
New Representations in Genetic Programming
for Feature Construction in k-Means Clustering

Andrew Lensen(B), Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{Andrew.Lensen,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. k-means is one of the fundamental and most well-known
algorithms in data mining. It has been widely used in clustering tasks,
but suffers from a number of limitations on large or complex datasets.
Genetic Programming (GP) has been used to improve performance of
data mining algorithms by performing feature construction—the process
of combining multiple attributes (features) of a dataset together to pro-
duce more powerful constructed features. In this paper, we propose novel
representations for using GP to perform feature construction to improve
the clustering performance of the k-means algorithm. Our experiments
show significant performance improvement compared to k-means across
a variety of difficult datasets. Several GP programs are also analysed to
provide insight into how feature construction is able to improve cluster-
ing performance.

Keywords: Cluster analysis · Feature construction · Genetic program-
ming · k-means · Evolutionary computation

1 Introduction

Clustering is a common data mining task which groups similar data items
(instances) of a dataset into homogeneous groups (clusters) [1,2]. k-means [1,3]
is one of the most widely used clustering algorithms due to its simple design
and low computational cost. However, it suffers from several limitations: clus-
tering solution (partition) quality is heavily dependent on the initial cluster
centroids, and cluster quality quickly decreases as the number of clusters (K)
increases. k-means also cannot produce non-hyper-spherical clusters [1], as it
uses a distance measure to assign instances to clusters based on the cluster cen-
tres. Hyper-spherical clusters have instances which lie in a region enclosed by
a hyper-sphere around the cluster mean; in a 2D space, this would be a circle.
Data may naturally contain clusters of various shapes (e.g. elliptical, spiral, ring,
etc. [4]).

Feature construction (FC) is a common technique used to improve the per-
formance of learning algorithms in data mining [5]. FC algorithms produce pow-
erful high-level CFs (CFs) by combining features from the original feature set.
c© Springer International Publishing AG 2017
Y. Shi et al. (Eds.): SEAL 2017, LNCS 10593, pp. 543–555, 2017.
https://doi.org/10.1007/978-3-319-68759-9_44

544 A. Lensen et al.

By only using a few CFs instead of the full feature set, data mining algorithms
can train more efficiently (due to a smaller search space) and more effectively,
while generally producing more concise and understandable solutions [6].

Genetic Programming (GP) [7] is an Evolutionary Computation (EC) [8]
technique, which has been shown to be effective at performing FC, especially on
classification problems [9,10]. GP, like other EC algorithms, produces solutions
to a problem by performing a population-based heuristic search, using Darwinian
inspired principles to encourage co-operation between solutions. Tree-based GP
has been extensively used for FC as its representation can easily combine features
in different ways [10]. One of the most successful approaches in classification tasks
has been to use a wrapper approach, where GP is used to construct features
which are then fed into an existing classifier. This allows the performance of an
existing, well-founded classifier to be improved by using a smaller number of
more powerful features.

Unlike in classification tasks, there has been very little work conducted using
GP for FC for clustering [11]. Most existing work does not examine the cluster-
ing performance on a large number of clusters, and no work has been proposed
using a wrapper approach where GP produces CFs that are fed to an existing
clustering algorithm. The performance of k-means could be improved by using
such an approach, where a GP individual produces several CFs which are then
fed into k-means to perform clustering. In this way, the performance of k-means
can be improved beyond what is possible with the original features alone. Tra-
ditional GP program designs output only a single value from a single individual,
meaning only a single CF is created. While a single CF may be adequate on easy
datasets with a small K, when there are many clusters it would be very difficult
to accurately partition the dataset using a single value. Hence, new GP repre-
sentations would need to be developed to produce multiple CFs. The evolved
system can also be taught to produce good clusters according to any measure
of cluster quality, as GP individuals will learn to produce CFs to maximise the
fitness of the wrapped k-means algorithm. In contrast, standard k-means sim-
ply minimises intra-cluster variance without considering any other indicators of
cluster quality. As clustering will be performed on a constructed feature space,
using a clustering algorithm more advanced than k-means may not be necessary,
as GP should learn to produce features tailored to the clustering algorithm used.

