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a b s t r a c t 

Feature selection is an essential step in various tasks, where filter feature selection algorithms are increas- 

ingly attractive due to their simplicity and fast speed. A common filter is to use mutual information to es- 

timate the relationships between each feature and the class labels (mutual relevancy), and between each 

pair of features (mutual redundancy). This strategy has gained popularity resulting a variety of criteria 

based on mutual information. Other well-known strategies are to order each feature based on the near- 

est neighbor distance as in ReliefF, and based on the between-class variance and the within-class vari- 

ance as in Fisher Score. However, each strategy comes with its own advantages and disadvantages. This 

paper proposes a new filter criterion inspired by the concepts of mutual information, ReliefF and Fisher 

Score. Instead of using mutual redundancy, the proposed criterion tries to choose the highest ranked 

features determined by ReliefF and Fisher Score while providing the mutual relevance between features 

and the class labels. Based on the proposed criterion, two new differential evolution (DE) based filter 

approaches are developed. While the former uses the proposed criterion as a single objective problem 

in a weighted manner, the latter considers the proposed criterion in a multi-objective design. Moreover, 

a well known mutual information feature selection approach (MIFS) based on maximum-relevance and 

minimum-redundancy is also adopted in single-objective and multi-objective DE algorithms for feature 

selection. The results show that the proposed criterion outperforms MIFS in both single objective and 

multi-objective DE frameworks. The results also indicate that considering feature selection as a multi- 

objective problem can generally provide better performance in terms of the feature subset size and the 

classification accuracy. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Classification is typically referred as a supervised learning task

n machine learning that infers a relationship between features

characteristics of the dataset) and the class labels. However, the

resence of a large number of features often leads to challenges

uch as overfitting, high computational complexity and low inter-

retability of the final model [1] . One reason for this is widely

nown as the curse of dimensionality that arises according to the

atio between the number of features and the number of instances.

he most common way to alleviate such problems is to reduce the

umber of features under consideration using either feature con-

truction or feature selection [1,2] . 

Feature construction aims to transform the dataset from the

igh dimensional space to a lower dimensional space by combining
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he original low-level features to a small number of high-level fea-

ures, which is better suited for learning process. However, feature

onstruction cannot be easily interpreted since the physical mean-

ng of the original features cannot be retrieved. Feature selection

ims to choose a feature subset from the available original fea-

ures of a dataset, which better contributes to the learning process.

n other words, the aim of feature selection is to discard features

hat are detrimental to the subsequent learning process [3,4] . Fea-

ure selection approaches can be categorized into wrappers, em-

edded and filters based on the evaluation criteria [5] . Wrappers

se a learning algorithm (classifier or regression) as a part of eval-

ation to measure the goodness of the chosen feature subset. Al-

hough wrappers are among the most preferred feature selection

pproaches, there are at least four drawbacks [6] : 1) high com-

utational complexity, 2) the optimal feature subset for a learner

ay not be optimal for a different learner, 3) determining the

ser-specified parameters of the learner may be time consuming,

nd 4) inherent learner limitations (e.g. some learners cannot deal

ith multi-class classification). Embedded approaches incorporate 
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knowledge about the specific structure of the classification algo-

rithm used by a certain learning algorithm. Embedded approaches

are computationally less intensive than wrappers. However, they

still have high computational complexity and the selected feature

subset is dependent on the learning algorithm. Due to these limi-

tations, we specifically focus on filters in this study. Wrapper and

embedded approaches are not the focus of this paper and will not

be further discussed here. Recent works on wrappers and embed-

ded approaches can be found in [5,7–12] . 

Filters evaluate feature subsets based on some predefined met-

rics or information content (e.g. statistical tests) instead of using

the learners, i.e., there exists no dependence between the learner

(or classifier) and the selected features. Accordingly, filters are

more general than wrapper and embedded approaches. In the liter-

ature, there have been a wide range of criteria and metrics used for

the evaluation of feature subsets such as inconsistency rate, infer-

ence correlation, fractal dimension, distance measure and mutual

information. Among them, mutual information can be treated as

the most preferred and widely investigated for filters due to two

main properties [6] : 1) measuring different kinds of relationship

between random variables and 2) preserving stability under trans-

formations in the feature space that are invertible and differen-

tiable. Based on mutual information, Battiti [13] proposed the mu-

tual information feature selection (MIFS) method including three

fundamental points: 1) features are categorized as relevant and re-

dundant; 2) an heuristic function is used to select features con-

trolling the tradeoff between relevance and redundancy; and 3) a

greedy search is applied. Other representative examples of mutual

information based approaches are maximum relevance and mini-

mum redundancy (mRmR) [14] , uniformly improved MIFS (MIFS-

U) [15] , and conditional mutual information maximization (CMIM)

[16] . Although they are simple to implement and reduce the fea-

ture subset size, a selected feature cannot be later removed or

changed due to their static greedy search mechanism. 

To address these problems, researchers have tried to design mu-

tual information based filter approaches with evolutionary compu-

tation (EC) techniques such as particle swarm optimization (PSO)

[17] , genetic algorithms (GAs) [18] , ant colony optimization (ACO)

[19] and differential evolution (DE) [20] due to their global search

ability. Besides such representative ones, recently developed EC

techniques such as artificial bee colony [21] , and bacterial colony

optimization [22] have also been investigated to obtain better fea-

ture subsets for the classification. 

However, the potential of EC for feature selection has not been

fully investigated. For example, filter based approaches are often

computationally cheap, but there is much less work on filters

than on wrappers because the fitness functions based on filters

are more difficult to design. The most widely used filter measure

is mutual information. Although EC with mutual information has

achieved better results than classical greedy search, most of such

methods just directly adopted existing heuristic/fitness functions

as the objective without significant or major improvement, which

may limits their performance [5] . Furthermore, although feature

selection can be considered as a multi-objective problem, there are

only a few works on multi-objective filter feature selection [5,23] .

Developing good filter based feature selection methods is still an

open issue. 

Among EC methods, DE is a relatively recent but highly popu-

lar approach. As pointed in [24] , DE has been proven to be better

than other EC methods in a wide range of problems. Compared to

most other EC methods, DE is also much simpler and straightfor-

ward to implement, which allows practitioners from other fields,

who may not be experts in programming, to implement and tune

it to solve the domain-specific problem. Furthermore, DE only has

a few parameters to control and the space complexity is low as

well. These are particularly important for feature selection since it
s a multi-disciplinary area involving researchers from many differ-

nt fields, but work on DE for feature selection is much less than

ther EC methods, e.g. GAs and PSO [5] . Furthermore, feature se-

ection is essentially a multi-objective approach, maximizing the

lassification accuracy and minimizing the number of features [25] .

C methods are particularly good for solving multi-objective prob-

ems since their population based mechanism can produce mul-

iple trade-off solutions in a single run [26] . Despite the supe-

ior performance of multi-objective DE, there has been almost no

ork exploring the potential of DE for multi-objective filter feature

election. 

.1. Goals 

The overall goal of this paper is to develop filter based feature

election approaches based on information theory, feature rank-

ng and EC techniques to search for a set of non-dominated so-

utions (feature subsets) yielding a smaller number of features

nd a similar or even better classification performance on the K-

earest neighbor algorithm than the case that all features are used.

o achieve this goal, a novel filter evaluation criterion (named

IRFFS) based on the concepts of mutual relevance, RelifF [27] and

isher Score [28] is proposed, and using this proposed criterion,

he standard DE and multi-objective DE (MODE) based feature se-

ection approaches are developed. Furthermore, a widely used ex-

sting filter based criterion (MIFS) is also redesigned as fitness

unction for single objective and multi-objective DE to develop fil-

er based approaches. These four developed feature selection ap-

roaches will be examined and evaluated on benchmark problems

f varying difficulty. Specifically, we will investigate 

• the performance of the four algorithms (i.e. single objective and

multi-objective DE approaches based on MIRFFS and MIFS) on

reducing the number of features and improving the classifica-

tion performance over using all features, 

• the performance of the single objective DE approach based on

MIRFFS versus based on MIFS, 

• the performance of the multi-objective DE approach based on

MIRFFS versus based on MIFS, 

• the performance of the multi-objective DE approaches versus

the single-objective DE approaches, and 

• the performance of all DE filter approaches versus traditional

approaches. 

.2. The organization of the paper 

The rest of the paper is organized as follows. Section 2 gives

n outline of the basic DE algorithm and provides a background

n information theory, feature ranking and recent studies re-

ated to feature selection, especially filters. Section 3 describes the

E based feature selection approaches using the proposed and

xisting criteria. Section 4 shows the experimental design and

ection 5 presents the experimental results with discussions. Fi-

ally, Section 6 concludes the paper and provides an insight into

he future trends. 

. Background 

This section provides a background concerning the differential

volution, multi-objective optimization, information theory and re-

ent filter approaches. 

.1. Differential evolution 

Differential evolution (DE) is a search algorithm proposed by

torn and Price [29] in 1997. DE belongs to the class of evolution-

ry algorithms in EC techniques that applies biologically inspired
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perators such as crossover, mutation and selection. The algorithm

ses mutation to search in the solution space and applies selec-

ion to direct search toward the prospective regions in the solution

pace. Furthermore, non-uniform crossover plays a critical role in

he algorithm performance, where one parent influenced the child

ore than others. The crossover operator constructs trial vectors

y efficiently shuffling useful information in the population and re-

ombine them to find better solutions [29] . In DE, solution vectors

re first randomly initialized. These solutions are then improved

y applying the three operators: mutation, crossover and selection.

n DE, greedy selection is applied between each generated solution

nd a mutant solution to update the population. The basic steps of

E are summarized below: 

1) Initialization. DE first randomly produces solution vec-

ors in the search space. Each solution vector defined as X i =
 x i 1 , x i 2 , x i 3 , ..., x i j , ..., x iD } is generated by: 

 i j = x min 
j + U(0 , 1)(x max 

j − x min 
j ) (1)

here i = { 1 , 2 , ..., NP } and NP is population size; j = { 1 , 2 , ..., D } ;
 is the dimensionality of the search space; U (0, 1) is the random

ariable uniformly distributed between (0,1); x min 
j 

and x max 
j 

are pre-

efined minimum and maximum values of parameter j . 

2) Mutation. Each solution vector undergoes mutation to ex-

and the search space. A mutant solution 

ˆ X i is generated by: 

ˆ 
 i = X r1 + F (X r3 − X r2 ) (2)

here F is the scaling factor predefined within the range of [0,1]

nd X r 1 , X r 2 and X r 3 are randomly chosen solution vectors which

ust satisfy 

1 � = r2 � = r3 � = i (3)

here i is the current solution vector. Eq. (3) indicates that NP

ust be chosen at least 4. 

