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Feature selection is an essential step in various tasks, where filter feature selection algorithms are increas-
ingly attractive due to their simplicity and fast speed. A common filter is to use mutual information to es-
timate the relationships between each feature and the class labels (mutual relevancy), and between each
pair of features (mutual redundancy). This strategy has gained popularity resulting a variety of criteria
based on mutual information. Other well-known strategies are to order each feature based on the near-
est neighbor distance as in ReliefF, and based on the between-class variance and the within-class vari-
ance as in Fisher Score. However, each strategy comes with its own advantages and disadvantages. This
paper proposes a new filter criterion inspired by the concepts of mutual information, ReliefF and Fisher
Score. Instead of using mutual redundancy, the proposed criterion tries to choose the highest ranked
features determined by ReliefF and Fisher Score while providing the mutual relevance between features
and the class labels. Based on the proposed criterion, two new differential evolution (DE) based filter
approaches are developed. While the former uses the proposed criterion as a single objective problem
in a weighted manner, the latter considers the proposed criterion in a multi-objective design. Moreover,
a well known mutual information feature selection approach (MIFS) based on maximum-relevance and
minimum-redundancy is also adopted in single-objective and multi-objective DE algorithms for feature
selection. The results show that the proposed criterion outperforms MIFS in both single objective and
multi-objective DE frameworks. The results also indicate that considering feature selection as a multi-
objective problem can generally provide better performance in terms of the feature subset size and the
classification accuracy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

the original low-level features to a small number of high-level fea-
tures, which is better suited for learning process. However, feature

Classification is typically referred as a supervised learning task construction cannot be easily interpreted since the physical mean-

in machine learning that infers a relationship between features
(characteristics of the dataset) and the class labels. However, the
presence of a large number of features often leads to challenges
such as overfitting, high computational complexity and low inter-
pretability of the final model [1]. One reason for this is widely
known as the curse of dimensionality that arises according to the
ratio between the number of features and the number of instances.
The most common way to alleviate such problems is to reduce the
number of features under consideration using either feature con-
struction or feature selection [1,2].

Feature construction aims to transform the dataset from the
high dimensional space to a lower dimensional space by combining
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ing of the original features cannot be retrieved. Feature selection
aims to choose a feature subset from the available original fea-
tures of a dataset, which better contributes to the learning process.
In other words, the aim of feature selection is to discard features
that are detrimental to the subsequent learning process [3,4]. Fea-
ture selection approaches can be categorized into wrappers, em-
bedded and filters based on the evaluation criteria [5]. Wrappers
use a learning algorithm (classifier or regression) as a part of eval-
uation to measure the goodness of the chosen feature subset. Al-
though wrappers are among the most preferred feature selection
approaches, there are at least four drawbacks [6]: 1) high com-
putational complexity, 2) the optimal feature subset for a learner
may not be optimal for a different learner, 3) determining the
user-specified parameters of the learner may be time consuming,
and 4) inherent learner limitations (e.g. some learners cannot deal
with multi-class classification). Embedded approaches incorporate
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knowledge about the specific structure of the classification algo-
rithm used by a certain learning algorithm. Embedded approaches
are computationally less intensive than wrappers. However, they
still have high computational complexity and the selected feature
subset is dependent on the learning algorithm. Due to these limi-
tations, we specifically focus on filters in this study. Wrapper and
embedded approaches are not the focus of this paper and will not
be further discussed here. Recent works on wrappers and embed-
ded approaches can be found in [5,7-12].

Filters evaluate feature subsets based on some predefined met-
rics or information content (e.g. statistical tests) instead of using
the learners, i.e., there exists no dependence between the learner
(or classifier) and the selected features. Accordingly, filters are
more general than wrapper and embedded approaches. In the liter-
ature, there have been a wide range of criteria and metrics used for
the evaluation of feature subsets such as inconsistency rate, infer-
ence correlation, fractal dimension, distance measure and mutual
information. Among them, mutual information can be treated as
the most preferred and widely investigated for filters due to two
main properties [6]: 1) measuring different kinds of relationship
between random variables and 2) preserving stability under trans-
formations in the feature space that are invertible and differen-
tiable. Based on mutual information, Battiti [13] proposed the mu-
tual information feature selection (MIFS) method including three
fundamental points: 1) features are categorized as relevant and re-
dundant; 2) an heuristic function is used to select features con-
trolling the tradeoff between relevance and redundancy; and 3) a
greedy search is applied. Other representative examples of mutual
information based approaches are maximum relevance and mini-
mum redundancy (mRmR) [14], uniformly improved MIFS (MIFS-
U) [15], and conditional mutual information maximization (CMIM)
[16]. Although they are simple to implement and reduce the fea-
ture subset size, a selected feature cannot be later removed or
changed due to their static greedy search mechanism.

To address these problems, researchers have tried to design mu-
tual information based filter approaches with evolutionary compu-
tation (EC) techniques such as particle swarm optimization (PSO)
[17], genetic algorithms (GAs) [18], ant colony optimization (ACO)
[19] and differential evolution (DE) [20] due to their global search
ability. Besides such representative ones, recently developed EC
techniques such as artificial bee colony [21], and bacterial colony
optimization [22] have also been investigated to obtain better fea-
ture subsets for the classification.

However, the potential of EC for feature selection has not been
fully investigated. For example, filter based approaches are often
computationally cheap, but there is much less work on filters
than on wrappers because the fitness functions based on filters
are more difficult to design. The most widely used filter measure
is mutual information. Although EC with mutual information has
achieved better results than classical greedy search, most of such
methods just directly adopted existing heuristic/fitness functions
as the objective without significant or major improvement, which
may limits their performance [5]. Furthermore, although feature
selection can be considered as a multi-objective problem, there are
only a few works on multi-objective filter feature selection [5,23].
Developing good filter based feature selection methods is still an
open issue.

Among EC methods, DE is a relatively recent but highly popu-
lar approach. As pointed in [24], DE has been proven to be better
than other EC methods in a wide range of problems. Compared to
most other EC methods, DE is also much simpler and straightfor-
ward to implement, which allows practitioners from other fields,
who may not be experts in programming, to implement and tune
it to solve the domain-specific problem. Furthermore, DE only has
a few parameters to control and the space complexity is low as
well. These are particularly important for feature selection since it

is a multi-disciplinary area involving researchers from many differ-
ent fields, but work on DE for feature selection is much less than
other EC methods, e.g. GAs and PSO [5]. Furthermore, feature se-
lection is essentially a multi-objective approach, maximizing the
classification accuracy and minimizing the number of features [25].
EC methods are particularly good for solving multi-objective prob-
lems since their population based mechanism can produce mul-
tiple trade-off solutions in a single run [26]. Despite the supe-
rior performance of multi-objective DE, there has been almost no
work exploring the potential of DE for multi-objective filter feature
selection.

1.1. Goals

The overall goal of this paper is to develop filter based feature
selection approaches based on information theory, feature rank-
ing and EC techniques to search for a set of non-dominated so-
lutions (feature subsets) yielding a smaller number of features
and a similar or even better classification performance on the K-
nearest neighbor algorithm than the case that all features are used.
To achieve this goal, a novel filter evaluation criterion (named
MIRFES) based on the concepts of mutual relevance, RelifF [27] and
Fisher Score [28] is proposed, and using this proposed criterion,
the standard DE and multi-objective DE (MODE) based feature se-
lection approaches are developed. Furthermore, a widely used ex-
isting filter based criterion (MIFS) is also redesigned as fitness
function for single objective and multi-objective DE to develop fil-
ter based approaches. These four developed feature selection ap-
proaches will be examined and evaluated on benchmark problems
of varying difficulty. Specifically, we will investigate

the performance of the four algorithms (i.e. single objective and
multi-objective DE approaches based on MIRFFS and MIFS) on
reducing the number of features and improving the classifica-
tion performance over using all features,

the performance of the single objective DE approach based on
MIRFES versus based on MIFS,

the performance of the multi-objective DE approach based on
MIRFFS versus based on MIFS,

the performance of the multi-objective DE approaches versus
the single-objective DE approaches, and

the performance of all DE filter approaches versus traditional
approaches.

1.2. The organization of the paper

The rest of the paper is organized as follows. Section 2 gives
an outline of the basic DE algorithm and provides a background
on information theory, feature ranking and recent studies re-
lated to feature selection, especially filters. Section 3 describes the
DE based feature selection approaches using the proposed and
existing criteria. Section 4 shows the experimental design and
Section 5 presents the experimental results with discussions. Fi-
nally, Section 6 concludes the paper and provides an insight into
the future trends.

2. Background

This section provides a background concerning the differential
evolution, multi-objective optimization, information theory and re-
cent filter approaches.
2.1. Differential evolution

Differential evolution (DE) is a search algorithm proposed by

Storn and Price [29] in 1997. DE belongs to the class of evolution-
ary algorithms in EC techniques that applies biologically inspired
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operators such as crossover, mutation and selection. The algorithm
uses mutation to search in the solution space and applies selec-
tion to direct search toward the prospective regions in the solution
space. Furthermore, non-uniform crossover plays a critical role in
the algorithm performance, where one parent influenced the child
more than others. The crossover operator constructs trial vectors
by efficiently shuffling useful information in the population and re-
combine them to find better solutions [29]. In DE, solution vectors
are first randomly initialized. These solutions are then improved
by applying the three operators: mutation, crossover and selection.
In DE, greedy selection is applied between each generated solution
and a mutant solution to update the population. The basic steps of
DE are summarized below:

1) Initialization. DE first randomly produces solution vec-
tors in the search space. Each solution vector defined as X; =
{Xi1. Xi2. Xi3. ... Xjj, ... Xjp} is generated by:

X = X4 U(0, 1) (X — x7') (1)

where i={1,2,..,NP} and NP is population size; j={1,2,...,D};
D is the dimensionality of the search space; U(0O, 1) is the random
variable uniformly distributed between (0,1); x]mi” and x]'T"’" are pre-
defined minimum and maximum values of parameter j.

