
Automatically Evolving Difficult Benchmark
Feature Selection Datasets with Genetic Programming

Andrew Lensen
School of Engineering
and Computer Science

Victoria University of Wellington
Wellington, New Zealand

andrew.lensen@ecs.vuw.ac.nz

Bing Xue
School of Engineering
and Computer Science

Victoria University of Wellington
Wellington, New Zealand
bing.xue@ecs.vuw.ac.nz

Mengjie Zhang
School of Engineering
and Computer Science

Victoria University of Wellington
Wellington, New Zealand

mengjie.zhang@ecs.vuw.ac.nz

ABSTRACT

There has been a wealth of feature selection algorithms proposed in

recent years, each of which claims superior performance in turn. A

wide range of datasets have been used to compare these algorithms,

each with different characteristics and quantities of redundant and

noisy features. Hence, it is very difficult to comprehensively and

fairly compare these feature selection methods in order to find

which are most robust and effective. In this work, we examine us-

ing Genetic Programming to automatically synthesise redundant

features for augmenting existing datasets in order to more scientifi-

cally test feature selection performance. We develop a method for

producing complex multi-variate redundancies, and present a novel

and intuitive approach to ensuring a range of redundancy relation-

ships are automatically created. The application of these augmented

datasets to well-established feature selection algorithms shows a

number of interesting and useful results and suggests promising

directions for future research in this area.

CCS CONCEPTS

• Computing methodologies → Feature selection; Unsuper-

vised learning; • Software and its engineering → Genetic pro-

gramming ;

KEYWORDS

Genetic Programming, Feature Creation, Feature Selection, Mutual

Information

ACM Reference Format:

Andrew Lensen, Bing Xue, and Mengjie Zhang. 2018. Automatically Evolv-

ing Difficult Benchmark Feature Selection Datasets with Genetic Program-

ming. In GECCO ’18: Genetic and Evolutionary Computation Conference,

July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3205455.3205552

1 INTRODUCTION

As the modern world rapidly becomes more data-centric, datasets

continue to grow in bothwidth and length. However, many common

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205552

machine learning algorithms are unable to scale effectively as the

number of features grows. Feature Selection (FS) algorithms are

being increasingly used as amethod for reducing the dimensionality

of datasets in order to improve the quality and interpretability of

machine learning results [11]. Such FS algorithms primarily work

by identifying and removing irrelevant or redundant features from

a feature set [17]. Irrelevant (or noisy) features provide little useful

information about the instances of a dataset, or may even “mislead”

the machine learning algorithm.While removing irrelevant features

is reasonably straightforward, redundant features (fs), which share

a significant overlap of information content with other features, are

much more difficult to identify, especially when they are redundant

in a multivariate manner.

The most common method of quantitatively comparing the effi-

cacy of different FS algorithms is to evaluate them on a range of

popular datasets and compare the performance achieved and the

number of features selected by each. Such an approach is quite a

“coarse” analysis, as it gives little insight into which type of features

each FS algorithm removes from a dataset. For example, naïve FS

algorithms may readily remove clearly irrelevant features, while

failing to identify r.fs completely. A more refined evaluation method

is to directly look at how well each FS algorithm can remove each

“type” of feature. However, identifying which features are non-

linearly redundant in a dataset is an NP-hard problem (otherwise,

the FS problem could be brute-forced!) [11]. Hence, an increasingly

common technique is to purposefully add “new” irrelevant or re-

dundant features to an existing dataset. While irrelevant features

can be added with relative ease, it is not obvious how to add features

with complex redundancies.

Previous work has added r.fs to an existing dataset by scaling and

offsetting features in the feature space, i.e. creating “new” features

of the form Fnew = α × Fexist inд + β , for some real α , β . Such

features are univariately and linearly redundant and do not present

much of a challenge for a FS algorithm. Recently, we proposed a

Genetic Programming (GP)-based approach to automatically create

multiple new r.fs for each original (source) feature [8]. The fitness

function was designed to maximise the redundancy between the

source and created features, and minimise the redundancy between

created features, measured using mutual information (MI), so as

to produce varying types of r.fs. While this work was able to pro-

duce significantly more complex (non-linear) feature redundancies

than the naïve ones described above, these redundancies were still

univariate. In addition, minimising the redundancy between a set

of created features (with the same source feature) is not ideal, as it

GECCO ’18, July 15–19, 2018, Kyoto, Japan Andrew Lensen, Bing Xue, and Mengjie Zhang

does not directly measure how different their redundancy relation-

ships with the source feature are. Such an approach can not be used

when creating multivariately redundant features, as it contradicts

with the aim of producing complex multivariate relationships.