3) Crossover. The non-uniform crossover is applied between the

utant and parent solution vectors by: 

 id = 

{
ˆ x id , if rand (d ) ≤ CR or j = rn i , 

x id , otherwise, 
(4) 

here CR is the user predefined crossover rate, rand ( d ) is the uni-

ormly generated number between [0,1] for parameter j, rn i is the

andomly chosen index and u id is the d th parameter of a trial vec-

or U i = { u i 1 , u i 2 , ..., u i j , ..., u iD } . 
4) Selection. Greedy selection is applied between the current

olution X i and trial solution U i . If U i is better than X i , U i is repre-

ented in next generations instead of X i . 

The population is updated by applying mutation, crossover and

election operators from generation to generation until a stopping

riterion is met. 

.2. Multi-objective optimization 

Many problems involve two or more objectives that are conflict-

ng to each other. Multi-objective optimization is concerned with

ore than one objective function to be optimized simultaneously.

his type of problems have more than one optimal solutions, typi-

ally referred as Pareto-optimal solutions. 

Let f (x ) = ( f 1 (x ) , f 2 (x ) , ..., f n o (x ) ) ∈ O ⊆ R 

n 0 be an objective

ector comprising of multiple ( n 0 ) conflicting functions and let

 f ⊆S (where S is the search space) represents the feasible space

onstrained by n g inequalities and n h equality constraints; 

 f = { x : g m 

(x ) ≤ 0 , h l (x ) = 0 , m = 1 , ..., n g ; l = 1 , ..., n h } (5) 

here g m 

( x ) and h l ( x ) are constraints. Using this notation, a multi-

bjective (minimization) problem can be formulated as follows: 

inimize f (x ) subject to x ∈ S f (6)
When there are multiple objectives, for two solutions y and z, y

ominates z if y is not worse than z in all objective functions and

etter than z in at least one objective function: 

 k : f k (y ) ≤ f k (z) ∧ ∃ k : f k (y ) < f k (z) (7)

A solution x ∗ ∈ S f is defined as a Pareto-optimal (non-

ominated) solution if there does not exist a solution x � = x ∗ ∈ S f 
hat dominates x ∗. The set of all non-dominated solutions form a

areto-optimal front surface, known as Pareto front. 

.3. Information theory 

Information theory was first proposed for communication the-

ry to find limits concerning data compression and transmission

ate [30] . Due to its suitability, now it has been used in a vari-

ty of fields, including natural language processing, cryptography,

attern recognition and data analysis [31] . The basic concepts of

nformation theory are as follows. 

1) Entropy ( H ). Entropy is a measure of uncertainty of a ran-

om variable. The uncertainty is related to the probability of oc-

urrence of an event, defined by Eq. (8) . While high entropy means

hat each value of the variable is about the same probability of

ccurrence, low entropy means that each value of the variable is

bout the different probability of occurrence. 

 ( X ) = −
∑ 

k 

p ( x k ) log 2 p ( x k ) (8) 

here X is a random variable and p(x k ) = P r { X = (x k ) , x k ∈ X } is

he mass probability. The joint and conditional entropy of two ran-

om variables X and Y are defined as follows: 

 ( X, Y ) = −
∑ 

k,z 

p ( x k , y z ) log 2 p ( x k , y z ) (9) 

 ( X | Y ) = −
∑ 

k,z 

p ( x k , y z ) log 2 p ( x k | y z ) (10) 

here X = { x 1 , x 2 , ...x k , ..., x n } and Y = { y 1 , y 2 , ...y z , ..., y m 

} . 
2) Mutual information. The mutual information is a measure

f mutual dependence between random variables. It therefore pro-

ides a way to evaluate the relevance of a feature subset. Mutual

nformation between any two variables X and Y can be expressed

s follows: 

(X ;Y ) = −
∑ 

k,z 

p ( x k , y z ) log 2 p 

(
p(x k , y z ) 

p(x k ) .p(y z ) 

)
(11)

q. (11) can be also rewritten as I(X;Y ) = H(X ) + H(Y ) − H(X, Y )

r I(X;Y ) = H(X ) − H(X| Y ) = H(Y ) − H(Y | X ) . 

.4. Recent studies on filter approaches 

For a given data X ∈ R 

N×M and the class labels Y ∈ R 

N×1 where

 is the number of instances (samples) and M is the number of

eatures, the aim of a filter-based feature selection approach is to

hoose a feature subset with size m based on some prior knowl-

dge or statistical criterion, where m < M . The optimal feature sub-

et provides the maximum combined information content of all se-

ected features with respect to the class labels. However, it is an

P-hard combinatorial problem and the optimal feature subset can

nly be obtained by a brute-force (exhaustive) search [1] . Due to

ts difficulty and complexity, there has been extensive research on

lter approaches. We consider these approaches in three subsec-

ions. 

1) Traditional Filter Approaches. One of the simplest filter ap-

roaches is to rank the features with target to the class labels



106 E. Hancer et al. / Knowledge-Based Systems 140 (2018) 103–119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

o  

r  

a  

[  

s  

s  

c  

[  

t  

[  

i  

t  

t  

[  

i  

p  

b  

o  

t  

o  

d  

i  

s  

c  

i  

s

 

d  

a  

e  

s  

t  

a  

F  

s  

R  

i  

R  

t  

t  

f  

l  

d  

a  

t  

t  

N  

i  

u  

t  

a  

m  

d  

b  

o  

G  

h  

r  

t  

t  

t  

t  

a  

i  
based on a suitable criterion or metric. Pearson correlation co-

efficient [32] ranks features in descending order with target to

the class labels using the mean and standard deviations. Then,

a predictor is applied on M nested subsets and the subset with

the lowest validation error is chosen. Although it is simple to

implement and computationally efficient, it assumes all features

are independent and is only able to detect linear relationship be-

tween each feature and the class labels. Another simple filter ap-

proach is Laplacian Score [33] which does not only consider fea-

tures with larger variances, but also considers the features with

stronger locality preserving ability. After ranking features according

to the Laplacian values, it uses the K-means clustering method to

choose the best k features. Laplacian Score has been proved effec-

tive and efficient. However, the shortcomings of K-means also lead

problems in Laplacian Score. Some improved versions of Laplacian

Score can be found in [34,35] . In contrast to Pearson Correlation

and Laplacian Score, Fisher Score [28] is a supervised ranking ap-

proach and it orders features according to their discriminant abil-

ity. It evaluates features individually; thus, it cannot consider re-

dundancy (no correlations amongst filters). Relief and its extended

version (ReliefF) [27] assign a ranking score for each feature in-

dividually based on a k nearest neighbor algorithm. Although it is

one of the best representative samples for filter approaches, it does

not unfortunately consider redundancy which is the for other men-

tioned traditional filter approaches. Hall [36] developed correlation

based feature selection (CFS) as a heuristic method for feature se-

lection, which aims to find a feature subset highly correlated to

the class label and uncorrelated with each other. Systematical un-

certainty was used in [36] to evaluate the correlation, but it cannot

handle relationship among multiple variables. 

2) Information Theoretic Filter Approaches. Since traditional

filter approaches rely solely on the relationship between features

and the class labels (referred as ‘relevance’), they cannot work

well in the presence of dependent features (e.g. overlapping in-

formation amongst the features). By considering the information

between features (referred as ‘redundancy’), information theoretic

filter approaches can be treated as an alternative to the traditional

approaches. One of the most famous approaches is mutual infor-

mation feature selection (MIFS) [13] . MIFS is a greedy heuristic ap-

proach consisting of following steps: 1) add the highest relevant

feature to the empty subset S and 2) add next (m − 1) features to

the subset S sequentially based on criterion, defined by Eq. (12) ; 

MI F S = max 
i ∈ Q−S 

(
I (x i ; y ) ︸ ︷︷ ︸ 
rele v ance 

− β
∑ 

s ∈ S 
I (x i ; x s ) 

︸ ︷︷ ︸ 
red und ancy 

)
(12)

where Q is the initial feature set, x i is the ith feature in Q which is

not selected for subset S yet, x s is the selected feature in the subset

S, y is the class labels and β is the predefined parameter satisfying

balance between relevance and redundancy. 

As seen in Eq. (12) , MIFS requires a user-specified parameter ( β)

that may vary according to the size of feature subset, but it is hard

to determine. To avoid the fine tuning of the specified parameter,

Peng et al. [14] improved the MIFS criterion by introducing the

maximum relevance and minimum redundancy method (mRmR),

defined in Eq. (13) ; 

mRmR = max 
i ∈ Q−S 

(
I (x i ; y ) − 1 

| S| 
∑ 

s ∈ S 
I (x i ; x s ) 

)
(13)

where | S | is the size of subset S . 

mRmR follows the same methodology as in MIFS, but performs

better than MIFS. Estevez et al. [37] normalized the relevance

component (between two features) of mRmR by dividing with

the minimum entropy of the two features. Brown [38] added the
lass-conditional correlations to Eq. (12) , referred as the first-

rder utility (FOU). Al-Ani and Deriche [39] introduced a crite-

ion, named as mutual information feature selection (MIEF). MIEF

chieved better results than MIFS in image sets. Zhang et al.

40] proposed a two-stage feature selection approach for text clas-

ification, which ranks features based on gain ratio and then try to

elect best feature subset among high ranked features based on the

lassification performance obtained by a classifier. Freeman et al.

41] presented a comprehensive comparative study of recent fil-

er approaches, including ReliefF, mRmR, CMIM and FOU. Yu et al.

42] developed a comprehensive library for feature selection which

ntroduces measures, such as Fisher Score and mutual information

o calculate correlations between features. Due to the challenges of

wo-way relationships in high dimensional problems, Chen et al.

43] developed a new feature selection approach using high order

nter-correlation (redundancy). To verify the effectiveness of the

roposed approach, a comprehensive comparative study was made

y comparing it with seven representative feature selection meth-

ds, including mRmR, ReliefF and CMIM. However, the computa-

ional cost may be extremely increased proportional to the number

f features due to more than two relations between features. In ad-

ition, mutual information has also been used for feature selection

n multi-label classification problems [44] and intrusion detection

ystems [45] . Due to the difficulties on calculating probabilities of

ontinues variables via standard mutual information, fuzzy mutual

nformation measures have also been proposed for solving feature

election tasks [46,47] . 