This paper aims to explore the potential of using GP for FC with a wrapper
approach to improve the clustering performance of k-means. We will:

– Propose new GP representations for producing multiple CFs from a single
GP individual,

– Investigate suitable fitness functions for improving cluster quality,
– Evaluate our proposed representations and fitness functions across a variety

of datasets, and
– Analyse evolved GP trees to understand the usefulness of the CFs they pro-

duce.

A variety of clustering algorithms have been proposed which are effective on
different datasets and problems [12]. These can be generally grouped into a

New Representations in GP for Feature Construction in k-Means Clustering 545

number of categories such as hierarchical [12], density [13], partitional [3], or
graph-based algorithms [14]. This paper focuses on applying GP to FC with
k-means, a centroid-based, partitional clustering algorithm.

When GP is used for FC, terminal nodes generally draw from the feature
set, and function nodes are operators which operate on real values, such as the
arithmetic functions. The small amount of work using GP for clustering uses
a variety of approaches [11], several of which perform FC within the GP tree
[15,16]. However, no existing work uses a wrapper approach where an existing
clustering algorithm is used for clustering.

2 Proposed Method

In this section, we propose two new representations for performing FC using GP
for clustering. We also introduce two fitness functions which can be used to train
GP with k-means to improve clustering performance.

2.1 Multi-tree Representation

To allow multiple CFs to be produced by one GP individual, we propose an
extension to the standard single-tree GP representation, so that an individual
contains multiple trees, producing multiple CFs. The number of trees (t) is
dependent on the dataset used—generally, a higher K requires a higher t.

The function set used contains a number of standard arithmetic operators
(+,−,×,÷, | + |, | − |), as well as the max and min operators. Each of these
operators take two children and produce a single output. The ÷ operator is
protected division; if the second child (the divisor) is 0, the operator returns
1. The final operator in the function set is if , which takes three children and
returns the value of child2 if child1 is positive; otherwise it returns the value
of child3. The if operator is used to allow conditional behaviour in the GP
program. The terminal nodes consist of the features of the dataset (f1 through
to fm for m features) as well as a random double in the range [0, 1].

When a multi-tree approach is used, the crossover and mutation operators
in the evolutionary process must be adapted. In this work, we use a common
approach whereby crossover is performed by selecting two random individuals,
selecting a random tree from each of the individuals, and then selecting a random
sub-tree from each tree to use for crossover. Mutation is performed by choosing
a random tree from a random individual to be mutated.

While the multi-tree approach is reasonably straightforward to design, it has
a number of limitations; most notably, t must be set in advance. The crossover
operator used may also be problematic; as any two random trees can be chosen
for crossover, trees being crossed over may not correspond to similar CFs, and so
the CFs produced are unlikely to be fully distinct from each other. Redundancy
across a constructed feature set may affect the efficiency and interpretability of
a given solution.

546 A. Lensen et al.

2.2 Vector Representation

To address these issues, we also propose a single-tree approach which utilises
a vector representation to produce multiple CFs from a single tree. The vector
representation has no t parameter and so no parameter tuning is required. We
use a similar function set as in the previous approach, but adapt each function
to take two vectors as input and produce a vector as output. Each function
operates on the input vectors in a pairwise manner, and the output vector has
length equal to that of the smaller vector. We also introduce a concat function
which takes two vectors as input and outputs a vector which is the result of
appending the second vector to the end of the first. This concat function allows
vectors of variable length to be generated, allowing GP to automatically generate
a dynamic number of CFs. By using several concat functions in a single tree,
the constructed feature vector will grow as the tree is evaluated from bottom to
top. The terminal set remains the same as in the previous approach, however
each terminal node now outputs a vector containing the terminal value.

2.3 Fitness Function

When K is fixed, the most common fitness function is the
∑

Intra fitness [12]:

∑
Intra =

K∑

i=1

∑

Ia∈Ci

d(Ia, Zi) (1)

where Ci represents the ith cluster, Ia ∈ Ci represents an instance in the ith

cluster and Zi represents the mean of the ith cluster. This fitness function is
what is minimised by k-means—when K is known, we should encourage all
clusters to be as compact as possible, by minimising

∑
Intra. One limitation of

this measure is that clusters are encouraged towards hyper-sphericality; clusters
will be unlikely to form non-spherical shapes that can occur on certain datasets.