This work aims to propose a more refined and advanced GP

method to evolve sets of r.fs which are multivariately redundant to

the original features of the dataset. Specifically, we aim to:

• Develop a multi-tree GP representation to allow multiple

source features to be used by a GP individual in each tree.

• Propose a suitable and efficient fitness function that allows

difficult, complex multivariately redundant features to be

automatically created.

• Analyse the performance of feature ranking and feature

selection techniques on the created features to explore how

they affect the performance of these algorithms.

• Compare with the existing univariate GP approach and dis-

cuss the differences in the features created by the existing

and proposed method.

It is expected that this work will give more challenging and

robust datasets that can be used for benchmarks feature selection

algorithms.

2 BACKGROUND

This section will briefly touch on important concepts of feature

manipulation and mutual information, before summarising the key

points of the existing work that this paper builds on.

2.1 Feature Manipulation

Feature manipulation algorithms actively change the feature set of

a dataset in order to improve the results of a machine learning task.

Feature selection (FS), the task of selecting a subset of features in

order to decrease complexity and increase performance, is perhaps

the most popular feature manipulation task. Many FS algorithms

have been proposed, from simpler feature ranking [12] and sequen-

tial forward/backward search techniques [16, 19] to more advanced

methods using sparse models [1, 2] or evolutionary computation

(EC) search techniques [20].

Feature construction (FC) techniques take a different approach,

whereby they attempt to construct new, higher-level features which

are transformations of multiple features in the dataset. The new

constructed features are trained to have improved performance,

while also reducing the number of features used by the machine

learning algorithm. The most popular EC-based FC method is GP

[4, 14, 18], while common non-EC methods such as Principal Com-

ponent Analysis (PCA) [6] and Support Vector Machines (SVMs) [3]

are also often considered to perform a form of FC. GP-based FC has

a close relationship with the current work, as feature construction

shares many similarities to redundant feature creation.

2.2 Mutual Information

Mutual Information (MI) is one of the most popular measures of the

redundancy between two variables, as it essentially measures the

amount of information that two variables share. Hence, the higher

MI between two features, the more redundancy they can be said to

share. The MI between two features X and Y ,MI (X ,Y), is defined
as follows [5]:

MI (X ,Y) = H (X) + H (Y) − H (X ,Y) (1)

where feature X has entropyH (X) and two features X ,Y have joint

entropy H (X ,Y), defined in the standard way [5]. For continuous

features, such as in this work, the full MI equation is as follows:

MI (X ,Y) =
∫

X

∫

Y
p(x ,y) × log2

p(x ,y)
p(x)(y)dx dy (2)

As this work uses the multivariate form of MI, where there are

multiple source and target features, an extension of Equation (2) is

used, where X and Y represent the set of source and target features

respectively, e.g. X and Y. A similar equation is used, except that

the marginal and joint probabilities represent the set of features,

i.e. p(X) = p(X1,X2, ...Xd) for d source features.

Equation (2) requires knowing the full marginal and joint proba-

bility density functions (pdf) of the features; in practice, this is not

available as each feature represents only a sample of the underlying

pdf. To remedy this, a common technique is to use an estimation

algorithm to estimate MI. One of the most successful estimators is

the nearest-neighbour estimation approach proposed by Kraskov

et al. [7], which uses the similarity of the nearest neighbours for

each instance (for the given features) as a proxy for measuring the

strength of the redundancy between the two features. The Java

Information Dynamics Toolkit (JIDT) [13] implementation of this

algorithm is used in this work.

2.3 Related Work: GPRFC

As this is only the second knownwork on using EC to automatically

created r.fs from a source dataset, our focus in this section is on

the previously proposed method (GPRFC) by Lensen et al. [9] as it

forms the baseline and inspiration of this work.

Genetic Programming for Redundant Feature Creation (GPRFC)

[9] uses a multi-tree GP representation, where each GP individ-

ual contains n trees. Each tree in an individual represents a single

mapping from a source feature to a constructed redundant feature.