3) EC based Filter Approaches. As information theory and tra-

itional feature selection approaches are mostly greedy heuristic

pproaches, they often cannot search the possible feature space

ffectively. Therefore, their performance may deteriorate in large-

cale datasets. Therefore, researchers have applied EC techniques

o feature selection. Ge and Hu [18] proposed a feature selection

pproach that combines GA and mutual information (FSGM). In

SGM, FOU was chosen as the objective function. The results

how that FSGM was superior to sequential forward selection and

eliefF. However, it was not compared with GA based on other ex-

sting mutual information criteria like MIFS and mRmR. Huang and

ong [48] introduced a two stage (filter-wrapper) GA to increase

he classification accuracy. While the filter stage as an inner loop

ries to optimize the improved MIFS criterion with the parameter

ree conditional mutual information, the wrapper stage as an outer

oop tries to optimize the kappa statistic. Cervante et al. [17] intro-

uced a binary PSO based information theoretic feature selection

pproach by adopting mRmR as an objective function. However,

he parameter in the objective function that compromises between

he relevance and redundancy needs to be predefined by a user.

guyen et al. [49] integrated mRmR criterion as a local search

nto wrapper based PSO, and they [50] further investigated the

se of mutual information estimation in PSO for feature selection

o be applied on continuous datasets. In [50] , mRmR is redesigned

s the objective function in a PSO framework using pairwise

utual information instead of multivariate mutual information

ue to its computational efficiency. Al-Ani [51] proposed an ACO

ased filter approach (ANT) based on MIEF for the classification

f speech segments. According to the results, it was superior to

A. Khushaba et al. [52] extended the ANT filter approach by

ybridizing with DE (referred as ANTDE). It was seen that the

esults obtained by ANTDE were very promising when compared

o BPSO, GA and ANT. Moradi and Rostami [53] introduced a

wo-stage ACO based filter approach based on graph representa-

ion and a community detection algorithm. The results indicated

hat the introduced approach was superior to a number of filter

pproaches such as mRmR and ReliefF and Fisher Score. However,

t may be computationally intensive due to the representation
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Fig. 1. Overall structure. 
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cheme. Xue et al. [54] considered mRmR criterion as a multi-

bjective problem through non-dominated sorted GA (NSGAII) and

trength Pareto evolutionary algorithm 2 (SPEA2). It was observed

hat multi-objective schemes can provide more promising results

han single-objective schemes. Rough set theory and multivariate

utual information are used in a GA based two-objective frame-

ork for feature selection [55] , but both rough set theory and

ultivariate mutual information are expensive measures. 

Although a number of filter approaches have been proposed

n the literature, there are still some open issues that need to

e considered. First, there are just only few DE based filter ap-

roaches, especially inspired by information theory, although DE

s one of the most robust and stable EC techniques and has

een successfully applied to a variety of applications [5] . Second,

ost of the existing filter based feature selection approaches are

ingle-objective and the idea of simulating feature selection as a

ulti-objective problem has just come into consideration in re-

ent years. Third, most of the recent information theoretic fea-

ure selection criteria have been developed by introducing simi-

ar variants of MIFS. In other words, only a few new approaches

ave been proposed as an alternative to MIFS and mRmR in the

iterature. 

. Proposed filter based approaches 

.1. The overall structure 

The overall structure is shown in Fig. 1 , where the training set

s fed to the proposed DE or multi-objective DE (MODE) based

eature selection algorithms to select a small number of informa-

ive features. Then, the features that are not selected will be re-

oved from both the training set and the test set. Finally, a clas-

ification algorithm is applied to the new training and test sets to

valuate the classification performance. This system is designed to

void feature selection bias (which is a common issue in a large

umber of papers [56] ), and keep the test set completely unseen

rom the feature selection algorithms. The performance of the DE

r MODE based feature selection methods will be evaluated based

n the achieved classification accuracy and the number of selected

eatures. 

The rest of this section describes the proposed four feature se-

ection algorithms, particularly the new fitness functions, which

re the key in any feature selection algorithm. Section 3.2 describes

he two algorithms, the single objective algorithm (DE mi ) and the

ulti-objective algorithm (MODE mi ), which are based on the most

ell-known information theoretic feature selection criterion (i.e.

IFS) with modifications. Section 3.3 describes the two algorithms,

he single objective algorithm (DE mirf ) and the multi-objective al-

orithm (MODE mirf ), which are based on our newly develop evalua-

ion criterion (referred as MIRFFS) inspired by Mutual Information,

eliefF and Fisher Score. Four algorithms (instead of a single al-

orithm) are developed as a systematic research to investigate the

erformance of DE, information theory and feature ranking for fea-

ure selection. 
.2. DE for feature selection based on MIFS 

DE based on MIFS (DE mi ): As mentioned in Section 2 , MIFS is

 well-known representative information theoretic approach. How-

ver, MIFS considers features individually and applies a greedy ap-

roach to form the feature subset, i.e, it does not search the solu-

ion space effectively. Therefore, DE is chosen and Eq. (12) is refor-

ulated into Eq. (14) to be used as the fitness function in DE to

uide the search to find optimal feature subsets. Note that normal-

zation is implemented for the calculations of mutual information

alues to keep the consistency between possible feature subsets. 

f it mi (S) = max 

(∑ 

x k ∈ S 
NI(x k ; y ) 

︸ ︷︷ ︸ 
rele v ance 

− β
∑ 

x k ∈ S 

∑ 

x l ∈ S 
NI(x k ; x l ) 

︸ ︷︷ ︸ 
red und ancy 

)
(14) 

here k � = l, S is the selected feature subset, β is the predefined

alue, x k and x l are the k th and l th selected features, and y is the

lass label. NI ( x k ; y ) is the normalized I ( x k ; y ) representing mutual

elevance, and NI ( x k ; x l ) is the normalized I ( x k ; x l ) representing mu-

ual redundancy: 

I (x k ; y ) = 

I (x k ; y ) √ ∑ M 

m =1 I (x m 

; y ) 2 
(15)

I (x k ; x l ) = 

I (x k ; x l ) √ ∑ M−1 
m =1 

∑ M 

j= m +1 I (x m 

; x j ) 2 
(16) 

here M is the total number of features in the dataset. 

A new method named DE mi is proposed by using DE as the

earch method with Eq. (14) as the fitness function to find opti-

al feature subsets. The representation of an individual is a M -bit

ontinuous vector representing a possible feature subset where the

ossible values in the vector is in the range of [0, 1]. If any dimen-

ion of an individual is greater than 0.5, the corresponding feature

s selected; otherwise, it is not selected. The pseudo-code of the DE

ased on MIFS can be found in Algorithm 1 . If any value (or gene)

n the mutant individual is out of the range [0,1], that value is con-

trained within the range by Eq. (17) , which is the most common

ay to deal such with out-of-range cases. 

U i j (t) = 0 , if ∀ j ∈ { 1 , ..., M } : U i j (t) < 0 , 

U i j (t) = 1 , if ∀ j ∈ { 1 , ..., M } : U i j (t) > 1 , 
(17) 

MODE based on MIFS (MODE mi ): Eq. (14) considers both the

elevance between features and the class labels, and the redun-

ancy among features in a weighted manner, i.e., β that provides

he balance between these two components needs to be prede-

ned. In most cases, users may tend to make an informed decision

rom available feature subsets. Therefore, it is necessary to consider

he two components in Eq. (14) in a multi-objective design with

he objectives of maximizing the relevance and minimizing the

edundancy. 

DE was first proposed as a single objective optimizer for con-

inuous problems. To apply DE to multi-objective problems, a new

election mechanism (see Section 2.1 ) should be reformed accord-

ng to more than one objective. Although there exist various multi-

bjective DE variants in the literature [26] , multi-objective DE
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Algorithm 1: Pseudo-code of DE mirf (and DE mi ) 

1 begin 

2 Calculate mutual relevance between features in both 

DE mir f and DE mi ; 

3 Calculate order values of all features using ReliefF and 

Fisher Ranking in DE mir f ; 

4 Initialize individuals using Eq.(1); 

5 Evaluate the fitness of individuals using Eq.(19) for DE mir f 

(Eq.(14) for DE mi ); 

6 for iter ← 1 to MaxIter do 

7 foreach individual i do 

8 Select three individuals r 1 , r 2 and r 3 randomly; 

9 Generate a mutant solution 

ˆ X i by applying the 

mutation operator shown by Eq.(2); 

10 Generate a trial vector U i by applying the crossover 

operator shown by Eq.(4); 

11 Evaluate fitness value of the trial vector U i using 

Eq.(19) for DE mir f (and Eq.(14) for DE mi ); 

// Greedy selection: 

12 if fitness of U i is better than i then 

13 Use U i to replace i ; 

14 else 

15 discard U i ; 

16 Collect the features selected by the individual with the 

best fitness value; 

17 Calculate the classification accuracy of the selected 

features on the test set; 

18 Return the individual and its classification accuracy rate; 

?
))(())(( tXftUf ikik ≤

))((Evaluate tUf ik

N o

)() 1( tXtX ii =+

Y e s 1+= kk

N o

)() 1( tUtX ii =+

Kk =if

Y e s

)(),(, 1 tXtUk ii=

comparisonfoEnd

Fig. 2. The flowchart of dominance-based selection. 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2: Pseudo-code of MODE mirf (and MODE mi ) 

1 begin 

2 Calculate mutual relevance between features in both 

MODE mir f and MODE mi ; 

3 Calculate order values of all features using ReliefF and 

Fisher Ranking in DE mir f ; 

4 Initialize individuals by Eq.(1); 

5 Evaluate the objective values of each individual; 

// Three objectives shown as relevance, ReliefF 

ranking and Fisher Ranking in Eq.(19) for DE mir f 

6 // Two objectives shown as relevance and redundancy 

in Eq.(14) for MODE mi 

7 for iter ← 1 to MaxIter do 

8 foreach individual i do 

9 Select three individuals r 1 , r 2 and r 3 randomly; 

10 Generate a mutant solution 

ˆ X i using the mutation 

operator, Eq.(2); 

11 Generate a trial vector U i using the crossover 

operator, Eq.(4); 

12 Evaluate the objectives of trial vector U i ; 

// Pareto-dominance-based selection: 

13 if i does not dominate U i then 

14 Use U i to replace i ; 

15 else 

16 discard U i ; 

17 Find the Pareto non-dominated solutions (feature subsets) 

in the final generation of the population ; 

18 Calculate the classification accuracy of the feature subsets 

on the test set; 

19 Return the feature subsets and their testing classification 

accuracy rates; 
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(MODE) [57,58] is chosen as a multi-objective DE optimizer due to

its simplicity and low time complexity. It is easy to implement and

does not include any complex structure such as non-dominated

sorting and archive keeper. MODE uses dominance-based selec-

tion inspired by Lampinen’s criterion [59] to determine Pareto-

optimal solutions. The dominance-based selection is defined by

Eq. (18) and its general implementation is presented in Fig. 2 . The

pseudo-code of using MODE for multi-objective feature selection,

i.e. the proposed MODE mi algorithm, is shown in Algorithm 2 . The

possible feature subset representation scheme of an individual in

MODE mi is same as DE mi within the range of [0, 1]. If any posi-

tion of an evolved is out of the range, that position is constrained
ithin the range by Eq. (17) . 

 i (t + 1) = 

{
U i (t) , if ∀ k ∈ { 1 , ..., K } : f k (U i (t)) ≤ f k (X i (t)) , 

X i , otherwise. 