One way of avoiding this problem is to use a fitness function based on connect-
edness. Connectedness measures the extent to which instances are in the same
cluster as their immediate neighbours; close instances are similar and should fall
in the same cluster. We propose a new fitness function, based on that proposed
by Handl and Knowles [17], that computes the mean connectedness of all clusters
in a partition:

Connectedness =
1
K

K∑

i=1

1
|Ci|

∑

Ia,Ib∈Ci

dinverse(Ia, Ib) (2)

dinverse(Ia, Ib) = min
[1
d(Ia, Ib)

, 10
]

(3)

The above fitness function, which should be maximised, encourages clusters
to contain instances which are close together. Equations (2) and (3) contain a
number of extensions to the one proposed by Handl and Knowles [17]:

New Representations in GP for Feature Construction in k-Means Clustering 547

1. Closer neighbours are weighted more strongly, by directly using the distance
between neighbours in the fitness calculation. The inverse distance is capped
to a maximum of 10 (i.e. when dist ≤ 0.1) to prevent very similar/identical
instances overly affecting fitness. The value of 10 was chosen empirically.

2. The mean connectedness is calculated across the set of clusters, instead of
summing over all instance pairs. This discourages solutions with one very
large cluster (with very good connectedness) and several very small clusters.

3. The mean connectedness within a cluster is used (instead of summing), to
prevent very close instances from being over-represented in the fitness.

It is hoped that by using connectedness, GP will produce features that allow
for non-hyper-spherical clustering—although k-means itself will create hyper-
spherical clusters in terms of the CFs, the CFs created by GP need not be linear
transformations of the original features. The ability of our wrapper approach to
train k-means based on different fitness measures allows k-means to be adapted
to perform well on datasets that it would otherwise struggle on, especially when
it is used with only a few CFs.

3 Experiment Design

Each combination of the two representations and two fitness functions were
evaluated on a range of datasets using a variety of metrics. k-means was evaluated
as a baseline, using all features. Each method is non-deterministic, and so is run
30 times using different seeds, and the mean result for each metric is computed.

Table 1 shows the evolutionary parameters used for all the GP methods across
all the datasets. For the multi-tree approach, t is set to 7—this was found empiri-
cally to be the required number of trees in order to give good performance across
all datasets. k-means is also run for 100 iterations, or until convergence is reached
(i.e. when cluster centres do not move across iterations). The initial cluster cen-
tres for k-means are randomly selected from the dataset. The seed of k-means
is determined using a hashing function applied to a GP tree so that each tree
produces consistent partitions.

Table 1. GP parameter settings

Parameter Value Parameter Value

Generations 100 Crossover Rate 80%
Population Size 1024 Mutation Rate 20%
Minimum Depth 2 Elitism top-10
Maximum Depth 8 Selection Type Tournament
Initial Population Half-and-half Tournament Size 7

548 A. Lensen et al.

3.1 Datasets

A range of synthetic and real-world datasets were used to comprehensively evalu-
ate the proposed methods, as shown in Table 2 Datasets were scaled so that each
feature had values in [0, 1], to prevent bias towards features with large ranges.

The synthetic datasets are chosen from a widely-used study by Handl and
Knowles [17]. These datasets contain 10, 50, or 100 features and 10, 20, or 40
clusters. The synthetic datasets are used to test the performance of the proposed
methods when K is high; k-means (and other methods) perform poorly on high
K values.

The real-world classification datasets were chosen from the UCI machine
learning repository [18], which has been commonly used in clustering studies.
We use these real-world datasets to evaluate how well our proposed methods
can re-create the known classifications (as is common in the literature); the
class labels are not used during training, and are only used to evaluate how well
the partitions produced match the known classes. As clustering a classification
dataset is harder than clustering a specifically designed clustering dataset, we
generally use real-world datasets with small K, but also include the Movement
Libras dataset (with K = 15) to give an indication of performance on hard
classification problems.

Table 2. Datasets used in the experiments.

Real-World UCI datasets from [18]. Synthetic datasets from [17].