2) Mutation. Each solution vector undergoes mutation to ex-
pand the search space. A mutant solution X; is generated by:

Xi = X1+ F (X3 — Xr2) 2)

where F is the scaling factor predefined within the range of [0,1]
and X1, X;» and X,3 are randomly chosen solution vectors which
must satisfy

#1243 40 (3)

where i is the current solution vector. Eq. (3) indicates that NP
must be chosen at least 4.

3) Crossover. The non-uniform crossover is applied between the
mutant and parent solution vectors by:

Xiq, if rand(d) <CR or j=rn;,
Ujg = . (4)
X4, otherwise,

where CR is the user predefined crossover rate, rand(d) is the uni-
formly generated number between [0,1] for parameter j, rn; is the
randomly chosen index and u;y is the dth parameter of a trial vec-
tor U; = {uyq, Ui, .., Ujj, ., Ujp .

4) Selection. Greedy selection is applied between the current
solution X; and trial solution U;. If U; is better than X;, U; is repre-
sented in next generations instead of X;.

The population is updated by applying mutation, crossover and
selection operators from generation to generation until a stopping
criterion is met.

2.2. Multi-objective optimization

Many problems involve two or more objectives that are conflict-
ing to each other. Multi-objective optimization is concerned with
more than one objective function to be optimized simultaneously.
This type of problems have more than one optimal solutions, typi-
cally referred as Pareto-optimal solutions.

Let f(x) = (fi(x), fa(x), ..., fn,(x)) € O CR"™ be an objective
vector comprising of multiple (ng) conflicting functions and let
S;cS (where S is the search space) represents the feasible space
constrained by ng inequalities and nj, equality constraints;

Sp={x:1gn(x) <0, lx)=0m=1,..ngl=1,.. 1} (5)

where gn(x) and hy(x) are constraints. Using this notation, a multi-
objective (minimization) problem can be formulated as follows:

minimize f(x) subject to x € ¢ (6)

When there are multiple objectives, for two solutions y and z, y
dominates z if y is not worse than z in all objective functions and
better than z in at least one objective function:

Vk: i) < k@ A3k fry) < fir(@) (7)

A solution x*eS; is defined as a Pareto-optimal (non-
dominated) solution if there does not exist a solution x#x* €Sy
that dominates x*. The set of all non-dominated solutions form a
Pareto-optimal front surface, known as Pareto front.

2.3. Information theory

Information theory was first proposed for communication the-
ory to find limits concerning data compression and transmission
rate [30]. Due to its suitability, now it has been used in a vari-
ety of fields, including natural language processing, cryptography,
pattern recognition and data analysis [31]. The basic concepts of
information theory are as follows.

1) Entropy (H). Entropy is a measure of uncertainty of a ran-
dom variable. The uncertainty is related to the probability of oc-
currence of an event, defined by Eq. (8). While high entropy means
that each value of the variable is about the same probability of
occurrence, low entropy means that each value of the variable is
about the different probability of occurrence.

H(X) = - p(x)log; p(x;) (8)
k

where X is a random variable and p(x) = Pr{X = (x), x; € X} is
the mass probability. The joint and conditional entropy of two ran-
dom variables X and Y are defined as follows:

HX,Y) ==Y p(X. y2) 10g; p(%. ¥2) (9)
k.z

HX|Y) = =) p(X. y2) 10g; p(xly:) (10)
k.z

where X = {x1,%3, ..X, ... Xn} and Y = {y1,¥2, .Yz, ..., Ym}-

2) Mutual information. The mutual information is a measure
of mutual dependence between random variables. It therefore pro-
vides a way to evaluate the relevance of a feature subset. Mutual
information between any two variables X and Y can be expressed
as follows:

Y) = _ P, yz)
IX;Y) = kZ;I’(’%J’:)lngp(p(Xk).p(yZ)) (11)

Eq. (11) can be also rewritten as I(X;Y) =H(X)+H(Y) —H(X,Y)
or I(X;Y) =H(X) — HX|Y) = H(Y) — H(Y|X).

2.4. Recent studies on filter approaches

For a given data X e RN*M and the class labels Y € RN*1 where
N is the number of instances (samples) and M is the number of
features, the aim of a filter-based feature selection approach is to
choose a feature subset with size m based on some prior knowl-
edge or statistical criterion, where m < M. The optimal feature sub-
set provides the maximum combined information content of all se-
lected features with respect to the class labels. However, it is an
NP-hard combinatorial problem and the optimal feature subset can
only be obtained by a brute-force (exhaustive) search [1]. Due to
its difficulty and complexity, there has been extensive research on
filter approaches. We consider these approaches in three subsec-
tions.

1) Traditional Filter Approaches. One of the simplest filter ap-
proaches is to rank the features with target to the class labels
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based on a suitable criterion or metric. Pearson correlation co-
efficient [32] ranks features in descending order with target to
the class labels using the mean and standard deviations. Then,
a predictor is applied on M nested subsets and the subset with
the lowest validation error is chosen. Although it is simple to
implement and computationally efficient, it assumes all features
are independent and is only able to detect linear relationship be-
tween each feature and the class labels. Another simple filter ap-
proach is Laplacian Score [33] which does not only consider fea-
tures with larger variances, but also considers the features with
stronger locality preserving ability. After ranking features according
to the Laplacian values, it uses the K-means clustering method to
choose the best k features. Laplacian Score has been proved effec-
tive and efficient. However, the shortcomings of K-means also lead
problems in Laplacian Score. Some improved versions of Laplacian
Score can be found in [34,35]. In contrast to Pearson Correlation
and Laplacian Score, Fisher Score [28] is a supervised ranking ap-
proach and it orders features according to their discriminant abil-
ity. It evaluates features individually; thus, it cannot consider re-
dundancy (no correlations amongst filters). Relief and its extended
version (ReliefF) [27] assign a ranking score for each feature in-
dividually based on a k nearest neighbor algorithm. Although it is
one of the best representative samples for filter approaches, it does
not unfortunately consider redundancy which is the for other men-
tioned traditional filter approaches. Hall [36] developed correlation
based feature selection (CFS) as a heuristic method for feature se-
lection, which aims to find a feature subset highly correlated to
the class label and uncorrelated with each other. Systematical un-
certainty was used in [36] to evaluate the correlation, but it cannot
handle relationship among multiple variables.

2) Information Theoretic Filter Approaches. Since traditional
filter approaches rely solely on the relationship between features
and the class labels (referred as ‘relevance’), they cannot work
well in the presence of dependent features (e.g. overlapping in-
formation amongst the features). By considering the information
between features (referred as ‘redundancy’), information theoretic
filter approaches can be treated as an alternative to the traditional
approaches. One of the most famous approaches is mutual infor-
mation feature selection (MIFS) [13]. MIES is a greedy heuristic ap-
proach consisting of following steps: 1) add the highest relevant
feature to the empty subset S and 2) add next (m — 1) features to
the subset S sequentially based on criterion, defined by Eq. (12);

MIFS = max | [(x;;y) — I(x;; x. 12
mox(10en - pY i) ) (12)
relevance —_———
redundancy

where Q is the initial feature set, x; is the ith feature in Q which is
not selected for subset S yet, x; is the selected feature in the subset
S, y is the class labels and B is the predefined parameter satisfying
balance between relevance and redundancy.

As seen in Eq. (12), MIFS requires a user-specified parameter ()
that may vary according to the size of feature subset, but it is hard
to determine. To avoid the fine tuning of the specified parameter,
Peng et al. [14] improved the MIFS criterion by introducing the
maximum relevance and minimum redundancy method (mRmR),
defined in Eq. (13);

1
mRmR = irgnqa_xg(l(x,-;y) | > I x5)> (13)

seS

where |S| is the size of subset S.

mRmR follows the same methodology as in MIFS, but performs
better than MIFS. Estevez et al. [37] normalized the relevance
component (between two features) of mRmR by dividing with
the minimum entropy of the two features. Brown [38] added the

class-conditional correlations to Eq. (12), referred as the first-
order utility (FOU). Al-Ani and Deriche [39] introduced a crite-
rion, named as mutual information feature selection (MIEF). MIEF
achieved better results than MIFS in image sets. Zhang et al
[40] proposed a two-stage feature selection approach for text clas-
sification, which ranks features based on gain ratio and then try to
select best feature subset among high ranked features based on the
classification performance obtained by a classifier. Freeman et al.
[41] presented a comprehensive comparative study of recent fil-
ter approaches, including ReliefF, mRmR, CMIM and FOU. Yu et al.
[42] developed a comprehensive library for feature selection which
introduces measures, such as Fisher Score and mutual information
to calculate correlations between features. Due to the challenges of
two-way relationships in high dimensional problems, Chen et al.
[43] developed a new feature selection approach using high order
inter-correlation (redundancy). To verify the effectiveness of the
proposed approach, a comprehensive comparative study was made
by comparing it with seven representative feature selection meth-
ods, including mRmR, ReliefF and CMIM. However, the computa-
tional cost may be extremely increased proportional to the number
of features due to more than two relations between features. In ad-
dition, mutual information has also been used for feature selection
in multi-label classification problems [44] and intrusion detection
systems [45]. Due to the difficulties on calculating probabilities of
continues variables via standard mutual information, fuzzy mutual
information measures have also been proposed for solving feature
selection tasks [46,47].