(18)

here t is the cycle number and K is the total number of objec-

ives. 

.3. DE for feature selection based on the new criterion ( MIRFFS ) 

DE based on MIRFFS (DE mirf ): Although MIFS is a well-known

nformation theoretic feature selection approach, more than two-

ay relationships between features are mostly ignored or under-

stimated by MIFS and its variants, i.e., they generally focus on

he relationships between pair of features as shown in Eq. (12) –

14) . Accordingly, it is not possible to fully evaluate the mutual

edundancy among features. To address the problem, high order

nteractions can be evaluated via conditional mutual information

r other mutual information techniques. However, the computation

f high order interactions is highly computationally expensive and

ubstantially increases algorithmic complexity. In order to reduce

he time complexity and find better feature subsets, it is necessary

o propose a new criterion. 

In this study, we propose a new filter criterion inspired by fea-

ure ranking and information theory, in particular mutual infor-

ation, ReliefF and Fisher Score, so the new criterion is named

IRFFS and defined by Eq. (19) . In contrast to MIFS and its vari-

nts, MIRFFS aims to eliminate low ranked features detected by
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Table 1 

Datasets. 

Dateset Number of features Number of classes Number of 

examples 

Lymph 18 4 148 

Spect 22 2 267 

Leddisplay 24 10 10 0 0 

Soybean large 35 19 307 

Connect 42 3 3196 

Promoter 57 2 106 

Splice 60 3 3190 

Optic 64 10 5620 

Audiology 68 24 226 

Coil20 0 0 85 2 90 0 0 

DNA 180 2 3186 

PCMAC 3289 2 1943 
eliefF and Fisher Score. 

 it mir f (S) = max 

⎛ 

⎝ 

∑ 

x k ∈ S 
NI(x k ; y ) ︸ ︷︷ ︸ 

rele v ance 

− β

⎛ 

⎝ 

∑ 

x k ∈ S 
NRelie f order (x k ) + NF isher order (x k ) ︸ ︷︷ ︸ 

ranking 

⎞ 

⎠ 

⎞ 

⎠ (19) 

here NI ( x k , y ) is the normalized mutual relevance between kth

eature and the class labels, defined by Eq. (15) ; 

NRelief: NRelief order ( x k ) is the normalized ranking/order values

f kth feature, determined by Eq. (20) ; 

Relie f order (x k ) = 

Relie f order (x k ) 

p ∗ ∑ M 

m =1 Relie f order (x k ) 2 
(20) 

here Relief order ( x k ) is the order value of kth feature between [1,

 ], where 1 means k th feature is ranked as top 1 (the best) and

 means the worst. p is a parameter to control the balance in dif-

erent datasets. The Relief score for feature x k can be calculated by

q. (21) (details can be seen in [27] ), where P means probability:

elie f F (x k ) = P ( x k value | different class ) − P (x k value | same class )

(21) 

NFisher: NFisher order ( x k ) is the normalized order value of k th

eature, determined by Eq. (22) ; 

F isher order (x k ) = 

F isher order (x k ) 

p ∗ ∑ M 

m =1 F isher order (x m 

) 2 
(22)

here M is the total number of features in the dataset;

isher order ( x k ) is the order value of kth feature between [1, M ]

mong M features according to Fisher Score values, calculated by

q. (23) to maximizing the between-class scatter and minimizing

he within-class scatter (details can be seen in [28] ); 

 isherScore (x k ) = 

N ∑ 

n =1 

∣∣∣∣∣
μk 

i 
− μk 

j 

σ k 
i 

2 − σ k 
j 

2 

∣∣∣∣∣ (23)

here μk 
i 

and μk 
j 

are the mean of the k th feature in the i th and j th

lasses, and σ k 
i 

and σ k 
j 

are the corresponding standard deviation

alues. 

As seen in Eqs. (20) and (22) , the normalized order values

re decreased inversely proportional to M value, but as seen in

q. (15) , the mutual relevance values will be increased proportional

o M value. It is therefore difficult to keep balance between rele-

ance and ranking for high dimensional datasets. With p param-

ter, it is aimed to keep normalized order values at a reasonable

evel for high dimensional problems. p parameter is set to 1/2, 1/3

r 1/4 for the datasets including more than 50 features; otherwise,

t is chosen as 1. 

By using Eq. (19) as the fitness function in DE, a new feature se-

ection approach is proposed in this study, which is named DE mirf .

he individual representation scheme of this approach DE mirf is

ame as DE mi . The pseudo-code of DE mirf can be illustrated in

lgorithm 1 , where the major difference between DE mi and DE mirf 

s the fitness function. 

An example: We include the following example to show the

alculation of fitness function in DE mirf . Let, Z = { x 1 , x 2 , ..., x 8 } be

 dataset comprising of 8 features, β is set to 1. After calcu-

ations, features (from x 1 to x 8 ) are ordered as {7, 4, 8, 3, 2,

, 1, 5} in terms of ReliefF, and are ordered as {7, 8, 6, 2, 3,

, 1, 4} in terms of Fisher Score. The normalized mutual rele-

ance, Fisher Score ranking and ReliefF ranking values are calcu-

ated according to Eqs. (15) , (22) and (20) , which are shown as
ollows: 

NI = { 0 . 3472 , 0 . 0130 , 0 . 0689 , 0 . 2223 , 0 . 3591 , 

0 . 1534 , 0 . 7863 , 0 . 2330 } 
NRel ie f order = { 0 . 4901 , 0 . 2801 , 0 . 5601 , 0 . 210 0 , 0 . 140 0 , 

0 . 4201 , 0 . 0700 , 0 . 3501 } 
Fis he r order = { 0 . 4901 , 0 . 5601 , 0 . 4201 , 0 . 140 0 , 0 . 210 0 , 

0 . 3501 , 0 . 0700 , 0 . 2801 } 
Let [0.30, 0.80, 0.65, 0.23, 0.75, 0.45, 0.15, 0.85] be an individual

n DE. The features ({ x 2 , x 3 , x 5 , x 8 }) who’s the corresponding posi-

ions in the individual are greater than 0.5 are selected. Accord-

ng to the selected feature subset, the fitness value is computed

s -2.1268 via Eq. (19) . Note that the mutual relevance, ReliefF and

isher Score values of all available features are computed only once

efore the evolutionary process of DE. During evolutionary process

f DE, these values can be used to calculate the fitness value of

ach individual. 

MODE based on MIRFFS (MODE mirf ): As in MIFS, MIRFFS

 Eq. (19) ) uses β parameter to provide the balance between the

utual relevance and the feature ranking. Furthermore, p parame-

er is used in normalization process of ranking values to keep the

anking values at a reasonable range for high dimensional prob-

ems. The determination of optimal parameter values is generally

ime consuming and the performance of DE mirf highly dependents

n these parameters. Therefore, MIRFFS needs to be considered

n multi-objective DE design. In contrast to MODE mi and exist-

ng multi-objective studies in the literature, MODE mirf is proposed

n this work to optimize three objectives, which are mutual rele-

ance, ReliefF ranking and Fisher Score ranking. By simultaneously

ptimising these three objectives, the archived feature subsets are

xpected to achieve better classification performance by automat-

cally finding a balance among these criteria. The representation

cheme of MODE mirf is same as in MODE mi and the pseudo-code of

ODE mirf can be illustrated in Algorithm 2 . 

. Experimental design 

To examine the performance of the feature selection ap-

roaches, ten datasets from UCI machine learning repository [60] ,

ne biomedical data (DNA) and one text classification data (listed

n Table 1 ) are chosen, including different numbers of features,

amples and classes. Since mutual information cannot be com-

uted on continuous data, all chosen datasets are categorical data.

or each dataset, 70% of the samples are randomly selected as

he training set and the remaining (30%) samples are as the test

et. Notice that we also consider the distribution of instances over

lasses during the data division process. To cope with missing val-

es in some datasets, there exist a number of techniques in the
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literature such as imputation, recovering and deletion. As only

three datasets used for comparisons contain a small number of

missing values, we eliminate data instances for datasets which in-

clude any missing value. 

The filter approaches are first run on the training set to get

the optimal feature subset(s). Then, the performance of the opti-

mal feature subset(s) is evaluated by the learning/classification al-

gorithm on the test set. Note that the learning algorithm is solely

applied to the test set to obtain the classification performance of

the optimal feature subset(s). Due to its simplicity and popular-

ity, the learning algorithm is selected as K -nearest neighbor (KNN),

where K is set to 5 as in [54] in the experiments. 

The β values in Eq. (19) are set to 0.9, 0.7, 0.5, 0.3 and

0.1, respectively. For the comparative study of multi-objective and

single objective approaches, the β value of single-objective ap-

proaches is set to 0.3 that generally provides the best classification

performance. 

The experiments are conducted for 30 runs. In the experiments,

the population size is set to 50 and the maximum number of gen-

erations is defined as 50 for all approaches. For single objective ap-

proaches, the scaling factor and the crossover rate are experimen-

tally chosen as 0.8 and 0.7, and for multi-objective approaches, the

scaling factor and the crossover rate are set to 0.5 and 0.2, respec-

tively as suggested in [20] . To show the significant difference be-

tween the proposed and existing criteria, the Wilcoxon Rank Sum

test is performed with the significance level of 0.05. If the p -value

is equal or smaller than 0.05, the approach based on the proposed

criterion performs significantly better than based on the existing

criterion at 95% of confidence. 

Two traditional correlation based filter approaches (CfsF and

CfsB [61] ) and one wrapper approach (GSBS [62] ) are employed

for comparisons in the experiments. While CfsF performs forward

search, CfsB and GSBS performs backward search. The experiments

of the three traditional approaches are performed in Waikato En-

vironment for Knowledge Analysis (WEKA) [63] platform. To make

fair comparisons, the experiments of all approaches are first con-

ducted using the same 10-fold cross-validation on the same train-

ing set to obtain feature subsets. Then, the same classifier is used

to evaluate the classification performance of the feature subsets

obtained by the approaches on the same test set. 

5. Results and discussions 

In this section, results are mainly considered in two subsec-

tions. First, we analyze the classification performance and the

number of features obtained by the approaches: DE mirf vs. DE mi ,

MODE mirf vs. MODE mi , multi-objective vs. single objective and

comparisons with traditional approaches. Second, we compare

the computational time of the approaches: DE mirf vs. DE mi , and

MODE mirf vs. MODE mi . 

