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Feature selection is a multi-objective problem, where the two main objectives are to maxi-
mize the classification accuracy and minimize the number of features. However, most of
the existing algorithms belong to single objective, wrapper approaches. In this work, we
investigate the use of binary particle swarm optimization (BPSO) and probabilistic rough
set (PRS) for multi-objective feature selection. We use PRS to propose a new measure
for the number of features based on which a new filter based single objective algorithm
(PSOPRSE) is developed. Then a new filter-based multi-objective algorithm (MORSE) is
proposed, which aims to maximize a measure for the classification performance and minimize
the new measure for the number of features. MORSE is examined and compared with
PSOPRSE, two existing PSO-based single objective algorithms, two traditional methods,
and the only existing BPSO and PRS-based multi-objective algorithm (MORSN). Experi-
ments have been conducted on six commonly used discrete datasets with a relative small
number of features and six continuous datasets with a large number of features. The clas-
sification performance of the selected feature subsets are evaluated by three classification
algorithms (decision trees, Naive Bayes, and k-nearest neighbors). The results show that the
proposed algorithms can automatically select a smaller number of features and achieve
similar or better classification performance than using all features. PSOPRSE achieves better
performance than the other two PSO-based single objective algorithms and the two tradi-
tional methods. MORSN and MORSE outperform all these five single objective algorithms in
terms of both the classification performance and the number of features. MORSE achieves
better classification performance than MORSN. These filter algorithms are general to the
three different classification algorithms.

Keywords: Feature selection; particle swarm optimization; rough set theory; multi-objective
optimization.
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1. Introduction

In machine learning and data mining, classification algorithms often suffer from the
problem of “the curse of the dimensionality”! due to the large number of features in
the dataset. Feature selection (or dimension reduction) is proposed as a data pre-
processing step to reduce or eliminate irrelevant and redundant features, which aims
to reduce the dimensionality, simplify the learnt classifier, reduce the training time,
facilitate data visualization and data understanding, and/or increase the classifica-
tion accuracy.!

Feature selection is a challenging problem mainly due to two reasons, which are
the large search space and feature interaction. For a dataset with m features, the size
of the search space is 2. Most of the existing algorithms suffer from the problems of
being computationally inefficient and becoming stagnated in local optima.? There-
fore, an efficient global search technique is needed. Evolutionary computation (EC)
techniques are argued to be good at global search. One of the relatively recent EC
algorithms is particle swarm optimization (PSO).** Compared with other EC
methods, such as genetic programming (GP) and genetic algorithms (GAs), PSO is
computationally less expensive, has fewer parameters, and can converge faster.’
Therefore, researchers recently pay more attention on using PSO to address feature
selection tasks.%"

Feature interaction exists in many classification problems. There could be two-
way or multi-way interactions among features.!'® As a result, a relevant feature may
become redundant so that eliminating some of such features will remove or reduce
unnecessary complexity. On the other hand, an individually redundant or weakly
relevant feature may become highly relevant when working with others. An optimal
feature subset is a group of complementary features, but it is difficult to measure
the complementary level. Therefore, how to evaluate the goodness (complementary
level) of the selected feature subsets is an important issue in feature selection.

Based on the evaluation criteria, feature selection methods are generally classified
into two broad classes: wrapper approaches and filter approaches.!> Wrapper
approaches include a learning/classification method to evaluate the goodness of
the selected feature subsets. Therefore, wrappers often obtain better classification
performance than filter approaches, but they suffer from the high computation cost
and the loss of generality, i.e., specific to a particular classification algorithm. Filter
approaches are independent of any learning algorithm. They are more general
and computationally cheaper than wrapper approaches. As a filter feature selection
process is independent of any learning algorithm, its performance relies mainly on the
goodness of the evaluation criterion. Researchers have introduced different criteria to
develop filter approaches, such as consistency measures, information measures and
dependency measures.”” However, none of them have become the standard for fea-
ture selection. Rough set (RS) theory’ has been applied to feature selection.'’
However, standard RS has some limitations (details in Sec. 2.3)."" From a theoretical
point of view, Yao and Zhao'' have shown that probabilistic rough set (PRS) theory
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can possibly be a good measure for filter feature selection, but it has seldom been
implemented in EC-based filter feature selection approaches.

Most of the existing EC-based feature selection algorithms are single objective,
wrapper based methods. However, the use of wrapper algorithms is limited in real-
world applications because of being specific to a particular classifier and high
computational cost. PSO is computationally cheaper than other EC algorithms, so is
a good candidate technique for feature selection. Meanwhile, feature selection is a
multi-objective problem with two main conflicting objectives, i.e., maximizing the
classification performance and minimizing the number of features selected. Although
PSO, multi-objective optimization, or RS has been individually investigated in many
works, there are very few studies on using PSO and RS for filter-based multi-ob-
jective feature selection. Moreover, due to the constraint that RS only works on
discrete data, the datasets used in RS in recent work!%:1214
of features.

only have a small number

1.1. Goals

This work aims to present a filter-based multi-objective feature selection approach to
obtain a set of nondominated feature subsets. To achieve this goal, we use proba-
bilistic RS to construct two measures: the first measure is to represent the classifi-
cation performance and the second measure is to represent the number of features. A
new single objective method (PSOPRSE) is presented, which combines these two
measures into a single fitness function as a direct comparison for the multi-objective
approaches. Then two multi-objective methods (MORSN and MORSE) are pre-
sented, where MORSN aims to maximize the first measure for the classification
performance and minimize the number of features itself, and MORSE aims to op-
timise the first measure for the classification performance measure and the second
measure for the number of features. Furthermore, we will examine and compare the
new algorithms with two existing PSO-based single-objective algorithms and two
traditional methods on 12 datasets, some of which include several hundreds of fea-
tures. Specifically, we will investigate:

e whether PSOPRSE can select a small number of features and achieve similar or
better classification performance than using all features, and outperform the two
existing PSO-based algorithms and the two traditional methods,

o whether MORSN can achieve a set of nondominated feature subsets, and can
outperform PSOPRSE;,

o whether MORSE can achieve a set of nondominated feature subsets, and can
outperform all other methods mentioned above, and

e whether the filter approaches are general to different learning/classification
algorithms.

Note that, this work is built on our previous research in Ref. 15 and 16. MORSN was
proposed and represents the first PSO and RS-based multi-objective feature selection
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algorithm. Due to the page limit, MORSN in Ref. 15 was only tested on six com-
monly used discrete datasets with a relatively small number of features. MORSN is
further tested on six continuous datasets with a large number of features. More
importantly, a new RS-based measure (the second measure mentioned above), the
new multi-objective algorithm (MORSE) is developed and compared with other
methods on 12 datasets in this paper.

1.2. Organization

The remainder of the paper is organized as follows. Section 2 presents background
information. Section 3 describes the new single objective algorithm and two new
multi-objective approaches. Section 4 provides the design of experiments. The results
and discussions are given in Secs. 5 and 6 provides conclusions and future work.

