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ABSTRACT

There has been a wealth of feature selection algorithms proposed in
recent years, each of which claims superior performance in turn. A
wide range of datasets have been used to compare these algorithms,
each with different characteristics and quantities of redundant and
noisy features. Hence, it is very difficult to comprehensively and
fairly compare these feature selection methods in order to find
which are most robust and effective. In this work, we examine us-
ing Genetic Programming to automatically synthesise redundant
features for augmenting existing datasets in order to more scientifi-
cally test feature selection performance. We develop a method for
producing complex multi-variate redundancies, and present a novel
and intuitive approach to ensuring a range of redundancy relation-
ships are automatically created. The application of these augmented
datasets to well-established feature selection algorithms shows a
number of interesting and useful results and suggests promising
directions for future research in this area.
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1 INTRODUCTION

As the modern world rapidly becomes more data-centric, datasets
continue to grow in both width and length. However, many common
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machine learning algorithms are unable to scale effectively as the
number of features grows. Feature Selection (FS) algorithms are
being increasingly used as a method for reducing the dimensionality
of datasets in order to improve the quality and interpretability of
machine learning results [11]. Such FS algorithms primarily work
by identifying and removing irrelevant or redundant features from
a feature set [17]. Irrelevant (or noisy) features provide little useful
information about the instances of a dataset, or may even “mislead”
the machine learning algorithm. While removing irrelevant features
is reasonably straightforward, redundant features (fs), which share
a significant overlap of information content with other features, are
much more difficult to identify, especially when they are redundant
in a multivariate manner.

The most common method of quantitatively comparing the effi-
cacy of different FS algorithms is to evaluate them on a range of
popular datasets and compare the performance achieved and the
number of features selected by each. Such an approach is quite a
“coarse” analysis, as it gives little insight into which type of features
each FS algorithm removes from a dataset. For example, naive FS
algorithms may readily remove clearly irrelevant features, while
failing to identify r.fs completely. A more refined evaluation method
is to directly look at how well each FS algorithm can remove each
“type” of feature. However, identifying which features are non-
linearly redundant in a dataset is an NP-hard problem (otherwise,
the FS problem could be brute-forced!) [11]. Hence, an increasingly
common technique is to purposefully add “new” irrelevant or re-
dundant features to an existing dataset. While irrelevant features
can be added with relative ease, it is not obvious how to add features
with complex redundancies.

Previous work has added r.fs to an existing dataset by scaling and
offsetting features in the feature space, i.e. creating “new” features
of the form Fpevw = & X Fexisting + B, for some real @, . Such
features are univariately and linearly redundant and do not present
much of a challenge for a FS algorithm. Recently, we proposed a
Genetic Programming (GP)-based approach to automatically create
multiple new r.fs for each original (source) feature [8]. The fitness
function was designed to maximise the redundancy between the
source and created features, and minimise the redundancy between
created features, measured using mutual information (MI), so as
to produce varying types of r.fs. While this work was able to pro-
duce significantly more complex (non-linear) feature redundancies
than the naive ones described above, these redundancies were still
univariate. In addition, minimising the redundancy between a set
of created features (with the same source feature) is not ideal, as it
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does not directly measure how different their redundancy relation-
ships with the source feature are. Such an approach can not be used
when creating multivariately redundant features, as it contradicts
with the aim of producing complex multivariate relationships.

This work aims to propose a more refined and advanced GP
method to evolve sets of r.fs which are multivariately redundant to
the original features of the dataset. Specifically, we aim to:

e Develop a multi-tree GP representation to allow multiple
source features to be used by a GP individual in each tree.

e Propose a suitable and efficient fitness function that allows
difficult, complex multivariately redundant features to be
automatically created.

e Analyse the performance of feature ranking and feature
selection techniques on the created features to explore how
they affect the performance of these algorithms.

e Compare with the existing univariate GP approach and dis-
cuss the differences in the features created by the existing
and proposed method.