Hence, a new feature is generated iteratively by setting the input

of the tree as the source feature, evaluating the tree from bottom

to top, and taking the output as the corresponding feature value

of the new created feature. By having a single individual contain

multiple trees, the authors were able to design a fitness function

that encouraged each tree to represent a different mapping, while

still ensuring that each mapping still produced a new feature that

was highly redundant with the source feature. A range of functions

were included in the function set to allow for a range of differently

shaped mappings between the source and created features, includ-

ing arithmetic, trigonometric, boolean, and conditional operators

which allow for non-continuous mappings to be formed.

GPRFC used a fitness function which used mutual information

(MI) as a proxy for measuring the redundancy between features.

As such, their proposed fitness function sought to maximise the MI

between the source and created feature, while minimising the MI

between all pairs of created features. They model this by attempting

to maximise theminSourceMI (the minimumMI between the source

feature and any created feature) and minimising the maxSharedMI

(the maximum MI between any pair of created features). The au-

thors also considered that when minSourceMI falls below a certain

threshold, the created r.fs are not acceptably redundant and so are

infeasible solutions: in this case, the fitness function considers only

Automatically Evolving Difficult Benchmark FS Datasets GECCO ’18, July 15–19, 2018, Kyoto, Japan

the source MI in order to prioritise producing feasible solutions at

the start of the GP run.

GPRFC also used several other “tricks” to optimise the GP per-

formance, including scaling each source and created feature to a

pre-defined range and adding a small amount of input noise to bet-

ter manage duplicate source feature values. We refer to the original

paper for further discussion on these details. It is important to note

that GPRFC required running a single run of GP for each source

feature in a dataset, which makes it costly for large feature sets. In

contrast, a proposed multivariate approach will use multiple source

features per run, requiring less computational time.

2.3.1 Summary. While GPRFC was a promising first attempt at

using GP to automatically create r.fs, it has a number of limitations

which this work seeks to address. It was only designed to create

univariate r.fs, which are inherently less difficult to identify than

multivariate r.fs. The fitness function minimised the MI between

created features, which does not directly measure the difference

in the mapping between each source and created feature. In addi-

tion, such a fitness function is expected to perform poorly in the

multivariate case, as it is necessary for the created features to be

redundant with each other. Finally, the fitness function itself was

expensive due to the number of MI calculations required, and as a

single GP run was needed for every feature in the original dataset.

This work seeks to address these limitations.

3 PROPOSED METHOD: GPMVRFC

The proposed GPMVRFC method follows the general structure

of that proposed in GPRFC. Each GP individual has n trees, each

representing a functional mapping from some number of source

features (X) to a single created r.f (Y). The number of source features

used is dependent on the size of the original feature set; the bigger

the original feature set, the more source features that can be used

to create a single set of r.fs. In this work, we propose using the

following equation:

|X| = ⌊max

(

2,min (m
4
, 5)

)

⌋ (3)

wherem is the size of the original feature set, and |X| the number

of source features. Computing the number of source features in this

manner ensures that at minimum two source features are used, at

least four sets of r.fs are created (form > 8), and that at most five

source features are used (so as to keep complexity in scope). Note

that for allm ≥ 20, five source features will be used. |X| features
of the dataset will be used in a single GP run, as the terminal set,

and so m
|X|

runs must be performed to create the full augmented

dataset. In contrast, GPRFC requiredm runs — hence, GPMVRFC

requires only 20% of the runs givenm ≥ 20. Note that although

each tree has five source features (terminals) to draw from, there is

no requirement that every tree use all of the source features, and

hence different trees may be redundant with different subsets of

the source features.

3.1 Function and Terminal Sets

The terminal set consists of only the |X| source features of the

dataset that are being used to create r.fs of that specific GP run.

No random value terminal is used as it would not add any useful

component to the mapping function. The function set is unchanged

Table 1: Function set used in GPMVRFC.

Operator Type Function #Inputs

Arithmetic

√
a 1

a2 1

a3 1

−a 1

ea 1

log(a) 1

a + b 2

a × b 2

ab 2

Trigonometric

sin(a) 1

tan(a) 1

tanh(a) 1

Conditional

min(a,b) 2

max(a,b) 2

if(a,b, c) 1 3

from GPRFC (as this is not the focus of this work), and is sum-

marised in Table 1. Note that the cosine, subtraction, and division

operators are not included as they are complements of included

operators, and were found to decrease performance.