Name
No. of

Features
No. of

Instances
No. of
Classes

Name
No. of

Features
No. of

Instances
No. of
Classes

Iris 4 150 3 10d10c 10 2730 10
Wine 13 178 3 10d20c 10 1014 20
Movement
Libras

90 360 15 10d40c 10 1938 40
50d10c 50 2699 10

Breast
Cancer

9 683 2 50d20c 50 1255 20
50d40c 50 2335 40

Image
Segmentation

18 683 7 100d10c 100 2893 10
100d20c 100 1339 20

Dermatology 34 359 6 100d40c 100 2212 40

3.2 Evaluation Metrics

Clustering performance is measured using the two internal metrics defined pre-
viously, which directly measure the quality of a cluster partition. Connectedness
(see Eq. (2)) evaluates how well neighbouring instances are allocated to the same
cluster, and

∑
Intra Distance (see Eq. (1)) indicates how compact the clusters

are.

New Representations in GP for Feature Construction in k-Means Clustering 549

In addition, we use two external metrics to measure how well the cluster
partitions produced correspond to the dataset’s class labels. These are class
purity, which measures the homogeneity of each cluster with respect to the class
labels, and the F-measure, which measures how well pairs of instances agree in
terms of the clusters they are allocated to and their class labels. These measures
are defined as follows:

1. Class purity: computed according to the following steps:
(a) For each cluster, find the majority class label of that cluster’s instances.
(b) Count the number of correctly classified instances in the cluster, where

an instance is correctly classified if it belongs to the majority class.
(c) Calculate class purity as the fraction of correctly classified instances across

the dataset.
2. F-measure: We adapt the F-measure used in classification. We consider each

pair of instances in turn (as it is not possible to directly decide if a given
instance is in the “right” cluster) and select from the following cases:
(a) Same class label, assigned the same cluster: true positive (TP).
(b) Same class label, assigned different clusters: false negative (FN).
(c) Different class labels, assigned different clusters: true negative (TN).
(d) Different class labels, assigned the same cluster: false positive (FP).

The F-measure is calculated using the total number of TPs, FPs, and FNs:

F-measure = 2 × precision × recall
precision + recall

(4)

precision =
TPs

TPs + FPs
(5) recall =

TPs

TPs + FNs
(6)

4 Results and Analysis

Tables 3 and 4 show the performance of the four GP methods and k-means
(using all features (AF)) across the six real-world and nine synthetic datasets
respectively. MTConn and MTIntra are the multi-tree approaches using the con-
nectedness and

∑
Intra fitness function respectively, with t = 7. VectorConn and

VectorIntra are the two vector approaches, each using one of the fitness functions
proposed. Each metric is labelled with an “↑” or “↓” if it should be maximised
or minimised respectively. The four metrics are: Conn (connectedness),

∑
Intra

(
∑

intra distance), Purity (class purity), and FM (the F-measure). For the GP
methods, each result is labelled with a “+” or a “−” if it is significantly better
or worse than the k-means baseline according to a Student’s t-test performed
with a 95% confidence interval. A lack of a “+” or “−” indicates no significant
difference.

550 A. Lensen et al.

Table 3. Performance on Real-World datasets.

Method Conn ↑ Intra ↓ Purity ↑ FM ↑ Conn ↑ Intra ↓ Purity ↑ FM ↑
eniWsirI

MTConn7 223.4+ 29.59+ 0.8989+ 0.8308+ 90.13+ 88.99− 0.9723+ 0.9444+

MTIntra 26.49− 29.28+ 0.8867+ 0.8111+ 7.621+ 88.7+ 0.9663+ 0.933+

VectorConn 223.1+ 29.59+ 0.9502+ 0.9086+ 90.12+ 89.01− 0.9697+ 0.9392+

VectorIntra 26.49− 29.28+ 0.8867+ 0.8111+ 7.618+ 88.7+ 0.9661+ 0.9325+

k-means AF 26.77 31.39 0.8116 0.7544 7.561 88.74 0.9491 0.8998
Movement Libras Breast Cancer

MTConn7 19.28+ 424.9− 0.4424− 0.3417 895.8+ 369.7− 0.9101− 0.8445−
MTIntra 5.473+ 400.2+ 0.472 0.3527 15.63+ 331.6+ 0.9675+ 0.9423+

VectorConn 19.1+ 414.3 0.4583 0.3434 898.1+ 376.7− 0.8972− 0.824−
VectorIntra 5.486+ 399.0+ 0.4749+ 0.3542+ 15.64+ 331.6+ 0.9669+ 0.9413+

k-means AF 5.134 414.5 0.4619 0.3439 15.52 332.0 0.9609 0.9313
ygolotamreDnoitatnemgeSegamI

