.00 + 99.10 4+ 0.00 +

OriPSO 3.0 99.24 + 0.02 - 98.67 + 0.03 = 1756442.18
OriSamPSO 3.0 99.25 + 0.02 98.67 + 0.04 1703456.68

Hillvalley

All 100.0 79.83 £+ 0.00 - 59.07 + 0.00 =

OriPSO 24.8 81.54 + 1.01 = 58.85 + 1.88 = 1557361.75

OriSamPSO 23.3 81.81 + 1.01 59.48 + 1.46 1553409.23
LSVT
All 310.0 79.55 4+ 0.00 - 55.26 + 0.00 -

OriPSO 27.9 85.45 + 2.75 - 65.53 + 1.53 = 18240.05

OriSamPSO 38.1 88.38 + 2.75 66.51 + 4.40 19069.62
Multiple Features
All 649.0 99.49 + 0.00 - 98.57 + 0.00 -

OriPSO 118.2 99.66 + 0.04 - 99.04 + 0.10 = 7203332.90

OriSamPSO 59.8 99.67 + 0.04 99.03 + 0.12 6260769.17

As can be seen from the table, applying the sampling local search not only
reduces the number of features on all datasets but also maintains or even improves
the test accuracy on 8 out of the 10 datasets. Especially, on the largest dataset,
Multiple Features, OriSamPSO selects less than 10% of the original features and
still achieves better performance than using all features.

According to the significant test results, the local search maintains or improves
training performance on all datasets. Especially, on the large datasets, the training
accuracy is significantly improved, for example on the LSVT dataset, OriSamPSO
achieves almost 3% better accuracy than OriPSO. Although test accuracies are
not significantly better, the local search assists PSO to evolve smaller number
of features on 8 out of the 10 datasets. This pattern is obvious in the largest
dataset, Multiple Features, where OriSamPSO selects only 59.8 features, which is
two times smaller than the feature subset evolved by OriPSO. Despite of spending
time on the local search, OriSamPSO still has comparative computation time in
comparison with OriPSO on all datasets. OriSamPSO is even more efficient on 4
out of 10 datasets, for instance on Multiple Features, OriSamPSO is 15% more

Table 4: Results of OriPSO and SurSamPSO

Training Results Test Results

Dataset NF —feTrain £ Std T AveTest £ Std T Lime (ms)
Vehicle
All 18.0 89.44 + 0.00 - 83.07 + 0.00 -
OriPSO 4.8 91.41 + 0.46 - 84.66 + 1.29 - 113187.62
SurSamPSO 5.0 91.79 + 0.46 85.44 + 0.72 36255.28
German
All 24.0 83.14 + 0.00 - 65.33 + 0.00 -
OriPSO 5.6 78.70 4+ 0.38 - 67.63 + 1.90 = 229110.30
SurSamPSO 6.5 84.44 + 0.38 68.22 + 0.68 69631.98
Ionosphere
All 34.0 90.24 + 0.00 - 86.67 + 0.00 -
OriPSO 4.8 95.27 + 0.80 + 88.48 + 2.12 = 33564.40
SurSamPSO 3.7 94.51 + 0.80 88.93 + 2.45 9867.20
Lung
All 56.0 86.36 + 0.00 - 80.00 &+ 0.00 -
OriPSO 5.1 99.89 + 1.62 = 79.50 &+ 4.44 - 707.38
SurSamPSO 4.2 99.32 + 1.62 81.50 + 4.21 559.83
Sonar
All 60.0 88.97 + 0.00 - 84.13 4+ 0.00 +
OriPSO 14.8 95.55 + 1.45 + 81.94 + 3.32 = 23605.65
SurSamPSO 11.6 94.46 + 1.45 81.67 + 2.58 8337.40
Movementlibras
All 90.0 98.52 + 0.00 - 95.06 + 0.00 -
OriPSO 9.2 98.54 + 0.20 = 95.33 + 0.41 = 105780.20
SurSamPSO 9.0 98.58 + 0.20 95.29 4+ 0.31 45424.00
Plant
All 64.0 99.55 + 0.00 + 99.10 4+ 0.00
OriPSO 3.0 99.24 + 0.03 = 98.67 + 0.03 = 1756442.18
SurSamPSO 3.0 99.25 + 0.03 98.68 + 0.04 647379.50
Hillvalley
All 100.0 79.83 £+ 0.00 - 59.07 + 0.00 =
OriPSO 24.8 81.54 + 0.96 = 58.85 + 1.88 = 1557361.75
SurSamPSO 19.7 81.24 + 0.96 59.27 + 1.99 458048.42
LSVT
All 310.0 79.55 4+ 0.00 - 55.26 + 0.00 -
OriPSO 27.9 85.45 + 3.72 - 65.53 + 1.53 - 18240.05
SurSamPSO 22.2 89.09 + 3.72 70.39 + 5.76 4883.50
Multiple Features
All 649.0 99.49 + 0.00 - 98.57 + 0.00 -
OriPSO 118.2 99.66 + 0.04 = 99.04 + 0.10 = 7203332.90
SurSamPSO 61.8 99.66 + 0.04 99.07 + 0.14 1674807.10