3.2 Fitness Function

The fitness function used in this work consists of two components:

one which measures the redundancy between the source feature

set and the created feature set using multivariate MI, and another

which measures the difference between the created features by

comparing the gradients of the distributions of each created feature.

The fitness of an individual is based on the source features being

used (X), and the features created by that individual (Y), i.e. the

outputs of all the GP trees once they have been evaluated using

each instance in the dataset. Measuring the redundancy between

the source and created feature sets is particularly straightforward

(and efficient) in a multivariate scenario:

Redundancy = MI (X,Y) as per Equation (2) (4)

As we wish to create features that are as redundant as possible

(while being redundant in different ways), we maximise the MI

between X and Y. As discussed earlier, an estimator is used to

compute the approximate MI as the unknown pdf of X and Y are

not known.

To measure the similarity of the created features, we designed a

novel approach based on the distribution of each created feature

compared to the source features. The intuition behind this approach

is that two created features should have significantly different distri-

butions across the source feature space if they are to be considered

to have different “types” of redundancy with the source features.

Fig. 1 shows an example of some potential simple created features

that GPMVRFC could create, where the y-axis represents the output

of a GP tree given some input feature. The linear, sine, and poly-

nomial functions clearly have different shapes in the feature space,

and so represent different types of r.fs. The two linear functions,

1If a is non-negative, output b ; otherwise, output c .

Automatically Evolving Difficult Benchmark FS Datasets GECCO ’18, July 15–19, 2018, Kyoto, Japan

Table 2: Feature set size of original dataset vs those aug-

mented by GPMVRFC and GPRFC.

Dataset
Source

#Features

GPMVRFC

#Features

GPRFC

#Features

Iris 4 24 28

Wine 13 52 78

WDBC 9 48 54

Dermatology 34 90 196

Vehicle 18 56 104

Image. Seg. 18 56 104

Movement Libras 90 270 540

features and the number of features in the datasets produced by

GPMVRFC, and GPRFC, are shown in Table 2. As GP is a stochastic

search method, we created 40 augmented datasets for each source

dataset utilising different initial random seeds.

These augmented datasets were then used to test a number of

different FS methods, in order to evaluate how the addition of r.fs

would affect the performance of FSmethods in terms of the accuracy

achieved, and the number of features selected. In order to provide a

comprehensive evaluation, we use algorithms from all three main

FS categories: filter, wrapper, and embedded methods:

Filter: Ranking each feature in an augmented dataset according

to its Information Gain (IG) [5, 12]. IG is used to evaluate how

well a feature can predict the class label, and so if created features

are redundant with source features, they may be likely to have

a similar IG ranking. Different classifiers were then used to clas-

sify the dataset using the top n features (where n is varied from 1

to #features). Furthermore, we used two more advanced filter FS

algorithms to further test the difficulty of performing FS on the

augmented datasets. We used the l1-norm in a linear SVM (“l1SVC”)

[22] to perform FS (i.e. sparse feature selection), as well a Joint

Mutual Information (JMI)-based search [21].

Wrapper: Applying simple sequential search based FS algorithms

to each augmented dataset, where a wrapped classifier was used

to evaluate the selected subset at each stage. Sequential Forward

Search (SFS), Sequential Backward Search (SBS), and the floating

versions of SFS (SFFS) and SBS (SFBS) [17] were tested.

Embedded: Finally, we also tested directly using the augmented

datasets in a decision tree (DT) classifier. These tests used the scikit-

learn library [15].

All of the stochastic FS methods listed above were run 30 times

with independent seeds and averaged. The results of each of the

above tests will be discussed in turn in the next section.

5 RESULTS AND DISCUSSION

Due to the number of different test combinations across the seven

datasets, it is impractical to show and analyse all results in an

interpretable way within the page limit. Hence, we instead focus on

analysing the results of the four datasets which show the clearest

patterns and provide the most insight. We discuss each of the Wine,

Dermatology, Vehicle and Image Segmentation datasets in turn

in this section. For each dataset, we discuss the feature ranking

performance (with the KNN classifier), the DT performance, SFFS

and SFBS performance (again with KNN), and the l1SVC and JMI

FS methods, using KNN as the classifier. KNN was chosen as it

produced the most consistent patterns, and is a simple and efficient

classifier. Our performance analysis considers both the number of

selected features and the test accuracy of the classifiers. For the

feature ranking approach, we exclude the GPRFC method from the

plots, as it is a univariate FS method and so is unlikely to give a fair

comparison of the difficulty of the r.fs created by each method.