3) EC based Filter Approaches. As information theory and tra-
ditional feature selection approaches are mostly greedy heuristic
approaches, they often cannot search the possible feature space
effectively. Therefore, their performance may deteriorate in large-
scale datasets. Therefore, researchers have applied EC techniques
to feature selection. Ge and Hu [18] proposed a feature selection
approach that combines GA and mutual information (FSGM). In
FSGM, FOU was chosen as the objective function. The results
show that FSGM was superior to sequential forward selection and
ReliefF. However, it was not compared with GA based on other ex-
isting mutual information criteria like MIFS and mRmR. Huang and
Rong [48] introduced a two stage (filter-wrapper) GA to increase
the classification accuracy. While the filter stage as an inner loop
tries to optimize the improved MIFS criterion with the parameter
free conditional mutual information, the wrapper stage as an outer
loop tries to optimize the kappa statistic. Cervante et al. [17] intro-
duced a binary PSO based information theoretic feature selection
approach by adopting mRmR as an objective function. However,
the parameter in the objective function that compromises between
the relevance and redundancy needs to be predefined by a user.
Nguyen et al. [49] integrated mRmR criterion as a local search
into wrapper based PSO, and they [50] further investigated the
use of mutual information estimation in PSO for feature selection
to be applied on continuous datasets. In [50], mRmR is redesigned
as the objective function in a PSO framework using pairwise
mutual information instead of multivariate mutual information
due to its computational efficiency. Al-Ani [51] proposed an ACO
based filter approach (ANT) based on MIEF for the classification
of speech segments. According to the results, it was superior to
GA. Khushaba et al. [52] extended the ANT filter approach by
hybridizing with DE (referred as ANTDE). It was seen that the
results obtained by ANTDE were very promising when compared
to BPSO, GA and ANT. Moradi and Rostami [53] introduced a
two-stage ACO based filter approach based on graph representa-
tion and a community detection algorithm. The results indicated
that the introduced approach was superior to a number of filter
approaches such as mRmR and ReliefF and Fisher Score. However,
it may be computationally intensive due to the representation
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scheme. Xue et al. [54] considered mRmR criterion as a multi-
objective problem through non-dominated sorted GA (NSGAII) and
strength Pareto evolutionary algorithm 2 (SPEA2). It was observed
that multi-objective schemes can provide more promising results
than single-objective schemes. Rough set theory and multivariate
mutual information are used in a GA based two-objective frame-
work for feature selection[55], but both rough set theory and
multivariate mutual information are expensive measures.

Although a number of filter approaches have been proposed
in the literature, there are still some open issues that need to
be considered. First, there are just only few DE based filter ap-
proaches, especially inspired by information theory, although DE
is one of the most robust and stable EC techniques and has
been successfully applied to a variety of applications [5]. Second,
most of the existing filter based feature selection approaches are
single-objective and the idea of simulating feature selection as a
multi-objective problem has just come into consideration in re-
cent years. Third, most of the recent information theoretic fea-
ture selection criteria have been developed by introducing simi-
lar variants of MIFS. In other words, only a few new approaches
have been proposed as an alternative to MIFS and mRmR in the
literature.

3. Proposed filter based approaches
3.1. The overall structure

The overall structure is shown in Fig. 1, where the training set
is fed to the proposed DE or multi-objective DE (MODE) based
feature selection algorithms to select a small number of informa-
tive features. Then, the features that are not selected will be re-
moved from both the training set and the test set. Finally, a clas-
sification algorithm is applied to the new training and test sets to
evaluate the classification performance. This system is designed to
avoid feature selection bias (which is a common issue in a large
number of papers [56]), and keep the test set completely unseen
from the feature selection algorithms. The performance of the DE
or MODE based feature selection methods will be evaluated based
on the achieved classification accuracy and the number of selected
features.

The rest of this section describes the proposed four feature se-
lection algorithms, particularly the new fitness functions, which
are the key in any feature selection algorithm. Section 3.2 describes
the two algorithms, the single objective algorithm (DE,;;) and the
multi-objective algorithm (MODE,,;;), which are based on the most
well-known information theoretic feature selection criterion (i.e.
MIFS) with modifications. Section 3.3 describes the two algorithms,
the single objective algorithm (DE;;s) and the multi-objective al-
gorithm (MODE,;;¢), which are based on our newly develop evalua-
tion criterion (referred as MIRFFS) inspired by Mutual Information,
ReliefF and Fisher Score. Four algorithms (instead of a single al-
gorithm) are developed as a systematic research to investigate the
performance of DE, information theory and feature ranking for fea-
ture selection.

3.2. DE for feature selection based on MIFS

DE based on MIFS (DE,;): As mentioned in Section 2, MIFS is
a well-known representative information theoretic approach. How-
ever, MIFS considers features individually and applies a greedy ap-
proach to form the feature subset, i.e, it does not search the solu-
tion space effectively. Therefore, DE is chosen and Eq. (12) is refor-
mulated into Eq. (14) to be used as the fitness function in DE to
guide the search to find optimal feature subsets. Note that normal-
ization is implemented for the calculations of mutual information
values to keep the consistency between possible feature subsets.

fityi(S) = max (Z NI(xi:y) = BY D> NI(X;; x:)) (14)
Xk€S Xi€S x€S
relevance redundancy

where k#1, S is the selected feature subset, 8 is the predefined
value, x; and x; are the kth and Ith selected features, and y is the
class label. NI(xy; y) is the normalized I(x;; y) representing mutual
relevance, and NI(x;; x;) is the normalized I(x;; x;) representing mu-
tual redundancy:

(X y)
NI(x:y) = —— 069 (15)
‘ vV Z%:l I(xm; y)?
NI(x %) = 1% ) (16)

R 10 )2
where M is the total number of features in the dataset.

A new method named DE,; is proposed by using DE as the
search method with Eq. (14) as the fitness function to find opti-
mal feature subsets. The representation of an individual is a M-bit
continuous vector representing a possible feature subset where the
possible values in the vector is in the range of [0, 1]. If any dimen-
sion of an individual is greater than 0.5, the corresponding feature
is selected; otherwise, it is not selected. The pseudo-code of the DE
based on MIFS can be found in Algorithm 1 . If any value (or gene)
in the mutant individual is out of the range [0,1], that value is con-
strained within the range by Eq. (17), which is the most common
way to deal such with out-of-range cases.

{Uij(l') =0, if Vj € {l, ,M} . U,'j(t) <0,

17
Uﬁ(f):], iijE{l,...,M}:Uij(t)>], ( )

MODE based on MIFS (MODE,,;): Eq. (14) considers both the
relevance between features and the class labels, and the redun-
dancy among features in a weighted manner, i.e., 8 that provides
the balance between these two components needs to be prede-
fined. In most cases, users may tend to make an informed decision
from available feature subsets. Therefore, it is necessary to consider
the two components in Eq. (14) in a multi-objective design with
the objectives of maximizing the relevance and minimizing the
redundancy.

DE was first proposed as a single objective optimizer for con-
tinuous problems. To apply DE to multi-objective problems, a new
selection mechanism (see Section 2.1) should be reformed accord-
ing to more than one objective. Although there exist various multi-
objective DE variants in the literature [26], multi-objective DE
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Algorithm 1: Pseudo-code of DE,;;;r (and DE;)

Algorithm 2: Pseudo-code of MODE, ;s (and MODE,;;)

1 begin

2 Calculate mutual relevance between features in both

DE s and DEy;

3 Calculate order values of all features using ReliefF and
Fisher Ranking in DE;;

4 Initialize individuals using Eq.(1);

Evaluate the fitness of individuals using Eq.(19) for DE;
(Eq.(14) for DE,;);

v

6 | for iter < 1 to Maxiter do

7 foreach individual i do

8 Select three individuals rq, r, and r3 randomly;

9 Generate a mutant solution X; by applying the
mutation operator shown by Eq.(2);

10 Generate a trial vector U; by applying the crossover
operator shown by Eq.(4);

1 Evaluate fitness value of the trial vector U; using
Eq.(19) for DE,; ¢ (and Eq.(14) for DE;);
// Greedy selection:

12 if fitness of U; is better than i then

13 | Use U; to replace i;

14 else

15 | discard Uj;

16 Collect the features selected by the individual with the
best fitness value;

17 Calculate the classification accuracy of the selected
features on the test set;

18 Return the individual and its classification accuracy rate;

Evaluate f,(U,(1))

o k= k41

No

i Iy

X+ )=1X (1) 1 X,(t+)=lU,(1)

Fig. 2. The flowchart of dominance-based selection.

End of comparison

(MODE) [57,58] is chosen as a multi-objective DE optimizer due to
its simplicity and low time complexity. It is easy to implement and
does not include any complex structure such as non-dominated
sorting and archive keeper. MODE uses dominance-based selec-
tion inspired by Lampinen’s criterion [59] to determine Pareto-
optimal solutions. The dominance-based selection is defined by
Eq. (18) and its general implementation is presented in Fig. 2. The
pseudo-code of using MODE for multi-objective feature selection,
i.e. the proposed MODE,,; algorithm, is shown in Algorithm 2 . The
possible feature subset representation scheme of an individual in
MODE,,;; is same as DE; within the range of [0, 1]. If any posi-
tion of an evolved is out of the range, that position is constrained

1 begin

2 Calculate mutual relevance between features in both

MODEmlrf and MODEml,

3 Calculate order values of all features using ReliefF and

Fisher Ranking in DE;f;

4 Initialize individuals by Eq.(1);

5 Evaluate the objective values of each individual;

// Three objectives shown as relevance, ReliefF
ranking and Fisher Ranking in Eq.(19) for DEu;f

6 // Two objectives shown as relevance and redundancy
in Eq.(14) for MODEg;

7 for iter < 1 to Maxiter do

8 foreach individual i do

9 Select three individuals r{, r, and r3 randomly;

10 Generate a mutant solution X; using the mutation
operator, Eq.(2);

1 Generate a trial vector U; using the crossover
operator, Eq.(4);

12 Evaluate the objectives of trial vector U;;
// Pareto-dominance-based selection:

13 if i does not dominate U; then

14 | Use U; to replace i;

15 else

16 | discard Uj;

17 Find the Pareto non-dominated solutions (feature subsets)
in the final generation of the population ;

18 Calculate the classification accuracy of the feature subsets
on the test set;

19 Return the feature subsets and their testing classification
— accuracy rates;

within the range by Eq. (17).

Ui(t), if Vke {1,...K}: fi(Ui(t)) = fiuXi(£)),
X; otherwise.

X(t+1) = {
(18)

where t is the cycle number and K is the total number of objec-
tives.

3.3. DE for feature selection based on the new criterion (MIRFFS)

DE based on MIRFFS (DE,;): Although MIFS is a well-known
information theoretic feature selection approach, more than two-
way relationships between features are mostly ignored or under-
estimated by MIFS and its variants, i.e., they generally focus on
the relationships between pair of features as shown in Eq. (12)-
(14). Accordingly, it is not possible to fully evaluate the mutual
redundancy among features. To address the problem, high order
interactions can be evaluated via conditional mutual information
or other mutual information techniques. However, the computation
of high order interactions is highly computationally expensive and
substantially increases algorithmic complexity. In order to reduce
the time complexity and find better feature subsets, it is necessary
to propose a new criterion.