MTConn7 798.4+ 877.1+ 0.6832+ 0.5886+ 42.28+ 377.1+ 0.946+ 0.9324+

MTIntra 25.39+ 869.5+ 0.6654+ 0.5717+ 3.176+ 376.2+ 0.8655+ 0.7915
VectorConn 797.1+ 873.8+ 0.6859+ 0.5894+ 41.7+ 382.8 0.9063+ 0.8764+

VectorIntra 25.38+ 872.2+ 0.6655+ 0.5726+ 3.063 380.9+ 0.8538 0.7839
k-means AF 24.78 908.6 0.6383 0.5582 3.022 386.5 0.8349 0.7569

4.1 Results on Real-World Datasets

The GP methods generally perform well compared to k-means across the real-
world datasets. All four of the GP methods are significantly better in terms of
the F-measure on the Iris, Wine, and Image Segmentation datasets. At least
one of the GP methods is significantly better than k-means on all remaining
real-world datasets; GP is only significantly worse than k-means when using
connectedness on the Breast Cancer dataset, where the

∑
Intra fitness measure

gives much better performance. The connectedness fitness measure, however,
gives very good results on the Dermatology dataset, improving performance over
k-means significantly. The fact that different fitness functions perform better on
different datasets shows the usefulness of our proposed methods to train using a
range of criteria, unlike the original k-means algorithm. Both the multi-tree and
the vector approaches appear to perform similarly on the real-world datasets,
with an exception on the Iris dataset, where the vector approach is superior
when connectedness is used in terms of the external metrics.

4.2 Results on Synthetic Datasets

The GP methods continue to perform well compared to k-means on the syn-
thetic datasets. All four methods have a significantly higher F-measure value
than k-means on the datasets with 20 or 40 clusters. These datasets are the
most difficult as they require separating the dataset into the greatest number

New Representations in GP for Feature Construction in k-Means Clustering 551

Table 4. Performance on Synthetic Datasets.

Method Conn ↑ Intra ↓ Purity ↑ FM ↑ Conn ↑ Intra ↓ Purity ↑ FM ↑
c02d01c01d01

MTConn 823.3+ 719.1− 0.9019− 0.7836− 177.0+ 213.2+ 0.9948+ 0.9919+

MTIntra 17.67− 710.1+ 0.9294 0.878 16.5+ 213.0+ 0.9948+ 0.9919+

VectorConn 827.3+ 713.9 0.9153− 0.8025− 177.0+ 213.5+ 0.9941+ 0.9887+

VectorIntra 18.05+ 706.3+ 0.9404+ 0.8926+ 16.48+ 213.5+ 0.9938+ 0.9906+

k-means AF 17.88 712.4 0.9291 0.8571 15.29 254.8 0.8732 0.7969
c01d05c04d01

MTConn 173.2+ 406.5+ 0.9747+ 0.9311+ 589.4+ 1480.0− 0.7325− 0.5167+

MTIntra 16.34+ 405.0+ 0.977+ 0.9456+ 17.14− 1220.0+ 0.7392 0.4785−
VectorConn 173.6+ 403.3+ 0.9789+ 0.9409+ 587.3+ 1437.0− 0.7278− 0.5005
VectorIntra 16.32+ 404.1+ 0.9771+ 0.9494+ 17.22− 1216.0+ 0.7397 0.4795−
k-means AF 15.75 436.8 0.9182 0.8628 17.49 1317.0 0.744 0.4939