It is expected that this work will give more challenging and
robust datasets that can be used for benchmarks feature selection
algorithms.

2 BACKGROUND

This section will briefly touch on important concepts of feature
manipulation and mutual information, before summarising the key
points of the existing work that this paper builds on.

2.1 Feature Manipulation

Feature manipulation algorithms actively change the feature set of
a dataset in order to improve the results of a machine learning task.
Feature selection (FS), the task of selecting a subset of features in
order to decrease complexity and increase performance, is perhaps
the most popular feature manipulation task. Many FS algorithms
have been proposed, from simpler feature ranking [12] and sequen-
tial forward/backward search techniques [16, 19] to more advanced
methods using sparse models [1, 2] or evolutionary computation
(EC) search techniques [20].

Feature construction (FC) techniques take a different approach,
whereby they attempt to construct new, higher-level features which
are transformations of multiple features in the dataset. The new
constructed features are trained to have improved performance,
while also reducing the number of features used by the machine
learning algorithm. The most popular EC-based FC method is GP
[4, 14, 18], while common non-EC methods such as Principal Com-
ponent Analysis (PCA) [6] and Support Vector Machines (SVMs) [3]
are also often considered to perform a form of FC. GP-based FC has
a close relationship with the current work, as feature construction
shares many similarities to redundant feature creation.

2.2 Mutual Information

Mutual Information (MI) is one of the most popular measures of the
redundancy between two variables, as it essentially measures the
amount of information that two variables share. Hence, the higher
MI between two features, the more redundancy they can be said to
share. The MI between two features X and Y, MI(X, Y), is defined
as follows [5]:
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MI(X,Y) = H(X) + H(Y) - H(X, Y) 1)

where feature X has entropy H(X) and two features X, Y have joint
entropy H(X,Y), defined in the standard way [5]. For continuous
features, such as in this work, the full MI equation is as follows:

- P y)
MI(X,Y) = /X /Yp(x, y) X log, ) dx dy 2)

As this work uses the multivariate form of MI, where there are
multiple source and target features, an extension of Equation (2) is
used, where X and Y represent the set of source and target features
respectively, e.g. X and Y. A similar equation is used, except that
the marginal and joint probabilities represent the set of features,
ie. p(X) = p(X1, X2, ...Xz) for d source features.

Equation (2) requires knowing the full marginal and joint proba-
bility density functions (pdf) of the features; in practice, this is not
available as each feature represents only a sample of the underlying
pdf. To remedy this, a common technique is to use an estimation
algorithm to estimate MIL One of the most successful estimators is
the nearest-neighbour estimation approach proposed by Kraskov
et al. [7], which uses the similarity of the nearest neighbours for
each instance (for the given features) as a proxy for measuring the
strength of the redundancy between the two features. The Java
Information Dynamics Toolkit (JIDT) [13] implementation of this
algorithm is used in this work.

2.3 Related Work: GPRFC

As this is only the second known work on using EC to automatically
created r.fs from a source dataset, our focus in this section is on
the previously proposed method (GPRFC) by Lensen et al. [9] as it
forms the baseline and inspiration of this work.

Genetic Programming for Redundant Feature Creation (GPRFC)
[9] uses a multi-tree GP representation, where each GP individ-
ual contains n trees. Each tree in an individual represents a single
mapping from a source feature to a constructed redundant feature.
Hence, a new feature is generated iteratively by setting the input
of the tree as the source feature, evaluating the tree from bottom
to top, and taking the output as the corresponding feature value
of the new created feature. By having a single individual contain
multiple trees, the authors were able to design a fitness function
that encouraged each tree to represent a different mapping, while
still ensuring that each mapping still produced a new feature that
was highly redundant with the source feature. A range of functions
were included in the function set to allow for a range of differently
shaped mappings between the source and created features, includ-
ing arithmetic, trigonometric, boolean, and conditional operators
which allow for non-continuous mappings to be formed.