In this study, we propose a new filter criterion inspired by fea-
ture ranking and information theory, in particular mutual infor-
mation, ReliefF and Fisher Score, so the new criterion is named
MIRFES and defined by Eq. (19). In contrast to MIFS and its vari-
ants, MIRFFS aims to eliminate low ranked features detected by
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ReliefF and Fisher Score.

Fitmirp(S) = max | > NI(x: y)

X€eS
relevance

- ,3 Z NRelieforder(xk) + NFiSherorder (%) (19)

XgeS

ranking

where NI(x;, y) is the normalized mutual relevance between kth
feature and the class labels, defined by Eq. (15);

NRelief: NRelief,4e;(x)) is the normalized ranking/order values
of kth feature, determined by Eq. (20);

Relieforder (xk)
D * ZnM1=1 Relie forger (Xi)?
where Relief,4e;(X)) is the order value of kth feature between [1,
M], where 1 means kth feature is ranked as top 1 (the best) and
M means the worst. p is a parameter to control the balance in dif-
ferent datasets. The Relief score for feature x;, can be calculated by
Eq. (21) (details can be seen in [27]), where P means probability:

NRelieforder(Xk) = (20)

ReliefF (x;) = P(xyvalue|different class) — P(x;value|same class)
(21)

NFisher: NFishery..(x;) is the normalized order value of kth
feature, determined by Eq. (22);

FiSherorder(xk)
p* Z%:l Fisheryrger (Xm)?
where M is the total number of features in the dataset;
Fisher,,q0/(x;) is the order value of kth feature between [1, M]
among M features according to Fisher Score values, calculated by

Eq. (23) to maximizing the between-class scatter and minimizing
the within-class scatter (details can be seen in [28]);

NFishergpger (X¢) = (22)

N M’.‘ — /,Lk
FisherScore(x) = Y | ——54 (23)
n=1 Gi’< _O—f

where ,ug‘ and M’]‘ are the mean of the kth feature in the ith and jth

classes, and O'l-k and 0}‘ are the corresponding standard deviation
values.

As seen in Eqs. (20) and (22), the normalized order values
are decreased inversely proportional to M value, but as seen in
Eq. (15), the mutual relevance values will be increased proportional
to M value. It is therefore difficult to keep balance between rele-
vance and ranking for high dimensional datasets. With p param-
eter, it is aimed to keep normalized order values at a reasonable
level for high dimensional problems. p parameter is set to 1/2, 1/3
or 1/4 for the datasets including more than 50 features; otherwise,
it is chosen as 1.

By using Eq. (19) as the fitness function in DE, a new feature se-
lection approach is proposed in this study, which is named DE ;.
The individual representation scheme of this approach DE,;s is
same as DE.;. The pseudo-code of DE;; can be illustrated in
Algorithm 1, where the major difference between DE;; and DE,;
is the fitness function.

An example: We include the following example to show the
calculation of fitness function in DEg;y. Let, Z = {X{, X3, ..., xg} be
a dataset comprising of 8 features, B is set to 1. After calcu-
lations, features (from x; to xg) are ordered as {7, 4, 8, 3, 2,
6, 1, 5} in terms of ReliefF, and are ordered as {7, 8, 6, 2, 3,
5, 1, 4} in terms of Fisher Score. The normalized mutual rele-
vance, Fisher Score ranking and ReliefF ranking values are calcu-
lated according to Eqgs. (15), (22) and (20), which are shown as

follows:
NI={0.3472, 0.0130, 0.0689, 0.2223, 0.3591,
0.1534, 0.7863, 0.2330}
NRelie fo,q4er = {0.4901, 0.2801, 0.5601, 0.2100, 0.1400,
0.4201, 0.0700, 0.3501}
NFisher 4 = {0.4901, 0.5601, 0.4201, 0.1400, 0.2100,
0.3501, 0.0700, 0.2801}

Let [0.30, 0.80, 0.65, 0.23, 0.75, 0.45, 0.15, 0.85] be an individual
in DE. The features ({x,, X3, X5, Xg}) who’s the corresponding posi-
tions in the individual are greater than 0.5 are selected. Accord-
ing to the selected feature subset, the fitness value is computed
as -2.1268 via Eq. (19). Note that the mutual relevance, ReliefF and
Fisher Score values of all available features are computed only once
before the evolutionary process of DE. During evolutionary process
of DE, these values can be used to calculate the fitness value of
each individual.

MODE based on MIRFFS (MODEmirf): As in MIFS, MIRFFS
(Eq. (19)) uses B parameter to provide the balance between the
mutual relevance and the feature ranking. Furthermore, p parame-
ter is used in normalization process of ranking values to keep the
ranking values at a reasonable range for high dimensional prob-
lems. The determination of optimal parameter values is generally
time consuming and the performance of DE,;s highly dependents
on these parameters. Therefore, MIRFFS needs to be considered
in multi-objective DE design. In contrast to MODE,; and exist-
ing multi-objective studies in the literature, MODE,; is proposed
in this work to optimize three objectives, which are mutual rele-
vance, ReliefF ranking and Fisher Score ranking. By simultaneously
optimising these three objectives, the archived feature subsets are
expected to achieve better classification performance by automat-
ically finding a balance among these criteria. The representation
scheme of MODE;; is same as in MODE,,;; and the pseudo-code of
MODE ;s can be illustrated in Algorithm 2.

4. Experimental design

To examine the performance of the feature selection ap-
proaches, ten datasets from UCI machine learning repository [60],
one biomedical data (DNA) and one text classification data (listed
in Table 1) are chosen, including different numbers of features,
samples and classes. Since mutual information cannot be com-
puted on continuous data, all chosen datasets are categorical data.
For each dataset, 70% of the samples are randomly selected as
the training set and the remaining (30%) samples are as the test
set. Notice that we also consider the distribution of instances over
classes during the data division process. To cope with missing val-
ues in some datasets, there exist a number of techniques in the

Table 1

Datasets.
Dateset Number of features Number of classes Number of

examples

Lymph 18 4 148
Spect 22 2 267
Leddisplay 24 10 1000
Soybean large 35 19 307
Connect 42 3 3196
Promoter 57 2 106
Splice 60 3 3190
Optic 64 10 5620
Audiology 68 24 226
Coil2000 85 2 9000
DNA 180 2 3186
PCMAC 3289 2 1943
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literature such as imputation, recovering and deletion. As only
three datasets used for comparisons contain a small number of
missing values, we eliminate data instances for datasets which in-
clude any missing value.

The filter approaches are first run on the training set to get
the optimal feature subset(s). Then, the performance of the opti-
mal feature subset(s) is evaluated by the learning/classification al-
gorithm on the test set. Note that the learning algorithm is solely
applied to the test set to obtain the classification performance of
the optimal feature subset(s). Due to its simplicity and popular-
ity, the learning algorithm is selected as K-nearest neighbor (KNN),
where K is set to 5 as in [54] in the experiments.

The B values in Eq. (19) are set to 0.9, 0.7, 0.5, 0.3 and
0.1, respectively. For the comparative study of multi-objective and
single objective approaches, the B value of single-objective ap-
proaches is set to 0.3 that generally provides the best classification
performance.

The experiments are conducted for 30 runs. In the experiments,
the population size is set to 50 and the maximum number of gen-
erations is defined as 50 for all approaches. For single objective ap-
proaches, the scaling factor and the crossover rate are experimen-
tally chosen as 0.8 and 0.7, and for multi-objective approaches, the
scaling factor and the crossover rate are set to 0.5 and 0.2, respec-
tively as suggested in [20]. To show the significant difference be-
tween the proposed and existing criteria, the Wilcoxon Rank Sum
test is performed with the significance level of 0.05. If the p-value
is equal or smaller than 0.05, the approach based on the proposed
criterion performs significantly better than based on the existing
criterion at 95% of confidence.

Two traditional correlation based filter approaches (CfsF and
CfsB [61]) and one wrapper approach (GSBS [62]) are employed
for comparisons in the experiments. While CfsF performs forward
search, CfsB and GSBS performs backward search. The experiments
of the three traditional approaches are performed in Waikato En-
vironment for Knowledge Analysis (WEKA) [63] platform. To make
fair comparisons, the experiments of all approaches are first con-
ducted using the same 10-fold cross-validation on the same train-
ing set to obtain feature subsets. Then, the same classifier is used
to evaluate the classification performance of the feature subsets
obtained by the approaches on the same test set.

5. Results and discussions

In this section, results are mainly considered in two subsec-
tions. First, we analyze the classification performance and the
number of features obtained by the approaches: DE;s vs. DEq;,
MODE ;s vs. MODE,;;, multi-objective vs. single objective and
comparisons with traditional approaches. Second, we compare
the computational time of the approaches: DE;s vs. DEy;, and
MODE, ;¢ vs. MODE ;.

5.1. Comparisons between DE, ;s and DE;

Table 2 shows the results of DE; and DE,; with B values from
1 to 0.1 in descending order. In Table 2, in the first column, below
the caption of each dataset, the numbers correspond to the num-
ber of available features and the classification accuracy using all
features. The standard deviation values of classification accuracy
are presented in brackets and the mean values of feature subset
size appear below the results of the classification accuracy for each
approach over 30 independent runs. The results of the Wilcoxon
Rank Sum Test are shown via ‘Sig. Test’, where ‘+’ or ‘—’ means the
classification performance of DE;; is significantly better or worse
than DE,;; and ‘=" means there is no significant difference between
DEmirf and DEmi'

According to Table 2, it can be observed that with at least
two of the S values, DE,; can generally evolve a small number
of features and achieve similar or better classification performance
than using all features except for the Promoter, Optic and Coil2000
datasets. Although DE,; performs slightly worse than using all
features in terms of the classification accuracy in the Coil2000
dataset, it can select only around 30 features from the available 85
features. In the Optic dataset, it can select only around 48 features
from the available 64 features and achieve 98.75% classification
accuracy (which is very close to 98.87% obtained using all avail-
able features). Therefore, it can be suggested that DE,;; has the po-
tential to reduce the feature subset and increase the classification
accuracy.