c04d05c02d05
MTConn 163.3+ 583.2− 0.7138+ 0.4996+ 163.3+ 894.7− 0.685 0.4397+

MTIntra 17.43 493.8+ 0.7456+ 0.4776+ 18.95− 833.8+ 0.6952+ 0.4269+

VectorConn 162.5+ 555.7 0.7212+ 0.4832+ 165.4+ 850.4+ 0.7082+ 0.4106+

VectorIntra 17.52 487.2+ 0.7412+ 0.4351+ 19.3+ 797.1+ 0.7165+ 0.3759+

k-means AF 17.33 546.5 0.6868 0.3823 19.16 865.2 0.6791 0.2618
c02d001c01d001

MTConn 521.8+ 2123.0− 0.7598 0.5311 126.0+ 885.4− 0.7084 0.4657+

MTIntra 15.81+ 1776.0+ 0.7835+ 0.5825+ 13.66+ 764.9+ 0.7481+ 0.4598+

VectorConn 519.5+ 2077.0− 0.7595 0.5446 125.5+ 850.5 0.7122 0.4451+

VectorIntra 15.89+ 1771.0+ 0.7839+ 0.5854+ 13.74+ 749.6+ 0.7466+ 0.4331+

k-means AF 15.14 1968.0 0.748 0.5255 13.31 844.2 0.7033 0.38
100d40c

MTConn 114.8+ 1234.0− 0.6963 0.4629+

MTIntra 14.18− 1118.0+ 0.7181+ 0.462+

VectorConn 116.0+ 1159.0 0.7142+ 0.4418+

VectorIntra 14.45 1061.0+ 0.7344+ 0.4028+

k-means AF 14.55 1184.0 0.6904 0.2675

of distinct groups. k-means performs very poorly when there is a large number
of clusters (e.g. K = 40); GP is able to effectively perform FC to significantly
improve the performance of k-means on the hardest datasets, while only using
a small subset of the feature set. Some GP methods perform significantly worse
on the simple 10d10c and 50d10c datasets, but at least one GP method is still
significantly better than k-means in these cases.

The connectedness and
∑

Intra fitness measures are again superior on dif-
ferent datasets. The method using connectedness are significantly better than
k-means on the 50d10c dataset, whereas those using

∑
Intra fitness are signifi-

cantly worse. The inverse is true on the 10d10c dataset, however. In general, the
multi-tree approach seems slightly better than the vector approach, especially on
the datasets with highest dimensionality such as 100d20c and 100d40c. Future
testing is required to evaluate which method is superior, and more work could
be done to improve each method by further exploring alternative representations
or fitness functions.

552 A. Lensen et al.

5 Evolved Program Analysis

It is often useful when using GP to evaluate and analyse some of the high-
performing individuals produced during the evolutionary process. Doing so
allows us to understand what properties of a given tree allow it to perform
well, which leads to a better understanding of the problem as well allowing the
GP method to be improved further. In addition, analysing evolved programs
increases the confidence in our proposed method by demonstrating how it is
able to achieve the good results we claim. In this section, we analyse a number
of GP trees with high F-measure across a range of datasets.

An example of the multi-tree approach can be seen in Fig. 1. The seven
trees produced by an individual with a very high F-measure value of 0.9947 is
shown, along with the constructed feature set generated which consists of seven
features, one from each tree. Of these trees, three are simply performing feature
selection of a single feature, two add a constant value to a single feature, and the
remaining two are performing more advanced FC. In total, seven of the original
10 features are used. Although the dimensionality has not been greatly reduced,
performance is still much higher than that of the original k-means algorithm
(which achieves an F-measure value of 0.7969). This further highlights the ability
of GP to improve performance by selecting the most important features, and
creating more powerful high-level features.

Fig. 1. An evolved multi-tree individual on the 10d20c dataset (FM: 0.9947).

Figure 2 shows a GP individual using the vector approach with high perfor-
mance on the hardest synthetic dataset (100d40c). The individual is a reasonably
concise tree, with a maximum width of eight nodes and a depth of seven. The
tree itself is shown in Fig. 2a, and the output of the tree as shown in Fig. 2b. The
tree selects feature values as terminal nodes, and outputs a constructed feature

New Representations in GP for Feature Construction in k-Means Clustering 553

vector of length 12, containing 11 “constructed” features and one constant value.
Of these CFs, one is an arithmetic combination of two selected features and two
constants, two are operations applied to a selected feature and a constant value,
and the remaining nine are unchanged selected features. k-means achieved an F-
measure value of 0.2618 on average; this GP individual produced nearly double
the F-measure value while only using 12 features compared to the 100 original
features that k-means used. This large increase in performance shows the power
of GP in improving performance by creating more powerful high-level features
while also reducing dimensionality.

Fig. 2. An evolved vector individual on the 100d40c dataset (FM: 0.499).