GPRFC used a fitness function which used mutual information
(MI) as a proxy for measuring the redundancy between features.
As such, their proposed fitness function sought to maximise the MI
between the source and created feature, while minimising the MI
between all pairs of created features. They model this by attempting
to maximise the minSourceMI (the minimum MI between the source
feature and any created feature) and minimising the maxSharedMI
(the maximum MI between any pair of created features). The au-
thors also considered that when minSourceMI falls below a certain
threshold, the created r.fs are not acceptably redundant and so are
infeasible solutions: in this case, the fitness function considers only
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the source MI in order to prioritise producing feasible solutions at
the start of the GP run.

GPRFC also used several other “tricks” to optimise the GP per-
formance, including scaling each source and created feature to a
pre-defined range and adding a small amount of input noise to bet-
ter manage duplicate source feature values. We refer to the original
paper for further discussion on these details. It is important to note
that GPRFC required running a single run of GP for each source
feature in a dataset, which makes it costly for large feature sets. In
contrast, a proposed multivariate approach will use multiple source
features per run, requiring less computational time.

2.3.1  Summary. While GPRFC was a promising first attempt at
using GP to automatically create r.fs, it has a number of limitations
which this work seeks to address. It was only designed to create
univariate r.fs, which are inherently less difficult to identify than
multivariate r.fs. The fitness function minimised the MI between
created features, which does not directly measure the difference
in the mapping between each source and created feature. In addi-
tion, such a fitness function is expected to perform poorly in the
multivariate case, as it is necessary for the created features to be
redundant with each other. Finally, the fitness function itself was
expensive due to the number of MI calculations required, and as a
single GP run was needed for every feature in the original dataset.
This work seeks to address these limitations.

3 PROPOSED METHOD: GPMVRFC

The proposed GPMVRFC method follows the general structure
of that proposed in GPRFC. Each GP individual has n trees, each
representing a functional mapping from some number of source
features (X) to a single created r.f (Y). The number of source features
used is dependent on the size of the original feature set; the bigger
the original feature set, the more source features that can be used
to create a single set of r.fs. In this work, we propose using the
following equation:

X| = [max |2, min (%, 5)] 3)

where m is the size of the original feature set, and |X| the number
of source features. Computing the number of source features in this
manner ensures that at minimum two source features are used, at
least four sets of r.fs are created (for m > 8), and that at most five
source features are used (so as to keep complexity in scope). Note
that for all m > 20, five source features will be used. |X| features
of the dataset will be used in a single GP run, as the terminal set,
and so % runs must be performed to create the full augmented
dataset. In contrast, GPRFC required m runs — hence, GPMVRFC
requires only 20% of the runs given m > 20. Note that although
each tree has five source features (terminals) to draw from, there is
no requirement that every tree use all of the source features, and
hence different trees may be redundant with different subsets of
the source features.

3.1 Function and Terminal Sets

The terminal set consists of only the |X| source features of the
dataset that are being used to create r.fs of that specific GP run.
No random value terminal is used as it would not add any useful
component to the mapping function. The function set is unchanged
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Table 1: Function set used in GPMVRFC.

Operator Type Function  #Inputs

=

Arithmetic e
log(a)
a+b
axb

ab

N DN DN = = = =

—_

sin(a)
Trigonometric  tan(a)
tanh(a)

— =

min(a, b)
max(a, b)

if(a, b, c) !

Conditional

W NN

from GPRFC (as this is not the focus of this work), and is sum-
marised in Table 1. Note that the cosine, subtraction, and division
operators are not included as they are complements of included
operators, and were found to decrease performance.