5.1 Wine

Fig. 2 shows the results of the FS methods on each of the 40 aug-

mented Wine datasets. Fig. 2a shows how the accuracy of the KNN

classifier varies when the top n ranked features are used, where n

increases across the x-axis. The red line represents the performance

on the original Wine dataset using the same ranking process. We

can clearly see that accuracy is lowered on the augmented datasets,

due to the addition of r.fs which mislead the IG ranking process.

However, at a certain point (n ≈15), enough good features are se-

lected for the accuracy to reach the same level that selecting 4

features on the original dataset would give.

The remainder of the plots show one FS approach for each of the

40 augmented datasets for GPMVRFC and GPRFC, and the original

dataset. A small amount of noise is added so that duplicate points

can be distinguished. The sequential FS algorithms (SFFS and SFBS;

Figs. 2c,2d) show very similar accuracy distributions for each of

the two methods. Given that GPMVRFC creates 26 fewer features,

this suggests that the features created by GPMVRFC may be more

difficult to identify, given that GPRFC has a larger FS search space.

The l1SVC method (Fig. 2e) appears to under-select features, es-

pecially on GPMVRFC, compared to on the original dataset, with

a reduction in accuracy — suggesting that the method is being

“confused”. The JMI method (Fig. 2f) is harder to interpret, though

it appears that both methods cause extra features to be selected.

The FS methods appear to struggle to select a lower percentage

of features on the GPMVRFC datasets. The DT method (Fig. 2b) is

particularly interesting, as it shows GPMVRFC actually improving

the performance of the classifier, albeit with more features being

used. If the DT method purposefully selects additional features

while improving accuracy, then GPMVRFC must be creating more

powerful/better features than some of the original features. Consid-

ering that GPMVRFC combines several source features to create an

r.f, it is not unexpected that some of these created r.fs may actually

be of higher quality. Furthermore, real-world datasets such as those

used here often have complex hidden feature interactions, which

GPMVRFC may be able to “uncover” when it creates new r.fs.

5.2 Dermatology

The results on the Dermatology dataset (Fig. 3) further reinforces

the hypothesis that GPMVRFC may actually be inadvertently cre-

ating more meaningful r.fs. Feature ranking (Fig. 3a) shows that

selecting the same number of features on the augmented datasets

can give better test accuracy than on the original dataset for the

first ≈ 15 features. This pattern continues on four of the remaining

FS methods (Figs. 3c–3f) where GPMVRFC datasets generally have

higher accuracy compared to GPRFC, and often even compared

GECCO ’18, July 15–19, 2018, Kyoto, Japan Andrew Lensen, Bing Xue, and Mengjie Zhang

60

70

80

90

100

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(a) Features ranked by IG, classified with KNN.

80

85

90

95

4 5 6 7 8

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(b) Classified with DT.

80

85

90

95

100

2 3 4 5 6

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(c) FS with SFFS, classified with KNN.

85

90

95

100

20 40 60

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(d) FS with SFBS, classified with KNN.

60

70

80

90

2.5 5.0 7.5

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(e) FS with l1SVC, classified with KNN.

92

96

100

10 20 30 40 50 60

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(f) FS with JMI, classified with KNN.

Figure 2: Wine Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

50

60

70

80

90

100

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(a) Features ranked by IG, classified with KNN.

84

86

88

90

92

94

10 11 12 13

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(b) Classified with DT.

80

85

90

95

6 8 10 12

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(c) FS with SFFS, classified with KNN.

87

90

93

96

99

50 100 150 200

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(d) FS with SFBS, classified with KNN.

70

75

80

85

90

5 10 15 20

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(e) FS with l1SVC, classified with KNN.

40

60

80

0 10 20 30 40 50

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(f) FS with JMI, classified with KNN.

Figure 3: Dermatology Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

Automatically Evolving Difficult Benchmark FS Datasets GECCO ’18, July 15–19, 2018, Kyoto, Japan

40

50

60

70

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(a) Features ranked by IG, classified with KNN.

60

65

70

75

20 30 40 50 60

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(b) Classified with DT.