2. Background
2.1. Binary particle swarm optimization

Particle swarm optimization (PSO)** simulates the social behaviors of fish schooling
and birds flocking. In PSO, each solution of the target problem is represented by a
particle. A swarm of particles move (“fly”) together in the search space to find the
best solutions. For any particle 7, a vector x; = (21, 9, . . . , ¥;p) is used to represent
its position and a vector v; = (v;1, V49, - .., V;p) is used to represent its velocity, where
D means the dimensionality of the target problem. During the search process, each
particle can remember its best position visited so far called personal best (denoted by
pbest), and the best previous position visited so far by the whole swarm called global
best (denoted by gbest). Based on pbest and gbest, PSO iteratively updates x; and v;
of each particle to search for the optimal solutions.

Originally, PSO was proposed to address problems/tasks with a continuous
search space. To extend PSO to address discrete problems, a binary PSO (BPSO)
was developed in Ref. 17, where z;, pbest and gbest are limited to 0 or 1. v; in BPSO
represents the probability of an element in the position updating to 1. BPSO updates
v; and x; of particle ¢ according to Formulae 1 and 2.

UZJH =wXvjg+e Xy X (Pia — x:d) + e X 19 X (pga — xﬁd% (1)
. 1
£t = 1, if rand() < m’ @)
0, otherwise
t+1

where v shows the velocity of particle ¢ in the dth dimension in the ¢+ 1th
iteration of the evolutionary process. w is the inertia weight, which indicates the
influence of the previous velocity. ¢; and ¢, are acceleration constants. r;;, r;5 and
rand() are random values, which are uniformly distributed in [0, 1]. p;; and p 4 shows
the values of personal best and global best in the dth dimension. A predefined
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maximum velocity, vy, is to limit v/ t0 [~Vnay, Unax)- Tand() is randomly chosen

from [0,1].

2.2. Multi-objective optimization

Multi-objective optimization involves simultaneous optimization of multiple con-
flicting goals or objectives. The quality of solutions in a multi-objective task are
explained by the trade-offs between different conflicting objectives. In mathematical
terms, a multi-objective minimization problem can be represented using the fol-
lowing formulae:

minimize F(z) = [fi(), f2(2), ..., fi(@)], (3)

subject to:
g9i(x) <0, i=1,2,...,m, (4)
hi(z) <0, i=1,2,...,1, (5)

where z shows the decision variables, k is the number of objective functions to be
minimized, f;(x) is one of the objective functions. g;(x) and h;(z) are the constraint
functions and m and [ are integer numbers.

In multi-objective optimization, “Domination” and “Pareto optimum” are two
key concepts which consider the trade-offs between objective functions. For example,
let a and b be two candidate solutions of the above k-objective minimization task. We
can say a is better than b or a dominates b if they meet the following conditions:

Vi: fi(a) < fi(b) and 3Jj: fi(a) < f;(b), (6)

where ¢,j € {1,2,3,...,k}.

If no solutions can dominate a, a is a Pareto-optimal /nondominated solution. The
Pareto front of the problem is formed by all the Pareto-optimal solutions. A multi-
objective algorithm is designed to search for the Pareto front of a multi-objective
problem. A feature selection problem can be treated as a two-objective minimization
task with the two main objectives of minimizing the number of features and the
classification error rate.

2.3. Probabilistic rough set (PRS) theory

Rough set (RS) theory” is an adaptive mathematical tool to handle uncertainty,
imprecision and vagueness. Two of its advantages are that it does not need any prior
knowledge about data and all the parameters can be obtained from the given data
itself.

In RS, knowledge and information is represented as an information system I. Let
U be the universe, which is a finite nonempty set of objects, and A be the features/
features that describe each object. I = (U, A). For any SC A and X CU, an
equivalence relation is defined as IND(S) = {(z,y) e U x U |Va € S,a(x) = a(y)}.
If two objects in U satisfy IND(S), they are indiscernible with regards to S. The
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equivalence relation, IND(.S), induces a partition of U denoted by U/S. U/S further
induces a number of equivalence classes. The equivalence class of U/S contains x if
[2ls = [a]4 = {y € Ul(z, ) € IND(S)}.

The equivalence classes are regarded as the basic blocks to define rough set
approximations. For X C U, a lower approximation SX and an upper approxima-
tion SX of X with respect to IND(S) are defined as follows’:

SX={zveUl|lls X} SX={reUl|l]snX+#0}. (7)

S X includes all the objects that surely belong to the target set X. S X contains the
objects, which surely or probably belong to the target set X. A rough set is formed by
an ordered pair (SX,SX).

Based on the lower and upper approximations of A, U can be divided into three
different regions, which are the positive region POSx(S), the negative region NE
Gx(S) and the boundary region BND(S), defined as follows:

POSx(S)=S5X; NEGy(S)=U-SX; BNDx(S)=SX-SX. (8)

Clearly, the approximation is exact when BNDx(.S) is empty.

The reduct is a fundamental concept in RS. A reduct, which is related to a subset
of features, is the essential part of an information system. A reduct should achieve
similar approximation power of classification to all the original features A. There
could be different reducts. Feature selection (or dimension reduction) using RS
is usually to remove redundant and irrelevant features to search for the smallest
reduct.

SX and SX in standard RS were defined as two extreme cases.” SX requires
that the equivalence class is a subset of X while SX requires that the equivalence
class must have a nonempty overlap with X. The degree of their overlap is not
taken into account, which will unnecessarily limit its applications. Therefore,
researchers investigate probabilistic rough set (PRS) theory to relax the defini-
tions of the lower and upper approximations.'’ The lower approximation is re-
defined as Eq.(9), where ugz] is defined as a way to measure the fitness of a given
instance x € X.

apr X ={z|pslz] > af, 9)
where
i) s N X1 o)
|[z]s]

« can be adjusted to restrict or relax the lower approximation. An equivalence
class includes a number of equivalent objects. If the majority of an object z’s
equivalent objects in [z]g are in the target set X, the object x is put in the lower
approximation of the target set X. apr X = SX when a = 1.

1450009-6



Int. J. Comp. Intel. Appl. 2014.13. Downloaded from www.worldscientific.com

by VICTORIA UNIVERSITY OF WELLINGTON LIBRARY on 02/25/15. For personal use only.

Binary PSO and Rough Set Theory for Feature Selection

2.4. Related work on feature selection

In recent years, researchers have developed different approaches to address feature
selection problems.?%® EC algorithms, such as GAs, GP, PSO and ant colony op-
timization (ACO) have been used for feature selection. Some typical work in the
literature are briefly reviewed in this section.

2.4.1. Wrapper feature selection approaches

Sequential forward selection (SFS)'® and sequential backward selection (SBS)'? are
two typical wrapper feature selection methods. The main difference between SF'S and
SBS are their starting points. SFS starts with an empty set while SBS starts with all
the available features. SFS sequentially selects features until the classification per-
formance is not increased while SBS sequentially remove features until the classifi-
cation performance is not improved. However, SFS and SBS suffer from the problem
of nesting effect. Stearns®’ proposes the “plus-I-take away-r” algorithm to overcome
this limitation by performing [ times forward selection followed by r times backward
elimination. However, it is difficult to find the best values for [ and 7). To address this
challenge, two floating feature selection algorithms are proposed by Pudil et al.! to
automatically determine the values for [ and r, which are sequential forward floating
selection (SFFS) and sequential backward floating selection (SBFS). However, SFFS
and SBFS have the limitation of becoming stagnated in local optima.