3.2 Fitness Function

The fitness function used in this work consists of two components:
one which measures the redundancy between the source feature
set and the created feature set using multivariate MI, and another
which measures the difference between the created features by
comparing the gradients of the distributions of each created feature.
The fitness of an individual is based on the source features being
used (X), and the features created by that individual (Y), i.e. the
outputs of all the GP trees once they have been evaluated using
each instance in the dataset. Measuring the redundancy between
the source and created feature sets is particularly straightforward
(and efficient) in a multivariate scenario:

Redundancy = MI(X,Y) as per Equation (2) (4)

As we wish to create features that are as redundant as possible
(while being redundant in different ways), we maximise the MI
between X and Y. As discussed earlier, an estimator is used to
compute the approximate MI as the unknown pdf of X and Y are
not known.

To measure the similarity of the created features, we designed a
novel approach based on the distribution of each created feature
compared to the source features. The intuition behind this approach
is that two created features should have significantly different distri-
butions across the source feature space if they are to be considered
to have different “types” of redundancy with the source features.
Fig. 1 shows an example of some potential simple created features
that GPMVREFC could create, where the y-axis represents the output
of a GP tree given some input feature. The linear, sine, and poly-
nomial functions clearly have different shapes in the feature space,
and so represent different types of r.fs. The two linear functions,

UIf a is non-negative, output b; otherwise, output c.
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— polynomial(x) — piecewise(x)

Figure 1: Example of some (scaled) redundancy mappings
that could be created by GPMVRFC.

however, both are the exact same type of r.f, except that they have
different offsets from the x-axis. The piecewise and sin functions
have the same redundancy function for half the feature space but
are very different in the other half. Based on this observation, we
propose comparing the gradients of each created feature for each
value in the source feature space, in order to evaluate the “semantic”
difference between the created features. Note that when consid-
ering the gradient, the two linear functions are identical, and the
piecewise and polynomial functions have identical gradients for
half the feature space. This approach is complicated slightly in that
there are multiple source features which can be used to produce
different distributions of the created r.fs — we propose an algorithm
to cope with this below.

For each created feature in an individual A € Y, we calculate the
difference between A and each other created feature B € {Y — A}
using the approach shown in Algorithm 1. We take the minimum
of these differences as the minimum difference between A and any
other created feature, called RFDiff,,ja. In addition, we also con-
sider the difference between A and each of the source features (us-
ing Algorithm 1), to ensure that no created feature inadvertently re-
constructs one of the existing features (i.e. making it naively redun-
dant). The minimum difference between A and any source feature
x € X is computed as SourceDiffjno. The smaller of RFDiffjina
and SourceDiff i,z is the distance between A and any other con-
structed feature or source feature. The final formulation of the
difference of the created r.fs is as follows:

Differencergps = f\mr; min{RFDiff;;na, SourceDiffina}l  (5)
€

where the difference should be maximised to encourage diverse
types of r.fs. The fitness of a given individual is thus as follows:

Fitness = Redundancy X Differencerpg 6)

In the rare case where one or more trees represents an invalid
solution, e.g. tan(0.577) = oo, the fitness of the individual is instead
set to negative the number of invalid trees. This fitness function is
also significantly more efficient than the one proposed in GPRFC.
GPRFC evaluated the MI of every pair of created features, i.e. at
a cost of O(n?). While our proposed fitness function compares
every pair of created features also, the difference algorithm we use
requires significantly less computational time than the MI estimator
would otherwise use.
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Algorithm 1: Computing the difference of two created
feature vectors, A and B, given source features X.

1 Difference,,,;,, = minimum of
ComputeDifference(A, B, x) for each x € X

2 return Difference,,;,

3 Function ComputeDifference(A, B, x):

4 A’ = Sort(A) according to the natural ordering of x.

5 B’ = Sort(B) according to the natural ordering of x.

6 Gradientgyr =0

7 for i € [1,]x]) do

8 Gradienta; = A’[i] — A’[i — 1]

9 Gradientg; = B’[i] - B'[i — 1]

10 Gradientgypt+ = |Gradients; — Gradientp;|
11 end

1 .
12 return - X Gradient gy

3.3 Other Details

As GPMVREC uses a similar representation to GPRFC, we apply
a number of additional “tricks” used in GPRFC to the proposed
method also. These are briefly summarised below, and further dis-
cussion can be found in the original paper [9].