60

65

70

75

5 10 15 20

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(c) FS with SFFS, classified with KNN.

50

55

60

65

70

25 50 75 100

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(d) FS with SFBS, classified with KNN.

50

55

60

65

7.5 10.0 12.5 15.0

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(e) FS with l1SVC, classified with KNN.

50

60

70

10 20 30 40

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(f) FS with JMI, classified with KNN.

Figure 4: Vehicle Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

to the original dataset. In the case of SFFS, GPMVRFC often gives

higher accuracy with fewer features, and on l1SVC and JMI, using

the same number of features as GPRFC gives higher accuracy.While

this initially seems unsatisfactory, we note this may be partially due

to fewer features being created by GPMVRFC than GPRFC; it also

seems intuitive that combining multiple source features means a

created r.f is inherently less likely to be misleading, especially as the

datasets are generated in an unsupervised manner. The DT results

(Fig. 3b) show no clear difference between the methods, though, as

before, the DT method uses a higher proportion of the features in

GPMVRFC than in GPRFC.

5.3 Vehicle

The Vehicle dataset results (Fig. 4) continue to show a similar pat-

tern. The primary exception is feature ranking (Fig. 4a), where the

GPMVRFC-augmented datasets clearly decrease the performance

of the classifier. As discussed before, this may be due to feature

ranking being a univariate approach that cannot properly cope

with multivariate feature interactions. Interestingly, the r.fs also

cause the performance of the classifier decrease when the last third

of features are used, suggesting some features may be misleading to

the KNN classifier. Each of the remaining results (Figs. 4b–4f) show

that GPMVRFC can clearly create better features than those in the

original dataset, causing the FS methods to often select additional,

better features, except for l1SVC, which actually selects fewer fea-

tures with better performance on occasion. The DT and SFBS show

very consistent patterns in this case, perhaps as they both start by

using the whole feature set, before removing unhelpful features.

5.4 Image Segmentation

On the final dataset, the general pattern in the results (Fig. 5) is

that GPMVRFC produces r.fs that cause lower test accuracy than

GPRFC, despite GPRFC producing twice as many r.fs. Feature rank-

ing clearly suffers in accuracy, including a slow drop off in accuracy

even after only half the best-ranked features have been used (Fig.

5a). The SFBS, l1SVC, and DT methods (Figs. 5d,5e,5b) all select

significantly more features compared to on the original datasets

while getting much lower test accuracy, clearly indicating the added

r.fs are more challenging than those created by GPRFC. JMI (Fig.

5f) under-selects features compared to the original dataset, or se-

lects extra, less useful features; SFFS (Fig. 5c) is the exception to

the pattern in that it doesn’t have clearly worse accuracy due to

GPMVRFC, but it also selecting many fewer features than the other

FS methods and so may give less over-fitting. We plan to investigate

why GPMVRFC gave significantly different results on the Image

Segmentation further in the future.

6 CONCLUSION

This work aimed to develop a new method for automatically cre-

ating multivariately redundant features in order to make difficult

benchmark feature selection datasets. We proposed a new GP rep-

resentation, and a more appropriate and efficient fitness function

compared to existing work. A large number of experiments were

conducted to evaluate the proposed GPMVRFC approach, utilising a

range of datasets and feature selection techniques. Several interest-

ing patterns observed in the results were analysed in-depth, which

showed that often GPMVRFC was able to produce challenging

benchmark datasets that caused a variety of problems for different

GECCO ’18, July 15–19, 2018, Kyoto, Japan Andrew Lensen, Bing Xue, and Mengjie Zhang

60

70

80

90

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(a) Features ranked by IG, classified with KNN.

94

95

96

97

20 30 40

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(b) Classified with DT.

90

92

94

96

98

5 10 15

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(c) FS with SFFS, classified with KNN.

87.5

90.0

92.5

95.0

25 50 75 100

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(d) FS with SFBS, classified with KNN.

88

90

92

94

96

10 20 30 40

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(e) FS with l1SVC, classified with KNN.

85.0

87.5

90.0

92.5

95.0

20 40 60

#Features Used

A
c
c
u
ra

c
y
 (

%
)

(f) FS with JMI, classified with KNN.