EC algorithms have been used to propose wrapper feature selection approaches.
Based on a multi-objective GA and neural networks (NN), Oliveira et al.”* propose a
modified wrapper feature selection method. Experiments on a handwritten digit
recognition dataset show that the proposed algorithm can reduce the number of
features and improve the classification performance. However, only one dataset is not
1.2% propose a feature
selection method using a memetic algorithm that is a combination of local search and
GA. In the proposed algorithm, individual features are first ranked according to a
filter measure. GA employs the classification accuracy as the fitness function and
deletes or adds a feature according to the ranking information. Experiments show
that the proposed algorithm achieves better results than GA and other algorithms.
The results also suggest that the performance and the efficiency of the proposed
algorithm can be improved by finding a proper balance between genetic search and
local search. Neshatian and Zhang®* propose a feature selection algorithm using GP
and naive bayes (NB), where GP is used to combine features and a set of operators
together to find the optimal feature subset. Neshatian et al.?® propose a feature
ranking method for feature selection, where each feature is assigned a score according
to the frequency of its appearance in a collection of GP trees and the fitness of those
trees. Feature selection can be achieved by using the top-ranked features for classi-
fication. Experiments show that different classification algorithms can achieve good
performance by using only a few top-ranked features. Based on ACO, Kanan and

”
Faez?0

sufficient to verify the effectiveness of this method. Zhu et a

develop a wrapper feature selection algorithm, where both the classification
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performance and the number of features are considered. The proposed algorithm
outperforms GA and other ACO-based algorithms on a face detection dataset, but
its performance has not been tested on other problems.

Marinakis et al.?” propose a wrapper approach based on BPSO and KNN for a
real-world medical diagnosis problem, which is called Pap-smear cell classification
problem. Results show that the developed method removes around half of the fea-
tures and achieves good classification performance. Huang and Dun®® propose a
wrapper algorithm for feature selection and parameter optimization in a support
vector machine (SVM). In the proposed algorithm, each particle is encoded by two
parts, where the first part represents the features in datasets and optimized by binary
PSO, and the second part is the parameters in SVM and evaluated by continuous
PSO. However, only one dataset with a small number of features is used in the
experiments, which cannot demonstrate the full performance of the proposed algo-
rithm. Later, Liu et al.° also propose a wrapper method to combine feature selection
and parameter optimization of SVM in one process. The difference from the method
in Ref. 28 is that Liu et al.’ introduce the use of multiple swarms in PSO. Experi-
mental results show that the classification performance of the proposed algorithm is
better than that of grid search, standard PSO and GA for feature selection. However,
multiple swarms have a larger number of particles and the communication rules
between them are complicated, which make the proposed algorithm computationally
inefficient. Fdhila et al.”” also apply a multi-swarm PSO algorithm to solve feature
selection problems. However, the computational cost of the proposed algorithm is
also high because it involves parallel evolutionary processes and multiple subswarms
with a relative large number of particles.

To avoid premature convergence, Chuang et al.’’ propose a gbest resetting
strategy in PSO for feature selection, where if the value of gbest does not improve
over a number of iterations, all its elements will be reset to zero. The proposed
algorithm is only compared with one traditional method in terms of the classification
performance and no PSO or other EC based algorithms are used for comparisons.

2.4.2. Filter feature selection approaches

Hall?! proposes a filter feature selection method based on the correlation between
features and class labels. Almuallim and Dietterich®? propose a filter algorithm which
performs an exhaustive search of all the possible combinations of features, and selects
the smallest subset of features. However, performing an exhaustive search is com-
putationally expensive. Relief*’ is a filter algorithm in which each feature has a score
indicating its relevance to the class labels. Relief selects all the relevant features.
However, the selected feature subset may still have redundancy, because relief does
not consider the redundancy between the relevant features.

Based on fuzzy sets, Chakraborty proposes a GA-based filter method®* and a
PSO-based filter method.*> Comparisons show that the PSO-based algorithm out-

performs the GA-based algorithm. Chen et al.'® propose a feature selection algorithm
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based on ACO, RS and information theory, where each individual in ACO starts
from the core features in RS, and entropy and mutual information are used to guide
the search of ACO during the evolutionary training process. Experiments show that
the proposed algorithm can be successfully used for feature selection and outperform
a GA-based algorithm and a tabu search-based algorithm, but the algorithm has not
been tested on datasets with a large number of features. Based on GP, Neshatian and
Zhang>® propose a filter-based multi-objective feature selection algorithm for binary
classification problems. They propose a cheap fitness function to improve the com-
putation efficiency and a tree depth control mechanism to allow GP to search space
with large subsets if necessary. The GP algorithm can be successfully used for feature
selection, but its performance was not compared with any other method.

Based on BPSO, Iswandy and Koenig®” develop a filter-based algorithm, which
employs different weights to linearly combine three objectives, which are evaluated
by three filter criteria, into a single fitness function. Results suggest that this algo-
rithm can outperform some other methods on several benchmark problems. Wang

1.'0 propose a single objective filter algorithm using an improved BPSO and RS.

et a
However, only one classification algorithm is used to evaluate the performance of the
selected features, which cannot show the claimed advantage that filter algorithms are
more general. In our previous work,” two filter-based approaches using PSO and
information theory are proposed, where entropy and mutual information are used to
evaluate the relevance of the selected features. Results show that the proposed
algorithms successfully reduce the number of features for classification and achieve
similar or better classification performance than using all features. Bae et al.'? apply
a dynamic swarm-based BPSO for feature selection, where RS is used to construct a
single objective fitness function. The K-mean algorithm is used to help the proposed
algorithm to handle continuous data. Results suggest that this approach can overcome
the premature convergence problem and shorten the computation time. However, the
number of features in the datasets used in Refs. 7 and 12 is relatively small.

In summary, most of the existing feature selection algorithms are single objective,
wrapper approaches, which are computationally more expensive and less general
than filter approaches. Meanwhile, the performance of the PRS for feature selection
has not been investigated in multi-objective feature selection. Therefore, the devel-
opment of using PSO and PRS for multi-objective feature selection is still an
open issue.

3. Proposed Multi-Objective Approach

Based on PSO and PRS, we propose a new single objective feature selection algo-
rithm (PSOPRSE) and a new multi-objective algorithm (MORSE). To test their
performance, two existing single objective feature selection algorithms (PSOPRS
and PSOPRSN) and one existing multi-objective algorithm (MORSN) as the base-
line are briefly described here which provides some background information for the
proposal of the new algorithms.
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When using RS for feature selection, a dataset can be regarded as an information
system I = (U, A), where all features can be considered as A in the RS. Based on the
equivalence relation described by A, U can be partitioned to Uy, Uy, Us, . .., U,,, where
n is the number of equivalent classes in the dataset. After feature selection, the
achieved feature subset can be considered as P € A. Therefore, the fitness of P can be
evaluated by how well P represents each target set in U, i.e., a class in the dataset.