efficient than OriPSO. The main reason is that the local search is cheap since it
mainly works on the surrogate training set. Meanwhile, it can reduce the number of
features significantly, which leads to shorter calculation time for the original fitness
function.

The experimental results show that the local search using the surrogate train-
ing set reduces the number of selected features significantly while maintains the
classification performance. The main reason is that the sampling process gener-
ates feature subsets containing at most the same number of features as the current
gbest. Therefore, if a sampling feature subset replaces the current gbest, it achieves
similar or better fitness with a smaller number of features than the current gbest.

5.3 Combining Sampling Local Search and Surrogate Training Set

In the above sections, it can be seen that both surrogate model and local search
reduces either the computation time or the number of features significantly while
maintains or improves the classification performance. This section analyses the ef-
fect of combining them together in one algorithm called SurSamPSO. It is expected

Training Error Test Error

1.00- g 0an n 0NN 1.00 mo n am m n0om
0.75 0.75
Method
W oriPso
0.50 [[]orisamPso 0.50
[]surPso
[CIsursampso H
0.25 Dj w 0.25 :I;
0.00- L —I-— =l LU Bl 0.00 —ﬂ el L B
¢ & @ O & @ &L @ ¥ & @ O & @ & @0
R GOV RGN N SN N4 RPN SNSRI N NS @
X & O O M@ X & &S M & @
) g V 2 NS
¥eg & K &S & ¥ & & N &
\© & N \© R N
XS o o S
Number of Selected Features Time
1.00- O 0N - n 100 7 B om f o o B R
0.75 0.75
Method
W oriPso
0.50 OriSamPSO 0.50
SurPSO
[CJsursampso
0.25 hﬂ :|: l 0.25 ﬂ
0.00 I=, L | 1L L | =) .00 Lo WAL L WL LT LD LT B WL
& S L O B PSS {\ o R N P N - IR N {‘ &
© CANEN K07 o A N © & N 707 o AN <
& Oe\@ VP W N2 &) Oe\@ VP ® W N &
<© «® A o< & @ A o<
A © Q\ N & . Q\
QS X S S

Fig. 2: Comparisons between all algorithms
that SurSamPSO can take the advantages of these two components. SurSamPSO
is compared against OriPSO and using all features, which is shown in Table 4.

According to the experimental results, SurSamPSO successfully reduces the
number of features on all datasets while improves the classification accuracy over
using all features on 7 out of the 10 datasets. Although using all features achieves
better performance on two datasets, Sonar and Plant, SurSamPSO selects less than
20% and 5% of the original features, respectively.

As can be seen from the table, although being trained on the surrogate training
set for 75 iterations, SurSamPSO still evolves comparative feature subsets in terms
of the training accuracy, which is calculated on the whole training set. Particularly,
SurSamPSO is significantly better on 3 datasets while maintaining the training
performance on 5 datasets. The largest difference between training accuracies of
the two algorithms is on LSVT where SurSamPSO is 3.5% more accurate. In terms
of the test performance, SurSamPSO is always similar or better than OriPSO,
especially on LSVT, SurSamPSO improves about 5% over OriPSO. The local search
still maintains its effect on SurSamPSO, in which the number of features is reduced
significantly on 8 out of the 10 datasets. This pattern is more obvious on the large
dataset. For example on Multiple Features, SurSamPSO selects 50% less features
than OriPSO. In comparison with OriPSO, SurSamPSO is able to reduce up to
70% computation time.