e In order to ensure all source features have the same range,
we scale each source feature to fall in the range [0 + €,1 + €]
where € is a small weighting added to prevent 0 values from
making invalid/poor trees as often. We set € = 1 x 107>,
Duplicate feature values are problematic as they reduce the
number of unique inputs to a GP tree, and hence the ability
of the GP to fine-tune solutions. This is remedied by adding a
small amount of random noise (with a fixed seed), called § to
each source input in a tree. We use the same approach as in
GPRFC, where § is randomly sampled from [0.001¢, €]. Note
that this, and the above tweak, are used only for producing
the output of a tree — not for measuring fitness.

The created features are also scaled to [0, 1] to ease inter-
pretability, and so that they have the same range as the source
feature — useful for algorithms which are distance-based.

3.4 GP Parameters

We used a population size of 1,024, 200 generations of evolution,
40% mutation, 60% crossover, top-10 elitism and a max depth of 15.
These parameter settings are similar to those in GPRFC in order to
maintain a fair comparison and hone the focus of this paper. The
one difference from GPRFC is that we employed n = 10 trees per
individual — as multiple source features are being used, there are
many more possible created features, and as we do not run the GP
process once per source feature, more trees are needed per run in
order to produce a reasonable number of r.fs.

4 EXPERIMENT DESIGN

To evaluate the performance of the proposed GPMVRFC method, we
generated a number of augmented datasets by running GPMVRFC
on a number of well-known and popular classification datasets from
the UCI machine learning repository [10]. The number of source
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Table 2: Feature set size of original dataset vs those aug-
mented by GPMVRFC and GPRFC.

Dataset Source GPMVRFC  GPRFC
#Features  #Features  #Features
Iris 4 24 28
Wine 13 52 78
WDBC 9 48 54
Dermatology 34 90 196
Vehicle 18 56 104
Image. Seg. 18 56 104
Movement Libras 90 270 540

features and the number of features in the datasets produced by
GPMVRFC, and GPRFC, are shown in Table 2. As GP is a stochastic
search method, we created 40 augmented datasets for each source
dataset utilising different initial random seeds.

These augmented datasets were then used to test a number of
different FS methods, in order to evaluate how the addition of r.fs
would affect the performance of FS methods in terms of the accuracy
achieved, and the number of features selected. In order to provide a
comprehensive evaluation, we use algorithms from all three main
FS categories: filter, wrapper, and embedded methods:

Filter: Ranking each feature in an augmented dataset according
to its Information Gain (IG) [5, 12]. IG is used to evaluate how
well a feature can predict the class label, and so if created features
are redundant with source features, they may be likely to have
a similar IG ranking. Different classifiers were then used to clas-
sify the dataset using the top n features (where n is varied from 1
to #features). Furthermore, we used two more advanced filter FS
algorithms to further test the difficulty of performing FS on the
augmented datasets. We used the 11-norm in a linear SVM (“11SVC”)
[22] to perform FS (i.e. sparse feature selection), as well a Joint
Mutual Information (JMI)-based search [21].

Wrapper: Applying simple sequential search based FS algorithms
to each augmented dataset, where a wrapped classifier was used
to evaluate the selected subset at each stage. Sequential Forward
Search (SFS), Sequential Backward Search (SBS), and the floating
versions of SFS (SFFS) and SBS (SFBS) [17] were tested.

Embedded: Finally, we also tested directly using the augmented
datasets in a decision tree (DT) classifier. These tests used the scikit-
learn library [15].

All of the stochastic FS methods listed above were run 30 times
with independent seeds and averaged. The results of each of the
above tests will be discussed in turn in the next section.