3.1. Ewxisting algorithms: PSOPRS and PSOPRSN

PSOPRS. As discussed in Sec. 2.3, the definitions of lower approximation and
upper approximation limit the application of standard RS. Therefore, a feature se-
lection method (PSOPRS) based on PSO and PRS was proposed in Ref. 14. In
PSOPRS, for the target set U; in PRS, uplz] = % pp[z] quantifies the pro-
portion of [z]p is in Uy. apr ,Uy = {x | up[x] > a} defines the lower approximation of
P according to U,. [z]p does not have to completely contained in U;. o can be
adjusted to restrict or relax apr ,U; . Therefore, how well P describes each target in U
can be calculated by Eq. 11, which is the fitness function of PSOPRS. Equation (11)
essentially measures the number of instances that P correctly makes indistinguish-
able from others of the same classification.

Fitness,(P) = leﬁ%w, (11)

PSOPRSN. PSOPRS using PRS can avoid the problems caused by standard rough
set, but the number of features is not considered in Eq. (11) in PSOPRS. For the
same « value, if there are more than one feature subsets that have the same fitness,
PSOPRS does not search for the smaller feature subsets. Therefore, the number of
features was added into the fitness function to form another algorithm (PSOPRSN)
in Ref. 14. PSOPRSN aims to maximize the ability of the feature subset in separ-
ating different classes and also aims to minimize the number of features.

> it |lapr pU| H#features )

Fitness(P) = 1- L~ FiotalFeatures
itnessy (P) =y * 0] + (1 =) x ( #totalFeatures

(12)
where 7 € (0, 1] represents the relative importance of the feature subset’s ability in
terms of separating different classes. (1 — ) represents the importance of the number
of features. When v = 1.0, PSOPRSN is the same as PSOPRS.

3.2. New single objective algorithm: PSOPRSE

In PSOPRSN, the number of features is directly considered in the fitness function.
By adjusting the value of v, PSOPRSN is expected to find a smaller feature subset
and maintain or slightly reduce the classification performance. However, this might
be not achieved by PSOPRSN because of the nature of probabilistic rough set. In RS,
patterns in the datasets are extracted by the equivalence classes because they are
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used to determine the member of the lower and upper approximations of a class
(target set). A small number of features can describe a large number of equivalence
classes. For example, 12 binary features can define at most 1048576 (2!2?) equivalence
classes. However, there can be several thousands of small equivalence classes only
including very few instances. If one equivalence class contains a slightly larger
number of instances, it will dominate others. As a result, the obtained reduct will
only have the information that can identify this particular class. Therefore,
PSOPRSN can obtain a small reduct, but may potentially lose the generality and can
not perform well one unseen test data.

In order to solve the problem, we consider the size of the equivalence classes and
propose a new measure to minimize the number of features in the reduct,

||
Zare{the equivalence classes} JU]
# of equivalence classes ’

maximize the number of instances in each equivalence class. Based on this new

which aims to minimize the number of equivalence classes and

measure, we propose a new PSO-based single objective algorithm (PSOPRSE),
where Eq. (13) is used as the fitness function.

||
2221 |aprXi| Ewe{the equivalence classes} 107
[U] # of equivalence classes

Fitness3(P) = (13)

Note that, the two parts in Eq. (13) are related to each other and both of them
have the range of (0,1]. We treat them equally important and do not use any
weighting factor.

3.3. New multi-objective algorithm: MORSE

PSOPRSN and PSOPRSE combine the two main objectives of feature selection into
a single fitness function. However, v in PSOPRSN needs to be predefined and its best
value is problem-dependent. Therefore, a PSO and PRS-based multi-objective fea-
ture selection algorithm is needed. However, PSO was originally proposed for single
objective optimization. Based on the ideas of mutation, crowding and dominance,
Sierra and Coello®® proposed a multi-objective PSO approach, which is a continuous
algorithm and has achieved good performance. Since feature selection is a binary
problem, we extended it to a binary version of multi-objective PSO. We proposed a
multi-objective feature selection method (MORSN),"” which is based on PRS and the
extended binary multi-objective PSO. The two objectives in MORSN are to maxi-
mize the ability of the feature subset to separate different classes of instances, which

1
Z;‘ﬂ lapr Uil

is evaluated by S — and to minimize the number of features, which are the

two parts in Eq. (12) without using the predefined ~.

As discussed in Sec. 3.2, the number of features as a measure in the fitness
function might not work well in the situation of using PRS for feature selection. We
propose another multi-objective feature selection algorithm (MORSE) based on PSO
and PRS, where the two objectives are to maximize the ability of the feature subset
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n
Z i1 lapr pUil

to separate different classes of instances, evaluated by S and to minimize

the number of equivalence classes, which are the two parts in Eq. (13) without using
the predefined 7.

Algorithm 1 shows the pseudo-code of MORSN and MORSE. A leader set, a
crowding factor, a binary tournament selection, two mutation operators, and
parameters determination are important mechanisms employed by MORSN and
MORSE to improve their performance. The use of the leader set, the crowding factor
and the binary tournament selection is to address the key problem in extending single
PSO to multi-objective PSO, which is how to determine the global best, gbest, for
each particle. The leader set is used by MORSN and MORSE to store the

Algorithm 1: Pseudo-Code of MORSN and MORSE

1 begin

2 split the instances to a Training set and a Test set;

3 initialise the position, x, and the velocity, v, of each particle;

4 split the swarm into three sub-swarms;

5 initialise the leader set, LeaderSet

6 calculate the crowding distance of each solution in LeaderSet;

7 while Maximum Iteration has not been reached do

8 for i=1 to Swarm Size do

9 use the binary tournament selection to choose two solutions from
LeaderSet;

10 set the less crowded solution as the gbest for particle 4;

11 calculate v; according to Equation 1;

12 calculate z; according to Equation 2;

13 apply mutation operators if applied;

14 evaluate two objective values of each particle; /* the relevance
(evaluated by %) and the number of features
in MORSN or the number of equivalent classes in MORSE
*/

15 update the pbest of particle ¢;

16 end

17 identify the non-dominated solutions (feature subsets) and update

LeaderSet;

18 evaluate the crowding distance of each member in LeaderSet;

19 end

20 calculate the classification error rate of the final solutions on the test set;

21 return the obtained solutions, i.e., the selected individual features, the

number of selected features and the training and testing classification

error rates;
22 end
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nondominated feature subsets (solutions) obtained by the whole swarm from where
the gbest of each particle is chosen. As the number of nondominated feature subsets
may increase fast, the maximum size of the leader set is defined as the total number
of particles in the swarm. When a larger number of nondominated solutions are
obtained, a crowding factor is applied to determine which of them should be put and
kept in the leader set over future iterations. When selecting a gbest, MORSN and
MORSE employs the binary tournament selection to choose two feature subsets from
the leader set and the less crowded one will be selected as the gbest.