5.4 Overall Comparisons

The comparisons between OriPSO, OriSamPSO, SurPSO and SurSamPSO are
summarised in Fig. 2. The comparisons are based on 4 criteria: training error, test

Method

W oriPso
[C]orisamPso
[]surPso
[CIsursampso

Method

W oriPso
OriSamPSO
SurPSO

[CJsursampso

Table 5: Comparison between SurSamPSO and IFFS

Dataset Method NF AveTest Std T Time (ms)
Vehicle IFFS 4.0 81.69 15923.00
SurSamPSO 5.0 85.44 0.72 + 36255.28
German IFFS 2.0 66.00 11312.00
SurSamPSO 6.5 68.22 0.68 + 69631.98
Tonosphere IFFS 4.0 86.67 8442.00
SurSamPSO 3.7 88.93 245 + 9867.20
Lung IFFS 2.0 90.00 30.00
SurSamPSO 4.2 81.50 4.21 - 559.83
Sonar IFFS 3.0 77.78 2143.00
SurSamPSO 11.6 81.67 2.58 + 8337.40
Movementlibras IFFS 6.0 94.32 114080.00
SurSamPSO 9.0 95.29 0.31 + 45424.00
Plant IFFS 3.0 98.67 258225.00
SurSamPSO 3.0 98.68 0.04 + 647379.50
Hillvalley IFFS 5.0 59.07 525402.00
SurSamPSO 19.7 59.27 1.99 = 458048.42
LSVT IFFS 3.0 63.16 3507.00
SurSamPSO 22.2 70.39 5.76 + 4883.50
IFFS 12.0 98.73 48614670.00

Multiple Features o g/ pSO 61.8 99.07 0.14 + 1674807.10

error, number of selected features and computation time, which need to be min-
imised. For making an easy comparison, all values are normalised in the range [0,1],
where 0 is the best value and 1 is the worst value. It can be seen that SurSamPSO
achieves the best test accuracy on 7 out of the 10 datasets, which is followed by
SurPSO with two times of being the best. Meanwhile OriSamPSO is not the best
one on any dataset despite of using both original fitness function and the sampling
local search. The reason might be the inconsistency between the fitness function
of the local search and the main fitness function of PSO. In addition, it can be
seen that both algorithms using the surrogate training set evolve more promising
performance than the others with the whole training set. In other words, select-
ing instances helps to select more general features by removing noisy instances in
the training set. Besides the test accuracy, SurSamPSO also shows its strength on
the number of selected features criterion. Specifically, SurSamPSO selects the least
number of features on 7 out of the 10 datasets. OriSamPSO achieves the smallest
number of features on 4 datasets. These results illustrate that the sampling lo-
cal search is good at reducing the number of features. Filtering out instances also
helps to reduce the number of features since the small instance set might require
fewer features to classify the instances correctly. The last but not least criterion is
the computation time, where SurPSO is the fastest algorithm on 9 out of the 10
datasets. SurPSO loses its first position to SurSamPSO on Multiple Features. As
can be seen from Fig. 2, SurSamPSO follows SurPSO quite closely. It is even faster
than SurPSO on Multiple Features because it selects much fewer features.
Overall the combination of the surrogate model and the sampling local search
results in a more efficient, effective and scalable feature selection algorithm.

5.5 Comparison with IFFS

The comparison between SurSamPSO and IFFS is shown in Table 5. In the table,
“g? J« 4= mean that SurSamPSO is significantly better /worse/similar to IFFS.
As can be seen from the table, SurSamPSO achieves better performance on 8 out
of the 10 datasets. The reason is that IFFS usually selects a small number of

features since it stops when adding more features does not improve the fitness
value. Although IFFS attempts to capture more feature interactions than other
traditional sequential methods, it still considers only one feature at a step, which
cause difficulty to find out blocks of complimentary features. Furthermore, IFFS
is not scalable with respect to the number of features. This can be seen on the
Multiple Features dataset, where SurSamPSO is about 30 times faster while still
achieves better classification performance.

6 Conclusions and Future Work

The goal of this paper was to develop a PSO based feature selection algorithm,
which could select a small number of features in an efficient way while maintaining
or improving the classification performance. This goal has been achieved firstly by
applying an instance selection algorithm to create a surrogate training set, which
is smaller than the original training set. In the first 75% of the selection process,
feature subsets are evaluated on the surrogate set to reduce the computation time.
In addition to the surrogate training set, a sampling local search is designed to
utilise all features selected by gbest so far to improve the current gbest. The results
show that the surrogate training set can significantly reduce the computation time
while maintain or even improve the classification performance. The sampling local
search assists PSO to evolve a much smaller number of features with similar or
better classification performance. The combination of the two components leads to
a more effective and efficient PSO based algorithm, especially on datasets with a
large number of features. In comparison with a recent sequential feature selection
method, the proposed algorithm is better at balancing between the classification
performance and the number of selected features. Especially on the largest dataset,
the proposed algorithm is even more efficient than the improved sequential algo-
rithm.