5 RESULTS AND DISCUSSION

Due to the number of different test combinations across the seven
datasets, it is impractical to show and analyse all results in an
interpretable way within the page limit. Hence, we instead focus on
analysing the results of the four datasets which show the clearest
patterns and provide the most insight. We discuss each of the Wine,
Dermatology, Vehicle and Image Segmentation datasets in turn
in this section. For each dataset, we discuss the feature ranking

GECCO 18, July 15-19, 2018, Kyoto, Japan

performance (with the KNN classifier), the DT performance, SFFS
and SFBS performance (again with KNN), and the 11SVC and JMI
FS methods, using KNN as the classifier. KNN was chosen as it
produced the most consistent patterns, and is a simple and efficient
classifier. Our performance analysis considers both the number of
selected features and the test accuracy of the classifiers. For the
feature ranking approach, we exclude the GPRFC method from the
plots, as it is a univariate FS method and so is unlikely to give a fair
comparison of the difficulty of the r.fs created by each method.

5.1 Wine

Fig. 2 shows the results of the FS methods on each of the 40 aug-
mented Wine datasets. Fig. 2a shows how the accuracy of the KNN
classifier varies when the top n ranked features are used, where n
increases across the x-axis. The red line represents the performance
on the original Wine dataset using the same ranking process. We
can clearly see that accuracy is lowered on the augmented datasets,
due to the addition of r.fs which mislead the IG ranking process.
However, at a certain point (n ~15), enough good features are se-
lected for the accuracy to reach the same level that selecting 4
features on the original dataset would give.

The remainder of the plots show one FS approach for each of the
40 augmented datasets for GPMVRFC and GPRFC, and the original
dataset. A small amount of noise is added so that duplicate points
can be distinguished. The sequential FS algorithms (SFFS and SFBS;
Figs. 2¢,2d) show very similar accuracy distributions for each of
the two methods. Given that GPMVREFC creates 26 fewer features,
this suggests that the features created by GPMVRFC may be more
difficult to identify, given that GPRFC has a larger FS search space.
The 11SVC method (Fig. 2e) appears to under-select features, es-
pecially on GPMVRFC, compared to on the original dataset, with
a reduction in accuracy — suggesting that the method is being
“confused”. The JMI method (Fig. 2f) is harder to interpret, though
it appears that both methods cause extra features to be selected.
The FS methods appear to struggle to select a lower percentage
of features on the GPMVRFC datasets. The DT method (Fig. 2b) is
particularly interesting, as it shows GPMVRFC actually improving
the performance of the classifier, albeit with more features being
used. If the DT method purposefully selects additional features
while improving accuracy, then GPMVRFC must be creating more
powerful/better features than some of the original features. Consid-
ering that GPMVRFC combines several source features to create an
r.f, it is not unexpected that some of these created r.fs may actually
be of higher quality. Furthermore, real-world datasets such as those
used here often have complex hidden feature interactions, which
GPMVRFC may be able to “uncover” when it creates new r.fs.

5.2 Dermatology

The results on the Dermatology dataset (Fig. 3) further reinforces
the hypothesis that GPMVRFC may actually be inadvertently cre-
ating more meaningful r.fs. Feature ranking (Fig. 3a) shows that
selecting the same number of features on the augmented datasets
can give better test accuracy than on the original dataset for the
first ~ 15 features. This pattern continues on four of the remaining
FS methods (Figs. 3c-3f) where GPMVRFC datasets generally have
higher accuracy compared to GPRFC, and often even compared
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Figure 2: Wine Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.
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Figure 3: Dermatology Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.
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Figure 4: Vehicle Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

to the original dataset. In the case of SFFS, GPMVREC often gives 5.4 Image Segmentation
higher accuracy with fewer features, and on 11SVC and JMI, using
the same number of features as GPRFC gives higher accuracy. While
this initially seems unsatisfactory, we note this may be partially due
to fewer features being created by GPMVRFC than GPRFC; it also
seems intuitive that combining multiple source features means a

On the final dataset, the general pattern in the results (Fig. 5) is
that GPMVRFC produces r.fs that cause lower test accuracy than
GPRFC, despite GPRFC producing twice as many r.fs. Feature rank-
ing clearly suffers in accuracy, including a slow drop off in accuracy
even after only half the best-ranked features have been used (Fig.
created r.f is inherently less likely to be misleading, especially as the 5a). The SFBS, 11SVC, and DT methods (Figs. 5d,5¢,5b) all select
datasets are generated in an unsupervised manner. The DT results significantly more features compared to on the original datasets
(Fig. 3b) show no clear difference between the methods, though, as while getting much lower test accuracy, clearly indicating the added
before, the DT method uses a higher proportion of the features in r.fs are more challenging than those created by GPRFC. JMI (Fig.