In order to avoid the loss of diversity of the population, MORSN and MORSE use
two different mutation operators, which are uniform mutation and nonuniform
mutation. In uniform mutation, a decision variable has a fixed range of variability
over iterations while in nonuniform mutation, the variability range becomes smaller
and smaller over iterations. Uniform mutation facilitates global search (exploring)
capability while nonuniform mutation facilitates local search (exploiting) ability.
The use of both mutation operators can improve the search ability of the algorithms
by balancing the local and global search abilities. To apply these two operators, when
initializing the population, particles in MORSN and MORSE are divided to three
sub-swarms. The uniform mutation operator is applied to the first sub-swarm with
an attempt to ensure the global search capability to quickly explore the search space.
The nonuniform mutation operator is applied to the second sub-swarm to maintain
the local search capability to exploit better solutions. The situation of not using any
mutation operator is also considered and applied to the third sub-swarm. These three
sub-swarms are not independent to each other. They share one leader set to choose
gbest for each particle in the sub-swarm. This allows them to communicate with each
other and share the success of different behaviors.

In MORSN and MORSE, instead of using fixed values, w, ¢; and ¢, are set as
random numbers in different ranges. w is randomly chosen from [0.1, 0.5], and ¢; and
¢y are randomly selected from [1.5, 2.0]. This is employed as a convenient way to
handle the parameter tuning issue for test problems of varying difficulty.

4. Design of Experiments

In order to examine the performance of the proposed algorithms, we first choose six
discrete datasets (listed in Table 1) from UCI machine learning repository™ in the

Table 1. Datasets.

Dataset # Features  # Classes  # Instances
Lymphography (Lymph) 18 4 148
Spect 22 2 267
Dermatology 33 6 366
Soybean Large 35 19 307
Chess 36 2 3196
Statlog 36 6 6435
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experiments. All the six datasets are categorical data because rough set theory only
works on discrete values. They have different number of instances, features and
classes, which are used as representative examples of the problems that the proposed
algorithms will address.

In each dataset, 70% of the instances are chosen as the training set and the other
30% are the test set. The filter algorithms first run on the training set in order to
select a feature subset(s). The performance of the selected feature subset(s) is then
evaluated by a learning/classification algorithm on the unseen test set. Note that, as
filter approaches, the feature selection (evolutionary training) process of the pro-
posed algorithms is independent of the learning algorithm and they only run on the
test set to evaluate the classification performance of the obtained subsets of features.
Almost all learning algorithms can be used here. In order to investigate whether filter
feature selection methods are general, three commonly used learning algorithms,
decision trees (DT), Naive Bayes (NB) and K-nearest neighbor algorithms with
K =5 (5NN), are used in the experiments.

All the « values should be larger than 0.5, because the lower approximation in
probabilistic rough set theory should have the majority (at least have half) of the
instances that belong to the target set. Based on our preliminary work,' o = 0.8 is
chosen in the experiments for all methods.

In all the algorithms, each particle is represented by a binary string, whose length
is the total number of features in the dataset, which also represents the dimension of
the solution space. “1” in the binary string indicates that the corresponding feature is
selected and “0” indicates that this feature is removed. The fully connected topology
is used in BPSO, the population size is 30 and the maximum iteration is 200 in all
the algorithms. In the three single objective algorithms, PSOPRS, PSOPRSN
and PSOPRSE, the swarm size is 30, the fully connected topology is used in PSO.
w = 0.7298, vyax = 6.0, ¢; = ¢, = 1.49618.* In PSOPRSN, two different v values (0.9
and 0.5) are used to represent the different relative importance of the classification
performance and the number of features in the fitness function is 12. In the two
multi-objective algorithms, MORSN and MORSE, w is randomly chosen from
[0.1,0.5], and ¢; and ¢, are randomly selected from [1.5, 2.0]. The mutation rate is
1/n, where n is the total number of features in the dataset. These values are based on
the settings of an equivalent algorithm in the literature.*® Each algorithm has been
conducted for 50 independent runs on each dataset.

Wilcoxon test is performed with the significance level of 0.05 to test the results of
PSOPRSE with that of using all features, PSOPRS, and PSOPRSN. The Wilcoxon
test may need to be performed twice to compare the classification performance of two
methods, e.g., PSOPRSE and PSOPRS. In the first test, the null hypothesis is that
the classification performance of the two methods are similar to each other. If the
p-value is equal or larger than 0.05, the null hypothesis is true, i.e., there is no
significant difference between the classification performance of the two methods. If
the p-value is smaller than 0.05, the null hypothesis is not true and the second test
needs to perform. The null hypothesis in the second test is that the accuracies of
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PSOPRSE are significantly higher than PSOPRS. If the p-value is smaller than 0.05,
the accuracies of PSOPRSE are significantly lower than PSOPRS. Otherwise, the
accuracies of PSOPRSE are significantly higher than PSOPRS.

Two traditional filter feature selection algorithms (CfsF and CfsB) in Weka'’ are
used for comparison purposes in the experiments and the classification performance
is calculated by DT. In order to further investigate the performance of the proposed
algorithms, we will also use six continuous datasets®® with a large number of features
in the experiments, which are listed in Sec. 6. The six continuous datasets are dis-
cretized using Weka and used in the experiments. The proposed approaches are
examined and compared with other methods on these datasets.

5. Results and Discussions

In this section, first, the results of three single objective algorithms, PSOPRS,
PSOPRSN and PSOPRSE are discussed. Second, we compare the performance of
PSOPRSN with that of MORSN. Third, we discuss the results of PSOPRSE and
MORSE. Fourth, we compare the two multi-objective algorithm, MORSN with
MORSE. Finally, the results of these five algorithms are compared with two tradi-
tional filter feature selection algorithms, CfsF and CfsB. The five algorithms are
further tested on the discretized continuous datasets with a large number of features.

5.1. PSOPRSE, PSOPRS and PSOPRSN

Table 2 shows the results of PSOPRS and PSOPRSN with v = 0.9 and v = 0.5, and
PSOPRSE. The classification performance (error rates) of the selected feature sub-
sets were evaluated by DT, NB and 5NN on the test set of each dataset. In Table 2,
“All” means that all of the available features are used for classification. “Size” means
the average number of features selected in the 50 independent runs. “Mean”, “Best”
and “StdDev” represent the mean, the best and the standard deviation of the clas-
sification error rate of the 50 feature subsets obtained by each algorithm in the 50
independent runs. The results of the Wilcoxon tests are shown in the last column,
where “4” or “—” means the classification performance of PSOPRSE is significantly
better or worse than that of “All”, PSOPRS, or PSOPRSN. “=" means there is no
significant difference between their classification performance.