According to Table 2, it can be also observed that DE;; evolve
a small number of features and achieve similar or better classifi-
cation performance than using all features for all values of 8 in
the Spect, Leddisplay, Connect (except for 1 case of 8), Splice, Au-
diology, DNA (except for 1 case of 8) and PCMAC datasets. In the
Lymph and Soybean datasets, it can perform better than using all
features in 3 values of 8. Only, it cannot obtain better performance
in the Promoter and Optic datasets, but the classification perfor-
mance of DE;; is very close to the results obtained by using all
features. Therefore, DE,;;;s can significantly reduce the dimension-
ality of the data and maintain or increase the classification perfor-
mance. Further, it reaches this success with more 8 options than
DE,;;.

As seen in Table 2, the classification performance and the num-
ber of features tend to increase inversely proportional to the f8
value in both DE,;;r and DE;. It is also seen that both approaches
mostly achieve the best performance when the 8 value is 0.3.
Comparing DE;;; with DE,;, the average size of the feature subsets
evolved by DE; is smaller than DE,;; in most cases. Not only ob-
taining smaller feature subset size, but also DE;; provides higher
classification performance in most cases. Further, the classification
performance of DE,;y is significantly better than DE,;; in almost all
cases except for the Lymph, Promoter, Optic and DNA datasets. Al-
though there is generally no difference between DE,;;s and DE; in
the Promoter and Optic datasets, DE,;¢ selects a smaller number of
features. Thus, DE;; can be also treated as successful in the Pro-
moter and Optic datasets. It can be suggested that the proposed
criterion outperforms the most-widely used existing criterion in
terms of the classification accuracy and the number of features.

Generally, DE;y and DEy; can be applied to feature selection
problems. DE,;y which is the combination of feature ranking and
mutual information is a better feature selection approach than
DE,,;. However, it is unclear whether more features can be re-
moved and the classification accuracy can still be maintained or
even increased. Furthermore, the parameter to balance between
the components in both the MIRFFS and MIFS criteria is difficult to
predefine in advance. Therefore, it would be interesting to consider
feature selection as a multi-objective problem to explicitly exam-
ine the trade off between the classification accuracy and number
of features.

5.2. Comparisons between MODE,;s and MODE,;

In the experiments, single objective approaches obtain a single
feature subset/solution in each independent run (30 feature sub-
sets for the 30 independent runs). Multi-objective approaches ob-
tain a set of nondominated solutions in each independent run. In
order to compare the single objective algorithms with the multi-
objective algorithms, the 30 sets of solutions obtained by multi-
objective approaches are collected into a union set. In the union
set, the classification performance of the solutions that have the
same subset size are averaged. A new set of average solutions is
referred as the “average” front. In addition to the “average” front,
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Table 2
The results of single objective DE based on MIFS and MIRFFS over KNN.
Dataset Method B=1 =09 p=0.7 B=05 B=03 B=01
DE,;i 84.60 (2.14) 83.49 (0.60) 85.71 (4e-16)  80.95 (1e-16)  88.09 (3e-16)  88.09 (3e-16)
Lymph 5.26 5 6.03 8 1 17
(18,88.09%) DE jys 83.33 (5e-16)  83.33 (5e-16)  88.09 (3e-16)  80.95 (1le-16)  88.09 (3e-16)  88.09 (3e-16)
5 5 8 9 12 17
Sig. Test - = + = = =
DE,;i 80.00 (3e-16)  80.00 (3e-16)  80.00 (3e-16) 81.25 (0) 78.75 (2e-16)  77.50 (2e-16)
Spect 8 8.03 10 12 14 20
(22,78.75%) DE jys 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 80.00 (3e-16)  78.75 (2e-16)
2 3 7 9 14 22
Sig. Test + + + = + +
DE,;i 83.23 (2.27) 73.61 (1.85) 93.26 (1.52) 93 (2e-16) 88.88 (0.42) 90.00 (4e-16)
Leddisplay 7.3 8.9 9.1 12 16 24
(24,90.00%) DE jys 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
7 7 7 7 7 7
Sig. Test + + + + + +
DE,;i 72.67 (7.65) 76.62 (5.86) 78.37 (4.05) 83.11 (2.42) 84.29 (1.98) 85.70 (0.96)
Soybean 10.03 10.63 124 16.63 224 33.76
(35,85.53%) DE iys 82.98 (3.60) 82.06 (2.79) 83.15 (1.39) 85.87 (1.28) 85.92 (1.04) 83.51 (0.89)
10.6 11.23 133 16.53 21.23 27.76
Sig. Test + + + + + -
DE, i 70.63 (0.06) 70.67 (0.09) 71.27 (0.14) 72.73 (0.53) 73.66 (0.17) 7417 (0.18)
Connect 11.83 124 13.66 15.63 19.53 27.66
(42,71.69%) DE ivf 71.57 (0.69) 71.78 (0.68) 72.53 (0.87) 73.47 (0.66) 73.98 (0.31) 73.95 (0.26)
8.46 8.9 10.26 12.23 14.8 20.36
Sig. Test + + + + + +
DE,;i 86.00 (5.49) 85.11 (6.17) 86.88 (4.01) 86.44 (5.39) 86.11 (4.80) 86.55 (4.33)
Promoter 9.63 9.8 10.83 12.53 16.16 30.36
(57,90.00%) DE niys 85.44 (6.52) 84.11 (5.51) 83.88 (5.87) 85.77 (4.62) 87.44 (4.34) 87.66 (3.05)
9.06 9.8 10.53 11.23 14.6 28.23
Sig. Test = = - = = =
DE,;i 67.85 (3.27) 70.55 (4.17) 7249 (3.71) 74.52 (2.03) 74.85 (1.85) 73.39 (1.40)
Splice 9.03 9.5 10.6 12 14.76 23.93
(60,66.77%) DE nivs 71.68 (4.17) 72.32 (3.95) 73.52 (3.62) 74.71 (2.67) 75.59 (2.21) 74.34 (1.34)
9.56 9.46 1113 11.9 14.06 20.2
Sig. Test + + = = + +
DE, ;i 79.58 (5.48) 84.17 (3.12) 89.38 (2.34) 94.26 (1.02) 97.37 (0.40) 98.75 (0.12)
Optic 12.96 13.5 16.1 18.9 25.6 48.23
(64, 98.87%) DE nivs 89.12 (7.04) 91.34 (3.62) 90.51 (4.69) 94.17 (2.67) 97.63 (0.65) 98.57 (0.16)
11.73 12.33 12.46 15.3 22.96 39.8
Sig. Test + + = = = -
DE, i 64.25 (3.76) 63.84 (2.70) 64.61 (2.91) 64.56 (2.33) 64.20 (2.24) 63.53 (2.21)
Audiology 21.16 20.90 22.30 24.83 28.03 37.50
(68, 64.62%) ) S 72.00 (5.27) 67.38 (7.03) 70.10 (5.49) 68.30 (5.66) 65.17 (2.69) 64.82 (1.92)
14.26 13.86 16.13 17.66 22.16 36.16
Sig. Test + + + + = +
DE,; 93.47 (0.18) 93.58 (0.18) 93.58 (0.17) 93.59 (0.16) 93.68 (0.12) 93.74 (0.06)
Coil2000 30.33 30.33 32.93 36.1 4313 58.33
(85,93.73%) ) S 93.69 (0.15) 93.71 (0.14) 93.63 (0.18) 93.71 (0.17) 93.65 (0.11) 93.80 (0.12)
1716 18.03 18.8 20.36 23.56 39.03
Sig. Test + + + + = +
DE, i 81.13 (2.55) 8142 (2.41) 82.82 (2.05) 83.38 (1.31) 82.90 (1.34) 82.31 (1.09)
DNA 57.63 57.50 60.26 65.53 73.06 95.83
(180,81.70%) DE nivs 81.57 (2.37) 81.07 (2.66) 82.47 (2.35) 83.69 (1.75) 83.26 (1.72) 83.14 (1.01)
55.80 56.73 58.03 61.23 65.73 81.13
Sig. Test = = = = = +
DE, ;i 70.40 (2.56) 70.85 (2.52) 71.27 (2.86) 72.82 (2.63) 72.77 (2.95) 75.08 (2.65)
PCMAC 1523.40 1523.76 1523.23 1524.53 1529.33 1552.26
(3289,70.10%)  DE,y;;¢ 73.63 (2.60) 73.92 (2.32) 74.03 (2.33) 74.62 (2.38) 75.24 (1.98) 75.94 (1.62)
1484.60 1487.53 1494.50 1499 1519.93 1619.60
Sig. Test + + + + + =

the non-dominated solutions in the union set (referred as the best
front) are also used for the comparison of the approaches.

The results of MODEy;; MODE,; and single objective ap-
proaches on the test sets are shown in Fig. 3, where each chart cor-
responds to the solutions of one dataset used in the experiments.
In each chart, the horizontal axis represents the number of fea-
tures, and the vertical axis represents the classification accuracy.
On top of each chart, the numbers in the brackets correspond to
the number of available features and the classification accuracy us-

ing all features. In charts, ‘-A’ and ‘-B’ represents the “average” and
the “best” fronts, respectively. Single objective approaches may ob-
tain the same feature subset size and same classification accurary
in different runs in some datasets. Therefore, the plotted points on
some charts for single objective approaches may be fewer than 30
distinct points.

According to Fig. 3, the average fronts of MODE,; (shown by
MODE-MIFS-A) include a smaller number of features and achieve
similar or higher classification performance than using all features
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Fig. 3. Results of multi-objective approaches on test sets over KNN.
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Table 3
Results of traditional approaches.