Figure 5: Image Segmentation Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

feature selection methods. In some scenarios, it was found that

GPMVRFC actually improved classification accuracy compared to

when FS was performed on the original datasets. We believe this

may be the result of the proposed multivariate approach inadver-

tently creating better features due to utilising multiple features

from the original dataset. We will investigate this phenomenon

further in the future in order to explore how unsupervised feature

creation can improve supervised learning performance, as well as

investigating adversarial methods for creating multivariate redun-

dant features that can directly cause the performance of common

feature selection algorithms to significantly suffer.

REFERENCES
[1] Jinbo Bi, Kristin P. Bennett, Mark J. Embrechts, Curt M. Breneman, and Minghu

Song. 2003. Dimensionality Reduction via Sparse Support Vector Machines.
Journal of Machine Learning Research 3 (2003), 1229–1243.

[2] Paul S. Bradley and Olvi L. Mangasarian. 1998. Feature Selection via Concave
Minimization and Support Vector Machines. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML 1998), Madison, Wisconsin, USA,
July 24-27, 1998. 82–90.

[3] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Machine
Learning 20, 3 (1995), 273–297.

[4] Pedro G. Espejo, Sebastián Ventura, and Francisco Herrera. 2010. A Survey on
the Application of Genetic Programming to Classification. IEEE Trans. Systems,
Man, and Cybernetics, Part C 40, 2 (2010), 121–144.

[5] Edwin T Jaynes. 1957. Information theory and statistical mechanics. Physical
review 106, 4 (1957), 620.

[6] Ian T. Jolliffe. 2011. Principal Component Analysis. In International Encyclopedia
of Statistical Science. Springer, 1094–1096.

[7] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating
mutual information. Physical review E 69, 6 (2004), 066138.

[8] Andrew Lensen, Bing Xue, and Mengjie Zhang. 2018. Generating Redundant
Features with Unsupervised Multi-tree Genetic Programming. In Genetic Pro-
gramming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018,

Proceedings (Lecture Notes in Computer Science), Vol. 10781. Springer, 84–100.
[9] Andrew. Lensen, Bing. Xue, and Mengjie. Zhang. 2018. Generating Redundant

Features with Unsupervised Multi-Tree Genetic Programming. ArXiv e-prints
(2018). arXiv:1802.00554

[10] M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.
uci.edu/ml

[11] Huan Liu and Hiroshi Motoda. 2012. Feature selection for knowledge discovery
and data mining. Vol. 454. Springer Science & Business Media.

[12] Huan Liu and Zheng Zhao. 2009. Manipulating Data and Dimension Reduction
Methods: Feature Selection. In Encyclopedia of Complexity and Systems Science.
5348–5359.

[13] Joseph Troy Lizier. 2014. JIDT: An Information-Theoretic Toolkit for Studying
the Dynamics of Complex Systems. Front. Robotics and AI 2014 (2014).

[14] Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. 2012. A filter approach
to multiple feature construction for symbolic learning classifiers using genetic
programming. IEEE Trans. Evolutionary Computation 16, 5 (2012), 645–661.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[16] Pavel Pudil, Jana Novovicová, and Josef Kittler. 1994. Floating search methods in
feature selection. Pattern Recognition Letters 15, 10 (1994), 1119–1125.

[17] Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature Selection for Classifi-
cation: A Review. In Data Classification: Algorithms and Applications. CRC Press,
37–64.

[18] Binh Tran, Bing Xue, and Mengjie Zhang. 2016. Genetic programming for feature
construction and selection in classification on high-dimensional data. Memetic
Computing 8, 1 (2016), 3–15.

[19] A. Wayne Whitney. 1971. A Direct Method of Nonparametric Measurement
Selection. IEEE Trans. Computers 20, 9 (1971), 1100–1103.

[20] Bing Xue, Mengjie Zhang, Will N. Browne, and Xin Yao. 2016. A Survey on Evolu-
tionary Computation Approaches to Feature Selection. IEEE Trans. Evolutionary
Computation 20, 4 (2016), 606–626. https://doi.org/10.1109/TEVC.2015.2504420

[21] H Yang and John Moody. 1999. Feature selection based on joint mutual infor-
mation. In Proceedings of Computational Intelligence Methods and Applications
(CIMA), New York, USA. 22–25.

[22] Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 2003. 1-norm
Support Vector Machines. In Advances in Neural Information Processing Systems
(NIPS) 16, December 8-13, 2003, Vancouver, Canada]. 49–56.