PSOPRS. According to Table 2, in almost all cases, PSOPRS selected around two
thirds of the available features. By using the selected features, DT, NB and 5NN
achieved similar or better classification performance than using all the available
features. Although in some cases, the average classification error rate of the obtained
feature subsets is slightly higher than that of all features, the best classification
performance is better than that of all features in almost all cases. The results suggest
that PSOPRS based on BPSO and probabilistic rough set theory can successfully
reduce the number of features needed for classification.
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PSOPRSN. According to Table 2, by considering the number of features in the
fitness function, PSOPRSN further reduced the number of features selected.
PSOPRSN with a small v selected a smaller number of features than with a relatively
large . The reason is that a smaller v means the number of features in PSOPRSN is
more important than a relatively large v. However, when the number of features
decreases, the classification performance also decreases. When v = 0.5, PSOPRSN
could not improve the classification performance on any of the three learning algo-
rithms. This is consistent with our hypothesis discussed in Sec. 3.2. Without con-
sidering the size of the equivalence class, PSOPRSN could reduce the number of
features in the reduct, but also reduce the generality of the reduct. Meanwhile, the
value of v needs to be predefined. A larger v was supposed to represent that the
classification performance is more important than a smaller 7, but the results in
Table 2 show that the classification performance of v = 0.9 is not always better than
that of v = 0.5, such as in the waveform dataset. The reason might be that the
PSOPRSN with v = 0.5 further remove some redundant features, which also reduce
the complexity of the classification algorithms. This suggests that the parameter -,
which is to balance the relative importance of the classification performance and the
number of features, is difficult to determine in advance. It also indicates that it is
necessary to develop a multi-objective algorithm to solve feature selection problems.

PSOPRSE. From Table 2, we can observe that in almost all cases, PSOPRSE
selected half or less than half of the available features and improved the classification
performance over using all the available features. Although the average classification
performance of the selected features is slightly worse than that of all features in some
cases, their best classification performance is superior to that of all features in almost
all cases. The results suggest that PSOPRSE considering both the classification
power of the selected features and the number of equivalence classes can successfully
select a smaller number of relevant features and achieve similar or improve the
classification performance of all features.

Comparisons Between PSOPRS, PSOPRSN and PSOPRSE. The results
show that PSOPRSE outperformed PSOPRS in terms of both the number of features
and the classification performance in most cases. For example, in the Dermatology
dataset using DT as the classification algorithm, PSOPRS selected around 21 fea-
tures from the 34 available features and obtained a classification error rate of 13.99%
and PSOPRSE further reduced the average number of features to 9.87 and reduced
the classification error rate to 7.92%. This suggest that, by considering the number of
equivalence classes in the fitness function, PSOPRSE can further reduce/remove
some redundant or irrelevant features but keep the classification power of the
remaining features to maintain or even increase the classification performance of
PSOPRS.

Both PSOPRSN and PSOPRSE consider the classification power of the features

Z;;l lapr Uil

represented by = — and the number of features, which is represented by the
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number of features in PSOPRSN and by the number of equivalence classes in
PSOPRSE. Compared with PSOPRSN, one advantage of PSOPRSE is that
PSOPRSE does not need to predefine the parameter 7. PSOPRSN achieved a
smaller number of features, for all the three learning algorithms, but the classification
performance in PSOPRSN is much worse than in PSOPRSE in most cases. The main
reason is that without considering the size of the equivalence classes, PSOPRSN
obtained a small number of features, but it lost the generality and could not achieve
good performance on unseen test data. Since the classification performance is usually
more important than the number of features in feature selection problems,
PSOPRSE can be regarded as a better feature selection approach than PSOPRSN.

Generally, PSOPRS, PSOPRSN and PSOPRSE based on PSO and probabilistic
rough set theory can be successfully used for feature selection. PSOPRSE that uses
the number of equivalence classes to represent the number of features can achieve
better performance than PSOPRS and PSOPRSN. However, it is unknown whether
more features can be removed and the classification performance can still be main-
tained or even increased. Meanwhile, as shown by PSOPRSN, the parameter to
balance the relative importance of the number of features and the classification
performance is difficult to define in advance. Therefore, it is needed to treat a feature
selection problem as a multi-objective task.

5.2. Results of MORSN

In the experiments, single objective algorithms (PSOPRSN and PSOPRSE), only
obtained a single feature subset/solution in each independent run (50 solutions in the
50 runs). Multi-objective algorithms (MORSN and MORSE) achieved a set of non-
dominated solutions in each independent run. To compare the performance of
PSOPRSN with MORSN, the 50 feature subsets resulted from PSOPRSN are pre-
sented. The 50 sets of solutions obtained by MORSN are stored in a union. The
classification performance of the feature subsets, which have the same number (e.g., ¢)
of features, are averaged. A new set of average solutions named the average Pareto
front are obtained, where each single solution is constructed by assigning the average
classification performance to the corresponding number c¢. Meanwhile, the non-
dominated solutions in the union set are called the best Pareto front. Both the
average and best Pareto fronts are presented here and compared with the solutions
obtained by PSOPRSN.

Figure 1 shows the results of MORSN, PSOPRSN with v = 0.5 and v = 0.9 on the
test sets, where DT was used as the classification algorithm. In each figure, each
chart shows the solutions of one dataset used in the experiments, the horizontal axis
and the vertical axis show the number of features and the classification error rate,
respectively. The total number of features and the classification error rate using all
the available features are shown in the brackets on the top of each chart. The results
of using 5NN or NB as the classification algorithm show a similar pattern to that of
using DT and the detailed results are not presented here to save space. All the
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detailed results of using 5NN and NB in this paper can be seen from https://ecs.
victoria.ac.nz/Groups/ECRG/OunlineSupplimentaryMaterials.

In Fig. 1, “MORSN-AvePar” and “MORSN-BestPar” stand for the average and
the best Pareto fronts resulted from MORSN over the 50 independent runs. v = 0.5
and v = 0.9 show the results of PSOPRSN with v = 0.5 and v = 0.9, respectively. In
some datasets, the feature subsets evolved by PSOPRSN in different runs may have
the same number of features and same classification performance, which are plotted
at the same point in the figure. Therefore, although all the 50 solutions are plotted for
v=0.5 (v =0.9), some charts may have fewer than 50 distinct points.

MORSN Using DT. According to Fig. 1, in most cases, the average Pareto front of
MORSN (MORSN-AvePar) contains two or more solutions, which included a
smaller number of features and obtained a similar or lower classification error rate
than using all the available features. Note that, for a certain number (e.g., ¢), there
are a variety of combinations of ¢ features, but they achieved different classification
performance. In different runs, MORSN may obtain a number of feature subsets all of
which includes ¢ features, but different classification error rates. After averaging
their classification performance, the solution with ¢ features in the average Pareto
front may have worse (better) classification performance than with ¢ —1 (¢+1)
features. Therefore, some solutions in the average Pareto front may be dominated by
some others, although the feature subsets achieved in each run are nondominated to
each other. This also happens when using 5NN or NB as the classification algorithms
and in the results of MORSE in Sec. 5.3.

According to Fig. 1, in all datasets, the nondominated solutions of MORSN-
BestPar selected one or more feature subsets, which included less than one third of
the features and reduced the classification error rate of using all features.

Comparisons Between MORSN and PSOPRSN Using DT. In most datasets,
solutions in AvePar in MORSN achieved similar results to both v = 0.5 and v = 0.9
in terms of the number of features and the classification performance, but AvePar
included more different sizes of feature subsets. In five of the six datasets, BestPar
achieved better classification performance and a smaller number of features than
both v = 0.5 and v = 0.9, especially in the datasets with a larger number of features,
such as the Statlog and Waveform datasets.