5.1. Comparisons between DE mirf and DE mi 

Table 2 shows the results of DE mirf and DE mi with β values from

1 to 0.1 in descending order. In Table 2 , in the first column, below

the caption of each dataset, the numbers correspond to the num-

ber of available features and the classification accuracy using all

features. The standard deviation values of classification accuracy

are presented in brackets and the mean values of feature subset

size appear below the results of the classification accuracy for each

approach over 30 independent runs. The results of the Wilcoxon

Rank Sum Test are shown via ‘Sig. Test’, where ‘+’ or ‘ −’ means the

classification performance of DE mirf is significantly better or worse

than DE mi and ‘ = ’ means there is no significant difference between

DE mirf and DE mi . 
According to Table 2 , it can be observed that with at least

wo of the β values, DE mi can generally evolve a small number

f features and achieve similar or better classification performance

han using all features except for the Promoter, Optic and Coil20 0 0

atasets. Although DE mi performs slightly worse than using all

eatures in terms of the classification accuracy in the Coil20 0 0

ataset, it can select only around 30 features from the available 85

eatures. In the Optic dataset, it can select only around 48 features

rom the available 64 features and achieve 98.75% classification

ccuracy (which is very close to 98.87% obtained using all avail-

ble features). Therefore, it can be suggested that DE mi has the po-

ential to reduce the feature subset and increase the classification

ccuracy. 

According to Table 2 , it can be also observed that DE mirf evolve

 small number of features and achieve similar or better classifi-

ation performance than using all features for all values of β in

he Spect, Leddisplay, Connect (except for 1 case of β), Splice, Au-

iology, DNA (except for 1 case of β) and PCMAC datasets. In the

ymph and Soybean datasets, it can perform better than using all

eatures in 3 values of β . Only, it cannot obtain better performance

n the Promoter and Optic datasets, but the classification perfor-

ance of DE mirf is very close to the results obtained by using all

eatures. Therefore, DE mirf can significantly reduce the dimension-

lity of the data and maintain or increase the classification perfor-

ance. Further, it reaches this success with more β options than

E mi . 

As seen in Table 2 , the classification performance and the num-

er of features tend to increase inversely proportional to the β
alue in both DE mirf and DE mi . It is also seen that both approaches

ostly achieve the best performance when the β value is 0.3.

omparing DE mirf with DE mi , the average size of the feature subsets

volved by DE mirf is smaller than DE mi in most cases. Not only ob-

aining smaller feature subset size, but also DE mirf provides higher

lassification performance in most cases. Further, the classification

erformance of DE mirf is significantly better than DE mi in almost all

ases except for the Lymph, Promoter, Optic and DNA datasets. Al-

hough there is generally no difference between DE mirf and DE mi in

he Promoter and Optic datasets, DE mirf selects a smaller number of

eatures. Thus, DE mirf can be also treated as successful in the Pro-

oter and Optic datasets. It can be suggested that the proposed

riterion outperforms the most-widely used existing criterion in

erms of the classification accuracy and the number of features. 

Generally, DE mirf and DE mi can be applied to feature selection

roblems. DE mirf which is the combination of feature ranking and

utual information is a better feature selection approach than

E mi . However, it is unclear whether more features can be re-

oved and the classification accuracy can still be maintained or

ven increased. Furthermore, the parameter to balance between

he components in both the MIRFFS and MIFS criteria is difficult to

redefine in advance. Therefore, it would be interesting to consider

eature selection as a multi-objective problem to explicitly exam-

ne the trade off between the classification accuracy and number

f features. 

.2. Comparisons between MODE mirf and MODE mi 

In the experiments, single objective approaches obtain a single

eature subset/solution in each independent run (30 feature sub-

ets for the 30 independent runs). Multi-objective approaches ob-

ain a set of nondominated solutions in each independent run. In

rder to compare the single objective algorithms with the multi-

bjective algorithms, the 30 sets of solutions obtained by multi-

bjective approaches are collected into a union set. In the union

et, the classification performance of the solutions that have the

ame subset size are averaged. A new set of average solutions is

eferred as the “average” front. In addition to the “average” front,
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Table 2 

The results of single objective DE based on MIFS and MIRFFS over KNN. 

Dataset Method β= 1 β= 0.9 β= 0.7 β= 0.5 β= 0.3 β= 0.1 

DE mi 84.60 (2.14) 83.49 (0.60) 85.71 (4e-16) 80.95 (1e-16) 88.09 (3e-16) 88.09 (3e-16) 

Lymph 5.26 5 6.03 8 11 17 

(18,88.09%) DE mirf 83.33 (5e-16) 83.33 (5e-16) 88.09 (3e-16) 80.95 (1e-16) 88.09 (3e-16) 88.09 (3e-16) 

5 5 8 9 12 17 

Sig. Test − = + = = = 

DE mi 80.00 (3e-16) 80.00 (3e-16) 80.00 (3e-16) 81.25 (0) 78.75 (2e-16) 77.50 (2e-16) 

Spect 8 8.03 10 12 14 20 

(22,78.75%) DE mirf 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 80.00 (3e-16) 78.75 (2e-16) 

2 3 7 9 14 22 

Sig. Test + + + = + + 

DE mi 83.23 (2.27) 73.61 (1.85) 93.26 (1.52) 93 (2e-16) 88.88 (0.42) 90.00 (4e-16) 

Leddisplay 7.3 8.9 9.1 12 16 24 

(24,90.00%) DE mirf 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 

7 7 7 7 7 7 

Sig. Test + + + + + + 

DE mi 72.67 (7.65) 76.62 (5.86) 78.37 (4.05) 83.11 (2.42) 84.29 (1.98) 85.70 (0.96) 

Soybean 10.03 10.63 12.4 16.63 22.4 33.76 

(35,85.53%) DE mirf 82.98 (3.60) 82.06 (2.79) 83.15 (1.39) 85.87 (1.28) 85.92 (1.04) 83.51 (0.89) 

10.6 11.23 13.3 16.53 21.23 27.76 

Sig. Test + + + + + −
DE mi 70.63 (0.06) 70.67 (0.09) 71.27 (0.14) 72.73 (0.53) 73.66 (0.17) 74.17 (0.18) 

Connect 11.83 12.4 13.66 15.63 19.53 27.66 

(42,71.69%) DE mirf 71.57 (0.69) 71.78 (0.68) 72.53 (0.87) 73.47 (0.66) 73.98 (0.31) 73.95 (0.26) 

8.46 8.9 10.26 12.23 14.8 20.36 

Sig. Test + + + + + + 

DE mi 86.00 (5.49) 85.11 (6.17) 86.88 (4.01) 86.44 (5.39) 86.11 (4.80) 86.55 (4.33) 

Promoter 9.63 9.8 10.83 12.53 16.16 30.36 

(57,90.00%) DE mirf 85.44 (6.52) 84.11 (5.51) 83.88 (5.87) 85.77 (4.62) 87.44 (4.34) 87.66 (3.05) 

9.06 9.8 10.53 11.23 14.6 28.23 

Sig. Test = = − = = = 

DE mi 67.85 (3.27) 70.55 (4.17) 72.49 (3.71) 74.52 (2.03) 74.85 (1.85) 73.39 (1.40) 

Splice 9.03 9.5 10.6 12 14.76 23.93 

(60,66.77%) DE mirf 71.68 (4.17) 72.32 (3.95) 73.52 (3.62) 74.71 (2.67) 75.59 (2.21) 74.34 (1.34) 

9.56 9.46 11.13 11.9 14.06 20.2 

Sig. Test + + = = + + 

DE mi 79.58 (5.48) 84.17 (3.12) 89.38 (2.34) 94.26 (1.02) 97.37 (0.40) 98.75 (0.12) 

Optic 12.96 13.5 16.1 18.9 25.6 48.23 

(64, 98.87%) DE mirf 89.12 (7.04) 91.34 (3.62) 90.51 (4.69) 94.17 (2.67) 97.63 (0.65) 98.57 (0.16) 

11.73 12.33 12.46 15.3 22.96 39.8 

Sig. Test + + = = = −
DE mi 64.25 (3.76) 63.84 (2.70) 64.61 (2.91) 64.56 (2.33) 64.20 (2.24) 63.53 (2.21) 

Audiology 21.16 20.90 22.30 24.83 28.03 37.50 

(68, 64.62%) DE mirf 72.00 (5.27) 67.38 (7.03) 70.10 (5.49) 68.30 (5.66) 65.17 (2.69) 64.82 (1.92) 

14.26 13.86 16.13 17.66 22.16 36.16 

Sig. Test + + + + = + 

DE mi 93.47 (0.18) 93.58 (0.18) 93.58 (0.17) 93.59 (0.16) 93.68 (0.12) 93.74 (0.06) 

Coil20 0 0 30.33 30.33 32.93 36.1 43.13 58.33 

(85,93.73%) DE mirf 93.69 (0.15) 93.71 (0.14) 93.63 (0.18) 93.71 (0.17) 93.65 (0.11) 93.80 (0.12) 

17.16 18.03 18.8 20.36 23.56 39.03 

Sig. Test + + + + = + 

DE mi 81.13 (2.55) 81.42 (2.41) 82.82 (2.05) 83.38 (1.31) 82.90 (1.34) 82.31 (1.09) 

DNA 57.63 57.50 60.26 65.53 73.06 95.83 

(180,81.70%) DE mirf 81.57 (2.37) 81.07 (2.66) 82.47 (2.35) 83.69 (1.75) 83.26 (1.72) 83.14 (1.01) 

55.80 56.73 58.03 61.23 65.73 81.13 

Sig. Test = = = = = + 

DE mi 70.40 (2.56) 70.85 (2.52) 71.27 (2.86) 72.82 (2.63) 72.77 (2.95) 75.08 (2.65) 

PCMAC 1523.40 1523.76 1523.23 1524.53 1529.33 1552.26 

(3289,70.10%) DE mirf 73.63 (2.60) 73.92 (2.32) 74.03 (2.33) 74.62 (2.38) 75.24 (1.98) 75.94 (1.62) 

1484.60 1487.53 1494.50 1499 1519.93 1619.60 

Sig. Test + + + + + = 
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s  
he non-dominated solutions in the union set (referred as the best

ront) are also used for the comparison of the approaches. 

The results of MODE mirf , MODE mi and single objective ap-

roaches on the test sets are shown in Fig. 3 , where each chart cor-

esponds to the solutions of one dataset used in the experiments.

n each chart, the horizontal axis represents the number of fea-

ures, and the vertical axis represents the classification accuracy.

n top of each chart, the numbers in the brackets correspond to

he number of available features and the classification accuracy us-
ng all features. In charts, ‘-A’ and ‘-B’ represents the “average” and

he “best” fronts, respectively. Single objective approaches may ob-

ain the same feature subset size and same classification accurary

n different runs in some datasets. Therefore, the plotted points on

ome charts for single objective approaches may be fewer than 30

istinct points. 