Lymph Spect

Method CfsF  CfsB  GSBS CfsF CfsB  GSBS CfsF CfsB  GSBS

Accuracy 90.48 9348 8421 8125 80 82.50 100 100 100

Size 9 9 24 12 10 18 7 7 5
Soybean Connect Promoter

Method CfsF  CfsB  GSBS CfsF CfsB GSBS CfsF CfsB  GSBS

Accuracy 85.53 85.53 8421 70.73 70.73 7168 90 90 90

Size 12 1 24 6 6 11 6 6 50
Splice Optic Audiology

Method CfsF  CfsB  GSBS CfsF CfsB GSBS CfsF CfsB  GSBS

Accuracy 72.83 7283 68.65 98.69 98.69 98.75 64.62 64.62 64.62

Size 28 28 47 36 36 38 9 10 24
Coil2000 DNA PCMAC

Leddisplay

Method CfsF  CfsB  GSBS CfsF CfsB  GSBS CfsF CfsB  GSBS
Accuracy 93.58 9353 93.83 85.08 85.08 82.63 83.51 Null Null
Size 10 20 31 34 34 173 47 Null  Null

except for the Lymph and Leddisplay datasets. Especially in the
Leddisplay dataset, the average front performance of MODE,,; is
very low when compared to the classification performance ob-
tained by using all features, but the classification performance in
MODE-MIFS-B is high. Therefore, it can be inferred that for the so-
lutions including the same number of features, there are a vari-
ety of combinations of feature subsets with different classification
performance. It can be also inferred that in different runs, for the
same feature subset size with the same fitness value (evaluated by
Eq. (12)), MODE,,;; does not guarantee the same classification per-
formance. In terms of the best fronts, MODE,,; evolves the feature
subsets that achieve higher classification performance than using
all features in almost all cases. Especially in some cases which pro-
vides higher classification accuracy, MODE,,; is able to eliminate at
least 50% of available features. For instance, in the Soybean dataset,
one non-dominated solution reduced the feature subset size from
35 to 16 and increased the classification accuracy from 85.53% to
88.15%. The results suggest that MODE,,;; can search the solution
space and automatically evolve a set of feature subsets (solutions)
to reduce the feature subset size and potentially increase the clas-
sification accuracy.

According to Fig. 3, the average fronts of MODE;; (MODE-
MIRFFS-A) are able to obtain the feature subsets providing simi-
lar or higher classification performance than using all features ex-
cept for the Lymph dataset. It is also seen that the average fronts
of MODE,;s get more feature subsets than MODE; in terms of
achieving better classification performance than using all features.
As in MODE;;, the non-dominated solutions of MODE ;s include a
smaller number of features and achieve better classification perfor-
mance than using all features in all datasets. In a significant num-
ber of MODE-MIRFFS-B solutions which provided better classifica-
tion performance than using all features, the size of the feature
subsets were reduced between 50% and 70% of available features.
Therefore, MODE,;;;s can effectively explore the possible solution
space to reduce the feature subset size and increase the classifica-
tion accuracy.

Comparing MODE;;s with MODE,;, it can be seen that
MODE,;;;s outperforms MODE,; in terms of average fronts except
for only some solutions of the Spect and Promoter datasets. The
gap between MODE;; and MODE,; can be easily observed, i..,
the lines representing the results of MODE,,;; mostly lay below the
lines of MODE;, indicating a lower classification than MODE ;.
For instance, on the Leddisplay dataset, the feature subsets with
13 features get 90.71% average classification accuracy in MODE,;y,
but the average classification accuracy of the feature subsets with
13 features in MODE,,; is only 60.80%. It is therefore not difficult
to extract that the classification performance in MODE,;s does not

vary widely for the solutions including the same number of fea-
tures as in MODEy,;. The possible reason is that MODE;; aimed
to optimise three different criteria, which can capture different
properties of the data to increase the classification performance
consistently. Furthermore, MODE ; is also superior to MODE;; in
terms of the non-dominated solutions in almost all datasets. The
comparisons show that both single objective and multi-objective
DE approaches based on the proposed criterion can better explore
the search space and achieve better solutions than the approaches
based on the existing criterion.

5.3. Comparisons between multi-objective and single objective
approaches

Comparing MODE; with DE;; and DEg;y it is seen that in
most cases, MODE,;; (MODE-MIFS-B) eliminates irrelevant or re-
dundant features more effectively and achieves better classification
performance than DE.; and DEg;; with 8 =0.3. When compar-
ing MODE ;s with DE;;r and DE,;, in almost all cases, MODE ;¢
(MODE-MIRRFS-B) also outperforms DE;; and DE; with 8 =0.3
in terms of both the classification performance and the number
of features. Therefore, considering both the MIFS and MIRFFS cri-
teria in multi-objective design is more suitable and has more po-
tential to explore the search space than single-objective design for
feature selection problems. Furthermore, parameter 8 which keeps
the balance between components does not need to be predefined
in multi-objective design.

5.4. Comparisons with traditional approaches

Table 3 shows the results of the two traditional filter ap-
proaches (CfsF and CfsB) and one traditional wrapper approach
(GSBS). The three traditional approaches produce a unique feature
subset, so have a single accuracy for each test set. Note that it
is not completely fair to compare filter approaches with wrapper
approaches since wrappers use a classifier during the evaluation
process.

Comparing single objective approaches (Table 2) with tradi-
tional filter approaches, it can be seen that DE,,;; achieves higher
classification accuracy than traditional filter approaches in the
Connect, Splice, Coil2000 and Audiology datasets. For the other
datasets, traditional approaches outperform DE,;. On the other
hand, DE ;s performs similar or better classification accuracy than
traditional approaches except for some cases. Comparing single ob-
jective approaches with the wrapper approach, GSBS, it is seen that
single objective approaches outperform GSBS in all cases. Compar-
ing multi-objective approaches (Fig. 3) with traditional filter ap-
proaches, it is seen that two multi-objective approaches select a
smaller number of features and achieve higher classification per-
formance than two traditional filter approaches except for the
Promoter and Coil2000 datasets. Furthermore, multi-objective ap-
proaches outperform GSBS in all datasets in terms of the classifi-
cation accuracy and the feature subset size.

5.5. Further comparisons

To further test the performance of the proposed algorithms, we
compared the proposed both single objective method (DE;;) and
multi-objective method (MODE;) with six existing PSO based fil-
ter feature selection methods proposed in [64], including two sin-
gle objective methods (PSOMI based on PSO and MIFS, and PSOE
based on PSO and an entropy based information gain measure),
and four multi-objective PSO methods (NSfsMI and NSfSE based on
non-dominated sorting based multi-objective PSO [65] with MIFS
and the entropy measures, respectively, and CMDfsMI and CMDfsE
based on multi-objective PSO in [66] with MIFS and the entropy
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Table 4
The CPU time results of single objective approaches.
Dataset Method p=1 =09 B=0.7 B=05 B=03 p=0.1
Lymph DE,;i 0.20 (0.02) 0.20 (0.02) 0.20 (0.02) 0.22 (0.03) 0.27 (0.03) 0.37 (0.03)
DE isf 0.16 (0.03) 0.15 (0.02) 0.16 (0.02) 0.15 (0.02) 0.15 (0.01) 0.14 (0.02)
Sig. Test + + + + + +
Spect DE,;i 0.25 (0.03) 0.25 (0.02) 0.26 (0.02) 0.31 (0.02) 0.38 (0.03) 0.50 (0.04)
DE irs 0.16 (0.02) 0.15 (0.02) 0.16 (0.01) 0.15 (0.02) 0.16 (0.03) 0.17 (0.02)
Sig. Test + + + + + +
Leddisplay  DE,; 0.28 (0.03) 0.28 (0.03) 0.31 (0.03) 0.33 (0.03) 0.41 (0.03) 0.51 (0.01)
DE jiss 0.16 (0.02) 0.16 (0.01) 0.15 (0.01) 0.17 (0.02) 0.16 (0.01) 0.16 (0.02)
Sig. Test + + + + + +
Soybean DE, ;i 0.34 (0.03) 0.35 (0.02) 0.37 (0.03) 0.44 (0.03) 0.55 (0.03) 0.65 (0.03)
DE irs 0.17 (0.02) 0.17 (0.01) 0.16 (0.02) 0.17 (0.02) 0.17 (0.02) 0.16 (0.02)
Sig. Test + + + + + +
Connect DE,;; 14.3 (2.29) 12.3 (3.01) 13.85 (0.64) 14.81 (1.04) 18.15 (1.11) 25.23 (1.87)
DE s 3.53 (0.77) 4.21 (2.93) 4.43 (3.01) 9.91 (4.38) 13.91 (0.92) 17.69 (1.73)
Sig. Test + + + + + +
Promoter DE, ;i 0.48 (0.05) 0.48 (0.06) 0.49 (0.04) 0.50 (0.04) 0.58 (0.03) 0.79 (0.02)
DE irs 0.17 (0.02) 0.17 (0.02) 0.16 (0.01) 0.18 (0.02) 0.16 (0.02) 0.17 (0.02)
Sig. Test + + + + + +
Splice DE,;i 0.52 (0.04) 0.52 (0.02) 0.52 (0.03) 0.56 (0.05) 0.67 (0.04) 0.84 (0.03)
DE s 0.21 (0.02) 0.22 (0.02) 0.23 (0.03) 0.21 (0.02) 0.22 (0.02) 0.22 (0.02)
Sig. Test + + + + + +
Optic DE,;i 0.65 (0.06) 0.64 (0.04) 0.67 (0.04) 0.73 (0.04) 0.86 (0.04) 1.34 (0.06)
DE s 0.26 (0.03) 0.26 (0.03) 0.27 (0.04) 0.27 (0.03) 0.30 (0.02) 0.38 (0.02)
Sig. Test + + + + + +
Audiology DE,;i 0.60 (0.07) 0.58 (0.07) 0.57 (0.06) 0.57 (0.04) 0.58 (0.07) 0.65 (0.03)
DE s 0.26 (0.03) 0.26 (0.02) 0.26 (0.02) 0.27 (0.05) 0.27 (0.05) 0.23 (0.02)
Sig. Test + + + + + +
Coil2000 DE,;i 1.51 (0.08) 1.58 (0.09) 1.61 (0.09) 1.73 (0.10) 1.93 (0.07) 2.49 (0.09)
DE s 0.59 (0.06) 0.59 (0.03) 0.58 (0.03) 0.59 (0.04) 0.62 (0.04) 0.81 (0.05)
Sig. Test + + + + + +
DNA DE, ;i 3.30 (0.15) 3.31 (0.06) 3.42 (0.08) 3.58 (0.07) 4.04 (0.11) 5.21 (0.25)
DE irs 0.43 (0.03) 0.42 (0.02) 0.42 (0.04) 0.48 (0.05) 0.44 (0.03) 0.47 (0.03)
Sig. Test + + + + + +
PCMAC DE,;i 124.33 (768) 136.39 (3.17) 13730 (5.09)  140.28 (4.56)  136.96 (16.42)  134.45 (7.57)
DE s 4.37 (0.29) 4.33 (0.18) 4.17 (0.15) 4.35 (0.22) 4.46 (0.10) 4.71 (0.18)
Sig. Test + + + + + +

measures, respectively). The second multi-objective PSO framework
[66] has shown to be better than the first one and other popular
evolutionary multi-objective frameworks [67].