Figure 1 shows that MORSN can further reduce the number of features and
increase the classification performance, which indicates that MORSN as a multi-
objective approach can explore the search space of a feature selection problem better
than the single objective algorithm, PSOPRSN.

MORSN Using NB and 5NN. The results of MORSN and PSOPRSN with
v = 0.5 and v = 0.9 using 5NN and NB show similar patterns to those of using DT.
In most cases, MORSN selected a smaller feature subset and decreased the classifi-
cation error rate over using all features. MORSN outperformed PSOPRSN in terms
of both the number of features and the classification performance, especially on the
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datasets with a large number of features. The detailed descriptions and discussions
are not presented to save space.

Note that, the results also show that the performance of MORSN and PSOPRSN
are consistent when using different classification algorithms, which suggests that
MORSN and PSOPRSN with probabilistic rough set as the evaluation criteria are
general to these three classification algorithms.

5.3. Results of MORSE

Figure 2 shows the experimental results of MORSE and PSOPRSE on the test sets,
where DT was used as the classification algorithm.

Results of MORSE Using DT. According to Fig. 2, in almost all cases (except for
the Waveform dataset), the average Pareto front, MORSE-AvePar contains more
than two solutions, which included a smaller size of feature subset and maintained or
even increased the classification performance over using the full set of features. In all
datasets, MORSE-BestPar obtained at least one feature subset, which included less
than one third of the features and decreased the classification error rate of using all
the available features. For example, in the Waveform dataset, MORSE-BestPar
included a feature subset with only 8 features from the available 40 features. With
the selected 8 features, DT obtained higher classification accuracy than with all the
40 features. The results suggest that MORSE as a multi-objective feature selection
algorithm guided by the two objectives is able to explore the Pareto front effectively
to select small feature subsets and obtain better classification performance than
using all the available features.

Comparisons Between MORSE and PSOPRSE Using DT. According to
Fig. 2, in all cases, MORSE-AvePar achieved similar or better results than
PSOPRSE. MORSE-BestPar outperformed PSOPRSE in terms of both the number
of features and the classification performance. In particular, in the Waveform
dataset, the numbers of features in PSOPRSE are around 10 and around 27, which
means in some runs, PSOPRSE is stagnation in local optima of having a large
number of features (around 27). MORSE as a multi-objective algorithm, can over-
come this problem, and all the feature subsets have less than 10 features. This
suggests that MORSE as a multi-objective algorithm can better explore the solution
space of a feature selection problem to achieve more and better solutions than the
single objective algorithm, PSOPRSE.

MORSE and PSOPRSE Using NB and 5NN. In almost all cases, NB and 5NN
using the feature subsets selected by MORSE achieved a similar or lower classifi-
cation error rate than using the full set of features. MORSE outperformed PSOPRSE
regarding the size of the feature subsets and the classification performance. This
further shows the superior performance of the multi-objective algorithm, MORSE,
over the single objective method, PSOPRSE. The results also suggest that MORSE
and PSOPRSE show a similar pattern when using DT, NB or 5NN to evaluate the
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classification error rate. This suggests that MORSE and PSOPRSE as filter feature
selection algorithms are general to these three classification algorithms.

5.4. Comparisons between MORSN and MORSFE

In this section, the results of MORSN and MORSE using DT as the classification
algorithm are used as an example to compare the performance of MORSN and
MORSE, which are shown in Fig. 3. The results of using NB and 5NN as the clas-
sification algorithms show similar patters as that of using DT.

According to Fig. 3, MORSN-AvePar and MORSE-AvePar achieved similar
results in terms of the size and the classification performance in most cases, but
MORSE-AvePar achieved a much lower classification error rate than MORSN-
AvePar in the Dermatology and Soybean datasets. In most cases, MORSN-BestPar
and MORSE-BestPar selected a similar number of features, but MORSE-BestPar
obtained slightly better classification performance than MORSN-BestPar. In almost
all cases, the lowest classification error rate is achieved by MORSE-BestPar.

MORSN and MORSE share the same parameter settings. The only difference is
that MORSN uses the number of features as one of the two objectives while MORSE
uses the number of equivalence classes to represent the number of features. Their
different classification performance is mainly caused by the different evaluation
criteria for the number of features. By further inspection and comparisons, we ob-
serve that the number of features selected by MORSN and MORSE are similar in
most cases, but in almost all cases, they selected different combinations of individual
features. Although MORSN selected a small number of features, these features can
describe a large number of equivalence classes. There could be thousands of small
equivalence classes, which only include one or two instances. If there is another
equivalence class, which has slightly more instances, this class will dominate others
and the obtained feature subsets will only contain information that can identify this
particular class. Therefore, in this situation, without considering the size of the
equivalence classes, the feature subsets selected by MORSN may lose generality and

perform badly on unseen test data. Therefore, the classification performance of
MORSE is usually better than MORSN.

5.5. Comparisons with two traditional algorithms

Table 3 shows the results of CfsF and CfsB for feature selection, where DT was used
for classification. Comparing the results of the three single objective algorithms,
PSOPRS, PSOPRSN and PSOPRSE with CfsF and CfsB, these three algorithms
achieved better classification performance than CfsF and CfsB in five of the six
datasets, although they selected a slightly larger number of features in some cases. In
all datasets, the two multi-objective algorithms, MORSN and MORSE outperformed
CfsF and CfsB in terms of the size of the feature subsets and the classification
performance. The comparisons show that the five algorithms using PSO as the search
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Table 3. Results of CfsF and CfsB with DT as the learning algorithm.

Spect Dermatology Soybean Chess Statlog Waveform
Dataset Error Error Error Error Error Error
Method ~ Size (%)  Size (%) Size (%) Size (%) Size (%) Size (%)
CtsF 4 30 17 12.73 12 19.51 5 21.9 5 28.38 32 28
CfsB 4 30 17 12.73 14 14.63 5 21.9 5 28.38 32 28

technique and using probabilistic rough set as the evaluation criteria can better solve
the feature selection problems than CfsF and CfsB.

5.6. AvePar versus BestPar

Both AvePar and BestPar can show the performance of a multi-objective algorithm,
but BestPar is a more appropriate way to present the results in feature selection
tasks due to the following two reasons.

The first reason is that a solution in AvePar is not necessarily a complete/
meaningful solution for a feature selection task. Each average solution is formed by
the number m and the average classification error rate of all feature subsets of size m
in the union set. However, feature selection problems do not only involve the number
of features and the classification performance, but also involve the selected individual
features. There can be many feature subsets with m features, but with different
combinations of m features. So strictly speaking, the combinations of individual
features cannot be averaged. Therefore, the solutions in AvePar is not a complete
solution and should not be sent to users. The second reason is that BestPar involves a
simple further selection process, which provides a better set of nondominated solu-
tions to users. By selecting only the nondominated solutions from the union set,
BestPar usually has a small number of solutions and the solutions usually have
smaller numbers of features than AvePar solutions. It therefore provides fewer but
better solutions to the users and reduces their cost for selecting a single solution.
Meanwhile, each solution in BestPar is a complete solution of a feature selection
problem. Multiple solutions with the same number of features and the same classi-
fication performance are presented at the same point in the figures, but all of them
are complete solutions. Therefore, for a certain feature number m, BestPar could
provide different combinations of individual features to users. Accordingly, BestPar
is more appropriate than AvePar to show the performance of a multi-objective
feature selection algorithm.