According to Fig. 3 , the average fronts of MODE mi (shown by

ODE-MIFS-A) include a smaller number of features and achieve

imilar or higher classification performance than using all features
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Fig. 3. Results of multi-objective approaches on test sets over KNN. 
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Table 3 

Results of traditional approaches. 

Lymph Spect Leddisplay 

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS 

Accuracy 90.48 93.48 84.21 81.25 80 82.50 100 100 100 

Size 9 9 24 12 10 18 7 7 5 

Soybean Connect Promoter 

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS 

Accuracy 85.53 85.53 84.21 70.73 70.73 71.68 90 90 90 

Size 12 11 24 6 6 41 6 6 50 

Splice Optic Audiology 

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS 

Accuracy 72.83 72.83 68.65 98.69 98.69 98.75 64.62 64.62 64.62 

Size 28 28 47 36 36 38 9 10 24 

Coil20 0 0 DNA PCMAC 

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS 

Accuracy 93.58 93.53 93.83 85.08 85.08 82.63 83.51 Null Null 

Size 10 20 31 34 34 173 47 Null Null 
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xcept for the Lymph and Leddisplay datasets. Especially in the

eddisplay dataset, the average front performance of MODE mi is

ery low when compared to the classification performance ob-

ained by using all features, but the classification performance in

ODE-MIFS-B is high. Therefore, it can be inferred that for the so-

utions including the same number of features, there are a vari-

ty of combinations of feature subsets with different classification

erformance. It can be also inferred that in different runs, for the

ame feature subset size with the same fitness value (evaluated by

q. (12) ), MODE mi does not guarantee the same classification per-

ormance. In terms of the best fronts, MODE mi evolves the feature

ubsets that achieve higher classification performance than using

ll features in almost all cases. Especially in some cases which pro-

ides higher classification accuracy, MODE mi is able to eliminate at

east 50% of available features. For instance, in the Soybean dataset,

ne non-dominated solution reduced the feature subset size from

5 to 16 and increased the classification accuracy from 85.53% to

8.15%. The results suggest that MODE mi can search the solution

pace and automatically evolve a set of feature subsets (solutions)

o reduce the feature subset size and potentially increase the clas-

ification accuracy. 

According to Fig. 3 , the average fronts of MODE mirf (MODE-

IRFFS-A) are able to obtain the feature subsets providing simi-

ar or higher classification performance than using all features ex-

ept for the Lymph dataset. It is also seen that the average fronts

f MODE mirf get more feature subsets than MODE mi in terms of

chieving better classification performance than using all features.

s in MODE mi , the non-dominated solutions of MODE mirf include a

maller number of features and achieve better classification perfor-

ance than using all features in all datasets. In a significant num-

er of MODE-MIRFFS-B solutions which provided better classifica-

ion performance than using all features, the size of the feature

ubsets were reduced between 50% and 70% of available features.

herefore, MODE mirf can effectively explore the possible solution

pace to reduce the feature subset size and increase the classifica-

ion accuracy. 

Comparing MODE mirf with MODE mi , it can be seen that

ODE mirf outperforms MODE mi in terms of average fronts except

or only some solutions of the Spect and Promoter datasets. The

ap between MODE mirf and MODE mi can be easily observed, i.e.,

he lines representing the results of MODE mi mostly lay below the

ines of MODE mirf , indicating a lower classification than MODE mirf .

or instance, on the Leddisplay dataset, the feature subsets with

3 features get 90.71% average classification accuracy in MODE mirf ,

ut the average classification accuracy of the feature subsets with

3 features in MODE mi is only 60.80%. It is therefore not difficult

o extract that the classification performance in MODE mirf does not
ary widely for the solutions including the same number of fea-

ures as in MODE mi . The possible reason is that MODE mirf aimed

o optimise three different criteria, which can capture different

roperties of the data to increase the classification performance

onsistently. Furthermore, MODE mirf is also superior to MODE mi in

erms of the non-dominated solutions in almost all datasets. The

omparisons show that both single objective and multi-objective

E approaches based on the proposed criterion can better explore

he search space and achieve better solutions than the approaches

ased on the existing criterion. 

.3. Comparisons between multi-objective and single objective 

pproaches 

Comparing MODE mi with DE mi and DE mirf , it is seen that in

ost cases, MODE mi (MODE-MIFS-B) eliminates irrelevant or re-

undant features more effectively and achieves better classification

erformance than DE mi and DE mirf with β = 0 . 3 . When compar-

ng MODE mirf with DE mirf and DE mi , in almost all cases, MODE mirf 

MODE-MIRRFS-B) also outperforms DE mirf and DE mi with β = 0 . 3

n terms of both the classification performance and the number

f features. Therefore, considering both the MIFS and MIRFFS cri-

eria in multi-objective design is more suitable and has more po-

ential to explore the search space than single-objective design for

eature selection problems. Furthermore, parameter β which keeps

he balance between components does not need to be predefined

n multi-objective design. 

.4. Comparisons with traditional approaches 

Table 3 shows the results of the two traditional filter ap-

roaches (CfsF and CfsB) and one traditional wrapper approach

GSBS). The three traditional approaches produce a unique feature

ubset, so have a single accuracy for each test set. Note that it

s not completely fair to compare filter approaches with wrapper

pproaches since wrappers use a classifier during the evaluation

rocess. 

Comparing single objective approaches ( Table 2 ) with tradi-

ional filter approaches, it can be seen that DE mi achieves higher

lassification accuracy than traditional filter approaches in the

onnect, Splice, Coil20 0 0 and Audiology datasets. For the other

atasets, traditional approaches outperform DE mi . On the other

and, DE mirf performs similar or better classification accuracy than

raditional approaches except for some cases. Comparing single ob-

ective approaches with the wrapper approach, GSBS, it is seen that

ingle objective approaches outperform GSBS in all cases. Compar-

ng multi-objective approaches ( Fig. 3 ) with traditional filter ap-

roaches, it is seen that two multi-objective approaches select a

maller number of features and achieve higher classification per-

ormance than two traditional filter approaches except for the

romoter and Coil20 0 0 datasets. Furthermore, multi-objective ap-

roaches outperform GSBS in all datasets in terms of the classifi-

ation accuracy and the feature subset size. 

.5. Further comparisons 

To further test the performance of the proposed algorithms, we

ompared the proposed both single objective method (DE mirf ) and

ulti-objective method (MODE mirf ) with six existing PSO based fil-

er feature selection methods proposed in [64] , including two sin-

le objective methods ( PSOMI based on PSO and MIFS, and PSOE

ased on PSO and an entropy based information gain measure),

nd four multi-objective PSO methods ( NSfsMI and NSfsE based on

on-dominated sorting based multi-objective PSO [65] with MIFS

nd the entropy measures, respectively, and CMDfsMI and CMDfsE

ased on multi-objective PSO in [66] with MIFS and the entropy
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Table 4 

The CPU time results of single objective approaches. 

Dataset Method β= 1 β= 0.9 β= 0.7 β= 0.5 β= 0.3 β= 0.1 

Lymph DE mi 0.20 (0.02) 0.20 (0.02) 0.20 (0.02) 0.22 (0.03) 0.27 (0.03) 0.37 (0.03) 

DE mirf 0.16 (0.03) 0.15 (0.02) 0.16 (0.02) 0.15 (0.02) 0.15 (0.01) 0.14 (0.02) 

Sig. Test + + + + + + 

Spect DE mi 0.25 (0.03) 0.25 (0.02) 0.26 (0.02) 0.31 (0.02) 0.38 (0.03) 0.50 (0.04) 

DE mirf 0.16 (0.02) 0.15 (0.02) 0.16 (0.01) 0.15 (0.02) 0.16 (0.03) 0.17 (0.02) 

Sig. Test + + + + + + 

Leddisplay DE mi 0.28 (0.03) 0.28 (0.03) 0.31 (0.03) 0.33 (0.03) 0.41 (0.03) 0.51 (0.01) 

DE mirf 0.16 (0.02) 0.16 (0.01) 0.15 (0.01) 0.17 (0.02) 0.16 (0.01) 0.16 (0.02) 

Sig. Test + + + + + + 

Soybean DE mi 0.34 (0.03) 0.35 (0.02) 0.37 (0.03) 0.44 (0.03) 0.55 (0.03) 0.65 (0.03) 

DE mirf 0.17 (0.02) 0.17 (0.01) 0.16 (0.02) 0.17 (0.02) 0.17 (0.02) 0.16 (0.02) 

Sig. Test + + + + + + 

Connect DE mi 14.3 (2.29) 12.3 (3.01) 13.85 (0.64) 14.81 (1.04) 18.15 (1.11) 25.23 (1.87) 

DE mirf 3.53 (0.77) 4.21 (2.93) 4.43 (3.01) 9.91 (4.38) 13.91 (0.92) 17.69 (1.73) 

Sig. Test + + + + + + 

Promoter DE mi 0.48 (0.05) 0.48 (0.06) 0.49 (0.04) 0.50 (0.04) 0.58 (0.03) 0.79 (0.02) 

DE mirf 0.17 (0.02) 0.17 (0.02) 0.16 (0.01) 0.18 (0.02) 0.16 (0.02) 0.17 (0.02) 

Sig. Test + + + + + + 

Splice DE mi 0.52 (0.04) 0.52 (0.02) 0.52 (0.03) 0.56 (0.05) 0.67 (0.04) 0.84 (0.03) 

DE mirf 0.21 (0.02) 0.22 (0.02) 0.23 (0.03) 0.21 (0.02) 0.22 (0.02) 0.22 (0.02) 

Sig. Test + + + + + + 

Optic DE mi 0.65 (0.06) 0.64 (0.04) 0.67 (0.04) 0.73 (0.04) 0.86 (0.04) 1.34 (0.06) 

DE mirf 0.26 (0.03) 0.26 (0.03) 0.27 (0.04) 0.27 (0.03) 0.30 (0.02) 0.38 (0.02) 

Sig. Test + + + + + + 

Audiology DE mi 0.60 (0.07) 0.58 (0.07) 0.57 (0.06) 0.57 (0.04) 0.58 (0.07) 0.65 (0.03) 

DE mirf 0.26 (0.03) 0.26 (0.02) 0.26 (0.02) 0.27 (0.05) 0.27 (0.05) 0.23 (0.02) 

Sig. Test + + + + + + 

Coil20 0 0 DE mi 1.51 (0.08) 1.58 (0.09) 1.61 (0.09) 1.73 (0.10) 1.93 (0.07) 2.49 (0.09) 

DE mirf 0.59 (0.06) 0.59 (0.03) 0.58 (0.03) 0.59 (0.04) 0.62 (0.04) 0.81 (0.05) 

Sig. Test + + + + + + 

DNA DE mi 3.30 (0.15) 3.31 (0.06) 3.42 (0.08) 3.58 (0.07) 4.04 (0.11) 5.21 (0.25) 

DE mirf 0.43 (0.03) 0.42 (0.02) 0.42 (0.04) 0.48 (0.05) 0.44 (0.03) 0.47 (0.03) 

Sig. Test + + + + + + 

PCMAC DE mi 124.33 (7.68) 136.39 (3.17) 137.30 (5.09) 140.28 (4.56) 136.96 (16.42) 134.45 (7.57) 

DE mirf 4.37 (0.29) 4.33 (0.18) 4.17 (0.15) 4.35 (0.22) 4.46 (0.10) 4.71 (0.18) 

Sig. Test + + + + + + 
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measures, respectively). The second multi-objective PSO framework

[66] has shown to be better than the first one and other popular

evolutionary multi-objective frameworks [67] . 