From the results, it is evident that the local search focuses more on reducing
the number of features while mainly maintaining the classification accuracy. In the
future, we will further improve the balance between the two objectives so that the
local search can significantly enhance the classification performance. We will also
investigate more on the relationship between fitness landscapes of the surrogate
and original fitness functions to not only shorten the computation time but also
strengthen the classification ability.

References

1. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Transactions on Evolutionary Computation
20(4) (2016) 606-626

2. Hu, M., Wu, T., Weir, J.D.: An adaptive particle swarm optimization with multiple
adaptive methods. IEEE Transactions on Evolutionary Computation 17(5) (2013)
705-720

3. Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K.: A survey
on handling computationally expensive multiobjective optimization problems using
surrogates: non-nature inspired methods. Structural and Multidisciplinary Optimiza-
tion 52(1) (2015) 1-25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Kennedy, J.: Particle swarm optimization. In: Encyclopedia of machine learning.
Springer (2011) 760-766

Nguyen, B.H., Xue, B., Andreae, P.: A novel binary particle swarm optimization algo-
rithm and its applications on knapsack and feature selection problems. In: Intelligent
and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra,
Australia, November 2016, Proceedings, Springer (2017) 319-332

Xue, B., Nguyen, S., Zhang, M. In: A New Binary Particle Swarm Optimisation
Algorithm for Feature Selection. Springer Berlin Heidelberg (2014) 501-513
Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers 100(9) (1971) 1100-1103

Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1) (1963) 11-17

Stearns, S.D.: On selecting features for pattern classifiers. In: Proceedings of the
3rd International Conference on Pattern Recognition (ICPR), Coronado, CA (1976)
71-75

Pudil, P., Novovicovd, J., Kittler, J.: Floating search methods in feature selection.
Pattern recognition letters 15(11) (1994) 1119-1125

Nakariyakul, S., Casasent, D.P.: An improvement on floating search algorithms for
feature subset selection . Pattern Recognition 42(9) (2009) 19321940

Bharti, K.K., Singh, P.K.: Opposition chaotic fitness mutation based adaptive inertia
weight bpso for feature selection in text clustering. Applied Soft Computing 43 (2016)
20-34

Vieira, S.M., Mendonga, L.F., Farinha, G.J., Sousa, J.M.: Modified binary PSO for
feature selection using svm applied to mortality prediction of septic patients. Applied
Soft Computing 13(8) (2013) 3494-3504

Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: PSO and statistical clustering for feature
selection: A new representation. In: Simulated Evolution and Learning. Springer
(2014) 569-581

Chuang, L..Y., Chang, HW., Tu, C.J., Yang, C.H.: Improved binary PSO for feature
selection using gene expression data. Computational Biology and Chemistry 32(1)
(2008) 29-38

Tran, B., Xue, B., Zhang, M.: Improved PSO for feature selection on high-dimensional
datasets. In: Simulated Evolution and Learning. Springer (2014) 503-515

Ghamisi, P., Benediktsson, J.A.: Feature selection based on hybridization of genetic
algorithm and particle swarm optimization. IEEE on Geoscience and Remote Sensing
Letters 12(2) (2015) 309-313

Nguyen, H., Xue, B., Liu, 1., Zhang, M.: Filter based backward elimination in wrapper
based PSO for feature selection in classification. In: IEEE Congress on Evolutionary
Computation (CEC 2014). 3111-3118

Liu, H., Zhang, S., Zhao, J., Zhao, X., Mo, Y.: A new classification algorithm using
mutual nearest neighbors. In: Ninth International Conference on Grid and Cloud
Computing (2010). 52-57

Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning al-
gorithms. Machine Learning 38(3) (2000) 257286

Olvera-Loépez, J.A., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.F., Kittler, J.: A
review of instance selection methods. Artificial Intelligence Review 34(2) (2010) 133-
143

Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2) (2011) 61 — 70

Lichman, M.: UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine,
CA: University of California, School of Information and Computer Sciences (2013)