6. Further Experiments on Continuous Datasets

All the discrete datasets we can find in UCI and other rough set related papers!®:!2-14

have a small number of features. To further test the performance of the five algo-
rithms, we use a data discretization technique to pre-process the continuous data to
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Table 4. Continuous datasets.

Dataset # Features  # Classes  # Instances
Australian (Austral.) 14 2 690
German 24 2 1000
World Breast Cancer-Diagnostic (WBCD) 30 2 569
Tonosphere (Ionosph.) 34 2 351
Sonar 60 2 208
Musk Version 1 (Musk1) 166 2 476
Semeion 256 2 1593
Madelon 500 2 4400

discrete data. Any discretization technique can be used here. We choose a simple
technique which is the filter discretization technique in Weka to make this process
fast. The options in the filter discretization Weka is set as default. Eight contin-
uous datasets listed in Table 4 were chosen from UCI and discretized. They were
selected to have a large number of attributes (up to 500) and different numbers of
classes and instances. Note that, after discretization, the classification perfor-
mance of using all the discretized features on each dataset is still similar to that of
using all the original continuous features. Since the results of using DT, NB and
5NN show similar patterns, only the results of DT are presented here. Table 5
shows the experimental results of the three single objective algorithms, PSOPRS,
PSOPRSN and PSOPRSE. Figure 4 show the experimental results of MORSN and
MORSE.

6.1. Results of PSOPRS, PSOPRSN and PSOPRSFE

According to Table 5, it can be observed that in almost all cases, PSOPRS selected
around two thirds of the available features and using the selected features, DT
achieved similar or better (in most cases) classification performance than using all
the original features. PSOPRSN further reduced the number of features and
achieved similar (slightly better or worse) classification performance than using all
the original features, which is worse than the classification performance of PSOPRS.
In most cases, PSOPRSE maintain the classification performance achieved by
PSOPRS, but further reduce the number of features selected. This is consistent with
their results on the discrete datasets. The results suggest that the three single ob-
jective algorithms can also be successfully used for feature selection on the datasets
with a large number of features.

6.2. Results of MORSN and MORSE

According to Fig. 4, we can observe that in most cases, the average Pareto fronts of
MORSN (MORSN-Ave) and MORSE (MORSE-Ave) included a smaller number of
features. DT using the small number of features improved the better classification
performance over using all the available features. In all datasets, MORSN-Best and
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MORSE-Best achieved better classification performance than using all the original
features. In most cases, MORSE-Ave achieved slightly better classification perfor-
mance than MORSN-Ave and MORSE achieved better classification performance
than MORSN, although the number of features in MORSE is slightly larger than
MORSN. This is consistent with the results on the discrete datasets and our hy-
pothesis in Sec. 3.2.

Comparing the results in Fig. 4 with that in Table 5, it can be seen that in almost
all cases, MORSN and MORSE outperformed PSOPRS, PSOPRSN and PSOPRSE
in terms of both the size of the selected feature subsets and the classification per-
formance. The results suggest that both MORSN and MORSE can be successfully
applied to address feature selection problems on the discretized continuous datasets
with a large number of features.

The results also show that the performance of PSOPRS, PSOPRSN PSOPRSE,
MORSN and MORSE are general to the three different classification algorithms
(DT, NB and 5NN). This further demonstrated that these five filter algorithms are
general to the three different classification algorithms.

Note that, the classification performance presented in Table 5 and Fig. 4 were
obtained by using the selected features on the discretized continuous datasets. We
also further tested the classification performance of the selected features on the
original continuous datasets and the results show that in most cases, the three
classification algorithms using the selected features (in continuous data) can achieve
similar or even better classification performance than using all the continuous fea-
tures. This indicates that although PSOPRS, PSOPRSN PSOPRSE, MORSN and
MORSE were designed for discrete datasets, they can be easily used for continuous
datasets by a simple discretization step.

6.3. Further comparisons with existing methods

To further investigate the performance of the proposed algorithms, three existing
feature selection algorithms, including two single objective filter algorithms,>*°
a filter-based multi-objective algorithm (CMDfSE),*! are used for comparisons.

The two single objective algorithms used fuzzy set theory with PSO?*° and with
GA?* for feature selection, where one of the two datasets used in the experiments
is the Sonar dataset. Comparing the results on the Sonar dataset, MORSE

achieved better classification performance than the two algorithms proposed in the
34,35

and

literatures.

CMDfsE*! is a filter-based multi-objective algorithm using PSO and information
theory. There are four datasets (Spect, Dermatology, Soybean and Chess) used in
both this paper and in the literature.! Comparing the results, it can be observed
that MORSE generally achieved similar performance to that of CMDfSE in terms of
both the classification performance and the number of features, but the graphs
presenting the results of AvePar and BestPar in MORSE are less varied than that of
CMDfsE.
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7. Conclusion

The overall goal of this paper was to propose a filter-based multi-objective feature
selection approach based on PSO and PRS. The goal was successfully achieved by
developing two filter-based multi-objective methods (MORSN and MORSE). PSO
as a powerful global search technique is considered to address the main challenge of
having a large search space in feature selection problems. More importantly, the
employed multi-objective PSO algorithm in MORSN and MORSE uses mutation
operators and a crowding distance measure, which can maintain the diversity of the
swarm to avoid premature convergence. This is highly important in feature selection
problems, where the fitness landscape has many local optima. Meanwhile, PRS can
properly measure the relevance between a group of features and the class labels,
which is a key factor in filter feature selection approaches. The powerful search
ability of the multi-objective PSO and the proper PRS-based measure lead to the
good performance of MORSN and MORSE, which outperformed a new single ob-
jective algorithm, two existing single objective algorithms and two traditional
methods. Furthermore, the new PRS-based measure for minimization of the number
of features in MORSE considers the number of equivalence classes, which can avoid
the problem of selecting a small feature subset but losing generality. This measure
leads to the better classification performance in MORSE than in MORSN. The
results on both discrete datasets and the continuous datasets with a large number of
features demonstrate that the proposed algorithms as filter approaches are general to
the different classification algorithms (i.e., DT, NB and 5NN).

This study demonstrates that multi-objective PSO and PRS can address feature
selection problems to obtain a set of nondominated solutions more effectively than a
single solution generated by the three single objective algorithms. This work also
highlights that when using PRS for feature selection, considering the number of
equivalence classes instead of the number of features, can further increase the clas-
sification performance without significantly increasing the size of the selected feature
subset. Moreover, the use of continuous datasets in the experiments not only shows
that the proposed algorithms can be applied to problems with a large number of
features, but also suggests that rough set theory can function well on such large scale
problems. The observations from this research show the success of using PSO and
PRS on feature selection problems. In future, we will further explore the potential of
PSO and PRS to better address feature selection tasks.
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