There are 5 datasets in common in this work and in [64] , which

are Lymph, Spect, Leddisplay, Soybean and Connect. When compar-

ing the single objective methods, the proposed DE mirf achieves bet-

ter performance than PSOMI and PSOE on four of the five datasets,

with a slightly worse performance on Soybean than PSOMI and

on Connect than PSOE but with a much smaller number of fea-

tures. When comparing the multi-objective methods, the proposed

MODE mirf achieves better performance than NSfsE and NSfsMI on

four of the five datasets, and better than CMDfsMI and CMDfsE

on three datasets, similar on one dataset, but worse on the other

one dataset. Note that different data splitting may cause a slightly

different accuracy on the dataset, but the superior performance

of the new methods are significant, e.g nearly 10 percents accu-

racy increases. This is only a simple multi-objective DE framework,

but the compared multi-objective PSO framework [66] is a sophis-

ticated one. The above comparisons indicate that multi-objective

DE with more advanced search mechanisms is very likely to have

the potential of achieving even better performance, which confirms

one of the motivations of this work. 

5.6. Analysis of computational time 

5.6.1. Comparisons of CPU time between DE mirf and DE mi 

The computational time results of single objective approaches

are presented in terms of mean and standard deviation values over

o

he 30 independent runs in Table 4 . The standard deviation val-

es are shown in brackets. The experiments are implemented in

ATLAB2013a and are executed on a computer with an Intel Core

7-4700HQ 2.40 GHz CPU and 8 GB RAM. The results of Wilcoxon

ank Sum Test are shown via ‘Sig. Test’ as in Table 2 , where ‘+’

r ‘ −’ means that the computational time performance of DE mirf is

horter or longer than DE mi and ‘ = ’ means that there is no signifi-

ant change between DE mirf and DE mi . 

According to Table 4 , the computational time of DE mi is in-

reased inversely proportional to the β value, i.e., proportional to

he feature subset size. The CPU time of DE mi for β = 0 . 1 is about

wo times as high as β = 1 in most cases. On the other hand, the

omputational time of DE mirf does not tend to increase inversely

roportional to the β value, i.e., proportional to the feature subset

ize except for the Connect, Optic, Coil20 0 0 and PCMAC datasets.

he CPU time is increased in these datasets only between β = 0 . 5

nd β = 0 . 1 . Therefore, DE mirf can be treated as stable without no

oubt in terms of the computational time. 

Comparing DE mirf with DE mi , it is seen that DE mirf can reduce

he computational time at least a half or a quarter compared with

E mi in most cases. The computational time difference between

E mirf and DE mi is higher for the lower values of β . For instance,

he gap between DE mirf and DE mi is increased from 0.31 to 0.62 s

n the Promoter and Splice datasets, while the β value is decreased

rom 1 to 0.1. The results show that DE mirf achieves significantly

etter computational performance than DE mi . That can be illus-

rated via ‘Sig. Test’ in Table 4 . Therefore, DE mirf is superior to DE mi 

ot only in terms of the classification performance and the number

f features, but also in terms of the CPU computational time. 
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Table 5 

The CPU time results of multi-objective approaches. 

Dataset MODE mi MODE mirf Sig. Test 

Lymph 0.12 (0.01) 0.10 (0.01) + 

Spect 0.14 (0.01) 0.11 (0.01) + 

Leddisplay 0.39 (0.01) 0.27 (0.01) + 

Soybean 0.22 (0.01) 0.13 (0.01) + 

Connect 754.09 (37.57) 705.03 (25.05) + 

Promoter 0.31 (0.01) 0.10 (0.01) + 

Splice 2.42 (0.04) 2.29 (0.07) + 

Optic 8.43 (0.22) 7.56 (0.19) + 

Audiology 0.43 (0.05) 0.18 (0.03) + 

Coil20 0 0 34.77 (0.81) 29.92 (0.66) + 

DNA 8.16 (0.37) 6.91 (0.35) + 

PCMAC 130.72 (27.46) 70.01 (9.95) + 
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How can DE mirf complete the process in a shorter time in all

ases and why cannot DE mi provide the stability in CPU compu-

ational time for different values of β? Given m selected features,

s seen in Eq. (14) , the time complexity of relevance and redun-

ancy is o ( m ) and o ( m 

2 ), respectively; thus, the time complexity of

E mi is o(m 

2 ) + o(m ) ≈ o ( m 

2 ). On the other hand, the time com-

lexity of relevance, ReliefF ranking and Fisher ranking is o ( m ) as

een in Eq. (19) ; therefore, the time complexity of DE mirrfs is about

 ( m ). Furthermore, DE mirf can remove/reduce irrelevant or redun-

ant features more effectively than DE mi , which also contributes to

he improvement of the computational time. 

.6.2. Comparisons of CPU time between MODE mirf and MODE mi 

The computational time results of multi-objective approaches

re presented in terms of mean and standard deviation values over

he 30 independent runs in Table 5 . The standard deviation values

re shown in brackets. The experiments are implemented and ex-

cuted on the same computer as in Section 5.2.1. The results of

ilcoxon Rank Sum Test are shown via ‘Sig. Test’, where ‘+’ or ‘ −’

eans the computational time performance of MODE mirf is shorter

r longer than MODE mi and ‘ = ’ means there is no significant dif-

erence between MODE mirf and MODE mi . 

According to Table 5 , it is seen that MODE mirf can complete

eature selection in a shorter time than MODE mi in all datasets,

lthough the number of objectives in MODE mirf is higher than

ODE mi . The efficiency of MODE mirf is also supported by the

ilcoxon Rank Sum Test, which shows MODE mirf is significantly

etter than MODE mi in all datasets. How can MODE mirf be compu-

ationally more efficient? First, as mentioned in Section 5.2.1, the

edundancy component of Eq. (14) increases the time complexity

 o ( m 

2 )) in MODE mi . Furthermore, MODE [57] uses no complex and

ime consuming components to sort or renew individuals based on

bjective values like nondominated sorting genetic algorithm (NS-

AII) [68] or multi objective particle swarm optimization (MOPSO)

69] . Instead of complex components such as non-dominated sort-

ng and external archive, MODE uses multi-way greedy selection

o renew or select individuals. Therefore, the computational time

s not adversely affected by the number of objectives. 

The comparisons confirm that both single objective and multi-

bjective DE approaches based on the proposed criterion can bet-

er explore the search space and achieve better solutions than the

pproaches based on the existing criterion. The comparisons also

onfirm to the fact that the proposed criterion ( Eq. (19) ) signifi-

antly improves the efficiency and effectiveness of both single ob-

ective and multi-objective DE algorithms in feature selection prob-

ems compared to the MIFS criterion ( Eq. (14) ). 

.6.3. Comparisons of CPU time with existing methods 

When comparing with traditional methods, the forward selec-

ion method, i.e. CfsF, is much faster than the proposed methods,

specially when the total number of features is small. CfsB follow-

ng a backward selection method but with a filter measure is also

aster than the proposed methods on small datasets, but slower
han the proposed methods on large datasets, such as the PCMAC

atasets, where both CfsB and GSBS cannot finish running within

ours, but the proposed methods used minutes of time. The rea-

on is that the backward selection method start with the full set

f features, i.e. each evaluation involves a large dataset leading to

 long computation time. 

For making fair comparisons on CPU computational time, all ap-

roaches should be executed in computation environment, but in

his work, we can indirectly compare the proposed multi-objective

ODE mirf with the PSO based methods in [64] . The main reason

s that when using EC methods for feature selection, the major-

ty of the computational cost is used in the fitness evaluations.

or (relatively) fair comparisons, different algorithms should use

he same number of fitness evaluations. Since MODE mirf has shown

o be faster than MODE mi , and PSOMI, NSfsMI and CMDfsMI used

he same fitness evaluation as MODE mi , it is reasonable to say

hat MODE mirf is faster than PSOMI, NSfsMI and CMDfsMI. Further-

ore, NSfsMI and CMDfsMI are much faster than PSOE, NSfsE and

MDfsE, which indicates that MODE mirf is faster than PSOE, NSfsE

nd CMDfsE. Of course, this is a general comparison on the com-

utational cost, and the efficiency of all the algorithms can be im-

roved in using a different programming language for implemen-

ation and a better computation environment. 

. Conclusions 

The overall goal of this study was to develop new single ob-

ective and multi-objective DE based filter feature selection ap-

roaches to better searching for a set of feature subsets, which

an eliminate irrelevant or redundant features and achieved bet-

er classification performance than using all features. This goal was

uccessfully achieved by introducing a novel criterion inspired by

eature ranking and mutual information, and adopting the most

idely used criterion. Thus, two single objective (DE mirf and DE mi )

nd two multi-objective (MODE mirf and MODE mi ) approaches were

roposed for feature selection problems. The effectiveness of the

pproaches is demonstrated by comparing them to each other. 

Experimental results show that in almost all cases, DE based on

oth the proposed and existing criteria can automatically evolve a

mall number of features and achieve better classification perfor-

ance than using all features. Comparing the proposed and exist-

ng criteria, DE based on the proposed criterion outperformed the

xisting criterion in almost all cases in terms of both the number

f features and the classification accuracy. Moreover, DE based on

he proposed criterion searched the solution space much more ef-

ciently than the existing criterion due to lower time complexity. 

Experimental results also show that MODE based on both the

roposed and existing criteria achieved similar or better classifi-

ation performance than using all features and the single objective

pproaches in most datasets. Comparisons also indicate that MODE

ased on the proposed criterion outperformed the existing crite-

ion in terms of both the best and the average fronts. Furthermore,

he fluctuations on the classification performance among the solu-

ions with the same number of features obtained by MODE based

n the proposed criterion were lower than those produced by the

xisting criterion, which improved the performance of the average

ronts. The computational time efficiency of the proposed criterion

an be also illustrated in multi-objective approaches. Although the

ulti-objective design of the proposed criterion includes three ob-

ectives, it is also able to complete the feature selection process in

 shorter time. 