There are 5 datasets in common in this work and in [64], which
are Lymph, Spect, Leddisplay, Soybean and Connect. When compar-
ing the single objective methods, the proposed DE;s achieves bet-
ter performance than PSOMI and PSOE on four of the five datasets,
with a slightly worse performance on Soybean than PSOMI and
on Connect than PSOE but with a much smaller number of fea-
tures. When comparing the multi-objective methods, the proposed
MODE ;s achieves better performance than NSfsE and NSfsMI on
four of the five datasets, and better than CMDfsMI and CMDfsE
on three datasets, similar on one dataset, but worse on the other
one dataset. Note that different data splitting may cause a slightly
different accuracy on the dataset, but the superior performance
of the new methods are significant, e.g nearly 10 percents accu-
racy increases. This is only a simple multi-objective DE framework,
but the compared multi-objective PSO framework [66] is a sophis-
ticated one. The above comparisons indicate that multi-objective
DE with more advanced search mechanisms is very likely to have
the potential of achieving even better performance, which confirms
one of the motivations of this work.

5.6. Analysis of computational time

5.6.1. Comparisons of CPU time between DE,;s and DE;
The computational time results of single objective approaches
are presented in terms of mean and standard deviation values over

the 30 independent runs in Table 4. The standard deviation val-
ues are shown in brackets. The experiments are implemented in
MATLAB2013a and are executed on a computer with an Intel Core
i7-4700HQ 2.40 GHz CPU and 8 GB RAM. The results of Wilcoxon
Rank Sum Test are shown via ‘Sig. Test’ as in Table 2, where ‘+
or ‘—’ means that the computational time performance of DE;y is
shorter or longer than DE,; and ‘=" means that there is no signifi-
cant change between DE,;;r and DE;.

According to Table 4, the computational time of DE,; is in-
creased inversely proportional to the g value, i.e., proportional to
the feature subset size. The CPU time of DE,; for 8 = 0.1 is about
two times as high as 8 =1 in most cases. On the other hand, the
computational time of DE;; does not tend to increase inversely
proportional to the 8 value, i.e., proportional to the feature subset
size except for the Connect, Optic, Coil2000 and PCMAC datasets.
The CPU time is increased in these datasets only between 8 = 0.5
and B = 0.1. Therefore, DE;;y can be treated as stable without no
doubt in terms of the computational time.

Comparing DEp;; with DE;, it is seen that DE.;; can reduce
the computational time at least a half or a quarter compared with
DE,; in most cases. The computational time difference between
DE;r and DE,; is higher for the lower values of . For instance,
the gap between DE,;; and DE,; is increased from 0.31 to 0.62 s
in the Promoter and Splice datasets, while the § value is decreased
from 1 to 0.1. The results show that DE;; achieves significantly
better computational performance than DE,,;. That can be illus-
trated via ‘Sig. Test’ in Table 4. Therefore, DE,;s is superior to DE,;
not only in terms of the classification performance and the number
of features, but also in terms of the CPU computational time.
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Table 5

The CPU time results of multi-objective approaches.
Dataset MODE,; MODE;;;¢ Sig. Test
Lymph 0.12 (0.01) 0.10 (0.01) +
Spect 0.14 (0.01) 0.11 (0.01) +
Leddisplay 0.39 (0.01) 0.27 (0.01) +
Soybean 0.22 (0.01) 0.13 (0.01) +
Connect 754.09 (37.57) 705.03 (25.05) +
Promoter 0.31 (0.01) 0.10 (0.01) +
Splice 2.42 (0.04) 2.29 (0.07) +
Optic 8.43 (0.22) 7.56 (0.19) +
Audiology 0.43 (0.05) 0.18 (0.03) +
Coil2000 34.77 (0.81) 29.92 (0.66) +
DNA 8.16 (0.37) 6.91 (0.35) +
PCMAC 130.72 (27.46) 70.01 (9.95) +

How can DE;;; complete the process in a shorter time in all
cases and why cannot DE,; provide the stability in CPU compu-
tational time for different values of 8? Given m selected features,
as seen in Eq. (14), the time complexity of relevance and redun-
dancy is o(m) and o(m?2), respectively; thus, the time complexity of
DE,; is o(m?) +o0(m) ~ o(m?). On the other hand, the time com-
plexity of relevance, ReliefF ranking and Fisher ranking is o(m) as
seen in Eq. (19); therefore, the time complexity of DE;,s is about
o(m). Furthermore, DE,;;s can remove/reduce irrelevant or redun-
dant features more effectively than DE,,;, which also contributes to
the improvement of the computational time.

5.6.2. Comparisons of CPU time between MODE,;;s and MODE_;

The computational time results of multi-objective approaches
are presented in terms of mean and standard deviation values over
the 30 independent runs in Table 5. The standard deviation values
are shown in brackets. The experiments are implemented and ex-
ecuted on the same computer as in Section 5.2.1. The results of
Wilcoxon Rank Sum Test are shown via ‘Sig. Test’, where ‘+’ or ‘—’
means the computational time performance of MODE ;¢ is shorter
or longer than MODE,,; and ‘=" means there is no significant dif-
ference between MODE;;r and MODE;;.

According to Table 5, it is seen that MODE,;; can complete
feature selection in a shorter time than MODE,, in all datasets,
although the number of objectives in MODE; is higher than
MODE,;. The efficiency of MODE; is also supported by the
Wilcoxon Rank Sum Test, which shows MODE,;s is significantly
better than MODE,; in all datasets. How can MODE;; be compu-
tationally more efficient? First, as mentioned in Section 5.2.1, the
redundancy component of Eq. (14) increases the time complexity
(o(m?)) in MODE,,,;. Furthermore, MODE [57] uses no complex and
time consuming components to sort or renew individuals based on
objective values like nondominated sorting genetic algorithm (NS-
GAIl) [68] or multi objective particle swarm optimization (MOPSO)
[69]. Instead of complex components such as non-dominated sort-
ing and external archive, MODE uses multi-way greedy selection
to renew or select individuals. Therefore, the computational time
is not adversely affected by the number of objectives.

The comparisons confirm that both single objective and multi-
objective DE approaches based on the proposed criterion can bet-
ter explore the search space and achieve better solutions than the
approaches based on the existing criterion. The comparisons also
confirm to the fact that the proposed criterion (Eq. (19)) signifi-
cantly improves the efficiency and effectiveness of both single ob-
jective and multi-objective DE algorithms in feature selection prob-
lems compared to the MIFS criterion (Eq. (14)).

5.6.3. Comparisons of CPU time with existing methods

When comparing with traditional methods, the forward selec-
tion method, i.e. CfsF, is much faster than the proposed methods,
especially when the total number of features is small. CfsB follow-
ing a backward selection method but with a filter measure is also
faster than the proposed methods on small datasets, but slower

than the proposed methods on large datasets, such as the PCMAC
datasets, where both CfsB and GSBS cannot finish running within
hours, but the proposed methods used minutes of time. The rea-
son is that the backward selection method start with the full set
of features, i.e. each evaluation involves a large dataset leading to
a long computation time.

For making fair comparisons on CPU computational time, all ap-
proaches should be executed in computation environment, but in
this work, we can indirectly compare the proposed multi-objective
MODE,;;y with the PSO based methods in [64]. The main reason
is that when using EC methods for feature selection, the major-
ity of the computational cost is used in the fitness evaluations.
For (relatively) fair comparisons, different algorithms should use
the same number of fitness evaluations. Since MODE, ;s has shown
to be faster than MODE,,;, and PSOMI, NSfsMI and CMDfsMI used
the same fitness evaluation as MODE,;, it is reasonable to say
that MODE ;s is faster than PSOMI, NSfsMI and CMDfsMI. Further-
more, NSfsMI and CMDfsMI are much faster than PSOE, NSfsE and
CMDfSE, which indicates that MODE; is faster than PSOE, NSfsE
and CMDfsE. Of course, this is a general comparison on the com-
putational cost, and the efficiency of all the algorithms can be im-
proved in using a different programming language for implemen-
tation and a better computation environment.

6. Conclusions

The overall goal of this study was to develop new single ob-
jective and multi-objective DE based filter feature selection ap-
proaches to better searching for a set of feature subsets, which
can eliminate irrelevant or redundant features and achieved bet-
ter classification performance than using all features. This goal was
successfully achieved by introducing a novel criterion inspired by
feature ranking and mutual information, and adopting the most
widely used criterion. Thus, two single objective (DE,;s and DEy;)
and two multi-objective (MODE;; and MODE,;;) approaches were
proposed for feature selection problems. The effectiveness of the
approaches is demonstrated by comparing them to each other.

Experimental results show that in almost all cases, DE based on
both the proposed and existing criteria can automatically evolve a
small number of features and achieve better classification perfor-
mance than using all features. Comparing the proposed and exist-
ing criteria, DE based on the proposed criterion outperformed the
existing criterion in almost all cases in terms of both the number
of features and the classification accuracy. Moreover, DE based on
the proposed criterion searched the solution space much more ef-
ficiently than the existing criterion due to lower time complexity.