GPMVRFC than in GPRFC. 5f) under-selects features compared to the original dataset, or se-
lects extra, less useful features; SFFS (Fig. 5¢) is the exception to
the pattern in that it doesn’t have clearly worse accuracy due to

5.3 Vehicle GPMVREFC, but it also selecting many fewer features than the other

The Vehicle dataset results (Fig. 4) continue to show a similar pat- FS methods and so may give less over-fitting. We plan to investigate

tern. The primary exception is feature ranking (Fig. 4a), where the why GPMVREFC gave significantly different results on the Image

GPMVRFC-augmented datasets clearly decrease the performance Segmentation further in the future.

of the classifier. As discussed before, this may be due to feature
ranking being a univariate approach that cannot properly cope 6 CONCLUSION
with multivariate feature interactions. Interestingly, the r.fs also
cause the performance of the classifier decrease when the last third
of features are used, suggesting some features may be misleading to
the KNN classifier. Each of the remaining results (Figs. 4b—4f) show
that GPMVRFC can clearly create better features than those in the
original dataset, causing the FS methods to often select additional,
better features, except for 11SVC, which actually selects fewer fea-
tures with better performance on occasion. The DT and SFBS show
very consistent patterns in this case, perhaps as they both start by
using the whole feature set, before removing unhelpful features.

This work aimed to develop a new method for automatically cre-
ating multivariately redundant features in order to make difficult
benchmark feature selection datasets. We proposed a new GP rep-
resentation, and a more appropriate and efficient fitness function
compared to existing work. A large number of experiments were
conducted to evaluate the proposed GPMVRFC approach, utilising a
range of datasets and feature selection techniques. Several interest-
ing patterns observed in the results were analysed in-depth, which
showed that often GPMVRFC was able to produce challenging
benchmark datasets that caused a variety of problems for different



GECCO 18, July 15-19, 2018, Kyoto, Japan

Andrew Lensen, Bing Xue, and Mengjie Zhang

| L 2 . ° 97 4
TTEY I TLEbLas et
L]
o T PITPTITRERRR bt bttt g
- $$$é X EXX) ee®0 .
S ¢?Iﬁl & 91
> ° 080 >
> 80+ o
e ° ©
Q [&]
2 704° <
{
60-'
20 30 40
#Features Used #Features Used
(a) Features ranked by IG, classified with KNN. (b) Classified with DT.
%1 %1 95.0
96 95.0 1 94 4
§94' g 925 g % g
g 5 5 5 90.01
g 924 3 8 90 3]
< < 90.01 < <
7.5
9% a6 87.5
8751 85.0
5 10 15 25 50 75 100 10 20 30 40 ' 20 40 60

#Features Used #Features Used

(c) FS with SFFS, classified with KNN.
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Figure 5: Image Segmentation Dataset. Orange is the original dataset; blue is GPMVRFC; and pink is existing GPRFC method.

feature selection methods. In some scenarios, it was found that
GPMVREFC actually improved classification accuracy compared to
when FS was performed on the original datasets. We believe this
may be the result of the proposed multivariate approach inadver-
tently creating better features due to utilising multiple features
from the original dataset. We will investigate this phenomenon
further in the future in order to explore how unsupervised feature
creation can improve supervised learning performance, as well as
investigating adversarial methods for creating multivariate redun-
dant features that can directly cause the performance of common
feature selection algorithms to significantly suffer.