Instead of applying an existing criterion as an objective func-

ion which was mostly preferred in the literature, this paper pro-

oses new DE-based approaches based on a novel criterion for fil-

er based feature selection. The effectiveness and the efficiency of

he approaches have been demonstrated in both single objective

nd multi-objective experimental studies. In future, we will further
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develop the multi-objective DE based filter approaches based on

the proposed criterion to better explore the Pareto front of non-

dominated solutions in feature selection and will try to redesign

the proposed criterion for the continuous datasets. 

Acknowledgments 

This work was supported in part by the Marsden Fund of New

Zealand Government under Contracts VUW1209 , VUW1509 and
Table A.6 

The results of single objective DE based on MIFS and MIRFFS over Naive

Dataset Method β= 1 β= 0.9 

DE mi 84.68 (1.20) 84.68 (1.21) 85.

Lymph 5.43 5.43 

(18,90.47%) DE mirf 85.71 (4e −16) 85.71 (4e −16) 88.0

5 5 

Sig. Test + + 

DE mi 81.25 (0) 81.25 (0) 81

Spect 8 8.1 

(22,73.75%) DE mirf 81.25 (0) 81.25 (0) 81

2 3 

Sig. Test = = 

DE mi 82.13 (0.27) 82 (2e −16) 93.3

Leddisplay 7.26 9 

(24,99.33%) DE mirf 100 (0) 100 (0) 1

7 7 

Sig. Test + + 

DE mi 63.99 (7.32) 64.95 (7.43) 71.

Soybean 9.56 10.13 

(35,89.47%) DE mirf 70.96 (1.98) 71.53 (1.77) 72.

10.46 10.8 

Sig. Test + + 

DE mi 70.39 (3e −16) 70.39 (3e −16) 70.3

Connect 12.56 12.06 

(42,70.39%) DE mirf 70.39 (3e −16) 70.39 (3e −16) 70.3

8.56 8.8 

Sig. Test = = 

DE mi 78.66 (7.03) 78.55 (4.84) 79.

Promoter 9.3 9.83 

(57,80.00%) DE mirf 81.44 (4.68) 81.11 (6.27) 83.

8.5 9.33 

Sig. Test + + 

DE mi 55.15 (5.92) 57.73 (5.79) 58.

Splice 9.13 9.16 

(60,75.97%) DE mirf 62.87 (4.75) 61.36 (5.81) 63.

9.53 10.73 

Sig. Test + + 

DE mi 72.31 (4.56) 76.16 (3.37) 79.

Optic 13.43 14.1 

(64, 90.09%) DE mirf 77.53 (5.56) 76.88 (4.90) 79.

11.93 11.36 

Sig. Test + + 

DE mi 72.76 (1.72) 73.33 (2.92) 72.

Audiology 20.96 21.5 

(68, 33.85%) DE mirf 69.48 (4.96) 69.79 (5.38) 70.

13.66 13 

Sig. Test − −
DE mi 89.99 (1.49) 89.10 (2.42) 88.

Coil20 0 0 29.7 30.76 

(85,74.48%) DE mirf 85.51 (4.75) 82.37 (4.26) 83

17.83 18.33 

Sig. Test − −
DE mi 85.50 (1.93) 86.80 (2.01) 88.

DNA 57.26 59.4 

(180,91.23%) DE mirf 85.48 (2.45) 86.68 (2.16) 87.

55.16 56.66 

Sig. Test = = 

DE mi 83.93 (1.62) 84.26 (1.97) 84.

PCMAC 1523.4 1523.76 1

(3289,89.52%) DE mirf 85.26 (1.63) 85.59 (1.44) 85.

1478 1480.86 1

Sig. Test + + 
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ppendix. Further Comparisons Using Naive Bayes Classifier 

To investigate whether the successful performance of the pro-

osed single objective and multi-objective approaches can carry

n other classification algorithms in addition to KNN. Naive Bayes
 Bayes. 

β= 0.7 β= 0.5 β= 0.3 β= 0.1 

23 (0.97) 85.71 (4e-16) 85.71 (4e-16) 90.47 (0) 

6.23 8 11 17 

9 (3e −16) 88.09 (3e −16) 88.09 (3e −16) 90.47 (0) 

8 9 12 17 

+ + + = 

.25 (0) 81.25 (0) 81.25 (0) 78.75 (2e −16) 

10 12 14 20 

.25 (0) 81.25 (0) 81.25 (0) 78.75 (2e −16) 

7 9 14 22 

= = = = 

3 (3e −16) 90 (4e −16) 99.70 (0.10) 99.33 (4e −16) 

9.1 12 16.1 24 

00 (0) 100 (0) 100 (0) 100 (0) 

7 7 7 7 

+ + + + 

97 (5.62) 81.62 (3.19) 90.87 (1.42) 89.12 (0.59) 

12.7 16.6 22.53 33.88 

32 (1.35) 81.53 (2.38) 86.35 (1.44) 88.85 (1.07) 

13.3 15.96 21.33 27.93 

= = − = 

9 (3e −16) 70.39 (3e −16) 70.39 (3e −16) 70.39 (3e −16) 

13.96 15.46 19.8 27.86 

9 (3e −16) 70.39 (3e −16) 70.39 (3e −16) 70.39 (3e −16) 

9.9 11.9 14.13 20.06 

= = = = 

66 (5.41) 81.11 (6.27) 80 (4.28) 80 (3.60) 

11 12.16 16.53 29.83 

88 (5.47) 84 (5.70) 85.11 (4.35) 83.33 (4.46) 

10.1 11.6 14.06 27.33 

+ + + + 

46 (6.14) 62.89 (2.78) 67.39 (2.04) 73.30 (1.02) 

10.4 12.16 15.1 24.5 

01 (5.82) 66.13 (5.06) 69.47 (2.69) 72.84 (1.16) 

10.36 12.06 14.33 20.06 

+ + + = 

58 (2.06) 84.96 (1.62) 88.17 (0.86) 90.01 (0.40) 

15.66 18.3 25.63 49.83 

72 (3.77) 83.57 (3.07) 87.86 (1.23) 89.88 (0.61) 

12.43 15.53 22.13 40.1 

= = = = 

56 (2.85) 73.23 (2.66) 71.43 (2.73) 64.71 (2.21) 

21.8 25.3 28.66 38.1 

25 (4.30) 69.33 (2.58) 70 (3.89) 60.05 (4.47) 

15.33 17.73 20.96 35.4 

= − = −
15 (1.85) 86.24 (2.05) 82.64 (2.23) 75.40 (0.51) 

32.23 36.56 42.33 58.83 

.33 (4.8) 81.52 (4.57) 78.99 (2.84) 75.59 (0.73) 

18.5 19.4 23.6 38.7 

− − − = 

01 (1.64) 89.37 (1.41) 91.23 (1.05) 92.78 (0.51) 

60.06 64.3 72.83 97.23 

99 (1.86) 88.73 (2.01) 89.41 (1.80) 92.46 (0.74) 

58.6 60.33 65.76 81.8 

= = − = 

61 (1.52) 85.31 (1.49) 85.24 (2.07) 87.09 (1.32) 

523.23 1524.53 1529.33 1552.26 

97 (1.49) 86.23 (1.63) 86.81 (1.22) 87.73 (0.97) 

495.13 1495.33 1512.73 1621.83 

+ + + + 
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Fig. 4. Results of multi-objective approaches on test sets over Naive Bayes. 
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(NB) is used in the further experiments, since it is efficient, easy

to implement and particularly useful for large datasets. 

The results of single objective approaches are presented in

Table A.6 , which are obtained from 30 independent runs. The re-

sults include the classification performance, the feature subset size

and the Wilcoxon Rank Sum Test. The numbers in the brackets

underlying the caption of each dataset in Table A.6 represent the

available number of features and the classification accuracy of NB

using all features, respectively. According to Table A.6 , both DE mi 

and DE mirf obtain generally similar or higher classification accu-

racy than using all features. Only in the Splice, Optic and PCMAC

datasets, single objective approaches cannot achieve better clas-

sification accuracy than using all features, but the obtained clas-

sification accuracies in Optic are very close to the accuracy ob-

tained by using all features. Comparing DE mirf with DE mi , it can

be observed that DE mirf outperforms DE mi in the Lymph, Leddis-

play, Promoter, Splice and PCMAC datasets almost in all β values

in terms of both the classification accuracy and the feature sub-

set size. On the Spect, Soybean, Connect and Optic datasets, DE mirf 

mostly achieves similar classification performance using a smaller

number of features than DE mi . Overall, the results of the signifi-

cance tests can show that the successful performance of DE mirf also

carries on when using NB as a classifier. 

The results of multi-objective approaches are presented with

single objective approaches where β = 0 . 3 in Fig. 4 . On top of each

chart in Fig. 4 , the numbers in brackets represent the feature sub-

set size and the classification accuracy using NB with all features.

The other concerning definitions and explanations related to charts

can be found in Section 5.2 . According to Fig. 4 , both MODE mi and

MODE mirf can automatically evolve a set of feature subsets yield-

ing higher classification performance than using all features on all

datasets. Especially in terms of the best fronts, high classification

accuracies are achieved with less than 50% of the available fea-

tures. For instance, on the Coil200 dataset, one best solution in-

creased the classification accuracy from 74.48% to 92.52%, while

the feature subset size was decreased from 85 to 32. Comparing

multi-objective approaches with single objective approaches, it can

be inferred from Fig. 4 that multi-objective approaches are more

likely to find smaller feature subsets which achieves higher classi-

fication performance than DE mi on all the datasets and DE mirf ex-

cept for the Audiology dataset. Accordingly, it is clear that both the

MIFS and MIRFSS criteria in the multi-objective approach are able

to search the possible solution space more effectively than single

objective approaches in feature selection problems. 

Comparing MODE mirf and MODE mi , it can be observed from

Fig. 4 that the best and average front lines of MODE mi are mostly

lay below the lines of MODE mirf except for the Audiology and

Coil20 0 0 datasets. Furthermore, the gap between MODE mirf and

MODE mi is extremely high, especially in terms of the average

fronts. In other words, the classification performance of solutions

with the same feature subset size obtained by MODE mi are more

likely to vary, i.e., not stable and consistent compared to MODE mirf .

From the above comparisons, it can be concluded that consider-

ing the proposed criterion in both the single objective and multi-

objective design can better search the possible solution space and

obtain better solutions than the existing criterion in terms of the

classification performance and the feature subset size over a differ-

ent classification method. 
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