Experimental results also show that MODE based on both the
proposed and existing criteria achieved similar or better classifi-
cation performance than using all features and the single objective
approaches in most datasets. Comparisons also indicate that MODE
based on the proposed criterion outperformed the existing crite-
rion in terms of both the best and the average fronts. Furthermore,
the fluctuations on the classification performance among the solu-
tions with the same number of features obtained by MODE based
on the proposed criterion were lower than those produced by the
existing criterion, which improved the performance of the average
fronts. The computational time efficiency of the proposed criterion
can be also illustrated in multi-objective approaches. Although the
multi-objective design of the proposed criterion includes three ob-
jectives, it is also able to complete the feature selection process in
a shorter time.

Instead of applying an existing criterion as an objective func-
tion which was mostly preferred in the literature, this paper pro-
poses new DE-based approaches based on a novel criterion for fil-
ter based feature selection. The effectiveness and the efficiency of
the approaches have been demonstrated in both single objective
and multi-objective experimental studies. In future, we will further
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develop the multi-objective DE based filter approaches based on
the proposed criterion to better explore the Pareto front of non-
dominated solutions in feature selection and will try to redesign
the proposed criterion for the continuous datasets.
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Appendix. Further Comparisons Using Naive Bayes Classifier
To investigate whether the successful performance of the pro-

posed single objective and multi-objective approaches can carry
on other classification algorithms in addition to KNN. Naive Bayes

Table A.6
The results of single objective DE based on MIFS and MIRFFS over Naive Bayes.
Dataset Method B=1 p=0.9 B=0.7 B=0.5 p=0.3 p=0.1
DE,;i 84.68 (1.20) 84.68 (1.21) 85.23 (0.97) 85.71 (4e-16) 85.71 (4e-16) 90.47 (0)
Lymph 5.43 5.43 6.23 8 1 17
(18,90.47%) DE irs 85.71 (4e—16)  85.71 (4e—16)  88.09 (3e—16)  88.09 (3e—16)  88.09 (3e—16) 90.47 (0)
5 5 8 9 12 17
Sig. Test + + + + + =
DE,;i 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 78.75 (2e—16)
Spect 8 8.1 10 12 14 20
(22,73.75%) )] 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 78.75 (2e—16)
2 3 7 9 14 22
Sig. Test = = = = = =
DE,;i 82.13 (0.27) 82 (2e-16) 93.33 (3e—-16) 90 (4e—-16) 99.70 (0.10) 99.33 (4e—16)
Leddisplay 7.26 9 9.1 12 16.1 24
(24,99.33%) DE jys 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
7 7 7 7 7 7
Sig. Test + + + + + +
DE,;i 63.99 (7.32) 64.95 (7.43) 71.97 (5.62) 81.62 (3.19) 90.87 (1.42) 89.12 (0.59)
Soybean 9.56 10.13 12.7 16.6 22.53 33.88
(35,89.47%) ) 70.96 (1.98) 71.53 (1.77) 72.32 (1.35) 81.53 (2.38) 86.35 (1.44) 88.85 (1.07)
10.46 10.8 133 15.96 21.33 27.93
Sig. Test + + - — _ _
DE,;i 70.39 (3e—16)  70.39 (3e—16)  70.39 (3e—16)  70.39 (3e—16)  70.39 (3e—16)  70.39 (3e—16)
Connect 12.56 12.06 13.96 15.46 19.8 27.86
(42,70.39%) DE s 70.39 (3e—16)  70.39 (3e—16) 7039 (3e-16)  70.39 (3e—16)  70.39 (3e—16)  70.39 (3e—16)
8.56 8.8 9.9 11.9 14.13 20.06
Sig. Test = = = = = =
DE,;i 78.66 (7.03) 78.55 (4.84) 79.66 (5.41) 81.11 (6.27) 80 (4.28) 80 (3.60)
Promoter 9.3 9.83 11 12.16 16.53 29.83
(57,80.00%) ) S 81.44 (4.68) 81.11 (6.27) 83.88 (5.47) 84 (5.70) 85.11 (4.35) 83.33 (4.46)
8.5 9.33 10.1 11.6 14.06 27.33
Sig. Test + + + + + +
DE,;i 55.15 (5.92) 57.73 (5.79) 58.46 (6.14) 62.89 (2.78) 67.39 (2.04) 73.30 (1.02)
Splice 9.13 9.16 104 12.16 15.1 24.5
(60,75.97%) ) S 62.87 (4.75) 61.36 (5.81) 63.01 (5.82) 66.13 (5.06) 69.47 (2.69) 72.84 (1.16)
9.53 10.73 10.36 12.06 14.33 20.06
Sig. Test + + + + + =
DE,;i 72.31 (4.56) 76.16 (3.37) 79.58 (2.06) 84.96 (1.62) 88.17 (0.86) 90.01 (0.40)
Optic 13.43 141 15.66 183 25.63 49.83
(64, 90.09%) ) S 77.53 (5.56) 76.88 (4.90) 79.72 (3.77) 83.57 (3.07) 87.86 (1.23) 89.88 (0.61)
11.93 11.36 12.43 15.53 2213 40.1
Sig. Test + + = = = =
DE,;i 72.76 (1.72) 73.33 (2.92) 72.56 (2.85) 73.23 (2.66) 71.43 (2.73) 64.71 (2.21)
Audiology 20.96 215 218 253 28.66 381
(68, 33.85%) ) S 69.48 (4.96) 69.79 (5.38) 70.25 (4.30) 69.33 (2.58) 70 (3.89) 60.05 (4.47)
13.66 13 15.33 17.73 20.96 354
Sig. Test — - = - = -
DE, ;i 89.99 (1.49) 89.10 (2.42) 88.15 (1.85) 86.24 (2.05) 82.64 (2.23) 75.40 (0.51)
Coil2000 29.7 30.76 32.23 36.56 42.33 58.83
(85,74.48%) DE s 85.51 (4.75) 82.37 (4.26) 83.33 (4.8) 81.52 (4.57) 78.99 (2.84) 75.59 (0.73)
17.83 18.33 18.5 19.4 23.6 38.7
Sig. Test — - - - - =
DE,;i 85.50 (1.93) 86.80 (2.01) 88.01 (1.64) 89.37 (1.41) 91.23 (1.05) 92.78 (0.51)
DNA 57.26 59.4 60.06 64.3 72.83 97.23
(180,91.23%) ) S 85.48 (2.45) 86.68 (2.16) 87.99 (1.86) 88.73 (2.01) 89.41 (1.80) 92.46 (0.74)
55.16 56.66 58.6 60.33 65.76 818
Sig. Test = = = = - =
DE, ;i 83.93 (1.62) 84.26 (1.97) 84.61 (1.52) 85.31 (1.49) 85.24 (2.07) 87.09 (1.32)
PCMAC 15234 1523.76 1523.23 1524.53 1529.33 1552.26
(3289,89.52%)  DEpr 85.26 (1.63) 85.59 (1.44) 85.97 (1.49) 86.23 (1.63) 86.81 (1.22) 87.73 (0.97)
1478 1480.86 1495.13 1495.33 1512.73 1621.83
Sig. Test + + + + + +
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Fig. 4. Results of multi-objective approaches on test sets over Naive Bayes.
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(NB) is used in the further experiments, since it is efficient, easy
to implement and particularly useful for large datasets.

The results of single objective approaches are presented in
Table A.6, which are obtained from 30 independent runs. The re-
sults include the classification performance, the feature subset size
and the Wilcoxon Rank Sum Test. The numbers in the brackets
underlying the caption of each dataset in Table A.6 represent the
available number of features and the classification accuracy of NB
using all features, respectively. According to Table A.6, both DE,;
and DE,;;s obtain generally similar or higher classification accu-
racy than using all features. Only in the Splice, Optic and PCMAC
datasets, single objective approaches cannot achieve better clas-
sification accuracy than using all features, but the obtained clas-
sification accuracies in Optic are very close to the accuracy ob-
tained by using all features. Comparing DE,;;s with DE;, it can
be observed that DE;; outperforms DE.; in the Lymph, Leddis-
play, Promoter, Splice and PCMAC datasets almost in all 8 values
in terms of both the classification accuracy and the feature sub-
set size. On the Spect, Soybean, Connect and Optic datasets, DEy;s
mostly achieves similar classification performance using a smaller
number of features than DE,,;. Overall, the results of the signifi-
cance tests can show that the successful performance of DE;; also
carries on when using NB as a classifier.

The results of multi-objective approaches are presented with
single objective approaches where = 0.3 in Fig. 4. On top of each
chart in Fig. 4, the numbers in brackets represent the feature sub-
set size and the classification accuracy using NB with all features.
The other concerning definitions and explanations related to charts
can be found in Section 5.2. According to Fig. 4, both MODE,,; and
MODE,;;;y can automatically evolve a set of feature subsets yield-
ing higher classification performance than using all features on all
datasets. Especially in terms of the best fronts, high classification
accuracies are achieved with less than 50% of the available fea-
tures. For instance, on the Coil200 dataset, one best solution in-
creased the classification accuracy from 74.48% to 92.52%, while
the feature subset size was decreased from 85 to 32. Comparing
multi-objective approaches with single objective approaches, it can
be inferred from Fig. 4 that multi-objective approaches are more
likely to find smaller feature subsets which achieves higher classi-
fication performance than DE,; on all the datasets and DE;s ex-
cept for the Audiology dataset. Accordingly, it is clear that both the
MIFS and MIRFSS criteria in the multi-objective approach are able
to search the possible solution space more effectively than single
objective approaches in feature selection problems.

Comparing MODE;s and MODE,;, it can be observed from
Fig. 4 that the best and average front lines of MODE,,; are mostly
lay below the lines of MODE,; except for the Audiology and
Coil2000 datasets. Furthermore, the gap between MODE;; and
MODE,,; is extremely high, especially in terms of the average
fronts. In other words, the classification performance of solutions
with the same feature subset size obtained by MODE,,; are more
likely to vary, i.e., not stable and consistent compared to MODE,y.
From the above comparisons, it can be concluded that consider-
ing the proposed criterion in both the single objective and multi-
objective design can better search the possible solution space and
obtain better solutions than the existing criterion in terms of the
classification performance and the feature subset size over a differ-
ent classification method.
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