REFERENCES

[1] Jinbo Bi, Kristin P. Bennett, Mark J. Embrechts, Curt M. Breneman, and Minghu
Song. 2003. Dimensionality Reduction via Sparse Support Vector Machines.
Journal of Machine Learning Research 3 (2003), 1229-1243.

Paul S. Bradley and Olvi L. Mangasarian. 1998. Feature Selection via Concave
Minimization and Support Vector Machines. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning (ICML 1998), Madison, Wisconsin, USA,
July 24-27, 1998. 82-90.

Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Machine
Learning 20, 3 (1995), 273-297.

Pedro G. Espejo, Sebastian Ventura, and Francisco Herrera. 2010. A Survey on
the Application of Genetic Programming to Classification. IEEE Trans. Systems,
Man, and Cybernetics, Part C 40, 2 (2010), 121-144.

Edwin T Jaynes. 1957. Information theory and statistical mechanics. Physical
review 106, 4 (1957), 620.

Tan T. Jolliffe. 2011. Principal Component Analysis. In International Encyclopedia
of Statistical Science. Springer, 1094-1096.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimating
mutual information. Physical review E 69, 6 (2004), 066138.

Andrew Lensen, Bing Xue, and Mengjie Zhang. 2018. Generating Redundant
Features with Unsupervised Multi-tree Genetic Programming. In Genetic Pro-
gramming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018,

[2

=

Proceedings (Lecture Notes in Computer Science), Vol. 10781. Springer, 84-100.

Andrew. Lensen, Bing. Xue, and Mengjie. Zhang. 2018. Generating Redundant

Features with Unsupervised Multi-Tree Genetic Programming. ArXiv e-prints

(2018). arXiv:1802.00554

M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.

uci.edu/ml

Huan Liu and Hiroshi Motoda. 2012. Feature selection for knowledge discovery

and data mining. Vol. 454. Springer Science & Business Media.

Huan Liu and Zheng Zhao. 2009. Manipulating Data and Dimension Reduction

Methods: Feature Selection. In Encyclopedia of Complexity and Systems Science.

5348-5359.

Joseph Troy Lizier. 2014. JIDT: An Information-Theoretic Toolkit for Studying

the Dynamics of Complex Systems. Front. Robotics and Al 2014 (2014).

Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. 2012. A filter approach

to multiple feature construction for symbolic learning classifiers using genetic

programming. IEEE Trans. Evolutionary Computation 16, 5 (2012), 645-661.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

Pavel Pudil, Jana Novovicova, and Josef Kittler. 1994. Floating search methods in

feature selection. Pattern Recognition Letters 15, 10 (1994), 1119-1125.

Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature Selection for Classifi-

cation: A Review. In Data Classification: Algorithms and Applications. CRC Press,

37-64.

Binh Tran, Bing Xue, and Mengjie Zhang. 2016. Genetic programming for feature

construction and selection in classification on high-dimensional data. Memetic

Computing 8, 1 (2016), 3-15.

A. Wayne Whitney. 1971. A Direct Method of Nonparametric Measurement

Selection. IEEE Trans. Computers 20, 9 (1971), 1100-1103.

Bing Xue, Mengjie Zhang, Will N. Browne, and Xin Yao. 2016. A Survey on Evolu-

tionary Computation Approaches to Feature Selection. IEEE Trans. Evolutionary

Computation 20, 4 (2016), 606—626. https://doi.org/10.1109/TEVC.2015.2504420

H Yang and John Moody. 1999. Feature selection based on joint mutual infor-

mation. In Proceedings of Computational Intelligence Methods and Applications

(CIMA), New York, USA. 22-25.

[22] Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 2003. 1-norm
Support Vector Machines. In Advances in Neural Information Processing Systems
(NIPS) 16, December 8-13, 2003, Vancouver, Canada]. 49-56.

(10]
(1]

[12

[13

[14

[15

(19]

[20]

[21]