A useful property of the vector approach is its ability to dynamically produce
a variable number of CFs. For example, on the Iris dataset which has only three
classes, it is unnecessary to have seven CFs (as occurs for t = 7 in the multi-tree
approach) and having so many features may reduce the interpretability of the
solution. Figure 3 shows a high performing, very simple GP individual produced
on the Iris dataset. This tree is very easy to analyse: it simply selects two of the
four features in the dataset (F3 and F2). By not selecting the other misleading
or redundant features, this GP tree significantly improves the ability of k-means
to produce a good cluster partition.

554 A. Lensen et al.

Fig. 3. An evolved vector individual on the Iris dataset (FM: 0.9233).

6 Conclusion

This work showcased the ability of GP to be used for feature construction for
clustering; the performance of k-means was significantly improved by using GP
to automatically construct a few high-level features. We proposed two represen-
tations, using a multi-tree and a vector approach, and explored two potential
fitness functions that could be used for training high performing GP trees. Both
representations and fitness functions were shown to significantly improve per-
formance compared to the base k-means algorithm across a range of real-world
and difficult synthetic datasets. A number of evolved GP trees were analysed
and shown to perform effective and efficient FC even in a very small tree.

As GP has seen little use in FC for clustering, there are many promising
future research areas that could be explored. The representations and fitness
functions used in this work could be further improved, and many other repre-
sentations and fitness functions are possible. For example, the vector approach
could be adapted to directly encourage shorter constructed feature vectors to
be produced (thereby producing more powerful CFs). The multi-tree approach
would be improved if the number of trees could be determined automatically—
for example, using a heuristic based on K (a higher number of clusters should
genuinely mean more CFs are required). It may also be worthwhile to investigate
using other clustering algorithms besides k-means; while in theory it is possible
for GP to produce optimal CFs that k-means can use to produce perfect par-
titions, other algorithms may be more powerful and perform well with a wider
range of CFs. The methods we proposed were all designed to work when K was
pre-defined, as k-means requires K to be known. This is somewhat inflexible,
and extending these methods to automatically determine K would be beneficial.

References

1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

2. Garćıa, A.J., Gómez-Flores, W.: Automatic clustering using nature-inspired meta-
heuristics: a survey. Appl. Soft Comput. 41, 192–213 (2016)

3. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm.
J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

New Representations in GP for Feature Construction in k-Means Clustering 555

4. Tseng, L.Y., Yang, S.B.: A genetic clustering algorithm for data with non-spherical-
shape clusters. Pattern Recogn. 33(7), 1251–1259 (2000)

5. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Min-
ing Perspective. Springer Science & Business Media, Heidelberg (1998)

6. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Trans. Syst. Man Cybern. Part C 40(2), 121–
144 (2010)

7. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press, Cambridge (1992)

8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Heidelberg (2015)

9. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans.
Evol. Comput. 16(5), 645–661 (2012)

10. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and
selection in classification on high-dimensional data. Memet. Comput. 8(1), 3–15
(2016)

11. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for
partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)

12. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications.
CRC Press, Boca Raton (2014)

13. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96),
Portland, pp. 226–231 (1996)

14. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf.
Process. Lett. 76(4–6), 175–181 (2000)

15. Boric, N., Estévez, P.A.: Genetic programming-based clustering using an informa-
tion theoretic fitness measure. In: Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC), pp. 31–38 (2007)

16. Ahn, C.W., Oh, S., Oh, M.: A genetic programming approach to data clustering. In:
Kim, T., Adeli, H., Grosky, W.I., Pissinou, N., Shih, T.K., Rothwell, E.J., Kang,
B.-H., Shin, S.-J. (eds.) MulGraB 2011. CCIS, vol. 263, pp. 123–132. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-27186-1 15

17. Handl, J., Knowles, J.D.: An evolutionary approach to multiobjective clustering.
IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

18. Lichman, M.: UCI machine learning repository (2013)

http://dx.doi.org/10.1007/978-3-642-27186-1_15

	New Representations in Genetic Programming for Feature Construction in k-Means Clustering
	1 Introduction
	2 Proposed Method
	2.1 Multi-tree Representation
	2.2 Vector Representation
	2.3 Fitness Function

	3 Experiment Design
	3.1 Datasets
	3.2 Evaluation Metrics

	4 Results and Analysis
	4.1 Results on Real-World Datasets
	4.2 Results on Synthetic Datasets

	5 Evolved Program Analysis
	6 Conclusion
	References

